forked from Imagelibrary/rtems
context after they are finialized after r336539, so do not do it. Submitted by: David CARLIER <devnexen gmail com> MFC after: 1 month (after r336539) Differential Revision: https://reviews.freebsd.org/D16059
266 lines
8.2 KiB
C
266 lines
8.2 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2011 The FreeBSD Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Based on:
|
|
* SHA256-based Unix crypt implementation. Released into the Public Domain by
|
|
* Ulrich Drepper <drepper@redhat.com>. */
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/endian.h>
|
|
#include <sys/param.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <sha256.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <crypt.h>
|
|
|
|
/* Define our magic string to mark salt for SHA256 "encryption" replacement. */
|
|
static const char sha256_salt_prefix[] = "$5$";
|
|
|
|
/* Prefix for optional rounds specification. */
|
|
static const char sha256_rounds_prefix[] = "rounds=";
|
|
|
|
/* Maximum salt string length. */
|
|
#define SALT_LEN_MAX 16
|
|
/* Default number of rounds if not explicitly specified. */
|
|
#define ROUNDS_DEFAULT 5000
|
|
/* Minimum number of rounds. */
|
|
#define ROUNDS_MIN 1000
|
|
/* Maximum number of rounds. */
|
|
#define ROUNDS_MAX 999999999
|
|
|
|
char *
|
|
crypt_sha256_r(const char *key, const char *salt, struct crypt_data *data)
|
|
{
|
|
u_long srounds;
|
|
int n;
|
|
uint8_t alt_result[32], temp_result[32];
|
|
SHA256_CTX ctx, alt_ctx;
|
|
size_t salt_len, key_len, cnt, rounds;
|
|
char *cp, *p_bytes, *s_bytes, *endp;
|
|
const char *num;
|
|
bool rounds_custom;
|
|
char *buffer = &data->buffer[0];
|
|
int buflen = (int)sizeof(data->buffer);
|
|
|
|
/* Default number of rounds. */
|
|
rounds = ROUNDS_DEFAULT;
|
|
rounds_custom = false;
|
|
|
|
/* Find beginning of salt string. The prefix should normally always
|
|
* be present. Just in case it is not. */
|
|
if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
|
|
/* Skip salt prefix. */
|
|
salt += sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
|
|
== 0) {
|
|
num = salt + sizeof(sha256_rounds_prefix) - 1;
|
|
srounds = strtoul(num, &endp, 10);
|
|
|
|
if (*endp == '$') {
|
|
salt = endp + 1;
|
|
rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
|
|
rounds_custom = true;
|
|
}
|
|
}
|
|
|
|
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
|
|
key_len = strlen(key);
|
|
|
|
/* Prepare for the real work. */
|
|
SHA256_Init(&ctx);
|
|
|
|
/* Add the key string. */
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
/* The last part is the salt string. This must be at most 8
|
|
* characters and it ends at the first `$' character (for
|
|
* compatibility with existing implementations). */
|
|
SHA256_Update(&ctx, salt, salt_len);
|
|
|
|
/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
|
|
* final result will be added to the first context. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* Add key. */
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Add salt. */
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
/* Add key again. */
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Now get result of this (32 bytes) and add it to the other context. */
|
|
SHA256_Final(alt_result, &alt_ctx);
|
|
|
|
/* Add for any character in the key one byte of the alternate sum. */
|
|
for (cnt = key_len; cnt > 32; cnt -= 32)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
SHA256_Update(&ctx, alt_result, cnt);
|
|
|
|
/* Take the binary representation of the length of the key and for
|
|
* every 1 add the alternate sum, for every 0 the key. */
|
|
for (cnt = key_len; cnt > 0; cnt >>= 1)
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
else
|
|
SHA256_Update(&ctx, key, key_len);
|
|
|
|
/* Create intermediate result. */
|
|
SHA256_Final(alt_result, &ctx);
|
|
|
|
/* Start computation of P byte sequence. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < key_len; ++cnt)
|
|
SHA256_Update(&alt_ctx, key, key_len);
|
|
|
|
/* Finish the digest. */
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
/* Create byte sequence P. */
|
|
cp = p_bytes = alloca(key_len);
|
|
for (cnt = key_len; cnt >= 32; cnt -= 32) {
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Start computation of S byte sequence. */
|
|
SHA256_Init(&alt_ctx);
|
|
|
|
/* For every character in the password add the entire password. */
|
|
for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
|
|
SHA256_Update(&alt_ctx, salt, salt_len);
|
|
|
|
/* Finish the digest. */
|
|
SHA256_Final(temp_result, &alt_ctx);
|
|
|
|
/* Create byte sequence S. */
|
|
cp = s_bytes = alloca(salt_len);
|
|
for (cnt = salt_len; cnt >= 32; cnt -= 32) {
|
|
memcpy(cp, temp_result, 32);
|
|
cp += 32;
|
|
}
|
|
memcpy(cp, temp_result, cnt);
|
|
|
|
/* Repeatedly run the collected hash value through SHA256 to burn CPU
|
|
* cycles. */
|
|
for (cnt = 0; cnt < rounds; ++cnt) {
|
|
/* New context. */
|
|
SHA256_Init(&ctx);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
else
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
|
|
/* Add salt for numbers not divisible by 3. */
|
|
if (cnt % 3 != 0)
|
|
SHA256_Update(&ctx, s_bytes, salt_len);
|
|
|
|
/* Add key for numbers not divisible by 7. */
|
|
if (cnt % 7 != 0)
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
/* Add key or last result. */
|
|
if ((cnt & 1) != 0)
|
|
SHA256_Update(&ctx, alt_result, 32);
|
|
else
|
|
SHA256_Update(&ctx, p_bytes, key_len);
|
|
|
|
/* Create intermediate result. */
|
|
SHA256_Final(alt_result, &ctx);
|
|
}
|
|
|
|
/* Now we can construct the result string. It consists of three
|
|
* parts. */
|
|
cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
|
|
buflen -= sizeof(sha256_salt_prefix) - 1;
|
|
|
|
if (rounds_custom) {
|
|
n = snprintf(cp, MAX(0, buflen), "%s%zu$",
|
|
sha256_rounds_prefix, rounds);
|
|
|
|
cp += n;
|
|
buflen -= n;
|
|
}
|
|
|
|
cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
|
|
buflen -= MIN((size_t)MAX(0, buflen), salt_len);
|
|
|
|
if (buflen > 0) {
|
|
*cp++ = '$';
|
|
--buflen;
|
|
}
|
|
|
|
b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp);
|
|
b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp);
|
|
b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp);
|
|
if (buflen <= 0) {
|
|
errno = ERANGE;
|
|
buffer = NULL;
|
|
}
|
|
else
|
|
*cp = '\0'; /* Terminate the string. */
|
|
|
|
/* Clear the buffer for the intermediate result so that people
|
|
* attaching to processes or reading core dumps cannot get any
|
|
* information. We do it in this way to clear correct_words[] inside
|
|
* the SHA256 implementation as well. */
|
|
SHA256_Init(&ctx);
|
|
SHA256_Final(alt_result, &ctx);
|
|
memset(temp_result, '\0', sizeof(temp_result));
|
|
memset(p_bytes, '\0', key_len);
|
|
memset(s_bytes, '\0', salt_len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
struct crypt_format crypt_sha256_format =
|
|
CRYPT_FORMAT_INITIALIZER(crypt_sha256_r, "$5$");
|