/* SPDX-License-Identifier: BSD-2-Clause */ /** * @file * * @ingroup RTEMSDeviceSerialZynq * * @brief This source file contains the implementation of the polled Zynq UART * support. */ /* * Copyright (C) 2013, 2017 embedded brains GmbH & Co. KG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include static uint32_t zync_uart_baud_error( uint32_t selected_clock, uint32_t desired_baud, uint32_t cd, uint32_t bdiv_plus_one ) { uint32_t actual_baud = selected_clock / ( cd * bdiv_plus_one ); if ( actual_baud > desired_baud ) { return actual_baud - desired_baud; } return desired_baud - actual_baud; } uint32_t zynq_uart_calculate_baud( uint32_t desired_baud, uint32_t mode_clks, uint32_t *cd_ptr, uint32_t *bdiv_ptr ) { uint32_t best_error = UINT32_MAX; uint32_t best_cd = 0x28b; uint32_t best_bdiv_plus_one = 16; uint32_t bdiv_plus_one; uint32_t selected_clock; _Assert((mode_clks & ~ZYNQ_UART_MODE_CLKS) == 0); selected_clock = zynq_uart_input_clock() / (1U << (3 * mode_clks)); for (bdiv_plus_one = 5; bdiv_plus_one <= 256; ++bdiv_plus_one) { uint32_t cd = ( selected_clock / bdiv_plus_one ) / desired_baud; uint32_t error; if (cd == 0 ) { cd = 1; } else if ( cd > 65535 ) { cd = 65535; } error = zync_uart_baud_error( selected_clock, desired_baud, cd, bdiv_plus_one ); /* * The procedure to detect a start bit uses three samples in the middle of * an RX-bit. If the sample set is too small, there may be a sample in * another bit in case the baud setting is not accurate. Most noise is in * the form of small peaks, if the sample rate is too high, then noise may * get detected as a bit. * * Prefer an sample set of around 16 per RX-bit. */ if (error < best_error || (bdiv_plus_one <= 20 && error <= best_error)) { best_error = error; best_cd = cd; best_bdiv_plus_one = bdiv_plus_one; } } *cd_ptr = best_cd; *bdiv_ptr = best_bdiv_plus_one - 1; return best_error; } void zynq_uart_initialize(volatile zynq_uart *regs) { uint32_t mode_clks = regs->mode & ZYNQ_UART_MODE_CLKS; uint32_t cd; uint32_t bdiv; zynq_uart_reset_tx_flush(regs); (void) zynq_uart_calculate_baud( ZYNQ_UART_DEFAULT_BAUD, mode_clks, &cd, &bdiv ); regs->control = ZYNQ_UART_CONTROL_RXDIS | ZYNQ_UART_CONTROL_TXDIS; regs->baud_rate_gen = ZYNQ_UART_BAUD_RATE_GEN_CD(cd); regs->baud_rate_div = ZYNQ_UART_BAUD_RATE_DIV_BDIV(bdiv); /* A Tx/Rx logic reset must be issued after baud rate manipulation */ regs->control = ZYNQ_UART_CONTROL_RXRES | ZYNQ_UART_CONTROL_TXRES; regs->rx_fifo_trg_lvl = ZYNQ_UART_RX_FIFO_TRG_LVL_RTRIG(0); regs->rx_timeout = ZYNQ_UART_RX_TIMEOUT_RTO(0); regs->mode = ZYNQ_UART_MODE_CHMODE(ZYNQ_UART_MODE_CHMODE_NORMAL) | ZYNQ_UART_MODE_PAR(ZYNQ_UART_MODE_PAR_NONE) | ZYNQ_UART_MODE_CHRL(ZYNQ_UART_MODE_CHRL_8) | mode_clks; regs->control = ZYNQ_UART_CONTROL_RXEN | ZYNQ_UART_CONTROL_TXEN; } int zynq_uart_read_char_polled(volatile zynq_uart *regs) { if ((regs->channel_sts & ZYNQ_UART_CHANNEL_STS_REMPTY) != 0) { return -1; } else { return ZYNQ_UART_TX_RX_FIFO_FIFO_GET(regs->tx_rx_fifo); } } void zynq_uart_write_char_polled(volatile zynq_uart *regs, char c) { while ((regs->channel_sts & ZYNQ_UART_CHANNEL_STS_TNFUL) != 0) { _IO_Relax(); } regs->tx_rx_fifo = ZYNQ_UART_TX_RX_FIFO_FIFO(c); } void zynq_uart_reset_tx_flush(volatile zynq_uart *regs) { while ( (regs->channel_sts & (ZYNQ_UART_CHANNEL_STS_TEMPTY | ZYNQ_UART_CHANNEL_STS_TACTIVE)) != ZYNQ_UART_CHANNEL_STS_TEMPTY) { _IO_Relax(); } }