When the stack checker is not enabled, the stack checker reporting
function can still be called. This prevents that call from performing a
null memory access in trying to find the high water mark if the stack
checker was never initialized.
This also introduces a test to ensure this call does not cause a crash.
Closes#4588
Using 32bit types like uint32_t for pointers creates issues on 64 bit
architectures like AArch64. Replaced occurrences of these with uintptr_t,
which will work for both 32 and 64 bit architectures.
In uniprocessor and SMP configurations, the context switch extensions
were called during _Thread_Do_dispatch():
void _Thread_Do_dispatch( Per_CPU_Control *cpu_self, ISR_Level level )
{
Thread_Control *executing;
executing = cpu_self->executing;
...
do {
Thread_Control *heir;
heir = _Thread_Get_heir_and_make_it_executing( cpu_self );
...
_User_extensions_Thread_switch( executing, heir );
...
_Context_Switch( &executing->Registers, &heir->Registers );
...
} while ( cpu_self->dispatch_necessary );
...
}
In uniprocessor configurations, this is fine and the context switch
extensions are called for all thread switches except the very first
thread switch to the initialization thread. However, in SMP
configurations, the context switch may be invalidated and updated in the
low-level _Context_Switch() routine. See:
https://docs.rtems.org/branches/master/c-user/symmetric_multiprocessing_services.html#thread-dispatch-details
In case such an update happens, a thread will execute on the processor
which was not seen in the previous call of the context switch
extensions. This can confuse for example event record consumers which
use events generated by a context switch extension.
Fixing this is not straight forward. The context switch extensions call
must move after the low-level context switch. The problem here is that
we may end up in _Thread_Handler(). Adding the context switch
extensions call to _Thread_Handler() covers now also the thread switch
to the initialization thread. We also have to save the last executing
thread (ancestor) of the processor. Registers or the stack cannot be
used for this purpose. We have to add it to the per-processor
information. Existing extensions may be affected, since now context
switch extensions use the stack of the heir thread. The stack checker
is affected by this.
Calling the thread switch extensions in the low-level context switch is
difficult since at this point an intermediate stack is used which is
only large enough to enable servicing of interrupts.
Update #3885.
Add rtems_scheduler_get_processor_maximum() as a replacement for
rtems_get_processor_count(). The rtems_get_processor_count() is a bit
orphaned. Adopt it by the Scheduler Manager. The count is also
misleading, since the processor set may have gaps and the actual count
of online processors may be less than the value returned by
rtems_get_processor_count().
Update #3732.
Rename
* _Configuration_Interrupt_stack_area_begin in _ISR_Stack_area_begin,
* _Configuration_Interrupt_stack_area_end in _ISR_Stack_area_end, and
* _Configuration_Interrupt_stack_size in _ISR_Stack_size.
Move definitions to <rtems/score/isr.h>. The new names are considerable
shorter and in the right namespace.
Update #3459.
Prepare the interrupt stack which may be used by the boot processor as
initialization stack with the stack sanity pattern. Check the interrupt
stack of the current processor in the thread begin and switch extension.
Update #3459.
Statically initialize the interrupt stack area
(_Configuration_Interrupt_stack_area_begin,
_Configuration_Interrupt_stack_area_end, and
_Configuration_Interrupt_stack_size) via <rtems/confdefs.h>. Place the
interrupt stack area in a special section ".rtemsstack.interrupt". Let
BSPs define the optimal placement of this section in their linker
command files (e.g. in a fast on-chip memory).
This change makes makes the CPU_HAS_SOFTWARE_INTERRUPT_STACK and
CPU_HAS_HARDWARE_INTERRUPT_STACK CPU port defines superfluous, since the
low level initialization code has all information available via global
symbols.
This change makes the CPU_ALLOCATE_INTERRUPT_STACK CPU port define
superfluous, since the interrupt stacks are allocated by confdefs.h for
all architectures. There is no need for BSP-specific linker command
file magic (except the section placement), see previous ARM linker
command file as a bad example.
Remove _CPU_Install_interrupt_stack(). Initialize the hardware
interrupt stack in _CPU_Initialize() if necessary (e.g.
m68k_install_interrupt_stack()).
The optional _CPU_Interrupt_stack_setup() is still useful to customize
the registration of the interrupt stack area in the per-CPU information.
The initialization stack can reuse the interrupt stack, since
* interrupts are disabled during the sequential system initialization,
and
* the boot_card() function does not return.
This stack resuse saves memory.
Changes per architecture:
arm:
* Mostly replace the linker symbol based configuration of stacks with
the standard <rtems/confdefs.h> configuration via
CONFIGURE_INTERRUPT_STACK_SIZE. The size of the FIQ, ABT and UND
mode stack is still defined via linker symbols. These modes are
rarely used in applications and the default values provided by the
BSP should be sufficient in most cases.
* Remove the bsp_processor_count linker symbol hack used for the SMP
support. This is possible since the interrupt stack area is now
allocated by the linker and not allocated from the heap. This makes
some configure.ac stuff obsolete. Remove the now superfluous BSP
variants altcycv_devkit_smp and realview_pbx_a9_qemu_smp.
bfin:
* Remove unused magic linker command file allocation of initialization
stack. Maybe a previous linker command file copy and paste problem?
In the start.S the initialization stack is set to a hard coded value.
lm32, m32c, mips, nios2, riscv, sh, v850:
* Remove magic linker command file allocation of initialization stack.
Reuse interrupt stack for initialization stack.
m68k:
* Remove magic linker command file allocation of initialization stack.
Reuse interrupt stack for initialization stack.
powerpc:
* Remove magic linker command file allocation of initialization stack.
Reuse interrupt stack for initialization stack.
* Used dedicated memory region (REGION_RTEMSSTACK) for the interrupt
stack on BSPs using the shared linkcmds.base (replacement for
REGION_RWEXTRA).
sparc:
* Remove the hard coded initialization stack. Use the interrupt stack
for the initialization stack on the boot processor. This saves
16KiB of RAM.
Update #3459.
Check the interrupt stacks of all processors. Set up the interrupt
stack of the current processor for high water testing in the thread
begin extension. This must be done after multi-threading started, since
the initialization stacks may reuse the interrupt stacks. Disable
thread dispatching in SMP configurations to prevent thread migration.
Writing to the interrupt stack is only safe if done from the
corresponding processor in thread context.
Update #3459.
A speciality of the RTEMS build system was the make preinstall step. It
copied header files from arbitrary locations into the build tree. The
header files were included via the -Bsome/build/tree/path GCC command
line option.
This has at least seven problems:
* The make preinstall step itself needs time and disk space.
* Errors in header files show up in the build tree copy. This makes it
hard for editors to open the right file to fix the error.
* There is no clear relationship between source and build tree header
files. This makes an audit of the build process difficult.
* The visibility of all header files in the build tree makes it
difficult to enforce API barriers. For example it is discouraged to
use BSP-specifics in the cpukit.
* An introduction of a new build system is difficult.
* Include paths specified by the -B option are system headers. This
may suppress warnings.
* The parallel build had sporadic failures on some hosts.
This patch removes the make preinstall step. All installed header
files are moved to dedicated include directories in the source tree.
Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc,
etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g.
erc32, imx, qoriq, etc.
The new cpukit include directories are:
* cpukit/include
* cpukit/score/cpu/@RTEMS_CPU@/include
* cpukit/libnetworking
The new BSP include directories are:
* bsps/include
* bsps/@RTEMS_CPU@/include
* bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include
There are build tree include directories for generated files.
The include directory order favours the most general header file, e.g.
it is not possible to override general header files via the include path
order.
The "bootstrap -p" option was removed. The new "bootstrap -H" option
should be used to regenerate the "headers.am" files.
Update #3254.
Commit 0fd6f25507 relaxed the thread begin
extension execution environment. This broke the stack check which only
partially initialized the stack pattern in its create extension. Move
the part of the begin extension to the create extension.
The RTEMS print user need to know nothing about a particular printer
implementation. In particular get rid of the <stdio.h> include which
would be visible via <rtems.h>.
This change adds rtems_printf and related functions and wraps the
RTEMS print plugin support into a user API. All references to the
plugin are removed and replaced with the rtems_printer interface.
Printk and related functions are made to return a valid number of
characters formatted and output.
The function attribute to check printf functions has been added
to rtems_printf and printk. No changes to remove warrnings are part
of this patch set.
The testsuite has been moved over to the rtems_printer. The testsuite
has a mix of rtems_printer access and direct print control via the
tmacros.h header file. The support for begink/endk has been removed
as it served no purpose and only confused the code base. The testsuite
has not been refactored to use rtems_printf. This is future work.
Script does what is expected and tries to do it as
smartly as possible.
+ remove occurrences of two blank comment lines
next to each other after Id string line removed.
+ remove entire comment blocks which only exited to
contain CVS Ids
+ If the processing left a blank line at the top of
a file, it was removed.
* libmisc/stackchk/check.c: If this port does not allocate the
interrupt stack, then it must always be a thread stack. Do not
include code to print the interrupt stack information.