forked from Imagelibrary/rtems
More automatically generated. Many files renamed behind the scenes.
This commit is contained in:
@@ -20,12 +20,14 @@ dirs:
|
||||
|
||||
COMMON_FILES=../../common/cpright.texi ../../common/setup.texi
|
||||
|
||||
GENERATED_FILES= \
|
||||
cpumodel.texi timing.texi wksheets.texi
|
||||
GENERATED_FILES=\
|
||||
cpumodel.texi callconv.texi memmodel.texi intr.texi fatalerr.texi \
|
||||
bsp.texi cputable.texi wksheets.texi
|
||||
|
||||
# timing.texi timeBSP.texi
|
||||
|
||||
FILES= $(PROJECT).texi \
|
||||
bsp.texi callconv.texi cputable.texi fatalerr.texi \
|
||||
intr.texi memmodel.texi preface.texi timetbl.texi timedata.texi \
|
||||
preface.texi timetbl.texi timedata.texi \
|
||||
$(GENERATED_FILES)
|
||||
|
||||
info: dirs c_hppa1_1
|
||||
@@ -55,20 +57,43 @@ cpumodel.texi: cpumodel.t Makefile
|
||||
-u "Top" \
|
||||
-n "Calling Conventions" ${*}.t
|
||||
|
||||
# Calling Conventions
|
||||
# Memory Model
|
||||
callconv.texi: callconv.t Makefile
|
||||
$(BMENU) -p "CPU Model Dependent Features CPU Model Name" \
|
||||
-u "Top" \
|
||||
-n "Memory Model" ${*}.t
|
||||
|
||||
memmodel.texi: memmodel.t Makefile
|
||||
$(BMENU) -p "Calling Conventions User-Provided Routines" \
|
||||
-u "Top" \
|
||||
-n "Interrupt Processing" ${*}.t
|
||||
|
||||
# Interrupt Chapter:
|
||||
# 1. Replace Times and Sizes
|
||||
# 2. Build Node Structure
|
||||
|
||||
intr.texi: intr.t TIMES
|
||||
${REPLACE} -p TIMES intr.t
|
||||
mv intr.t.fixed intr.texi
|
||||
intr.t: intr_NOTIMES.t SIMHPPA_TIMES
|
||||
${REPLACE} -p SIMHPPA_TIMES intr_NOTIMES.t
|
||||
mv intr_NOTIMES.t.fixed intr.t
|
||||
|
||||
intr.texi: intr.t Makefile
|
||||
$(BMENU) -p "Memory Model Flat Memory Model" \
|
||||
-u "Top" \
|
||||
|
||||
fatalerr.texi: fatalerr.t Makefile
|
||||
$(BMENU) -p "Interrupt Processing Interrupt Stack" \
|
||||
-u "Top" \
|
||||
-n "Board Support Packages" ${*}.t
|
||||
|
||||
bsp.texi: bsp.t Makefile
|
||||
$(BMENU) -p "Default Fatal Error Processing Default Fatal Error Handler Operations" \
|
||||
-u "Top" \
|
||||
-n "Processor Dependent Information Table" ${*}.t
|
||||
|
||||
cputable.texi: cputable.t Makefile
|
||||
$(BMENU) -p "Board Support Packages Processor Initialization" \
|
||||
-u "Top" \
|
||||
-n "Memory Requirements" ${*}.t
|
||||
|
||||
# Fatal Error
|
||||
# BSP
|
||||
# CPU Table
|
||||
|
||||
# Worksheets Chapter:
|
||||
# 1. Obtain the Shared File
|
||||
@@ -78,8 +103,8 @@ intr.texi: intr.t TIMES
|
||||
wksheets_NOTIMES.t: ../../common/wksheets.t
|
||||
cp ../../common/wksheets.t wksheets_NOTIMES.t
|
||||
|
||||
wksheets.t: wksheets_NOTIMES.t TIMES
|
||||
${REPLACE} -p TIMES wksheets_NOTIMES.t
|
||||
wksheets.t: wksheets_NOTIMES.t SIMHPPA_TIMES
|
||||
${REPLACE} -p SIMHPPA_TIMES wksheets_NOTIMES.t
|
||||
mv wksheets_NOTIMES.t.fixed wksheets.t
|
||||
|
||||
wksheets.texi: wksheets.t Makefile
|
||||
@@ -105,12 +130,12 @@ timetbl.t: ../../common/timetbl.t
|
||||
sed -e 's/TIMETABLE_NEXT_LINK/Command and Variable Index/' \
|
||||
<../../common/timetbl.t >timetbl.t
|
||||
|
||||
timetbl.texi: timetbl.t TIMES
|
||||
${REPLACE} -p TIMES timetbl.t
|
||||
timetbl.texi: timetbl.t SIMHPPA_TIMES
|
||||
${REPLACE} -p SIMHPPA_TIMES timetbl.t
|
||||
mv timetbl.t.fixed timetbl.texi
|
||||
|
||||
timedata.texi: timedata.t TIMES
|
||||
${REPLACE} -p TIMES timedata.t
|
||||
timedata.texi: timedata.t SIMHPPA_TIMES
|
||||
${REPLACE} -p SIMHPPA_TIMES timedata.t
|
||||
mv timedata.t.fixed timedata.texi
|
||||
|
||||
html: dirs $(FILES)
|
||||
@@ -123,7 +148,7 @@ clean:
|
||||
rm -f *.dvi *.ps *.log *.aux *.cp *.fn *.ky *.pg *.toc *.tp *.vr $(BASE)
|
||||
rm -f $(PROJECT) $(PROJECT)-*
|
||||
rm -f c_hppa1_1 c_hppa1_1-*
|
||||
rm -f timedata.texi timetbl.texi timetbl.t intr.texi
|
||||
rm -f timedata.texi timetbl.texi timetbl.t intr.t
|
||||
rm -f timing.t timing.texi
|
||||
rm -f wksheets.t wksheets_NOTIMES.t $(GENERATED_FILES)
|
||||
rm -f *.fixed _*
|
||||
|
||||
@@ -1,247 +0,0 @@
|
||||
#
|
||||
# PA-RISC Timing and Size Information
|
||||
#
|
||||
# $Id$
|
||||
#
|
||||
|
||||
#
|
||||
# CPU Model Information
|
||||
#
|
||||
RTEMS_BSP simhppa
|
||||
RTEMS_CPU_MODEL HP-7100
|
||||
#
|
||||
# Interrupt Latency
|
||||
#
|
||||
# NOTE: In general, the text says it is hand-calculated to be
|
||||
# RTEMS_MAXIMUM_DISABLE_PERIOD at RTEMS_MAXIMUM_DISABLE_PERIOD_MHZ
|
||||
# Mhz and this was last calculated for Release
|
||||
# RTEMS_VERSION_FOR_MAXIMUM_DISABLE_PERIOD.
|
||||
#
|
||||
RTEMS_MAXIMUM_DISABLE_PERIOD TBD
|
||||
RTEMS_MAXIMUM_DISABLE_PERIOD_MHZ TBD
|
||||
RTEMS_RELEASE_FOR_MAXIMUM_DISABLE_PERIOD TBD
|
||||
#
|
||||
# Context Switch Times
|
||||
#
|
||||
RTEMS_NO_FP_CONTEXTS 1
|
||||
RTEMS_RESTORE_1ST_FP_TASK 2
|
||||
RTEMS_SAVE_INIT_RESTORE_INIT 3
|
||||
RTEMS_SAVE_IDLE_RESTORE_INIT 4
|
||||
RTEMS_SAVE_IDLE_RESTORE_IDLE 5
|
||||
#
|
||||
# Task Manager Times
|
||||
#
|
||||
RTEMS_TASK_CREATE_ONLY 6
|
||||
RTEMS_TASK_IDENT_ONLY 7
|
||||
RTEMS_TASK_START_ONLY 8
|
||||
RTEMS_TASK_RESTART_CALLING_TASK 9
|
||||
RTEMS_TASK_RESTART_SUSPENDED_RETURNS_TO_CALLER 9
|
||||
RTEMS_TASK_RESTART_BLOCKED_RETURNS_TO_CALLER 10
|
||||
RTEMS_TASK_RESTART_READY_RETURNS_TO_CALLER 11
|
||||
RTEMS_TASK_RESTART_SUSPENDED_PREEMPTS_CALLER 12
|
||||
RTEMS_TASK_RESTART_BLOCKED_PREEMPTS_CALLER 13
|
||||
RTEMS_TASK_RESTART_READY_PREEMPTS_CALLER 14
|
||||
RTEMS_TASK_DELETE_CALLING_TASK 15
|
||||
RTEMS_TASK_DELETE_SUSPENDED_TASK 16
|
||||
RTEMS_TASK_DELETE_BLOCKED_TASK 17
|
||||
RTEMS_TASK_DELETE_READY_TASK 18
|
||||
RTEMS_TASK_SUSPEND_CALLING_TASK 19
|
||||
RTEMS_TASK_SUSPEND_RETURNS_TO_CALLER 20
|
||||
RTEMS_TASK_RESUME_TASK_READIED_RETURNS_TO_CALLER 21
|
||||
RTEMS_TASK_RESUME_TASK_READIED_PREEMPTS_CALLER 22
|
||||
RTEMS_TASK_SET_PRIORITY_OBTAIN_CURRENT_PRIORITY 23
|
||||
RTEMS_TASK_SET_PRIORITY_RETURNS_TO_CALLER 24
|
||||
RTEMS_TASK_SET_PRIORITY_PREEMPTS_CALLER 25
|
||||
RTEMS_TASK_MODE_OBTAIN_CURRENT_MODE 26
|
||||
RTEMS_TASK_MODE_NO_RESCHEDULE 27
|
||||
RTEMS_TASK_MODE_RESCHEDULE_RETURNS_TO_CALLER 28
|
||||
RTEMS_TASK_MODE_RESCHEDULE_PREEMPTS_CALLER 29
|
||||
RTEMS_TASK_GET_NOTE_ONLY 30
|
||||
RTEMS_TASK_SET_NOTE_ONLY 31
|
||||
RTEMS_TASK_WAKE_AFTER_YIELD_RETURNS_TO_CALLER 32
|
||||
RTEMS_TASK_WAKE_AFTER_YIELD_PREEMPTS_CALLER 33
|
||||
RTEMS_TASK_WAKE_WHEN_ONLY 34
|
||||
#
|
||||
# Interrupt Manager
|
||||
#
|
||||
RTEMS_INTR_ENTRY_RETURNS_TO_NESTED 35
|
||||
RTEMS_INTR_ENTRY_RETURNS_TO_INTERRUPTED_TASK 36
|
||||
RTEMS_INTR_ENTRY_RETURNS_TO_PREEMPTING_TASK 37
|
||||
RTEMS_INTR_EXIT_RETURNS_TO_NESTED 38
|
||||
RTEMS_INTR_EXIT_RETURNS_TO_INTERRUPTED_TASK 39
|
||||
RTEMS_INTR_EXIT_RETURNS_TO_PREEMPTING_TASK 40
|
||||
#
|
||||
# Clock Manager
|
||||
#
|
||||
RTEMS_CLOCK_SET_ONLY 41
|
||||
RTEMS_CLOCK_GET_ONLY 42
|
||||
RTEMS_CLOCK_TICK_ONLY 43
|
||||
#
|
||||
# Timer Manager
|
||||
#
|
||||
RTEMS_TIMER_CREATE_ONLY 44
|
||||
RTEMS_TIMER_IDENT_ONLY 45
|
||||
RTEMS_TIMER_DELETE_INACTIVE 46
|
||||
RTEMS_TIMER_DELETE_ACTIVE 47
|
||||
RTEMS_TIMER_FIRE_AFTER_INACTIVE 48
|
||||
RTEMS_TIMER_FIRE_AFTER_ACTIVE 49
|
||||
RTEMS_TIMER_FIRE_WHEN_INACTIVE 50
|
||||
RTEMS_TIMER_FIRE_WHEN_ACTIVE 51
|
||||
RTEMS_TIMER_RESET_INACTIVE 52
|
||||
RTEMS_TIMER_RESET_ACTIVE 53
|
||||
RTEMS_TIMER_CANCEL_INACTIVE 54
|
||||
RTEMS_TIMER_CANCEL_ACTIVE 55
|
||||
#
|
||||
# Semaphore Manager
|
||||
#
|
||||
RTEMS_SEMAPHORE_CREATE_ONLY 56
|
||||
RTEMS_SEMAPHORE_IDENT_ONLY 57
|
||||
RTEMS_SEMAPHORE_DELETE_ONLY 58
|
||||
RTEMS_SEMAPHORE_OBTAIN_AVAILABLE 59
|
||||
RTEMS_SEMAPHORE_OBTAIN_NOT_AVAILABLE_NO_WAIT 60
|
||||
RTEMS_SEMAPHORE_OBTAIN_NOT_AVAILABLE_CALLER_BLOCKS 61
|
||||
RTEMS_SEMAPHORE_RELEASE_NO_WAITING_TASKS 62
|
||||
RTEMS_SEMAPHORE_RELEASE_TASK_READIED_RETURNS_TO_CALLER 63
|
||||
RTEMS_SEMAPHORE_RELEASE_TASK_READIED_PREEMPTS_CALLER 64
|
||||
#
|
||||
# Message Manager
|
||||
#
|
||||
RTEMS_MESSAGE_QUEUE_CREATE_ONLY 65
|
||||
RTEMS_MESSAGE_QUEUE_IDENT_ONLY 66
|
||||
RTEMS_MESSAGE_QUEUE_DELETE_ONLY 67
|
||||
RTEMS_MESSAGE_QUEUE_SEND_NO_WAITING_TASKS 68
|
||||
RTEMS_MESSAGE_QUEUE_SEND_TASK_READIED_RETURNS_TO_CALLER 69
|
||||
RTEMS_MESSAGE_QUEUE_SEND_TASK_READIED_PREEMPTS_CALLER 70
|
||||
RTEMS_MESSAGE_QUEUE_URGENT_NO_WAITING_TASKS 71
|
||||
RTEMS_MESSAGE_QUEUE_URGENT_TASK_READIED_RETURNS_TO_CALLER 72
|
||||
RTEMS_MESSAGE_QUEUE_URGENT_TASK_READIED_PREEMPTS_CALLER 73
|
||||
RTEMS_MESSAGE_QUEUE_BROADCAST_NO_WAITING_TASKS 74
|
||||
RTEMS_MESSAGE_QUEUE_BROADCAST_TASK_READIED_RETURNS_TO_CALLER 75
|
||||
RTEMS_MESSAGE_QUEUE_BROADCAST_TASK_READIED_PREEMPTS_CALLER 76
|
||||
RTEMS_MESSAGE_QUEUE_RECEIVE_AVAILABLE 77
|
||||
RTEMS_MESSAGE_QUEUE_RECEIVE_NOT_AVAILABLE_NO_WAIT 78
|
||||
RTEMS_MESSAGE_QUEUE_RECEIVE_NOT_AVAILABLE_CALLER_BLOCKS 79
|
||||
RTEMS_MESSAGE_QUEUE_FLUSH_NO_MESSAGES_FLUSHED 80
|
||||
RTEMS_MESSAGE_QUEUE_FLUSH_MESSAGES_FLUSHED 81
|
||||
#
|
||||
# Event Manager
|
||||
#
|
||||
RTEMS_EVENT_SEND_NO_TASK_READIED 82
|
||||
RTEMS_EVENT_SEND_TASK_READIED_RETURNS_TO_CALLER 83
|
||||
RTEMS_EVENT_SEND_TASK_READIED_PREEMPTS_CALLER 84
|
||||
RTEMS_EVENT_RECEIVE_OBTAIN_CURRENT_EVENTS 85
|
||||
RTEMS_EVENT_RECEIVE_AVAILABLE 86
|
||||
RTEMS_EVENT_RECEIVE_NOT_AVAILABLE_NO_WAIT 87
|
||||
RTEMS_EVENT_RECEIVE_NOT_AVAILABLE_CALLER_BLOCKS 88
|
||||
#
|
||||
# Signal Manager
|
||||
#
|
||||
RTEMS_SIGNAL_CATCH_ONLY 89
|
||||
RTEMS_SIGNAL_SEND_RETURNS_TO_CALLER 90
|
||||
RTEMS_SIGNAL_SEND_SIGNAL_TO_SELF 91
|
||||
RTEMS_SIGNAL_EXIT_ASR_OVERHEAD_RETURNS_TO_CALLING_TASK 92
|
||||
RTEMS_SIGNAL_EXIT_ASR_OVERHEAD_RETURNS_TO_PREEMPTING_TASK 93
|
||||
#
|
||||
# Partition Manager
|
||||
#
|
||||
RTEMS_PARTITION_CREATE_ONLY 94
|
||||
RTEMS_PARTITION_IDENT_ONLY 95
|
||||
RTEMS_PARTITION_DELETE_ONLY 96
|
||||
RTEMS_PARTITION_GET_BUFFER_AVAILABLE 97
|
||||
RTEMS_PARTITION_GET_BUFFER_NOT_AVAILABLE 98
|
||||
RTEMS_PARTITION_RETURN_BUFFER_ONLY 99
|
||||
#
|
||||
# Region Manager
|
||||
#
|
||||
RTEMS_REGION_CREATE_ONLY 100
|
||||
RTEMS_REGION_IDENT_ONLY 101
|
||||
RTEMS_REGION_DELETE_ONLY 102
|
||||
RTEMS_REGION_GET_SEGMENT_AVAILABLE 103
|
||||
RTEMS_REGION_GET_SEGMENT_NOT_AVAILABLE_NO_WAIT 104
|
||||
RTEMS_REGION_GET_SEGMENT_NOT_AVAILABLE_CALLER_BLOCKS 105
|
||||
RTEMS_REGION_RETURN_SEGMENT_NO_WAITING_TASKS 106
|
||||
RTEMS_REGION_RETURN_SEGMENT_TASK_READIED_RETURNS_TO_CALLER 107
|
||||
RTEMS_REGION_RETURN_SEGMENT_TASK_READIED_PREEMPTS_CALLER 108
|
||||
#
|
||||
# Dual-Ported Memory Manager
|
||||
#
|
||||
RTEMS_PORT_CREATE_ONLY 109
|
||||
RTEMS_PORT_IDENT_ONLY 110
|
||||
RTEMS_PORT_DELETE_ONLY 111
|
||||
RTEMS_PORT_INTERNAL_TO_EXTERNAL_ONLY 112
|
||||
RTEMS_PORT_EXTERNAL_TO_INTERNAL_ONLY 113
|
||||
#
|
||||
# IO Manager
|
||||
#
|
||||
RTEMS_IO_INITIALIZE_ONLY 114
|
||||
RTEMS_IO_OPEN_ONLY 115
|
||||
RTEMS_IO_CLOSE_ONLY 116
|
||||
RTEMS_IO_READ_ONLY 117
|
||||
RTEMS_IO_WRITE_ONLY 118
|
||||
RTEMS_IO_CONTROL_ONLY 119
|
||||
#
|
||||
# Rate Monotonic Manager
|
||||
#
|
||||
RTEMS_RATE_MONOTONIC_CREATE_ONLY 120
|
||||
RTEMS_RATE_MONOTONIC_IDENT_ONLY 121
|
||||
RTEMS_RATE_MONOTONIC_CANCEL_ONLY 122
|
||||
RTEMS_RATE_MONOTONIC_DELETE_ACTIVE 123
|
||||
RTEMS_RATE_MONOTONIC_DELETE_INACTIVE 124
|
||||
RTEMS_RATE_MONOTONIC_PERIOD_INITIATE_PERIOD_RETURNS_TO_CALLER 125
|
||||
RTEMS_RATE_MONOTONIC_PERIOD_CONCLUDE_PERIOD_CALLER_BLOCKS 126
|
||||
RTEMS_RATE_MONOTONIC_PERIOD_OBTAIN_STATUS 127
|
||||
#
|
||||
# Size Information
|
||||
#
|
||||
#
|
||||
# xxx alloted for numbers
|
||||
#
|
||||
RTEMS_DATA_SPACE 128
|
||||
RTEMS_MINIMUM_CONFIGURATION xx,129
|
||||
RTEMS_MAXIMUM_CONFIGURATION xx,130
|
||||
# x,xxx alloted for numbers
|
||||
RTEMS_CORE_CODE_SIZE x,131
|
||||
RTEMS_INITIALIZATION_CODE_SIZE x,132
|
||||
RTEMS_TASK_CODE_SIZE x,133
|
||||
RTEMS_INTERRUPT_CODE_SIZE x,134
|
||||
RTEMS_CLOCK_CODE_SIZE x,135
|
||||
RTEMS_TIMER_CODE_SIZE x,136
|
||||
RTEMS_SEMAPHORE_CODE_SIZE x,137
|
||||
RTEMS_MESSAGE_CODE_SIZE x,138
|
||||
RTEMS_EVENT_CODE_SIZE x,139
|
||||
RTEMS_SIGNAL_CODE_SIZE x,140
|
||||
RTEMS_PARTITION_CODE_SIZE x,141
|
||||
RTEMS_REGION_CODE_SIZE x,142
|
||||
RTEMS_DPMEM_CODE_SIZE x,143
|
||||
RTEMS_IO_CODE_SIZE x,144
|
||||
RTEMS_FATAL_ERROR_CODE_SIZE x,145
|
||||
RTEMS_RATE_MONOTONIC_CODE_SIZE x,146
|
||||
RTEMS_MULTIPROCESSING_CODE_SIZE x,147
|
||||
# xxx alloted for numbers
|
||||
RTEMS_TIMER_CODE_OPTSIZE 148
|
||||
RTEMS_SEMAPHORE_CODE_OPTSIZE 149
|
||||
RTEMS_MESSAGE_CODE_OPTSIZE 150
|
||||
RTEMS_EVENT_CODE_OPTSIZE 151
|
||||
RTEMS_SIGNAL_CODE_OPTSIZE 152
|
||||
RTEMS_PARTITION_CODE_OPTSIZE 153
|
||||
RTEMS_REGION_CODE_OPTSIZE 154
|
||||
RTEMS_DPMEM_CODE_OPTSIZE 155
|
||||
RTEMS_IO_CODE_OPTSIZE 156
|
||||
RTEMS_RATE_MONOTONIC_CODE_OPTSIZE 157
|
||||
RTEMS_MULTIPROCESSING_CODE_OPTSIZE 158
|
||||
# xxx alloted for numbers
|
||||
RTEMS_BYTES_PER_TASK 159
|
||||
RTEMS_BYTES_PER_TIMER 160
|
||||
RTEMS_BYTES_PER_SEMAPHORE 161
|
||||
RTEMS_BYTES_PER_MESSAGE_QUEUE 162
|
||||
RTEMS_BYTES_PER_REGION 163
|
||||
RTEMS_BYTES_PER_PARTITION 164
|
||||
RTEMS_BYTES_PER_PORT 165
|
||||
RTEMS_BYTES_PER_PERIOD 166
|
||||
RTEMS_BYTES_PER_EXTENSION 167
|
||||
RTEMS_BYTES_PER_FP_TASK 168
|
||||
RTEMS_BYTES_PER_NODE 169
|
||||
RTEMS_BYTES_PER_GLOBAL_OBJECT 170
|
||||
RTEMS_BYTES_PER_PROXY 171
|
||||
# x,xxx alloted for numbers
|
||||
RTEMS_BYTES_OF_FIXED_SYSTEM_REQUIREMENTS x,172
|
||||
@@ -1,72 +0,0 @@
|
||||
@c
|
||||
@c COPYRIGHT (c) 1988-1998.
|
||||
@c On-Line Applications Research Corporation (OAR).
|
||||
@c All rights reserved.
|
||||
@c
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Board Support Packages, Board Support Packages Introduction, Default Fatal Error Processing Default Fatal Error Handler Operations, Top
|
||||
@end ifinfo
|
||||
@chapter Board Support Packages
|
||||
@ifinfo
|
||||
@menu
|
||||
* Board Support Packages Introduction::
|
||||
* Board Support Packages System Reset::
|
||||
* Board Support Packages Processor Initialization::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Board Support Packages Introduction, Board Support Packages System Reset, Board Support Packages, Board Support Packages
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
An RTEMS Board Support Package (BSP) must be designed
|
||||
to support a particular processor and target board combination.
|
||||
This chapter presents a discussion of PA-RISC specific BSP
|
||||
issues. For more information on developing a BSP, refer to the
|
||||
chapter titled Board Support Packages in the RTEMS
|
||||
Applications User's Guide.
|
||||
|
||||
@ifinfo
|
||||
@node Board Support Packages System Reset, Board Support Packages Processor Initialization, Board Support Packages Introduction, Board Support Packages
|
||||
@end ifinfo
|
||||
@section System Reset
|
||||
|
||||
An RTEMS based application is initiated or
|
||||
re-initiated when the PA-RISC processor is reset. The behavior
|
||||
of a PA-RISC upon reset is implementation defined and thus is
|
||||
beyond the scope of this manual.
|
||||
|
||||
@ifinfo
|
||||
@node Board Support Packages Processor Initialization, Processor Dependent Information Table, Board Support Packages System Reset, Board Support Packages
|
||||
@end ifinfo
|
||||
@section Processor Initialization
|
||||
|
||||
The precise requirements for initialization of a
|
||||
particular implementation of the PA-RISC architecture are
|
||||
implementation defined. Thus it is impossible to provide exact
|
||||
details of this procedure in this manual. However, the
|
||||
requirements of RTEMS which must be satisfied by this
|
||||
initialization code can be discussed.
|
||||
|
||||
RTEMS assumes that interrupts are disabled when the
|
||||
initialize_executive directive is invoked. Interrupts are
|
||||
enabled automatically by RTEMS as part of the initialize
|
||||
executive directive and device driver initialization occurs
|
||||
after interrupts are enabled. Thus all interrupt sources should
|
||||
be quiescent until the system's device drivers have been
|
||||
initialized and installed their interrupt handlers.
|
||||
|
||||
If the processor requires initialization of the
|
||||
cache, then it should be be done during the reset application
|
||||
initialization code.
|
||||
|
||||
Finally, the requirements in the Board Support
|
||||
Packages chapter of the Applications User's Manual for the
|
||||
reset code which is executed before the call to initialize
|
||||
executive must be satisfied.
|
||||
|
||||
|
||||
@@ -6,24 +6,8 @@
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions, Calling Conventions Introduction, CPU Model Dependent Features CPU Model Name, Top
|
||||
@end ifinfo
|
||||
@chapter Calling Conventions
|
||||
@ifinfo
|
||||
@menu
|
||||
* Calling Conventions Introduction::
|
||||
* Calling Conventions Processor Background::
|
||||
* Calling Conventions Calling Mechanism::
|
||||
* Calling Conventions Register Usage::
|
||||
* Calling Conventions Parameter Passing::
|
||||
* Calling Conventions User-Provided Routines::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions Introduction, Calling Conventions Processor Background, Calling Conventions, Calling Conventions
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
Each high-level language compiler generates
|
||||
@@ -50,9 +34,6 @@ This chapter describes the calling conventions used
|
||||
by the GNU C and standard HP-UX compilers for the PA-RISC
|
||||
architecture.
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions Processor Background, Calling Conventions Calling Mechanism, Calling Conventions Introduction, Calling Conventions
|
||||
@end ifinfo
|
||||
@section Processor Background
|
||||
|
||||
The PA-RISC architecture supports a simple yet
|
||||
@@ -72,9 +53,6 @@ not automatically save or restore any registers. It is the
|
||||
responsibility of the high-level language compiler to define the
|
||||
register preservation and usage convention.
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions Calling Mechanism, Calling Conventions Register Usage, Calling Conventions Processor Background, Calling Conventions
|
||||
@end ifinfo
|
||||
@section Calling Mechanism
|
||||
|
||||
All RTEMS directives are invoked as standard
|
||||
@@ -82,9 +60,6 @@ subroutines via a bl or a blr instruction with the return address
|
||||
assumed to be in r2 and return to the user application via the
|
||||
bv instruction.
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions Register Usage, Calling Conventions Parameter Passing, Calling Conventions Calling Mechanism, Calling Conventions
|
||||
@end ifinfo
|
||||
@section Register Usage
|
||||
|
||||
As discussed above, the bl and blr instructions do
|
||||
@@ -131,9 +106,6 @@ possible to modify the PA-RISC specific code such that all tasks
|
||||
are considered floating point only when this option is not used.
|
||||
@end itemize
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions Parameter Passing, Calling Conventions User-Provided Routines, Calling Conventions Register Usage, Calling Conventions
|
||||
@end ifinfo
|
||||
@section Parameter Passing
|
||||
|
||||
RTEMS assumes that the first four (4) arguments are
|
||||
@@ -160,9 +132,6 @@ as the stack pointer. The standard stack frame consists of a
|
||||
minimum of sixty-four (64) bytes and is the responsibility of
|
||||
the callee to maintain.
|
||||
|
||||
@ifinfo
|
||||
@node Calling Conventions User-Provided Routines, Memory Model, Calling Conventions Parameter Passing, Calling Conventions
|
||||
@end ifinfo
|
||||
@section User-Provided Routines
|
||||
|
||||
All user-provided routines invoked by RTEMS, such as
|
||||
|
||||
@@ -1,71 +0,0 @@
|
||||
@c
|
||||
@c COPYRIGHT (c) 1988-1998.
|
||||
@c On-Line Applications Research Corporation (OAR).
|
||||
@c All rights reserved.
|
||||
@c
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node CPU Model Dependent Features, CPU Model Dependent Features Introduction, Preface, Top
|
||||
@end ifinfo
|
||||
@chapter CPU Model Dependent Features
|
||||
@ifinfo
|
||||
@menu
|
||||
* CPU Model Dependent Features Introduction::
|
||||
* CPU Model Dependent Features CPU Model Name::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node CPU Model Dependent Features Introduction, CPU Model Dependent Features CPU Model Name, CPU Model Dependent Features, CPU Model Dependent Features
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
Microprocessors are generally classified into
|
||||
families with a variety of CPU models or implementations within
|
||||
that family. Within a processor family, there is a high level
|
||||
of binary compatibility. This family may be based on either an
|
||||
architectural specification or on maintaining compatibility with
|
||||
a popular processor. Recent microprocessor families such as the
|
||||
SPARC or PA-RISC are based on an architectural specification
|
||||
which is independent or any particular CPU model or
|
||||
implementation. Older families such as the M68xxx and the iX86
|
||||
evolved as the manufacturer strived to produce higher
|
||||
performance processor models which maintained binary
|
||||
compatibility with older models.
|
||||
|
||||
RTEMS takes advantage of the similarity of the
|
||||
various models within a CPU family. Although the models do vary
|
||||
in significant ways, the high level of compatibility makes it
|
||||
possible to share the bulk of the CPU dependent executive code
|
||||
across the entire family. Each processor family supported by
|
||||
RTEMS has a list of features which vary between CPU models
|
||||
within a family. For example, the most common model dependent
|
||||
feature regardless of CPU family is the presence or absence of a
|
||||
floating point unit or coprocessor. When defining the list of
|
||||
features present on a particular CPU model, one simply notes
|
||||
that floating point hardware is or is not present and defines a
|
||||
single constant appropriately. Conditional compilation is
|
||||
utilized to include the appropriate source code for this CPU
|
||||
model's feature set. It is important to note that this means
|
||||
that RTEMS is thus compiled using the appropriate feature set
|
||||
and compilation flags optimal for this CPU model used. The
|
||||
alternative would be to generate a binary which would execute on
|
||||
all family members using only the features which were always
|
||||
present.
|
||||
|
||||
This chapter presents the set of features which vary
|
||||
across PA-RISC implementations and are of importance to RTEMS.
|
||||
The set of CPU model feature macros are defined in the file
|
||||
c/src/exec/score/cpu/hppa1_1/hppa.h based upon the particular CPU
|
||||
model defined on the compilation command line.
|
||||
|
||||
@ifinfo
|
||||
@node CPU Model Dependent Features CPU Model Name, Calling Conventions, CPU Model Dependent Features Introduction, CPU Model Dependent Features
|
||||
@end ifinfo
|
||||
@section CPU Model Name
|
||||
|
||||
The macro CPU_MODEL_NAME is a string which designates
|
||||
the name of this CPU model. For example, for the Hewlett Packard
|
||||
PA-7100 CPU model, this macro is set to the string "hppa 7100".
|
||||
@@ -1,132 +0,0 @@
|
||||
@c
|
||||
@c COPYRIGHT (c) 1988-1998.
|
||||
@c On-Line Applications Research Corporation (OAR).
|
||||
@c All rights reserved.
|
||||
@c
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Processor Dependent Information Table, Processor Dependent Information Table Introduction, Board Support Packages Processor Initialization, Top
|
||||
@end ifinfo
|
||||
@chapter Processor Dependent Information Table
|
||||
@ifinfo
|
||||
@menu
|
||||
* Processor Dependent Information Table Introduction::
|
||||
* Processor Dependent Information Table CPU Dependent Information Table::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Processor Dependent Information Table Introduction, Processor Dependent Information Table CPU Dependent Information Table, Processor Dependent Information Table, Processor Dependent Information Table
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
Any highly processor dependent information required
|
||||
to describe a processor to RTEMS is provided in the CPU
|
||||
Dependent Information Table. This table is not required for all
|
||||
processors supported by RTEMS. This chapter describes the
|
||||
contents, if any, for a particular processor type.
|
||||
|
||||
@ifinfo
|
||||
@node Processor Dependent Information Table CPU Dependent Information Table, Memory Requirements, Processor Dependent Information Table Introduction, Processor Dependent Information Table
|
||||
@end ifinfo
|
||||
@section CPU Dependent Information Table
|
||||
|
||||
The PA-RISC version of the RTEMS CPU Dependent
|
||||
Information Table contains the information required to interface
|
||||
a Board Support Package and RTEMS on the PA-RISC. This
|
||||
information is provided to allow RTEMS to interoperate
|
||||
effectively with the BSP. The C structure definition is given
|
||||
here:
|
||||
|
||||
@example
|
||||
typedef struct @{
|
||||
void (*pretasking_hook)( void );
|
||||
void (*predriver_hook)( void );
|
||||
void (*postdriver_hook)( void );
|
||||
void (*idle_task)( void );
|
||||
boolean do_zero_of_workspace;
|
||||
unsigned32 idle_task_stack_size;
|
||||
unsigned32 interrupt_stack_size;
|
||||
unsigned32 extra_mpci_receive_server_stack;
|
||||
void * (*stack_allocate_hook)( unsigned32 );
|
||||
void (*stack_free_hook)( void * );
|
||||
/* end of fields required on all CPUs */
|
||||
|
||||
hppa_rtems_isr_entry spurious_handler;
|
||||
|
||||
unsigned32 itimer_clicks_per_microsecond; /* for use by Clock driver */
|
||||
@} rtems_cpu_table;
|
||||
@end example
|
||||
|
||||
@table @code
|
||||
@item pretasking_hook
|
||||
is the address of the
|
||||
user provided routine which is invoked once RTEMS initialization
|
||||
is complete but before interrupts and tasking are enabled. This
|
||||
field may be NULL to indicate that the hook is not utilized.
|
||||
|
||||
@item predriver_hook
|
||||
is the address of the user provided
|
||||
routine which is invoked with tasking enabled immediately before
|
||||
the MPCI and device drivers are initialized. RTEMS
|
||||
initialization is complete, interrupts and tasking are enabled,
|
||||
but no device drivers are initialized. This field may be NULL to
|
||||
indicate that the hook is not utilized.
|
||||
|
||||
@item postdriver_hook
|
||||
is the address of the user provided
|
||||
routine which is invoked with tasking enabled immediately after
|
||||
the MPCI and device drivers are initialized. RTEMS
|
||||
initialization is complete, interrupts and tasking are enabled,
|
||||
and the device drivers are initialized. This field may be NULL
|
||||
to indicate that the hook is not utilized.
|
||||
|
||||
@item idle_task
|
||||
is the address of the optional user
|
||||
provided routine which is used as the system's IDLE task. If
|
||||
this field is not NULL, then the RTEMS default IDLE task is not
|
||||
used. This field may be NULL to indicate that the default IDLE
|
||||
is to be used.
|
||||
|
||||
@item do_zero_of_workspace
|
||||
indicates whether RTEMS should
|
||||
zero the Workspace as part of its initialization. If set to
|
||||
TRUE, the Workspace is zeroed. Otherwise, it is not.
|
||||
|
||||
@item idle_task_stack_size
|
||||
is the size of the RTEMS idle task stack in bytes.
|
||||
If this number is less than MINIMUM_STACK_SIZE, then the
|
||||
idle task's stack will be MINIMUM_STACK_SIZE in byte.
|
||||
|
||||
@item interrupt_stack_size
|
||||
is the size of the RTEMS allocated interrupt stack in bytes.
|
||||
This value must be at least as large as MINIMUM_STACK_SIZE.
|
||||
|
||||
@item extra_mpci_receive_server_stack
|
||||
is the extra stack space allocated for the RTEMS MPCI receive server task
|
||||
in bytes. The MPCI receive server may invoke nearly all directives and
|
||||
may require extra stack space on some targets.
|
||||
|
||||
@item stack_allocate_hook
|
||||
is the address of the optional user provided routine which allocates
|
||||
memory for task stacks. If this hook is not NULL, then a stack_free_hook
|
||||
must be provided as well.
|
||||
|
||||
@item stack_free_hook
|
||||
is the address of the optional user provided routine which frees
|
||||
memory for task stacks. If this hook is not NULL, then a stack_allocate_hook
|
||||
must be provided as well.
|
||||
|
||||
@item spurious_handler
|
||||
is the address of the optional user provided routine which is invoked
|
||||
when a spurious external interrupt occurs. A spurious interrupt is one
|
||||
for which no handler is installed.
|
||||
|
||||
@item itimer_clicks_per_microsecond
|
||||
is the number of countdowns in the on-CPU timer which corresponds
|
||||
to a microsecond. This is a function of the clock speed of the CPU
|
||||
being used.
|
||||
|
||||
@end table
|
||||
@@ -1,47 +0,0 @@
|
||||
@c
|
||||
@c COPYRIGHT (c) 1988-1998.
|
||||
@c On-Line Applications Research Corporation (OAR).
|
||||
@c All rights reserved.
|
||||
@c
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Default Fatal Error Processing, Default Fatal Error Processing Introduction, Interrupt Processing Disabling of Interrupts by RTEMS, Top
|
||||
@end ifinfo
|
||||
@chapter Default Fatal Error Processing
|
||||
@ifinfo
|
||||
@menu
|
||||
* Default Fatal Error Processing Introduction::
|
||||
* Default Fatal Error Processing Default Fatal Error Handler Operations::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Default Fatal Error Processing Introduction, Default Fatal Error Processing Default Fatal Error Handler Operations, Default Fatal Error Processing, Default Fatal Error Processing
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
Upon detection of a fatal error by either the
|
||||
application or RTEMS the fatal error manager is invoked. The
|
||||
fatal error manager will invoke a user-supplied fatal error
|
||||
handler. If no user-supplied handler is configured, the RTEMS
|
||||
provided default fatal error handler is invoked. If the
|
||||
user-supplied fatal error handler returns to the executive the
|
||||
default fatal error handler is then invoked. This chapter
|
||||
describes the precise operations of the default fatal error
|
||||
handler.
|
||||
|
||||
@ifinfo
|
||||
@node Default Fatal Error Processing Default Fatal Error Handler Operations, Board Support Packages, Default Fatal Error Processing Introduction, Default Fatal Error Processing
|
||||
@end ifinfo
|
||||
@section Default Fatal Error Handler Operations
|
||||
|
||||
The default fatal error handler which is invoked by
|
||||
the fatal_error_occurred directive when there is no user handler
|
||||
configured or the user handler returns control to RTEMS. The
|
||||
default fatal error handler disables processor interrupts (i.e.
|
||||
sets the I bit in the PSW register to 0), places the error code
|
||||
in r1, and executes a break instruction to simulate a halt
|
||||
processor instruction.
|
||||
|
||||
@@ -1,222 +0,0 @@
|
||||
@c
|
||||
@c COPYRIGHT (c) 1988-1998.
|
||||
@c On-Line Applications Research Corporation (OAR).
|
||||
@c All rights reserved.
|
||||
@c
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing, Interrupt Processing Introduction, Memory Model Flat Memory Model, Top
|
||||
@end ifinfo
|
||||
@chapter Interrupt Processing
|
||||
@ifinfo
|
||||
@menu
|
||||
* Interrupt Processing Introduction::
|
||||
* Interrupt Processing Vectoring of Interrupt Handler::
|
||||
* Interrupt Processing Interrupt Stack Frame::
|
||||
* Interrupt Processing External Interrupts and Traps::
|
||||
* Interrupt Processing Interrupt Levels::
|
||||
* Interrupt Processing Disabling of Interrupts by RTEMS::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing Introduction, Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
Different types of processors respond to the
|
||||
occurence of an interrupt in their own unique fashion. In
|
||||
addition, each processor type provides a control mechanism to
|
||||
allow for the proper handling of an interrupt. The processor
|
||||
dependent response to the interrupt modifies the current
|
||||
execution state and results in a change in the execution stream.
|
||||
Most processors require that an interrupt handler utilize some
|
||||
special control mechanisms to return to the normal processing
|
||||
stream. Although RTEMS hides many of the processor dependent
|
||||
details of interrupt processing, it is important to understand
|
||||
how the RTEMS interrupt manager is mapped onto the processor's
|
||||
unique architecture. Discussed in this chapter are the PA-RISC's
|
||||
interrupt response and control mechanisms as they pertain to
|
||||
RTEMS.
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing Interrupt Stack Frame, Interrupt Processing Introduction, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section Vectoring of Interrupt Handler
|
||||
|
||||
Upon receipt of an interrupt the PA-RISC
|
||||
automatically performs the following actions:
|
||||
|
||||
@itemize @bullet
|
||||
@item The PSW (Program Status Word) is saved in the IPSW
|
||||
(Interrupt Program Status Word).
|
||||
|
||||
@item The current privilege level is set to 0.
|
||||
|
||||
@item The following defined bits in the PSW are set:
|
||||
|
||||
@item E bit is set to the default endian bit
|
||||
|
||||
@item M bit is set to 1 if the interrupt is a high-priority
|
||||
machine check and 0 otherwise
|
||||
|
||||
@item Q bit is set to zero thuse freezing the IIA
|
||||
(Instruction Address) queues
|
||||
|
||||
@item C and D bits are set to zero thus disabling all
|
||||
protection and translation.
|
||||
|
||||
@item I bit is set to zero this disabling all external,
|
||||
powerfail, and low-priority machine check interrupts.
|
||||
|
||||
@item All others bits are set to zero.
|
||||
|
||||
@item General purpose registers r1, r8, r9, r16, r17, r24, and
|
||||
r25 are copied to the shadow registers.
|
||||
|
||||
@item Execution begins at the address given by the formula:
|
||||
Interruption Vector Address + (32 * interrupt vector number).
|
||||
@end itemize
|
||||
|
||||
Once the processor has completed the actions it is is
|
||||
required to perform for each interrupt, the RTEMS interrupt
|
||||
management code (the beginning of which is stored in the
|
||||
Interruption Vector Table) gains control and performs the
|
||||
following actions upon each interrupt:
|
||||
|
||||
@itemize @bullet
|
||||
@item returns the processor to "virtual mode" thus reenabling
|
||||
all code and data address translation.
|
||||
|
||||
@item saves all necessary interrupt state information
|
||||
|
||||
@item saves all floating point registers
|
||||
|
||||
@item saves all integer registers
|
||||
|
||||
@item switches the current stack to the interrupt stack
|
||||
|
||||
@item dispatches to the appropriate user provided interrupt
|
||||
service routine (ISR). If the ISR was installed with the
|
||||
interrupt_catch directive, then it will be executed at this.
|
||||
Because, the RTEMS interrupt handler saves all registers which
|
||||
are not preserved according to the calling conventions and
|
||||
invokes the application's ISR, the ISR can easily be written in
|
||||
a high-level language.
|
||||
@end itemize
|
||||
|
||||
RTEMS refers to the combination of the interrupt
|
||||
state information and registers saved when vectoring an
|
||||
interrupt as the Interrupt Stack Frame (ISF). A nested
|
||||
interrupt is processed similarly by the PA-RISC and RTEMS with
|
||||
the exception that the nested interrupt occurred while executing
|
||||
on the interrupt stack and, thus, the current stack need not be
|
||||
switched.
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing Interrupt Stack Frame, Interrupt Processing External Interrupts and Traps, Interrupt Processing Vectoring of Interrupt Handler, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section Interrupt Stack Frame
|
||||
|
||||
The PA-RISC architecture does not alter the stack
|
||||
while processing interrupts. However, RTEMS does save
|
||||
information on the stack as part of processing an interrupt.
|
||||
This following shows the format of the Interrupt Stack Frame for
|
||||
the PA-RISC as defined by RTEMS:
|
||||
|
||||
@example
|
||||
@group
|
||||
+------------------------+
|
||||
| Interrupt Context | 0xXXX
|
||||
+------------------------+
|
||||
| Integer Context | 0xXXX
|
||||
+------------------------+
|
||||
| Floating Point Context | 0xXXX
|
||||
+------------------------+
|
||||
@end group
|
||||
@end example
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing External Interrupts and Traps, Interrupt Processing Interrupt Levels, Interrupt Processing Interrupt Stack Frame, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section External Interrupts and Traps
|
||||
|
||||
In addition to the thirty-two unique interrupt
|
||||
sources supported by the PA-RISC architecture, RTEMS also
|
||||
supports the installation of handlers for each of the thirty-two
|
||||
external interrupts supported by the PA-RISC architecture.
|
||||
Except for interrupt vector 4, each of the interrupt vectors 0
|
||||
through 31 may be associated with a user-provided interrupt
|
||||
handler. Interrupt vector 4 is used for external interrupts.
|
||||
When an external interrupt occurs, the RTEMS external interrupt
|
||||
handler is invoked and the actual interrupt source is indicated
|
||||
by status bits in the EIR (External Interrupt Request) register.
|
||||
The RTEMS external interrupt handler (or interrupt vector four)
|
||||
examines the EIR to determine which interrupt source requires
|
||||
servicing.
|
||||
|
||||
RTEMS supports sixty-four interrupt vectors for the
|
||||
PA-RISC. Vectors 0 through 31 map to the normal interrupt
|
||||
sources while RTEMS interrupt vectors 32 through 63 are directly
|
||||
associated with the external interrupt sources indicated by bits
|
||||
0 through 31 in the EIR.
|
||||
|
||||
The exact set of interrupt sources which are checked
|
||||
for by the RTEMS external interrupt handler and the order in
|
||||
which they are checked are configured by the user in the CPU
|
||||
Configuration Table. If an external interrupt occurs which does
|
||||
not have a handler configured, then the spurious interrupt
|
||||
handler will be invoked. The spurious interrupt handler may
|
||||
also be specifiec by the user in the CPU Configuration Table.
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing Interrupt Levels, Interrupt Processing Disabling of Interrupts by RTEMS, Interrupt Processing External Interrupts and Traps, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section Interrupt Levels
|
||||
|
||||
Two levels (enabled and disabled) of interrupt
|
||||
priorities are supported by the PA-RISC architecture. Level
|
||||
zero (0) indicates that interrupts are fully enabled (i.e. the I
|
||||
bit of the PSW is 1). Level one (1) indicates that interrupts
|
||||
are disabled (i.e. the I bit of the PSW is 0). Thirty-two
|
||||
independent sources of external interrupts are supported by the
|
||||
PA-RISC architecture. Each of these interrupts sources may be
|
||||
individually enabled or disabled. When processor interrupts are
|
||||
disabled, all sources of external interrupts are ignored. When
|
||||
processor interrupts are enabled, the EIR (External Interrupt
|
||||
Request) register is used to determine which sources are
|
||||
currently allowed to generate interrupts.
|
||||
|
||||
Although RTEMS supports 256 interrupt levels, the
|
||||
PA-RISC architecture only supports two. RTEMS interrupt level 0
|
||||
indicates that interrupts are enabled and level 1 indicates that
|
||||
interrupts are disabled. All other RTEMS interrupt levels are
|
||||
undefined and their behavior is unpredictable.
|
||||
|
||||
@ifinfo
|
||||
@node Interrupt Processing Disabling of Interrupts by RTEMS, Default Fatal Error Processing, Interrupt Processing Interrupt Levels, Interrupt Processing
|
||||
@end ifinfo
|
||||
@section Disabling of Interrupts by RTEMS
|
||||
|
||||
During the execution of directive calls, critical
|
||||
sections of code may be executed. When these sections are
|
||||
encountered, RTEMS disables external interrupts by setting the I
|
||||
bit in the PSW to 0 before the execution of this section and
|
||||
restores them to the previous level upon completion of the
|
||||
section. RTEMS has been optimized to insure that interrupts are
|
||||
disabled for less than XXX instructions when compiled with GNU
|
||||
CC at optimization level 4. The exact execution time will vary
|
||||
based on the based on the processor implementation, amount of
|
||||
cache, the number of wait states for primary memory, and
|
||||
processor speed present on the target board.
|
||||
|
||||
Non-maskable interrupts (NMI) such as high-priority
|
||||
machine checks cannot be disabled, and ISRs which execute at
|
||||
this level MUST NEVER issue RTEMS system calls. If a directive
|
||||
is invoked, unpredictable results may occur due to the inability
|
||||
of RTEMS to protect its critical sections. However, ISRs that
|
||||
make no system calls may safely execute as non-maskable
|
||||
interrupts.
|
||||
|
||||
@@ -6,20 +6,8 @@
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model, Memory Model Introduction, Calling Conventions User-Provided Routines, Top
|
||||
@end ifinfo
|
||||
@chapter Memory Model
|
||||
@ifinfo
|
||||
@menu
|
||||
* Memory Model Introduction::
|
||||
* Memory Model Flat Memory Model::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model Introduction, Memory Model Flat Memory Model, Memory Model, Memory Model
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
A processor may support any combination of memory
|
||||
@@ -31,9 +19,6 @@ memory of any kind. The appropriate memory model for RTEMS
|
||||
provided by the targeted processor and related characteristics
|
||||
of that model are described in this chapter.
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model Flat Memory Model, Interrupt Processing, Memory Model Introduction, Memory Model
|
||||
@end ifinfo
|
||||
@section Flat Memory Model
|
||||
|
||||
RTEMS supports applications in which the application
|
||||
|
||||
@@ -6,20 +6,8 @@
|
||||
@c $Id$
|
||||
@c
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model, Memory Model Introduction, Calling Conventions User-Provided Routines, Top
|
||||
@end ifinfo
|
||||
@chapter Memory Model
|
||||
@ifinfo
|
||||
@menu
|
||||
* Memory Model Introduction::
|
||||
* Memory Model Flat Memory Model::
|
||||
@end menu
|
||||
@end ifinfo
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model Introduction, Memory Model Flat Memory Model, Memory Model, Memory Model
|
||||
@end ifinfo
|
||||
@section Introduction
|
||||
|
||||
A processor may support any combination of memory
|
||||
@@ -31,9 +19,6 @@ memory of any kind. The appropriate memory model for RTEMS
|
||||
provided by the targeted processor and related characteristics
|
||||
of that model are described in this chapter.
|
||||
|
||||
@ifinfo
|
||||
@node Memory Model Flat Memory Model, Interrupt Processing, Memory Model Introduction, Memory Model
|
||||
@end ifinfo
|
||||
@section Flat Memory Model
|
||||
|
||||
RTEMS supports applications in which the application
|
||||
|
||||
Reference in New Issue
Block a user