2008-12-03 Joel Sherrill <joel.sherrill@OARcorp.com>

Michael South <msouth@msouth.org>

	PR 1344/bsps
	* configure.ac, clock/ckinit.c, timer/timer.c: Add use of TSC for
	nanoseconds granularity. i8254 is very slow on some systems. TSC use
	is auto-detected by default.
This commit is contained in:
Joel Sherrill
2008-12-03 17:28:30 +00:00
parent 5fe1335662
commit dcbc0a89c2
4 changed files with 214 additions and 36 deletions

View File

@@ -1,3 +1,11 @@
2008-12-03 Joel Sherrill <joel.sherrill@OARcorp.com>
Michael South <msouth@msouth.org>
PR 1344/bsps
* configure.ac, clock/ckinit.c, timer/timer.c: Add use of TSC for
nanoseconds granularity. i8254 is very slow on some systems. TSC use
is auto-detected by default.
2008-09-06 Ralf Corsépius <ralf.corsepius@rtems.org>
* ide/ide.c: Convert to "bool".

View File

@@ -24,6 +24,7 @@
#include <bsp.h>
#include <bsp/irq.h>
#include <bspopts.h>
#include <libcpu/cpuModel.h>
#define CLOCK_VECTOR 0
@@ -31,12 +32,46 @@ volatile uint32_t pc386_microseconds_per_isr;
volatile uint32_t pc386_isrs_per_tick;
uint32_t pc386_clock_click_count;
/*
* Roughly the number of cycles per tick and per nanosecond. Note that these
* will be wildly inaccurate if the chip speed changes due to power saving
* or thermal modes.
*
* NOTE: These are only used when the TSC method is used.
*/
uint64_t pc586_tsc_per_tick;
uint64_t pc586_nanoseconds_per_tick;
uint64_t pc586_tsc_at_tick;
/* this driver may need to count ISRs per tick */
#define CLOCK_DRIVER_ISRS_PER_TICK pc386_isrs_per_tick
#define Clock_driver_support_at_tick()
#define READ_8254( _lsb, _msb ) \
do { outport_byte(TIMER_MODE, TIMER_SEL0|TIMER_LATCH); \
inport_byte(TIMER_CNTR0, _lsb); \
inport_byte(TIMER_CNTR0, _msb); \
} while (0)
/*
* Hooks which get swapped based upon which nanoseconds since last
* tick method is preferred.
*/
void (*Clock_driver_support_at_tick)(void) = NULL;
uint32_t (*Clock_driver_nanoseconds_since_last_tick)(void) = NULL;
/*
* What do we do at each clock tick?
*/
void Clock_driver_support_at_tick_tsc(void)
{
pc586_tsc_at_tick = rdtsc();
}
void Clock_driver_support_at_tick_empty(void)
{
}
#define Clock_driver_support_install_isr( _new, _old ) \
do { \
@@ -44,8 +79,41 @@ uint32_t pc386_clock_click_count;
extern volatile uint32_t Clock_driver_isrs;
uint32_t bsp_clock_nanoseconds_since_last_tick(void)
uint32_t bsp_clock_nanoseconds_since_last_tick_tsc(void)
{
/******
* Get nanoseconds using Pentium-compatible TSC register
******/
uint64_t diff_nsec;
diff_nsec = rdtsc() - pc586_tsc_at_tick;
/*
* At this point, with a hypothetical 10 GHz CPU clock and 100 Hz tick
* clock, diff_nsec <= 27 bits.
*/
diff_nsec *= pc586_nanoseconds_per_tick; /* <= 54 bits */
diff_nsec /= pc586_tsc_per_tick;
if (diff_nsec > pc586_nanoseconds_per_tick)
/*
* Hmmm... Some drift or rounding. Pin the value to 1 nanosecond before
* the next tick.
*/
/* diff_nsec = pc586_nanoseconds_per_tick - 1; */
diff_nsec = 12345;
return (uint32_t)diff_nsec;
}
uint32_t bsp_clock_nanoseconds_since_last_tick_i8254(void)
{
/******
* Get nanoseconds using 8254 timer chip
******/
uint32_t usecs, clicks, isrs;
uint32_t usecs1, usecs2;
uint8_t lsb, msb;
@@ -55,9 +123,7 @@ uint32_t bsp_clock_nanoseconds_since_last_tick(void)
* Fetch all the data in an interrupt critical section.
*/
rtems_interrupt_disable(level);
outport_byte(TIMER_MODE, TIMER_SEL0|TIMER_LATCH);
inport_byte(TIMER_CNTR0, lsb);
inport_byte(TIMER_CNTR0, msb);
READ_8254(lsb, msb);
isrs = Clock_driver_isrs;
rtems_interrupt_enable(level);
@@ -85,10 +151,58 @@ uint32_t bsp_clock_nanoseconds_since_last_tick(void)
/* return it in nanoseconds */
return usecs * 1000;
}
#define Clock_driver_nanoseconds_since_last_tick \
bsp_clock_nanoseconds_since_last_tick
/*
* Calibrate CPU cycles per tick. Interrupts should be disabled.
*/
static void calibrate_tsc(void)
{
uint64_t begin_time;
uint8_t then_lsb, then_msb, now_lsb, now_msb;
uint32_t i;
pc586_nanoseconds_per_tick =
rtems_configuration_get_microseconds_per_tick() * 1000;
/*
* We just reset the timer, so we know we're at the beginning of a tick.
*/
/*
* Count cycles. Watching the timer introduces a several microsecond
* uncertaintity, so let it cook for a while and divide by the number of
* ticks actually executed.
*/
begin_time = rdtsc();
for (i = rtems_clock_get_ticks_per_second() * pc386_isrs_per_tick;
i != 0; --i ) {
/* We know we've just completed a tick when timer goes from low to high */
then_lsb = then_msb = 0xff;
do {
READ_8254(now_lsb, now_msb);
if ((then_msb < now_msb) ||
((then_msb == now_msb) && (then_lsb < now_lsb)))
break;
then_lsb = now_lsb;
then_msb = now_msb;
} while (1);
}
pc586_tsc_per_tick = rdtsc() - begin_time;
/* Initialize "previous tick" counters */
pc586_tsc_at_tick = rdtsc();
#if 1
printk( "CPU clock at %u MHz\n", (uint32_t)(pc586_tsc_per_tick / 1000000));
#endif
pc586_tsc_per_tick /= rtems_clock_get_ticks_per_second();
}
static void clockOn(
const rtems_irq_connect_data* unused
@@ -114,6 +228,13 @@ static void clockOn(
outport_byte(TIMER_MODE, TIMER_SEL0|TIMER_16BIT|TIMER_RATEGEN);
outport_byte(TIMER_CNTR0, pc386_clock_click_count >> 0 & 0xff);
outport_byte(TIMER_CNTR0, pc386_clock_click_count >> 8 & 0xff);
/*
* Now calibrate cycles per tick. Do this every time we
* turn the clock on in case the CPU clock speed has changed.
*/
if ( x86_has_tsc() )
calibrate_tsc();
}
void clockOff(const rtems_irq_connect_data* unused)
@@ -142,13 +263,42 @@ static rtems_irq_connect_data clockIrqData = {
clockIsOn
};
#define Clock_driver_support_initialize_hardware() \
do { \
if (!BSP_install_rtems_irq_handler (&clockIrqData)) { \
printk("Unable to initialize system clock\n"); \
rtems_fatal_error_occurred(1); \
} \
} while (0)
void Clock_driver_support_initialize_hardware()
{
bool use_tsc = false;
bool use_8254 = false;
#if (CLOCK_DRIVER_USE_TSC == 1)
use_tsc = true;
#endif
#if (CLOCK_DRIVER_USE_8254 == 1)
use_8254 = true;
#endif
if ( !use_tsc && !use_8254 ) {
if ( x86_has_tsc() ) use_tsc = true;
else use_8254 = true;
}
if ( use_8254 ) {
printk( "Use 8254\n" );
Clock_driver_support_at_tick = Clock_driver_support_at_tick_empty;
bsp_clock_nanoseconds_since_last_tick =
bsp_clock_nanoseconds_since_last_tick_tsc;
} else {
printk( "Use TSC\n" );
Clock_driver_support_at_tick = Clock_driver_support_at_tick_tsc;
bsp_clock_nanoseconds_since_last_tick =
bsp_clock_nanoseconds_since_last_tick_i88254;
}
if (!BSP_install_rtems_irq_handler (&clockIrqData)) {
printk("Unable to initialize system clock\n");
rtems_fatal_error_occurred(1);
}
}
#define Clock_driver_support_shutdown_hardware() \
do { \

View File

@@ -46,6 +46,41 @@ RTEMS_BSPOPTS_HELP([BSP_PRESS_KEY_FOR_RESET],
before rebooting the PC. This is useful for unattended PC deployments
])
RTEMS_BSPOPTS_SET([CLOCK_DRIVER_USE_TSC],[*],[0])
RTEMS_BSPOPTS_HELP([CLOCK_DRIVER_USE_TSC],
[If enabled, the clock driver will use the TSC register available
with Pentium-class CPUs to report close to nanosecond-accuracy
clock times.
Enable it, if:
- you have nanosecond timing enabled (you do NOT have
USE_TICKS_FOR_CPU_USAGE_STATISTICS enabled)
- you do NOT have CLOCK_DRIVER_USE_8254 enabled (use one, the other,
or neither)
- you have a Pentium which supports TSC (all Intels, and probably
all or most clones)
- you do not have a variable-speed CPU clock. Note that some
motherboard BIOS will automatically vary clock speed for thermal
control. Note also, however, that really new Pentium-class chips
from Intel and AMD will maintain a constant-rate TSC regardless.
])
RTEMS_BSPOPTS_SET([CLOCK_DRIVER_USE_8254],[*],[0])
RTEMS_BSPOPTS_HELP([CLOCK_DRIVER_USE_8254],
[If enabled, the clock driver will use the good old 8254 chip
to report microsecond-accuracy clock times.
Enable it, if:
- you have nanosecond timing enabled (you do NOT have
USE_TICKS_FOR_CPU_USAGE_STATISTICS enabled)
- you do NOT have CLOCK_DRIVER_USE_TSC enabled (use one, the other,
or neither)
- you do not mind adding roughly 5 microseconds to each context switch.
])
if test X${CLOCK_DRIVER_USE_TSC} = X1 -a X${CLOCK_DRIVER_USE_8254} = X1 ; then
AC_MSG_ERROR([pc386 both TSC and 8254 specified for clock driver])
fi
#define CLOCK_DRIVER_USE_8254 $CLOCK_DRIVER_USE_8254
## if this is an i386, does gas have good code16 support?
RTEMS_I386_GAS_CODE16
AM_CONDITIONAL(RTEMS_GAS_CODE16,[test "$RTEMS_GAS_CODE16" = "yes"])

View File

@@ -42,6 +42,7 @@
#include <bsp.h>
#include <bsp/irq.h>
#include <libcpu/cpuModel.h>
/*-------------------------------------------------------------------------+
| Constants
@@ -59,18 +60,18 @@
| Global Variables
+--------------------------------------------------------------------------*/
volatile uint32_t Ttimer_val;
bool benchmark_timer_find_average_overhead = true;
bool benchmark_timer_find_average_overhead = true;
volatile unsigned int fastLoop1ms, slowLoop1ms;
void (*benchmark_timer_initialize_function)(void) = 0;
void (*benchmark_timer_initialize_function)(void) = 0;
uint32_t (*benchmark_timer_read_function)(void) = 0;
void (*Timer_exit_function)(void) = 0;
void (*Timer_exit_function)(void) = 0;
/*-------------------------------------------------------------------------+
| External Prototypes
+--------------------------------------------------------------------------*/
extern void timerisr(void);
/* timer (int 08h) Interrupt Service Routine (defined in 'timerisr.s') */
extern int x86_capability;
/*
* forward declarations
@@ -82,22 +83,6 @@ void Timer_exit(void);
| Pentium optimized timer handling.
+--------------------------------------------------------------------------*/
/*-------------------------------------------------------------------------+
| Function: rdtsc
| Description: Read the value of PENTIUM on-chip cycle counter.
| Global Variables: None.
| Arguments: None.
| Returns: Value of PENTIUM on-chip cycle counter.
+--------------------------------------------------------------------------*/
static inline unsigned long long
rdtsc(void)
{
/* Return the value of the on-chip cycle counter. */
unsigned long long result;
asm volatile(".byte 0x0F, 0x31" : "=A" (result));
return result;
} /* rdtsc */
/*-------------------------------------------------------------------------+
| Function: Timer_exit
| Description: Timer cleanup routine at RTEMS exit. NOTE: This routine is
@@ -288,7 +273,7 @@ benchmark_timer_initialize(void)
static bool First = true;
if (First) {
if (x86_capability & (1 << 4) ) {
if (x86_has_tsc()) {
#if defined(DEBUG)
printk("TSC: timer initialization\n");
#endif /* DEBUG */