Replacement for the sis bsp which supports the simulator and real

hardware.  From Jiri Gaisler <jgais@wd.estec.esa.nl>.  Supports sis
2.6 and later.
This commit is contained in:
Joel Sherrill
1996-12-02 22:36:28 +00:00
parent c766caced2
commit 7f96eef797
4 changed files with 1184 additions and 0 deletions

View File

@@ -0,0 +1,262 @@
/*
* Clock Tick Device Driver
*
* This routine initializes the Real Time Clock Counter Timer which is
* part of the MEC on the ERC32 CPU.
*
* The tick frequency is directly programmed to the configured number of
* microseconds per tick.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* Ported to ERC32 implementation of the SPARC by On-Line Applications
* Research Corporation (OAR) under contract to the European Space
* Agency (ESA).
*
* ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
* European Space Agency.
*
* $Id$
*/
#include <stdlib.h>
#include <bsp.h>
#include <rtems/libio.h>
/*
* The Real Time Clock Counter Timer uses this trap type.
*/
#define CLOCK_VECTOR ERC32_TRAP_TYPE( ERC32_INTERRUPT_REAL_TIME_CLOCK )
/*
* Clock ticks since initialization
*/
volatile rtems_unsigned32 Clock_driver_ticks;
/*
* This is the value programmed into the count down timer. It
* is artificially lowered when SIMSPARC_FAST_IDLE is defined to
* cut down how long we spend in the idle task while executing on
* the simulator.
*/
extern rtems_unsigned32 CPU_SPARC_CLICKS_PER_TICK;
rtems_isr_entry Old_ticker;
void Clock_exit( void );
/*
* These are set by clock driver during its init
*/
rtems_device_major_number rtems_clock_major = ~0;
rtems_device_minor_number rtems_clock_minor;
/*
* Clock_isr
*
* This is the clock tick interrupt handler.
*
* Input parameters:
* vector - vector number
*
* Output parameters: NONE
*
* Return values: NONE
*
*/
rtems_isr Clock_isr(
rtems_vector_number vector
)
{
/*
* If we are in "fast idle" mode, then the value for clicks per tick
* is lowered to decrease the amount of time spent executing the idle
* task while using the SPARC Instruction Simulator.
*/
#if SIMSPARC_FAST_IDLE
ERC32_MEC.Real_Time_Clock_Counter = CPU_SPARC_CLICKS_PER_TICK;
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_LOAD_COUNTER
);
#endif
/*
* The driver has seen another tick.
*/
Clock_driver_ticks += 1;
/*
* Real Time Clock counter/timer is set to automatically reload.
*/
rtems_clock_tick();
}
/*
* Install_clock
*
* This routine actually performs the hardware initialization for the clock.
*
* Input parameters:
* clock_isr - clock interrupt service routine entry point
*
* Output parameters: NONE
*
* Return values: NONE
*
*/
extern int CLOCK_SPEED;
void Install_clock(
rtems_isr_entry clock_isr
)
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/* approximately 1 us per countdown */
ERC32_MEC.Real_Time_Clock_Scalar = CLOCK_SPEED - 1;
ERC32_MEC.Real_Time_Clock_Counter = CPU_SPARC_CLICKS_PER_TICK;
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_LOAD_SCALER |
ERC32_MEC_TIMER_COUNTER_LOAD_COUNTER
);
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_RELOAD_AT_ZERO
);
atexit( Clock_exit );
}
}
/*
* Clock_exit
*
* This routine allows the clock driver to exit by masking the interrupt and
* disabling the clock's counter.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values: NONE
*
*/
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
ERC32_Mask_interrupt( ERC32_INTERRUPT_REAL_TIME_CLOCK );
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_DISABLE_COUNTING
);
/* do not restore old vector */
}
}
/*
* Clock_initialize
*
* This routine initializes the clock driver.
*
* Input parameters:
* major - clock device major number
* minor - clock device minor number
* parg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver Clock_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *pargp
)
{
Install_clock( Clock_isr );
/*
* make major/minor avail to others such as shared memory driver
*/
rtems_clock_major = major;
rtems_clock_minor = minor;
return RTEMS_SUCCESSFUL;
}
/*
* Clock_control
*
* This routine is the clock device driver control entry point.
*
* Input parameters:
* major - clock device major number
* minor - clock device minor number
* parg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver Clock_control(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *pargp
)
{
rtems_unsigned32 isrlevel;
rtems_libio_ioctl_args_t *args = pargp;
if (args == 0)
goto done;
/*
* This is hokey, but until we get a defined interface
* to do this, it will just be this simple...
*/
if (args->command == rtems_build_name('I', 'S', 'R', ' '))
{
Clock_isr(CLOCK_VECTOR);
}
else if (args->command == rtems_build_name('N', 'E', 'W', ' '))
{
rtems_interrupt_disable( isrlevel );
(void) set_vector( args->buffer, CLOCK_VECTOR, 1 );
rtems_interrupt_enable( isrlevel );
}
done:
return RTEMS_SUCCESSFUL;
}

View File

@@ -0,0 +1,630 @@
/*
* console.c
*
* This file contains the Sparc Instruction Simulator Console driver.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* Ported to ERC32 implementation of the SPARC by On-Line Applications
* Research Corporation (OAR) under contract to the European Space
* Agency (ESA).
*
* ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
* European Space Agency.
*
* $Id$
*/
#include <bsp.h>
#include <rtems/libio.h>
#include <stdlib.h>
/*
* Define RDB_BREAK_IN if you need to be able to break in to the
* program with a ctrl-c during remote target debugging. If so,
* UART B will not be accessible from rtems during remote debugging
* if interrupt driven console is used. Does not affect UART A, polled
* mode or when the program runs without remote debugging.
*/
#define RDB_BREAK_IN
/*
* This is a kludge so the tests run without stopping to ask for input.
* It makes it possible to run the RTEMS tests without human intervention.
*/
/*
#define CONSOLE_FAKE_INPUT
*/
/*
* Should we use a polled or interrupt drived console?
*
* NOTE: Define only one of these by default.
*
* WARNING: As of sis 1.6, it did not appear that the UART interrupts
* worked in a desirable fashion. Immediately upon writing
* a character into the TX buffer, an interrupt was generated.
* This did not allow enough time for the program to put more
* characters in the buffer. So every character resulted in
* "priming" the transmitter. This effectively results in
* in a polled console with a useless interrupt per character
* on output. It is reasonable to assume that input does not
* share this problem although it was not investigated.
*/
#define CONSOLE_USE_INTERRUPTS
/*
#define CONSOLE_USE_POLLED
*/
#ifdef CONSOLE_USE_POLLED
#define OUTBYTE console_outbyte_polled
#define INBYTE console_inbyte_polled
#else
#define OUTBYTE console_outbyte_interrupts
#define INBYTE console_inbyte_interrupts
#endif
void console_initialize_interrupts( void );
/* console_initialize
*
* This routine initializes the console IO driver.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver console_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *arg
)
{
rtems_status_code status;
status = rtems_io_register_name(
"/dev/console",
major,
(rtems_device_minor_number) 0
);
if (status != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred(status);
#ifdef CONSOLE_USE_INTERRUPTS
console_initialize_interrupts();
#endif
return RTEMS_SUCCESSFUL;
}
/* console_inbyte_polled
*
* This routine reads a character from the UART.
*
* Input parameters:
* port - port to read character from
*
* Output parameters: NONE
*
* Return values:
* character read from UART
*/
char console_inbyte_polled( int port )
{
int UStat;
if ( port == 0 ) {
while (((UStat = ERC32_MEC.UART_Status) & ERC32_MEC_UART_STATUS_DRA) == 0 )
if (UStat & ERC32_MEC_UART_STATUS_ERRA) {
ERC32_MEC.UART_Status = ERC32_MEC_UART_STATUS_CLRA;
ERC32_MEC.Control = ERC32_MEC.Control;
}
return (int) ERC32_MEC.UART_Channel_A;
}
while (((UStat = ERC32_MEC.UART_Status) & ERC32_MEC_UART_STATUS_DRB) == 0 )
if (UStat & ERC32_MEC_UART_STATUS_ERRB) {
ERC32_MEC.UART_Status = ERC32_MEC_UART_STATUS_CLRB;
ERC32_MEC.Control = ERC32_MEC.Control;
}
return (int) ERC32_MEC.UART_Channel_B;
}
/* console_outbyte_polled
*
* This routine transmits a character out.
*
* Input parameters:
* port - port to transmit character to
* ch - character to be transmitted
*
* Output parameters: NONE
*
* Return values: NONE
*/
void console_outbyte_polled(
int port,
char ch
)
{
if ( port == 0 ) {
while ( (ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEA) == 0 );
ERC32_MEC.UART_Channel_A = (int) ch;
return;
}
while ( (ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEB) == 0 );
ERC32_MEC.UART_Channel_B = (int) ch;
}
/*
* Interrupt driven console IO
*/
#ifdef CONSOLE_USE_INTERRUPTS
/*
* Buffers between task and ISRs
*/
#include <ringbuf.h>
Ring_buffer_t TX_Buffer[ 2 ];
Ring_buffer_t RX_Buffer[ 2 ];
boolean Is_TX_active[ 2 ];
/*
* console_isr_a
*
* This routine is the console interrupt handler for Channel A.
*
* Input parameters:
* vector - vector number
*
* Output parameters: NONE
*
* Return values: NONE
*/
rtems_isr console_isr_a(
rtems_vector_number vector
)
{
char ch;
int UStat;
if ( (UStat = ERC32_MEC.UART_Status) & ERC32_MEC_UART_STATUS_DRA ) {
if (UStat & ERC32_MEC_UART_STATUS_ERRA) {
ERC32_MEC.UART_Status = ERC32_MEC_UART_STATUS_CLRA;
ERC32_MEC.Control = ERC32_MEC.Control;
}
ch = ERC32_MEC.UART_Channel_A;
if ( !Ring_buffer_Is_full( &RX_Buffer[ 0 ] ) )
Ring_buffer_Add_character( &RX_Buffer[ 0 ], ch );
/* else toss it */
}
if ( ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEA ) {
if ( !Ring_buffer_Is_empty( &TX_Buffer[ 0 ] ) ) {
Ring_buffer_Remove_character( &TX_Buffer[ 0 ], ch );
ERC32_MEC.UART_Channel_A = (unsigned32) ch;
} else
Is_TX_active[ 0 ] = FALSE;
}
ERC32_Clear_interrupt( ERC32_INTERRUPT_UART_A_RX_TX );
}
/*
* console_isr_b
*
* This routine is the console interrupt handler for Channel B.
*
* Input parameters:
* vector - vector number
*
* Output parameters: NONE
*
* Return values: NONE
*/
rtems_isr console_isr_b(
rtems_vector_number vector
)
{
char ch;
int UStat;
if ( (UStat = ERC32_MEC.UART_Status) & ERC32_MEC_UART_STATUS_DRB ) {
if (UStat & ERC32_MEC_UART_STATUS_ERRB) {
ERC32_MEC.UART_Status = ERC32_MEC_UART_STATUS_CLRB;
ERC32_MEC.Control = ERC32_MEC.Control;
}
ch = ERC32_MEC.UART_Channel_B;
if ( !Ring_buffer_Is_full( &RX_Buffer[ 1 ] ) )
Ring_buffer_Add_character( &RX_Buffer[ 1 ], ch );
/* else toss it */
}
if ( ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEB ) {
if ( !Ring_buffer_Is_empty( &TX_Buffer[ 1 ] ) ) {
Ring_buffer_Remove_character( &TX_Buffer[ 1 ], ch );
ERC32_MEC.UART_Channel_B = (unsigned32) ch;
} else
Is_TX_active[ 1 ] = FALSE;
}
ERC32_Clear_interrupt( ERC32_INTERRUPT_UART_B_RX_TX );
}
/*
* console_exit
*
* This routine allows the console to exit by masking its associated interrupt
* vectors.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values: NONE
*/
void console_exit()
{
rtems_unsigned32 port;
rtems_unsigned32 ch;
/*
* Although the interrupts for the UART are unmasked, the PIL is set to
* disable all external interrupts. So we might as well do this first.
*/
ERC32_Mask_interrupt( ERC32_INTERRUPT_UART_A_RX_TX );
ERC32_Mask_interrupt( ERC32_INTERRUPT_UART_B_RX_TX );
for ( port=0 ; port <= 1 ; port++ ) {
while ( !Ring_buffer_Is_empty( &TX_Buffer[ port ] ) ) {
Ring_buffer_Remove_character( &TX_Buffer[ port ], ch );
console_outbyte_polled( port, ch );
}
}
/*
* Now wait for all the data to actually get out ... the send register
* should be empty.
*/
while ( (ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEA) !=
ERC32_MEC_UART_STATUS_THEA );
while ( (ERC32_MEC.UART_Status & ERC32_MEC_UART_STATUS_THEB) !=
ERC32_MEC_UART_STATUS_THEB );
}
#define CONSOLE_UART_A_TRAP ERC32_TRAP_TYPE( ERC32_INTERRUPT_UART_A_RX_TX )
#define CONSOLE_UART_B_TRAP ERC32_TRAP_TYPE( ERC32_INTERRUPT_UART_B_RX_TX )
/*
* console_initialize_interrupts
*
* This routine initializes the console's receive and transmit
* ring buffers and loads the appropriate vectors to handle the interrupts.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values: NONE
*/
#ifdef RDB_BREAK_IN
extern int trap_table[];
#endif
void console_initialize_interrupts()
{
Ring_buffer_Initialize( &RX_Buffer[ 0 ] );
Ring_buffer_Initialize( &RX_Buffer[ 1 ] );
Ring_buffer_Initialize( &TX_Buffer[ 0 ] );
Ring_buffer_Initialize( &TX_Buffer[ 1 ] );
Is_TX_active[ 0 ] = FALSE;
Is_TX_active[ 1 ] = FALSE;
atexit( console_exit );
set_vector( console_isr_a, CONSOLE_UART_A_TRAP, 1 );
#ifdef RDB_BREAK_IN
if (trap_table[0x150/4] == 0x91d02000)
#endif
set_vector( console_isr_b, CONSOLE_UART_B_TRAP, 1 );
}
/*
* console_inbyte_interrupts
*
* This routine reads a character from the UART.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values:
* character read from UART
*/
char console_inbyte_interrupts( int port )
{
char ch;
while ( Ring_buffer_Is_empty( &RX_Buffer[ port ] ) );
Ring_buffer_Remove_character( &RX_Buffer[ port ], ch );
return ch;
}
/*
* console_outbyte_interrupts
*
* This routine transmits a character out.
*
* Input parameters:
* port - port to transmit character to
* ch - character to be transmitted
*
* Output parameters: NONE
*
* Return values: NONE
*/
void console_outbyte_interrupts(
int port,
char ch
)
{
/*
* If this is the first character then we need to prime the pump
*/
if ( Is_TX_active[ port ] == FALSE ) {
Is_TX_active[ port ] = TRUE;
console_outbyte_polled( port, ch );
return;
}
while ( Ring_buffer_Is_full( &TX_Buffer[ port ] ) );
Ring_buffer_Add_character( &TX_Buffer[ port ], ch );
}
#endif /* CONSOLE_USE_INTERRUPTS */
/*
* DEBUG_puts
*
* This should be safe in the event of an error. It attempts to insure
* that no TX empty interrupts occur while it is doing polled IO. Then
* it restores the state of that external interrupt.
*
* Input parameters:
* string - pointer to debug output string
*
* Output parameters: NONE
*
* Return values: NONE
*/
void DEBUG_puts(
char *string
)
{
char *s;
unsigned32 old_level;
ERC32_Disable_interrupt( ERC32_INTERRUPT_UART_A_RX_TX, old_level );
for ( s = string ; *s ; s++ )
console_outbyte_polled( 0, *s );
console_outbyte_polled( 0, '\r' );
console_outbyte_polled( 0, '\n' );
ERC32_Restore_interrupt( ERC32_INTERRUPT_UART_A_RX_TX, old_level );
}
/*
* console_open
*
* This routine is the console device driver open entry point.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver console_open(
rtems_device_major_number major,
rtems_device_minor_number minor,
void * arg
)
{
return RTEMS_SUCCESSFUL;
}
/*
* console_close
*
* This routine is the console device driver close entry point.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver console_close(
rtems_device_major_number major,
rtems_device_minor_number minor,
void * arg
)
{
return RTEMS_SUCCESSFUL;
}
/*
* console_read
*
* This routine is the console device driver read entry point.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*
* NOTE: Read bytes from the serial port. We only have stdin.
*/
rtems_device_driver console_read(
rtems_device_major_number major,
rtems_device_minor_number minor,
void * arg
)
{
rtems_libio_rw_args_t *rw_args;
char *buffer;
int maximum;
int count = 0;
rw_args = (rtems_libio_rw_args_t *) arg;
buffer = rw_args->buffer;
maximum = rw_args->count;
#ifdef CONSOLE_FAKE_INPUT
count = 0;
buffer[ count++ ] = '\n';
buffer[ count ] = 0;
#else
for (count = 0; count < maximum; count++) {
buffer[ count ] = INBYTE( minor );
if (buffer[ count ] == '\n' || buffer[ count ] == '\r') {
buffer[ count++ ] = '\n';
buffer[ count ] = 0;
break;
}
}
#endif
rw_args->bytes_moved = count;
return (count >= 0) ? RTEMS_SUCCESSFUL : RTEMS_UNSATISFIED;
}
/*
* console_write
*
* This routine is the console device driver write entry point.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*
* NOTE: Write bytes to the serial port. Stdout and stderr are the same.
*/
rtems_device_driver console_write(
rtems_device_major_number major,
rtems_device_minor_number minor,
void * arg
)
{
int count;
int maximum;
rtems_libio_rw_args_t *rw_args;
char *buffer;
rw_args = (rtems_libio_rw_args_t *) arg;
buffer = rw_args->buffer;
maximum = rw_args->count;
for (count = 0; count < maximum; count++) {
OUTBYTE( minor, buffer[ count ] );
if ( buffer[ count ] == '\n') {
OUTBYTE( minor, '\r');
}
}
rw_args->bytes_moved = maximum;
return RTEMS_SUCCESSFUL;
}
/*
* console_control
*
* This routine is the console device driver control entry point.
*
* Input parameters:
* major - console device major number
* minor - console device minor number
* arg - pointer to optional device driver arguments
*
* Output parameters: NONE
*
* Return values:
* rtems_device_driver status code
*/
rtems_device_driver console_control(
rtems_device_major_number major,
rtems_device_minor_number minor,
void * arg
)
{
return RTEMS_SUCCESSFUL;
}

View File

@@ -0,0 +1,181 @@
/* bsp.h
*
* This include file contains all SPARC simulator definitions.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* Ported to ERC32 implementation of the SPARC by On-Line Applications
* Research Corporation (OAR) under contract to the European Space
* Agency (ESA).
*
* ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
* European Space Agency.
*
* $Id$
*/
#ifndef __SIS_h
#define __SIS_h
#ifdef __cplusplus
extern "C" {
#endif
#include <rtems.h>
#include <clockdrv.h>
#include <console.h>
#include <iosupp.h>
#include <erc32.h>
/*
* Define the time limits for RTEMS Test Suite test durations.
* Long test and short test duration limits are provided. These
* values are in seconds and need to be converted to ticks for the
* application.
*
*/
#define MAX_LONG_TEST_DURATION 3 /* 3 seconds */
#define MAX_SHORT_TEST_DURATION 3 /* 3 seconds */
/*
* Define the interrupt mechanism for Time Test 27
*
* NOTE: Since the interrupt code for the SPARC supports both synchronous
* and asynchronous trap handlers, support for testing with both
* is included.
*/
#define SIS_USE_SYNCHRONOUS_TRAP 0
/*
* The synchronous trap is an arbitrarily chosen software trap.
*/
#if (SIS_USE_SYNCHRONOUS_TRAP == 1)
#define TEST_VECTOR SPARC_SYNCHRONOUS_TRAP( 0x90 )
#define MUST_WAIT_FOR_INTERRUPT 1
#define Install_tm27_vector( handler ) \
set_vector( (handler), TEST_VECTOR, 1 );
#define Cause_tm27_intr() \
asm volatile( "ta 0x10; nop " );
#define Clear_tm27_intr()
#define Lower_tm27_intr()
/*
* The asynchronous trap is an arbitrarily chosen ERC32 interrupt source.
*/
#else /* use a regular asynchronous trap */
#define TEST_INTERRUPT_SOURCE ERC32_INTERRUPT_EXTERNAL_1
#define TEST_VECTOR ERC32_TRAP_TYPE( TEST_INTERRUPT_SOURCE )
#define MUST_WAIT_FOR_INTERRUPT 1
#define Install_tm27_vector( handler ) \
set_vector( (handler), TEST_VECTOR, 1 );
#define Cause_tm27_intr() \
do { \
ERC32_Force_interrupt( TEST_INTERRUPT_SOURCE ); \
nop(); \
nop(); \
nop(); \
} while (0)
#define Clear_tm27_intr() \
ERC32_Clear_interrupt( TEST_INTERRUPT_SOURCE )
#define Lower_tm27_intr()
#endif
/*
* Simple spin delay in microsecond units for device drivers.
* This is very dependent on the clock speed of the target.
*/
extern void Clock_delay(rtems_unsigned32 microseconds);
#define delay( microseconds ) Clock_delay(microseconds)
/* Constants */
/*
* Information placed in the linkcmds file.
*/
extern int RAM_START;
extern int RAM_END;
extern int RAM_SIZE;
extern int PROM_START;
extern int PROM_END;
extern int PROM_SIZE;
extern int CLOCK_SPEED;
extern int end; /* last address in the program */
/*
* Device Driver Table Entries
*/
/*
* NOTE: Use the standard Console driver entry
*/
/*
* NOTE: Use the standard Clock driver entry
*/
/*
* How many libio files we want
*/
#define BSP_LIBIO_MAX_FDS 20
/* miscellaneous stuff assumed to exist */
void bsp_cleanup( void );
void bsp_start( void );
rtems_isr_entry set_vector( /* returns old vector */
rtems_isr_entry handler, /* isr routine */
rtems_vector_number vector, /* vector number */
int type /* RTEMS or RAW intr */
);
void DEBUG_puts( char *string );
void BSP_fatal_return( void );
void bsp_spurious_initialize( void );
extern rtems_configuration_table BSP_Configuration; /* owned by BSP */
extern rtems_cpu_table Cpu_table; /* owned by BSP */
extern rtems_unsigned32 bsp_isr_level;
#ifdef __cplusplus
}
#endif
#endif
/* end of include file */

View File

@@ -0,0 +1,111 @@
/* coverhd.h
*
* This include file has defines to represent the overhead associated
* with calling a particular directive from C for this target.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* Ported to ERC32 implementation of the SPARC by On-Line Applications
* Research Corporation (OAR) under contract to the European Space
* Agency (ESA).
*
* ERC32 modifications of respective RTEMS file: COPYRIGHT (c) 1995.
* European Space Agency.
*
* $Id$
*/
#ifndef __COVERHD_h
#define __COVERHD_h
#ifdef __cplusplus
extern "C" {
#endif
#define CALLING_OVERHEAD_INITIALIZE_EXECUTIVE 0
#define CALLING_OVERHEAD_SHUTDOWN_EXECUTIVE 0
#define CALLING_OVERHEAD_TASK_CREATE 0
#define CALLING_OVERHEAD_TASK_IDENT 0
#define CALLING_OVERHEAD_TASK_START 0
#define CALLING_OVERHEAD_TASK_RESTART 0
#define CALLING_OVERHEAD_TASK_DELETE 0
#define CALLING_OVERHEAD_TASK_SUSPEND 0
#define CALLING_OVERHEAD_TASK_RESUME 0
#define CALLING_OVERHEAD_TASK_SET_PRIORITY 0
#define CALLING_OVERHEAD_TASK_MODE 0
#define CALLING_OVERHEAD_TASK_GET_NOTE 0
#define CALLING_OVERHEAD_TASK_SET_NOTE 0
#define CALLING_OVERHEAD_TASK_WAKE_WHEN 0
#define CALLING_OVERHEAD_TASK_WAKE_AFTER 0
#define CALLING_OVERHEAD_INTERRUPT_CATCH 0
#define CALLING_OVERHEAD_CLOCK_GET 0
#define CALLING_OVERHEAD_CLOCK_SET 0
#define CALLING_OVERHEAD_CLOCK_TICK 0
#define CALLING_OVERHEAD_TIMER_CREATE 0
#define CALLING_OVERHEAD_TIMER_IDENT 0
#define CALLING_OVERHEAD_TIMER_DELETE 0
#define CALLING_OVERHEAD_TIMER_FIRE_AFTER 0
#define CALLING_OVERHEAD_TIMER_FIRE_WHEN 0
#define CALLING_OVERHEAD_TIMER_RESET 0
#define CALLING_OVERHEAD_TIMER_CANCEL 0
#define CALLING_OVERHEAD_SEMAPHORE_CREATE 0
#define CALLING_OVERHEAD_SEMAPHORE_IDENT 0
#define CALLING_OVERHEAD_SEMAPHORE_DELETE 0
#define CALLING_OVERHEAD_SEMAPHORE_OBTAIN 0
#define CALLING_OVERHEAD_SEMAPHORE_RELEASE 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_CREATE 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_IDENT 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_DELETE 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_SEND 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_URGENT 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_BROADCAST 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_RECEIVE 0
#define CALLING_OVERHEAD_MESSAGE_QUEUE_FLUSH 0
#define CALLING_OVERHEAD_EVENT_SEND 0
#define CALLING_OVERHEAD_EVENT_RECEIVE 0
#define CALLING_OVERHEAD_SIGNAL_CATCH 0
#define CALLING_OVERHEAD_SIGNAL_SEND 0
#define CALLING_OVERHEAD_PARTITION_CREATE 0
#define CALLING_OVERHEAD_PARTITION_IDENT 0
#define CALLING_OVERHEAD_PARTITION_DELETE 0
#define CALLING_OVERHEAD_PARTITION_GET_BUFFER 0
#define CALLING_OVERHEAD_PARTITION_RETURN_BUFFER 0
#define CALLING_OVERHEAD_REGION_CREATE 0
#define CALLING_OVERHEAD_REGION_IDENT 0
#define CALLING_OVERHEAD_REGION_DELETE 0
#define CALLING_OVERHEAD_REGION_GET_SEGMENT 0
#define CALLING_OVERHEAD_REGION_RETURN_SEGMENT 0
#define CALLING_OVERHEAD_PORT_CREATE 0
#define CALLING_OVERHEAD_PORT_IDENT 0
#define CALLING_OVERHEAD_PORT_DELETE 0
#define CALLING_OVERHEAD_PORT_EXTERNAL_TO_INTERNAL 0
#define CALLING_OVERHEAD_PORT_INTERNAL_TO_EXTERNAL 0
#define CALLING_OVERHEAD_IO_INITIALIZE 0
#define CALLING_OVERHEAD_IO_OPEN 0
#define CALLING_OVERHEAD_IO_CLOSE 0
#define CALLING_OVERHEAD_IO_READ 0
#define CALLING_OVERHEAD_IO_WRITE 0
#define CALLING_OVERHEAD_IO_CONTROL 0
#define CALLING_OVERHEAD_FATAL_ERROR_OCCURRED 0
#define CALLING_OVERHEAD_RATE_MONOTONIC_CREATE 0
#define CALLING_OVERHEAD_RATE_MONOTONIC_IDENT 0
#define CALLING_OVERHEAD_RATE_MONOTONIC_DELETE 0
#define CALLING_OVERHEAD_RATE_MONOTONIC_CANCEL 0
#define CALLING_OVERHEAD_RATE_MONOTONIC_PERIOD 0
#define CALLING_OVERHEAD_MULTIPROCESSING_ANNOUNCE 0
#ifdef __cplusplus
}
#endif
#endif
/* end of include file */