bsps: Move SPI drivers to bsps

This patch is a part of the BSP source reorganization.

Update #3285.
This commit is contained in:
Sebastian Huber
2018-04-23 09:48:52 +02:00
parent a2dad96ab7
commit 276afd2b48
14 changed files with 7 additions and 7 deletions

View File

@@ -0,0 +1,614 @@
/* ---------------------------------------------------------------------------- */
/* Atmel Microcontroller Software Support */
/* SAM Software Package License */
/* ---------------------------------------------------------------------------- */
/* Copyright (c) 2015, Atmel Corporation */
/* Copyright (c) 2016, embedded brains GmbH */
/* */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following condition is met: */
/* */
/* - Redistributions of source code must retain the above copyright notice, */
/* this list of conditions and the disclaimer below. */
/* */
/* Atmel's name may not be used to endorse or promote products derived from */
/* this software without specific prior written permission. */
/* */
/* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR */
/* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE */
/* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT */
/* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, */
/* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING */
/* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/* ---------------------------------------------------------------------------- */
#include <bsp/atsam-clock-config.h>
#include <bsp/atsam-spi.h>
#include <bsp/iocopy.h>
#include <dev/spi/spi.h>
#include <string.h>
#define MAX_SPI_FREQUENCY 50000000
#define DMA_NR_DESC_PER_DIR 3
#define DMA_DESC_ALLIGNMENT 4
#define DMA_BUF_RX 0
#define DMA_BUF_TX 1
#define DMA_BUF_DIRS 2
struct atsam_spi_xdma_buf {
LinkedListDescriporView0 desc[DMA_NR_DESC_PER_DIR];
uint8_t leadbuf[CPU_CACHE_LINE_BYTES];
uint8_t trailbuf[CPU_CACHE_LINE_BYTES];
};
typedef struct {
spi_bus base;
bool msg_cs_change;
const spi_ioc_transfer *msg_current;
const spi_ioc_transfer *msg_next;
uint32_t msg_todo;
int msg_error;
rtems_id msg_task;
Spid spi;
uint32_t dma_tx_channel;
uint32_t dma_rx_channel;
struct atsam_spi_xdma_buf *dma_bufs;
size_t leadbuf_rx_buffered_len;
size_t trailbuf_rx_buffered_len;
int transfer_in_progress;
bool chip_select_active;
bool chip_select_decode;
} atsam_spi_bus;
static void atsam_spi_wakeup_task(atsam_spi_bus *bus)
{
rtems_status_code sc;
sc = rtems_event_transient_send(bus->msg_task);
assert(sc == RTEMS_SUCCESSFUL);
}
static uint8_t atsam_calculate_dlybcs(uint16_t delay_in_us)
{
return (
(BOARD_MCK / delay_in_us) < 0xFF) ?
(BOARD_MCK / delay_in_us) : 0xFF;
}
static void atsam_set_phase_and_polarity(uint32_t mode, uint32_t *csr)
{
uint32_t mode_mask = mode & SPI_MODE_3;
switch(mode_mask) {
case SPI_MODE_0:
*csr |= SPI_CSR_NCPHA;
break;
case SPI_MODE_1:
break;
case SPI_MODE_2:
*csr |= SPI_CSR_NCPHA;
*csr |= SPI_CSR_CPOL;
break;
case SPI_MODE_3:
*csr |= SPI_CSR_CPOL;
break;
}
*csr |= SPI_CSR_CSAAT;
}
static void atsam_configure_spi(atsam_spi_bus *bus)
{
uint8_t delay_cs;
uint32_t csr = 0;
uint32_t mode = 0;
uint32_t cs = bus->base.cs;
delay_cs = atsam_calculate_dlybcs(bus->base.delay_usecs);
mode |= SPI_MR_DLYBCS(delay_cs);
mode |= SPI_MR_MSTR;
mode |= SPI_MR_MODFDIS;
if (bus->chip_select_decode) {
mode |= SPI_MR_PCS(bus->base.cs);
mode |= SPI_MR_PCSDEC;
cs /= 4;
} else {
mode |= SPI_PCS(bus->base.cs);
}
SPID_Configure(
&bus->spi,
bus->spi.pSpiHw,
bus->spi.spiId,
mode,
&XDMAD_Instance
);
csr =
SPI_DLYBCT(1000, BOARD_MCK) |
SPI_DLYBS(1000, BOARD_MCK) |
SPI_SCBR(bus->base.speed_hz, BOARD_MCK) |
SPI_CSR_BITS(bus->base.bits_per_word - 8);
atsam_set_phase_and_polarity(bus->base.mode, &csr);
SPI_ConfigureNPCS(bus->spi.pSpiHw, cs, csr);
}
static void atsam_spi_check_alignment_and_set_up_dma_descriptors(
atsam_spi_bus *bus,
struct atsam_spi_xdma_buf *buf,
const uint8_t *start,
size_t len,
bool tx
)
{
LinkedListDescriporView0 *curdesc = buf->desc;
size_t misaligned_begin;
size_t misaligned_end;
size_t len_main;
const uint8_t *start_main;
const uint8_t *start_trail;
/* Check alignments. */
if (len < CPU_CACHE_LINE_BYTES) {
misaligned_begin = len;
misaligned_end = 0;
len_main = 0;
} else {
misaligned_begin = ((uint32_t) start) % CPU_CACHE_LINE_BYTES;
misaligned_end = (((uint32_t) start) + len) % CPU_CACHE_LINE_BYTES;
len_main = len - misaligned_begin - misaligned_end;
}
start_main = start + misaligned_begin;
start_trail = start_main + len_main;
/* Store length for copying data back. */
if (!tx) {
bus->leadbuf_rx_buffered_len = misaligned_begin;
bus->trailbuf_rx_buffered_len = misaligned_end;
}
/* Handle misalignment on begin. */
if (misaligned_begin != 0) {
if (tx) {
atsam_copy_to_io(buf->leadbuf, start, misaligned_begin);
}
curdesc->mbr_nda = (uint32_t) (&curdesc[1]);
curdesc->mbr_ta = (uint32_t) buf->leadbuf;
curdesc->mbr_ubc = misaligned_begin;
}
/* Main part */
if (len_main > 0) {
curdesc->mbr_ubc |= tx ? XDMA_UBC_NSEN_UPDATED : XDMA_UBC_NDEN_UPDATED;
curdesc->mbr_ubc |= XDMA_UBC_NVIEW_NDV0;
curdesc->mbr_ubc |= XDMA_UBC_NDE_FETCH_EN;
++curdesc;
curdesc->mbr_nda = (uint32_t) (&curdesc[1]);
curdesc->mbr_ta = (uint32_t) start_main;
curdesc->mbr_ubc = len_main;
if (tx) {
rtems_cache_flush_multiple_data_lines(start_main, len_main);
} else {
rtems_cache_invalidate_multiple_data_lines(start_main, len_main);
}
}
/* Handle misalignment on end */
if (misaligned_end != 0) {
curdesc->mbr_ubc |= tx ? XDMA_UBC_NSEN_UPDATED : XDMA_UBC_NDEN_UPDATED;
curdesc->mbr_ubc |= XDMA_UBC_NVIEW_NDV0;
curdesc->mbr_ubc |= XDMA_UBC_NDE_FETCH_EN;
++curdesc;
if (tx) {
atsam_copy_to_io(buf->trailbuf, start_trail, misaligned_end);
}
curdesc->mbr_nda = 0;
curdesc->mbr_ta = (uint32_t) buf->trailbuf;
curdesc->mbr_ubc = misaligned_end;
curdesc->mbr_ubc |= XDMA_UBC_NDE_FETCH_DIS;
}
}
static void atsam_spi_copy_back_rx_after_dma_transfer(
atsam_spi_bus *bus
)
{
if (bus->leadbuf_rx_buffered_len != 0) {
atsam_copy_from_io(
bus->msg_current->rx_buf,
bus->dma_bufs[DMA_BUF_RX].leadbuf,
bus->leadbuf_rx_buffered_len
);
}
if (bus->trailbuf_rx_buffered_len != 0) {
atsam_copy_from_io(
bus->msg_current->rx_buf + bus->msg_current->len -
bus->trailbuf_rx_buffered_len,
bus->dma_bufs[DMA_BUF_RX].trailbuf,
bus->trailbuf_rx_buffered_len
);
}
}
static void atsam_spi_start_dma_transfer(
atsam_spi_bus *bus,
const spi_ioc_transfer *msg
)
{
Xdmac *pXdmac = XDMAC;
size_t i;
atsam_spi_check_alignment_and_set_up_dma_descriptors(
bus,
&bus->dma_bufs[DMA_BUF_RX],
msg->rx_buf,
msg->len,
false
);
atsam_spi_check_alignment_and_set_up_dma_descriptors(
bus,
&bus->dma_bufs[DMA_BUF_TX],
msg->tx_buf,
msg->len,
true
);
XDMAC_SetDescriptorAddr(
pXdmac,
bus->dma_rx_channel,
(uint32_t) bus->dma_bufs[DMA_BUF_RX].desc,
0
);
XDMAC_SetDescriptorControl(
pXdmac,
bus->dma_rx_channel,
XDMAC_CNDC_NDVIEW_NDV0 |
XDMAC_CNDC_NDDUP_DST_PARAMS_UPDATED |
XDMAC_CNDC_NDE_DSCR_FETCH_EN
);
XDMAC_SetDescriptorAddr(
pXdmac,
bus->dma_tx_channel,
(uint32_t) bus->dma_bufs[DMA_BUF_TX].desc,
0
);
XDMAC_SetDescriptorControl(
pXdmac,
bus->dma_tx_channel,
XDMAC_CNDC_NDVIEW_NDV0 |
XDMAC_CNDC_NDSUP_SRC_PARAMS_UPDATED |
XDMAC_CNDC_NDE_DSCR_FETCH_EN
);
XDMAC_StartTransfer(pXdmac, bus->dma_rx_channel);
XDMAC_StartTransfer(pXdmac, bus->dma_tx_channel);
}
static void atsam_spi_do_transfer(
atsam_spi_bus *bus,
const spi_ioc_transfer *msg
)
{
if (!bus->chip_select_active){
Spi *pSpiHw = bus->spi.pSpiHw;
bus->chip_select_active = true;
if (bus->chip_select_decode) {
pSpiHw->SPI_MR = (pSpiHw->SPI_MR & ~SPI_MR_PCS_Msk) | SPI_MR_PCS(msg->cs);
} else {
SPI_ChipSelect(pSpiHw, 1 << msg->cs);
}
SPI_Enable(pSpiHw);
}
atsam_spi_start_dma_transfer(bus, msg);
}
static int atsam_check_configure_spi(atsam_spi_bus *bus, const spi_ioc_transfer *msg)
{
if (
msg->mode != bus->base.mode
|| msg->speed_hz != bus->base.speed_hz
|| msg->bits_per_word != bus->base.bits_per_word
|| msg->cs != bus->base.cs
|| msg->delay_usecs != bus->base.delay_usecs
) {
if (
msg->bits_per_word < 8
|| msg->bits_per_word > 16
|| msg->mode > 3
|| msg->speed_hz > bus->base.max_speed_hz
) {
return -EINVAL;
}
bus->base.mode = msg->mode;
bus->base.speed_hz = msg->speed_hz;
bus->base.bits_per_word = msg->bits_per_word;
bus->base.cs = msg->cs;
bus->base.delay_usecs = msg->delay_usecs;
atsam_configure_spi(bus);
}
return 0;
}
static void atsam_spi_setup_transfer(atsam_spi_bus *bus)
{
uint32_t msg_todo = bus->msg_todo;
bus->transfer_in_progress = 2;
if (bus->msg_cs_change) {
bus->chip_select_active = false;
SPI_ReleaseCS(bus->spi.pSpiHw);
SPI_Disable(bus->spi.pSpiHw);
}
if (msg_todo > 0) {
const spi_ioc_transfer *msg = bus->msg_next;
int error;
bus->msg_cs_change = msg->cs_change;
bus->msg_next = msg + 1;
bus->msg_current = msg;
bus->msg_todo = msg_todo - 1;
error = atsam_check_configure_spi(bus, msg);
if (error == 0) {
atsam_spi_do_transfer(bus, msg);
} else {
bus->msg_error = error;
atsam_spi_wakeup_task(bus);
}
} else {
atsam_spi_wakeup_task(bus);
}
}
static void atsam_spi_dma_callback(uint32_t channel, void *arg)
{
atsam_spi_bus *bus = (atsam_spi_bus *)arg;
--bus->transfer_in_progress;
if (bus->transfer_in_progress == 0) {
atsam_spi_copy_back_rx_after_dma_transfer(bus);
atsam_spi_setup_transfer(bus);
}
}
static int atsam_spi_transfer(
spi_bus *base,
const spi_ioc_transfer *msgs,
uint32_t msg_count
)
{
rtems_status_code sc;
atsam_spi_bus *bus = (atsam_spi_bus *)base;
bus->msg_cs_change = false;
bus->msg_next = &msgs[0];
bus->msg_current = NULL;
bus->msg_todo = msg_count;
bus->msg_error = 0;
bus->msg_task = rtems_task_self();
atsam_spi_setup_transfer(bus);
sc = rtems_event_transient_receive(RTEMS_WAIT, RTEMS_NO_TIMEOUT);
assert(sc == RTEMS_SUCCESSFUL);
return bus->msg_error;
}
static void atsam_spi_destroy(spi_bus *base)
{
atsam_spi_bus *bus = (atsam_spi_bus *)base;
eXdmadRC rc;
rc = XDMAD_SetCallback(
bus->spi.pXdmad,
bus->dma_rx_channel,
XDMAD_DoNothingCallback,
NULL
);
assert(rc == XDMAD_OK);
rc = XDMAD_SetCallback(
bus->spi.pXdmad,
bus->dma_tx_channel,
XDMAD_DoNothingCallback,
NULL
);
assert(rc == XDMAD_OK);
XDMAD_FreeChannel(bus->spi.pXdmad, bus->dma_rx_channel);
XDMAD_FreeChannel(bus->spi.pXdmad, bus->dma_tx_channel);
SPI_Disable(bus->spi.pSpiHw);
PMC_DisablePeripheral(bus->spi.spiId);
rtems_cache_coherent_free(bus->dma_bufs);
spi_bus_destroy_and_free(&bus->base);
}
static int atsam_spi_setup(spi_bus *base)
{
atsam_spi_bus *bus = (atsam_spi_bus *)base;
if (
bus->base.speed_hz > MAX_SPI_FREQUENCY ||
bus->base.bits_per_word < 8 ||
bus->base.bits_per_word > 16
) {
return -EINVAL;
}
atsam_configure_spi(bus);
return 0;
}
static void atsam_spi_init_xdma(atsam_spi_bus *bus)
{
sXdmadCfg cfg;
uint32_t xdmaInt;
uint8_t channel;
eXdmadRC rc;
uint32_t xdma_cndc;
bus->dma_bufs = rtems_cache_coherent_allocate(
DMA_BUF_DIRS * sizeof(*(bus->dma_bufs)),
DMA_DESC_ALLIGNMENT,
0
);
assert(bus->dma_bufs != NULL);
bus->dma_tx_channel = XDMAD_AllocateChannel(
bus->spi.pXdmad,
XDMAD_TRANSFER_MEMORY,
bus->spi.spiId
);
assert(bus->dma_tx_channel != XDMAD_ALLOC_FAILED);
bus->dma_rx_channel = XDMAD_AllocateChannel(
bus->spi.pXdmad,
bus->spi.spiId,
XDMAD_TRANSFER_MEMORY
);
assert(bus->dma_rx_channel != XDMAD_ALLOC_FAILED);
rc = XDMAD_SetCallback(
bus->spi.pXdmad,
bus->dma_rx_channel,
atsam_spi_dma_callback,
bus
);
assert(rc == XDMAD_OK);
rc = XDMAD_SetCallback(
bus->spi.pXdmad,
bus->dma_tx_channel,
atsam_spi_dma_callback,
bus
);
assert(rc == XDMAD_OK);
rc = XDMAD_PrepareChannel(bus->spi.pXdmad, bus->dma_rx_channel);
assert(rc == XDMAD_OK);
rc = XDMAD_PrepareChannel(bus->spi.pXdmad, bus->dma_tx_channel);
assert(rc == XDMAD_OK);
/* Put all relevant interrupts on */
xdmaInt = (
XDMAC_CIE_BIE |
XDMAC_CIE_DIE |
XDMAC_CIE_FIE |
XDMAC_CIE_RBIE |
XDMAC_CIE_WBIE |
XDMAC_CIE_ROIE);
/* Setup RX */
memset(&cfg, 0, sizeof(cfg));
channel = XDMAIF_Get_ChannelNumber(bus->spi.spiId, XDMAD_TRANSFER_RX);
cfg.mbr_sa = (uint32_t)&bus->spi.pSpiHw->SPI_RDR;
cfg.mbr_cfg =
XDMAC_CC_TYPE_PER_TRAN |
XDMAC_CC_MBSIZE_SINGLE |
XDMAC_CC_DSYNC_PER2MEM |
XDMAC_CC_CSIZE_CHK_1 |
XDMAC_CC_DWIDTH_BYTE |
XDMAC_CC_SIF_AHB_IF1 |
XDMAC_CC_DIF_AHB_IF1 |
XDMAC_CC_SAM_FIXED_AM |
XDMAC_CC_DAM_INCREMENTED_AM |
XDMAC_CC_PERID(channel);
xdma_cndc = XDMAC_CNDC_NDVIEW_NDV0 |
XDMAC_CNDC_NDE_DSCR_FETCH_EN |
XDMAC_CNDC_NDDUP_DST_PARAMS_UPDATED |
XDMAC_CNDC_NDSUP_SRC_PARAMS_UNCHANGED;
rc = XDMAD_ConfigureTransfer(
bus->spi.pXdmad,
bus->dma_rx_channel,
&cfg,
xdma_cndc,
(uint32_t) bus->dma_bufs[DMA_BUF_RX].desc,
xdmaInt
);
assert(rc == XDMAD_OK);
/* Setup TX */
memset(&cfg, 0, sizeof(cfg));
channel = XDMAIF_Get_ChannelNumber(bus->spi.spiId, XDMAD_TRANSFER_TX);
cfg.mbr_da = (uint32_t)&bus->spi.pSpiHw->SPI_TDR;
cfg.mbr_cfg =
XDMAC_CC_TYPE_PER_TRAN |
XDMAC_CC_MBSIZE_SINGLE |
XDMAC_CC_DSYNC_MEM2PER |
XDMAC_CC_CSIZE_CHK_1 |
XDMAC_CC_DWIDTH_BYTE |
XDMAC_CC_SIF_AHB_IF1 |
XDMAC_CC_DIF_AHB_IF1 |
XDMAC_CC_SAM_INCREMENTED_AM |
XDMAC_CC_DAM_FIXED_AM |
XDMAC_CC_PERID(channel);
xdma_cndc = XDMAC_CNDC_NDVIEW_NDV0 |
XDMAC_CNDC_NDE_DSCR_FETCH_EN |
XDMAC_CNDC_NDDUP_DST_PARAMS_UNCHANGED |
XDMAC_CNDC_NDSUP_SRC_PARAMS_UPDATED;
rc = XDMAD_ConfigureTransfer(
bus->spi.pXdmad,
bus->dma_tx_channel,
&cfg,
xdma_cndc,
(uint32_t) bus->dma_bufs[DMA_BUF_TX].desc,
xdmaInt
);
assert(rc == XDMAD_OK);
}
int spi_bus_register_atsam(
const char *bus_path,
const atsam_spi_config *config
)
{
atsam_spi_bus *bus;
bus = (atsam_spi_bus *) spi_bus_alloc_and_init(sizeof(*bus));
if (bus == NULL) {
return -1;
}
bus->base.transfer = atsam_spi_transfer;
bus->base.destroy = atsam_spi_destroy;
bus->base.setup = atsam_spi_setup;
bus->base.max_speed_hz = MAX_SPI_FREQUENCY;
bus->base.bits_per_word = 8;
bus->base.speed_hz = bus->base.max_speed_hz;
bus->base.delay_usecs = 1;
bus->base.cs = 1;
bus->spi.spiId = config->spi_peripheral_id;
bus->spi.pSpiHw = config->spi_regs;
bus->chip_select_decode = config->chip_select_decode;
PIO_Configure(config->pins, config->pin_count);
PMC_EnablePeripheral(config->spi_peripheral_id);
atsam_configure_spi(bus);
atsam_spi_init_xdma(bus);
return spi_bus_register(&bus->base, bus_path);
}

View File

@@ -0,0 +1,110 @@
/*
* Copyright (c) 2016 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <info@embedded-brains.de>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
#include <bsp/atsam-spi.h>
#include <bsp/spi.h>
/** SPI0 MISO pin */
#define PIN_SPI0_MISO {PIO_PD20B_SPI0_MISO, PIOD, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT}
/** SPI0 MOSI pin */
#define PIN_SPI0_MOSI {PIO_PD21B_SPI0_MOSI, PIOD, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT}
/** SPI0 CS0 pin */
#define PIN_SPI0_NPCS0 {PIO_PB2D_SPI0_NPCS0, PIOB, ID_PIOB, PIO_PERIPH_D, PIO_DEFAULT}
/** SPI0 CS1_1 pin */
#define PIN_SPI0_NPCS1_1 {PIO_PA31A_SPI0_NPCS1, PIOA, ID_PIOA, PIO_PERIPH_A, PIO_DEFAULT}
/** SPI0 CS1_2 pin */
#define PIN_SPI0_NPCS1_2 {PIO_PD25B_SPI0_NPCS1, PIOD, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT}
/** SPI0 CS2 pin */
#define PIN_SPI0_NPCS2 {PIO_PD12C_SPI0_NPCS2, PIOD, ID_PIOD, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI0 CS3 pin */
#define PIN_SPI0_NPCS3 {PIO_PD27B_SPI0_NPCS3, PIOD, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT}
/** SPI0 Clock pin */
#define PIN_SPI0_CLOCK {PIO_PD22B_SPI0_SPCK, PIOD, ID_PIOD, PIO_PERIPH_B, PIO_DEFAULT}
/** SPI1 MISO pin */
#define PIN_SPI1_MISO {PIO_PC26C_SPI1_MISO, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 MOSI pin */
#define PIN_SPI1_MOSI {PIO_PC27C_SPI1_MOSI, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS0 pin */
#define PIN_SPI1_NPCS0 {PIO_PC25C_SPI1_NPCS0, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS1_1 pin */
#define PIN_SPI1_NPCS1_1 {PIO_PC28C_SPI1_NPCS1, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS1_2 pin */
#define PIN_SPI1_NPCS1_2 {PIO_PD0C_SPI1_NPCS1, PIOD, ID_PIOD, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS2_1 pin */
#define PIN_SPI1_NPCS2_1 {PIO_PC29C_SPI1_NPCS2, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS2_2 pin */
#define PIN_SPI1_NPCS2_2 {PIO_PD1C_SPI1_NPCS2, PIOD, ID_PIOD, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS3_1 pin */
#define PIN_SPI1_NPCS3_1 {PIO_PC30C_SPI1_NPCS3, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 CS3_2 pin */
#define PIN_SPI1_NPCS3_2 {PIO_PD2C_SPI1_NPCS3, PIOD, ID_PIOD, PIO_PERIPH_C, PIO_DEFAULT}
/** SPI1 Clock pin */
#define PIN_SPI1_CLOCK {PIO_PC24C_SPI1_SPCK, PIOC, ID_PIOC, PIO_PERIPH_C, PIO_DEFAULT}
int atsam_register_spi_0(void)
{
static const Pin pins[] = {
PIN_SPI0_MISO,
PIN_SPI0_MOSI,
PIN_SPI0_NPCS0,
PIN_SPI0_NPCS1_1,
PIN_SPI0_NPCS1_2,
PIN_SPI0_NPCS2,
PIN_SPI0_NPCS3,
PIN_SPI0_CLOCK
};
static const atsam_spi_config config = {
.spi_peripheral_id = ID_SPI0,
.spi_regs = SPI0,
.pins = pins,
.pin_count = RTEMS_ARRAY_SIZE(pins),
.chip_select_decode = false
};
return spi_bus_register_atsam(
ATSAM_SPI_0_BUS_PATH,
&config
);
}
int atsam_register_spi_1(void)
{
static const Pin pins[] = {
PIN_SPI1_MISO,
PIN_SPI1_MOSI,
PIN_SPI1_NPCS0,
PIN_SPI1_NPCS1_1,
PIN_SPI1_NPCS1_2,
PIN_SPI1_NPCS2_1,
PIN_SPI1_NPCS2_2,
PIN_SPI1_NPCS3_1,
PIN_SPI1_NPCS3_2,
PIN_SPI1_CLOCK
};
static const atsam_spi_config config = {
.spi_peripheral_id = ID_SPI1,
.spi_regs = SPI1,
.pins = pins,
.pin_count = RTEMS_ARRAY_SIZE(pins),
.chip_select_decode = false
};
return spi_bus_register_atsam(
ATSAM_SPI_1_BUS_PATH,
&config
);
}

View File

@@ -0,0 +1,85 @@
/*
* Copyright (c) 2016 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
#include <bsp/sc16is752.h>
#include <rtems/irq-extension.h>
static void atsam_sc16i752_interrupt(void *arg)
{
atsam_sc16is752_spi_context *ctx = arg;
sc16is752_interrupt_handler(&ctx->base.base);
/* Interrupt Status Register shall be read to clear the interrupt flag */
ctx->irq_pin.pio->PIO_ISR;
}
static bool atsam_sc16is752_install_interrupt(sc16is752_context *base)
{
atsam_sc16is752_spi_context *ctx = (atsam_sc16is752_spi_context *)base;
rtems_status_code sc;
PIO_Configure(&ctx->irq_pin, 1);
PIO_EnableIt(&ctx->irq_pin);
sc = rtems_interrupt_server_handler_install(
RTEMS_ID_NONE,
ctx->irq_pin.id,
"Test",
RTEMS_INTERRUPT_SHARED,
atsam_sc16i752_interrupt,
ctx
);
return sc == RTEMS_SUCCESSFUL;
}
static void atsam_sc16is752_remove_interrupt(sc16is752_context *base)
{
atsam_sc16is752_spi_context *ctx = (atsam_sc16is752_spi_context *)base;
rtems_status_code sc;
sc = rtems_interrupt_server_handler_remove(
RTEMS_ID_NONE,
ctx->irq_pin.id,
atsam_sc16i752_interrupt,
ctx
);
assert(sc == RTEMS_SUCCESSFUL);
}
int atsam_sc16is752_spi_create(
atsam_sc16is752_spi_context *ctx,
const char *device_path,
sc16is752_mode mode,
uint32_t input_frequency,
const char *spi_path,
uint8_t spi_chip_select,
uint32_t spi_speed_hz,
const Pin *irq_pin
)
{
ctx->base.base.mode = mode;
ctx->base.base.input_frequency = input_frequency;
ctx->base.base.install_irq = atsam_sc16is752_install_interrupt;
ctx->base.base.remove_irq = atsam_sc16is752_remove_interrupt;
ctx->base.spi_path = spi_path;
ctx->base.cs = spi_chip_select;
ctx->base.speed_hz = spi_speed_hz;
ctx->irq_pin = *irq_pin;
return sc16is752_spi_create(&ctx->base, device_path);
}

View File

@@ -0,0 +1,449 @@
/*
* Copyright (c) 2017 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <info@embedded-brains.de>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
#include <bsp.h>
#include <bsp/fdt.h>
#include <libfdt.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <arm/freescale/imx/imx_ecspireg.h>
#include <dev/spi/spi.h>
#include <rtems/irq-extension.h>
#include <sys/param.h>
#include <sys/endian.h>
#define IMX_ECSPI_FIFO_SIZE 64
typedef struct imx_ecspi_bus imx_ecspi_bus;
struct imx_ecspi_bus {
spi_bus base;
volatile imx_ecspi *regs;
uint32_t conreg;
uint32_t speed_hz;
uint32_t mode;
uint8_t bits_per_word;
uint8_t cs;
uint32_t msg_todo;
const spi_ioc_transfer *msg;
uint32_t todo;
uint32_t in_transfer;
uint8_t *rx_buf;
const uint8_t *tx_buf;
void (*push)(imx_ecspi_bus *, volatile imx_ecspi *);
void (*pop)(imx_ecspi_bus *, volatile imx_ecspi *);
rtems_id task_id;
rtems_vector_number irq;
};
static bool imx_ecspi_is_rx_fifo_not_empty(volatile imx_ecspi *regs)
{
return (regs->statreg & IMX_ECSPI_RR) != 0;
}
static void imx_ecspi_reset(volatile imx_ecspi *regs)
{
while (imx_ecspi_is_rx_fifo_not_empty(regs)) {
regs->rxdata;
}
}
static void imx_ecspi_done(imx_ecspi_bus *bus)
{
rtems_event_transient_send(bus->task_id);
}
#define IMC_ECSPI_PUSH(type) \
static void imx_ecspi_push_##type(imx_ecspi_bus *bus, volatile imx_ecspi *regs) \
{ \
type val = 0; \
if (bus->tx_buf != NULL) { \
val = *(type *)bus->tx_buf; \
bus->tx_buf += sizeof(type); \
} \
bus->todo -= sizeof(type); \
regs->txdata = val; \
}
#define IMX_ECSPI_POP(type) \
static void imx_ecspi_pop_##type(imx_ecspi_bus *bus, volatile imx_ecspi *regs) \
{ \
uint32_t val = regs->rxdata; \
if (bus->rx_buf != NULL) { \
*(type *)bus->rx_buf = val; \
bus->rx_buf += sizeof(type); \
} \
}
IMC_ECSPI_PUSH(uint8_t)
IMX_ECSPI_POP(uint8_t)
IMC_ECSPI_PUSH(uint16_t)
IMX_ECSPI_POP(uint16_t)
IMC_ECSPI_PUSH(uint32_t)
IMX_ECSPI_POP(uint32_t)
static void imx_ecspi_push_uint32_t_swap(
imx_ecspi_bus *bus,
volatile imx_ecspi *regs
)
{
uint32_t val = 0;
if (bus->tx_buf != NULL) {
val = bswap32(*(uint32_t *)bus->tx_buf);
bus->tx_buf += sizeof(uint32_t);
}
bus->todo -= sizeof(uint32_t);
regs->txdata = val;
}
static void imx_ecspi_pop_uint32_t_swap(
imx_ecspi_bus *bus,
volatile imx_ecspi *regs
)
{
uint32_t val = regs->rxdata;
if (bus->rx_buf != NULL) {
*(uint32_t *)bus->rx_buf = bswap32(val);
bus->rx_buf += sizeof(uint32_t);
}
}
static void imx_ecspi_push(imx_ecspi_bus *bus, volatile imx_ecspi *regs)
{
while (bus->todo > 0 && bus->in_transfer < IMX_ECSPI_FIFO_SIZE) {
(*bus->push)(bus, regs);
++bus->in_transfer;
}
}
static uint32_t imx_ecspi_conreg_divider(imx_ecspi_bus *bus, uint32_t speed_hz)
{
uint32_t post;
uint32_t pre;
uint32_t clk_in;
clk_in = bus->base.max_speed_hz;
if (clk_in > speed_hz) {
post = fls((int) clk_in) - fls((int) speed_hz);
if (clk_in > (speed_hz << post)) {
++post;
}
/* We have 2^4 == 16, use the pre-divider for this factor */
post = MAX(4, post) - 4;
if (post <= 0xf) {
pre = howmany(clk_in, speed_hz << post) - 1;
} else {
post = 0xf;
pre = 0xf;
}
} else {
post = 0;
pre = 0;
}
return IMX_ECSPI_CONREG_POST_DIVIDER(post)
| IMX_ECSPI_CONREG_PRE_DIVIDER(pre);
}
static void imx_ecspi_config(
imx_ecspi_bus *bus,
volatile imx_ecspi *regs,
uint32_t speed_hz,
uint8_t bits_per_word,
uint32_t mode,
uint8_t cs
)
{
uint32_t conreg;
uint32_t testreg;
uint32_t configreg;
uint32_t cs_bit;
conreg = IMX_ECSPI_CONREG_CHANNEL_MODE(0xf)
| IMX_ECSPI_CONREG_SMC | IMX_ECSPI_CONREG_EN;
testreg = regs->testreg;
configreg = regs->configreg;
cs_bit = 1U << cs;
conreg |= imx_ecspi_conreg_divider(bus, speed_hz);
conreg |= IMX_ECSPI_CONREG_CHANNEL_SELECT(cs);
configreg |= IMX_ECSPI_CONFIGREG_SS_CTL(cs_bit);
if ((mode & SPI_CPHA) != 0) {
configreg |= IMX_ECSPI_CONFIGREG_SCLK_PHA(cs_bit);
} else {
configreg &= ~IMX_ECSPI_CONFIGREG_SCLK_PHA(cs_bit);
}
if ((mode & SPI_CPOL) != 0) {
configreg |= IMX_ECSPI_CONFIGREG_SCLK_POL(cs_bit);
configreg |= IMX_ECSPI_CONFIGREG_SCLK_CTL(cs_bit);
} else {
configreg &= ~IMX_ECSPI_CONFIGREG_SCLK_POL(cs_bit);
configreg &= ~IMX_ECSPI_CONFIGREG_SCLK_CTL(cs_bit);
}
if ((mode & SPI_CS_HIGH) != 0) {
configreg |= IMX_ECSPI_CONFIGREG_SS_POL(cs_bit);
} else {
configreg &= ~IMX_ECSPI_CONFIGREG_SS_POL(cs_bit);
}
if ((mode & SPI_LOOP) != 0) {
testreg |= IMX_ECSPI_TESTREG_LBC;
} else {
testreg &= ~IMX_ECSPI_TESTREG_LBC;
}
regs->conreg = conreg;
regs->testreg = testreg;
regs->configreg = configreg;
bus->conreg = conreg;
bus->speed_hz = speed_hz;
bus->bits_per_word = bits_per_word;
bus->mode = mode;
bus->cs = cs;
/* FIXME: Clock change delay */
}
static void imx_ecspi_set_push_pop(
imx_ecspi_bus *bus,
uint32_t len,
uint8_t bits_per_word
)
{
uint32_t conreg;
conreg = bus->conreg;
if (len % 4 == 0 && len <= IMX_ECSPI_FIFO_SIZE) {
conreg |= IMX_ECSPI_CONREG_BURST_LENGTH((len * 8) - 1);
bus->push = imx_ecspi_push_uint32_t_swap;
bus->pop = imx_ecspi_pop_uint32_t_swap;
} else {
conreg |= IMX_ECSPI_CONREG_BURST_LENGTH(bits_per_word - 1);
if (bits_per_word <= 8) {
bus->push = imx_ecspi_push_uint8_t;
bus->pop = imx_ecspi_pop_uint8_t;
} else if (bits_per_word <= 16) {
bus->push = imx_ecspi_push_uint16_t;
bus->pop = imx_ecspi_pop_uint16_t;
} else {
bus->push = imx_ecspi_push_uint32_t;
bus->pop = imx_ecspi_pop_uint32_t;
}
}
bus->regs->conreg = conreg;
}
static void imx_ecspi_next_msg(imx_ecspi_bus *bus, volatile imx_ecspi *regs)
{
if (bus->msg_todo > 0) {
const spi_ioc_transfer *msg;
msg = bus->msg;
if (
msg->speed_hz != bus->speed_hz
|| msg->bits_per_word != bus->bits_per_word
|| msg->mode != bus->mode
|| msg->cs != bus->cs
) {
imx_ecspi_config(
bus,
regs,
msg->speed_hz,
msg->bits_per_word,
msg->mode,
msg->cs
);
}
bus->todo = msg->len;
bus->rx_buf = msg->rx_buf;
bus->tx_buf = msg->tx_buf;
imx_ecspi_set_push_pop(bus, msg->len, msg->bits_per_word);
imx_ecspi_push(bus, regs);
regs->intreg = IMX_ECSPI_TE;
} else {
regs->intreg = 0;
imx_ecspi_done(bus);
}
}
static void imx_ecspi_interrupt(void *arg)
{
imx_ecspi_bus *bus;
volatile imx_ecspi *regs;
bus = arg;
regs = bus->regs;
while (imx_ecspi_is_rx_fifo_not_empty(regs)) {
(*bus->pop)(bus, regs);
--bus->in_transfer;
}
if (bus->todo > 0) {
imx_ecspi_push(bus, regs);
} else if (bus->in_transfer > 0) {
regs->intreg = IMX_ECSPI_RR;
} else {
--bus->msg_todo;
++bus->msg;
imx_ecspi_next_msg(bus, regs);
}
}
static int imx_ecspi_transfer(
spi_bus *base,
const spi_ioc_transfer *msgs,
uint32_t n
)
{
imx_ecspi_bus *bus;
bus = (imx_ecspi_bus *) base;
bus->msg_todo = n;
bus->msg = &msgs[0];
bus->task_id = rtems_task_self();
imx_ecspi_next_msg(bus, bus->regs);
rtems_event_transient_receive(RTEMS_WAIT, RTEMS_NO_TIMEOUT);
return 0;
}
static void imx_ecspi_destroy(spi_bus *base)
{
imx_ecspi_bus *bus;
bus = (imx_ecspi_bus *) base;
rtems_interrupt_handler_remove(bus->irq, imx_ecspi_interrupt, bus);
spi_bus_destroy_and_free(&bus->base);
}
static int imx_ecspi_init(imx_ecspi_bus *bus, const void *fdt, int node)
{
rtems_status_code sc;
int len;
const uint32_t *val;
imx_ecspi_config(
bus,
bus->regs,
bus->base.max_speed_hz,
8,
0,
0
);
imx_ecspi_reset(bus->regs);
sc = rtems_interrupt_handler_install(
bus->irq,
"ECSPI",
RTEMS_INTERRUPT_UNIQUE,
imx_ecspi_interrupt,
bus
);
if (sc != RTEMS_SUCCESSFUL) {
return EAGAIN;
}
val = fdt_getprop(fdt, node, "pinctrl-0", &len);
if (len == 4) {
imx_iomux_configure_pins(fdt, fdt32_to_cpu(val[0]));
}
return 0;
}
static int imx_ecspi_setup(spi_bus *base)
{
imx_ecspi_bus *bus;
bus = (imx_ecspi_bus *) base;
if (
bus->base.speed_hz > imx_ccm_ipg_hz()
|| bus->base.bits_per_word > 32
) {
return -EINVAL;
}
imx_ecspi_config(
bus,
bus->regs,
bus->base.speed_hz,
bus->base.bits_per_word,
bus->base.mode,
bus->base.cs
);
return 0;
}
int spi_bus_register_imx(const char *bus_path, const char *alias_or_path)
{
const void *fdt;
const char *path;
int node;
imx_ecspi_bus *bus;
int eno;
fdt = bsp_fdt_get();
path = fdt_get_alias(fdt, alias_or_path);
if (path == NULL) {
path = alias_or_path;
}
node = fdt_path_offset(fdt, path);
if (node < 0) {
rtems_set_errno_and_return_minus_one(ENXIO);
}
bus = (imx_ecspi_bus *) spi_bus_alloc_and_init(sizeof(*bus));
if (bus == NULL){
return -1;
}
bus->base.max_speed_hz = imx_ccm_ipg_hz();
bus->base.delay_usecs = 1;
bus->regs = imx_get_reg_of_node(fdt, node);
bus->irq = imx_get_irq_of_node(fdt, node, 0);
eno = imx_ecspi_init(bus, fdt, node);
if (eno != 0) {
(*bus->base.destroy)(&bus->base);
rtems_set_errno_and_return_minus_one(eno);
}
bus->base.transfer = imx_ecspi_transfer;
bus->base.destroy = imx_ecspi_destroy;
bus->base.setup = imx_ecspi_setup;
return spi_bus_register(&bus->base, bus_path);
}

View File

@@ -0,0 +1,657 @@
/**
* @file spi.c
*
* @ingroup raspberrypi_spi
*
* @brief Support for the SPI bus on the Raspberry Pi GPIO P1 header (model A/B)
* and GPIO J8 header on model B+.
*/
/*
* Copyright (c) 2014-2015 Andre Marques <andre.lousa.marques at gmail.com>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
/*
* STATUS:
* - Bi-directional mode untested
* - Write-only devices not supported
*/
#include <bsp.h>
#include <bsp/raspberrypi.h>
#include <bsp/gpio.h>
#include <bsp/rpi-gpio.h>
#include <bsp/irq.h>
#include <bsp/spi.h>
#include <assert.h>
#define SPI_POLLING(condition) \
while ( condition ) { \
; \
}
/**
* @brief Object containing the SPI bus configuration settings.
*
* Encapsulates the current SPI bus configuration.
*/
typedef struct
{
int initialized;
uint8_t bytes_per_char;
/* Shift to be applied on data transfers with
* least significative bit first (LSB) devices. */
uint8_t bit_shift;
uint32_t dummy_char;
uint32_t current_slave_addr;
rtems_id task_id;
int irq_write;
} rpi_spi_softc_t;
/**
* @brief Object containing the SPI bus description.
*
* Encapsulates the current SPI bus description.
*/
typedef struct
{
rtems_libi2c_bus_t bus_desc;
rpi_spi_softc_t softc;
} rpi_spi_desc_t;
/* If set to FALSE uses 3-wire SPI, with 2 separate data lines (MOSI and MISO),
* if set to TRUE uses 2-wire SPI, where the MOSI data line doubles as the
* slave out (SO) and slave in (SI) data lines. */
static bool bidirectional = false;
/* Calculates a clock divider to be used with the GPU core clock rate
* to set a SPI clock rate the closest (<=) to a desired frequency. */
static rtems_status_code rpi_spi_calculate_clock_divider(
uint32_t clock_hz,
uint16_t *clock_divider
) {
uint16_t divider;
uint32_t clock_rate;
assert( clock_hz > 0 );
/* Calculates an initial clock divider. */
divider = GPU_CORE_CLOCK_RATE / clock_hz;
/* Because the divider must be a power of two (as per the BCM2835 datasheet),
* calculate the next greater power of two. */
--divider;
divider |= (divider >> 1);
divider |= (divider >> 2);
divider |= (divider >> 4);
divider |= (divider >> 8);
++divider;
clock_rate = GPU_CORE_CLOCK_RATE / divider;
/* If the resulting clock rate is greater than the desired frequency,
* try the next greater power of two divider. */
while ( clock_rate > clock_hz ) {
divider = (divider << 1);
clock_rate = GPU_CORE_CLOCK_RATE / divider;
}
*clock_divider = divider;
return RTEMS_SUCCESSFUL;
}
/**
* @brief Set the SPI bus transfer mode.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] tfr_mode Pointer to a libi2c API transfer mode data structure.
*
* @retval RTEMS_SUCCESSFUL Successfully setup the bus transfer mode as desired.
* @retval RTEMS_INVALID_NUMBER This can have two meanings:
* 1. The specified number of bytes per char is not
* 8, 16, 24 or 32;
* 2. @see rpi_spi_calculate_clock_divider()
*/
static rtems_status_code rpi_spi_set_tfr_mode(
rtems_libi2c_bus_t *bushdl,
const rtems_libi2c_tfr_mode_t *tfr_mode
) {
rpi_spi_softc_t *softc_ptr = &(((rpi_spi_desc_t *)(bushdl))->softc);
rtems_status_code sc = RTEMS_SUCCESSFUL;
uint16_t clock_divider;
/* Set the dummy character. */
softc_ptr->dummy_char = tfr_mode->idle_char;
/* Calculate the most appropriate clock divider. */
sc = rpi_spi_calculate_clock_divider(tfr_mode->baudrate, &clock_divider);
if ( sc != RTEMS_SUCCESSFUL ) {
return sc;
}
/* Set the bus clock divider. */
BCM2835_REG(BCM2835_SPI_CLK) = clock_divider;
/* Calculate how many bytes each character has.
* Only multiples of 8 bits are accepted for the transaction. */
switch ( tfr_mode->bits_per_char ) {
case 8:
case 16:
case 24:
case 32:
softc_ptr->bytes_per_char = tfr_mode->bits_per_char / 8;
break;
default:
return RTEMS_INVALID_NUMBER;
}
/* Check the data mode (most or least significant bit first) and calculate
* the correcting bit shift value to apply on the data before sending. */
if ( tfr_mode->lsb_first ) {
softc_ptr->bit_shift = 32 - tfr_mode->bits_per_char;
}
/* If MSB first. */
else {
softc_ptr->bit_shift = 0;
}
/* Set SPI clock polarity.
* If clock_inv is TRUE, the clock is active high.*/
if ( tfr_mode->clock_inv ) {
/* Rest state of clock is low. */
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << 3);
}
else {
/* Rest state of clock is high. */
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 3);
}
/* Set SPI clock phase.
* If clock_phs is true, clock starts toggling
* at the start of the data transfer. */
if ( tfr_mode->clock_phs ) {
/* First SCLK transition at beginning of data bit. */
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 2);
}
else {
/* First SCLK transition at middle of data bit. */
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << 2);
}
return sc;
}
/**
* @brief Reads/writes to/from the SPI bus.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] rd_buf Read buffer. If not NULL the function will read from
* the bus and store the read on this buffer.
* @param[in] wr_buf Write buffer. If not NULL the function will write the
* contents of this buffer to the bus.
* @param[in] buffer_size Size of the non-NULL buffer.
*
* @retval -1 Could not send/receive data to/from the bus.
* @retval >=0 The number of bytes read/written.
*/
static int rpi_spi_read_write(
rtems_libi2c_bus_t * bushdl,
unsigned char *rd_buf,
const unsigned char *wr_buf,
int buffer_size
) {
rpi_spi_softc_t *softc_ptr = &(((rpi_spi_desc_t *)(bushdl))->softc);
uint8_t bytes_per_char = softc_ptr->bytes_per_char;
uint8_t bit_shift = softc_ptr->bit_shift;
uint32_t dummy_char = softc_ptr->dummy_char;
uint32_t bytes_sent = buffer_size;
uint32_t fifo_data;
/* Clear SPI bus FIFOs. */
BCM2835_REG(BCM2835_SPI_CS) |= (3 << 4);
/* Set SPI transfer active. */
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 7);
/* If using the SPI bus in interrupt-driven mode. */
#if SPI_IO_MODE == 1
softc_ptr->irq_write = 1;
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 9);
if ( rtems_event_transient_receive(RTEMS_WAIT, 0) != RTEMS_SUCCESSFUL ) {
rtems_event_transient_clear();
return -1;
}
/* If using the bus in polling mode. */
#else
/* Poll TXD bit until there is space to write at least one byte
* on the TX FIFO. */
SPI_POLLING((BCM2835_REG(BCM2835_SPI_CS) & (1 << 18)) == 0);
#endif
/* While there is data to be transferred. */
while ( buffer_size >= bytes_per_char ) {
/* If reading from the bus, send a dummy character to the device. */
if ( rd_buf != NULL ) {
BCM2835_REG(BCM2835_SPI_FIFO) = dummy_char;
}
/* If writing to the bus, move the buffer data to the TX FIFO. */
else {
switch ( bytes_per_char ) {
case 1:
BCM2835_REG(BCM2835_SPI_FIFO) = (((*wr_buf) & 0xFF) << bit_shift);
break;
case 2:
BCM2835_REG(BCM2835_SPI_FIFO) = (((*wr_buf) & 0xFFFF) << bit_shift);
break;
case 3:
BCM2835_REG(BCM2835_SPI_FIFO) = (((*wr_buf) & 0xFFFFFF) << bit_shift);
break;
case 4:
BCM2835_REG(BCM2835_SPI_FIFO) = ((*wr_buf) << bit_shift);
break;
default:
return -1;
}
wr_buf += bytes_per_char;
buffer_size -= bytes_per_char;
}
/* If using bi-directional SPI. */
if ( bidirectional ) {
/* Change bus direction to read from the slave device. */
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 12);
}
/* If using the SPI bus in interrupt-driven mode. */
#if SPI_IO_MODE == 1
softc_ptr->irq_write = 0;
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 9);
if ( rtems_event_transient_receive(RTEMS_WAIT, 0) != RTEMS_SUCCESSFUL ) {
rtems_event_transient_clear();
return -1;
}
/* If using the bus in polling mode. */
#else
/* Poll the Done bit until the data transfer is complete. */
SPI_POLLING((BCM2835_REG(BCM2835_SPI_CS) & (1 << 16)) == 0);
/* Poll the RXD bit until there is at least one byte
* on the RX FIFO to be read. */
SPI_POLLING((BCM2835_REG(BCM2835_SPI_CS) & (1 << 17)) == 0);
#endif
/* If writing to the bus, read the dummy char sent by the slave device. */
if ( rd_buf == NULL ) {
fifo_data = BCM2835_REG(BCM2835_SPI_FIFO) & 0xFF;
}
/* If reading from the bus, retrieve data from the RX FIFO and
* store it on the buffer. */
if ( rd_buf != NULL ) {
switch ( bytes_per_char ) {
case 1:
fifo_data = BCM2835_REG(BCM2835_SPI_FIFO) & 0xFF;
(*rd_buf) = (fifo_data >> bit_shift);
break;
case 2:
fifo_data = BCM2835_REG(BCM2835_SPI_FIFO) & 0xFFFF;
(*rd_buf) = (fifo_data >> bit_shift);
break;
case 3:
fifo_data = BCM2835_REG(BCM2835_SPI_FIFO) & 0xFFFFFF;
(*rd_buf) = (fifo_data >> bit_shift);
break;
case 4:
fifo_data = BCM2835_REG(BCM2835_SPI_FIFO);
(*rd_buf) = (fifo_data >> bit_shift);
break;
default:
return -1;
}
rd_buf += bytes_per_char;
buffer_size -= bytes_per_char;
}
/* If using bi-directional SPI. */
if ( bidirectional ) {
/* Restore bus direction to write to the slave. */
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << 12);
}
}
/* If using the SPI bus in interrupt-driven mode. */
#if SPI_IO_MODE == 1
softc_ptr->irq_write = 1;
BCM2835_REG(BCM2835_SPI_CS) |= (1 << 9);
if ( rtems_event_transient_receive(RTEMS_WAIT, 0) != RTEMS_SUCCESSFUL ) {
rtems_event_transient_clear();
return -1;
}
/* If using the bus in polling mode. */
#else
/* Poll the Done bit until the data transfer is complete. */
SPI_POLLING((BCM2835_REG(BCM2835_SPI_CS) & (1 << 16)) == 0);
#endif
bytes_sent -= buffer_size;
return bytes_sent;
}
/**
* @brief Handler function that is called on any SPI interrupt.
*
* There are 2 situations that can generate an interrupt:
*
* 1. Transfer (read/write) complete;
* 2. RX FIFO full.
*
* Because the 2. situation is not useful to many applications,
* the only interrupt that is generated and handled is the
* transfer complete interrupt.
*
* The objective of the handler is then, depending on the transfer
* context (reading or writing on the bus), to check if there is enough
* space available on the TX FIFO to send data over the bus (if writing)
* or if the slave device has sent enough data to be fetched from the
* RX FIFO (if reading).
*
* When any of these two conditions occur, disables further interrupts
* to be generated and sends a waking event to the transfer task
* which will allow the following transfer to proceed.
*
* @param[in] arg Void pointer to the bus data structure.
*/
#if SPI_IO_MODE == 1
static void spi_handler(void* arg)
{
rpi_spi_softc_t *softc_ptr = (rpi_spi_softc_t *) arg;
/* If waiting to write to the bus, expect the TXD bit to be set, or
* if waiting to read from the bus, expect the RXD bit to be set
* before sending a waking event to the transfer task. */
if (
( softc_ptr->irq_write == 1 &&
(BCM2835_REG(BCM2835_SPI_CS) & (1 << 18)) != 0
) ||
( softc_ptr->irq_write == 0 &&
(BCM2835_REG(BCM2835_SPI_CS) & (1 << 17)) != 0
)
) {
/* Disable the SPI interrupt generation when a transfer is complete. */
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << 9);
/* Allow the transfer process to continue. */
rtems_event_transient_send(softc_ptr->task_id);
}
}
#endif
/**
* @brief Low level function to initialize the SPI bus.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
*
* @retval RTEMS_SUCCESSFUL SPI bus successfully initialized.
* @retval Any other status code @see rtems_interrupt_handler_install().
*/
static rtems_status_code rpi_libi2c_spi_init(rtems_libi2c_bus_t * bushdl)
{
rpi_spi_softc_t *softc_ptr = &(((rpi_spi_desc_t *)(bushdl))->softc);
rtems_status_code sc = RTEMS_SUCCESSFUL;
if ( softc_ptr->initialized == 1 ) {
return sc;
}
softc_ptr->initialized = 1;
/* If using the SPI bus in interrupt-driven mode. */
#if SPI_IO_MODE == 1
softc_ptr->task_id = rtems_task_self();
sc = rtems_interrupt_handler_install(
BCM2835_IRQ_ID_SPI,
NULL,
RTEMS_INTERRUPT_UNIQUE,
(rtems_interrupt_handler) spi_handler,
softc_ptr
);
#endif
return sc;
}
/**
* @brief Low level function that would send a start condition over an I2C bus.
* As it is not required to access a SPI bus it is here just to satisfy
* the libi2c API, which requires this function.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
*
* @retval RTEMS_SUCCESSFUL
*/
static rtems_status_code rpi_libi2c_spi_send_start(rtems_libi2c_bus_t * bushdl)
{
return RTEMS_SUCCESSFUL;
}
/**
* @brief Low level function that terminates a SPI transfer.
* It stops the SPI transfer and unselects the current SPI slave device.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
*
* @retval RTEMS_SUCCESSFUL The slave device has been successfully unselected.
* @retval RTEMS_INVALID_ADDRESS The stored slave address is neither 0 or 1.
*/
static rtems_status_code rpi_libi2c_spi_stop(rtems_libi2c_bus_t * bushdl)
{
rpi_spi_softc_t *softc_ptr = &(((rpi_spi_desc_t *)(bushdl))->softc);
uint32_t addr = softc_ptr->current_slave_addr;
uint32_t chip_select_bit = 21 + addr;
/* Set SPI transfer as not active. */
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << 7);
/* Unselect the active SPI slave. */
switch ( addr ) {
case 0:
case 1:
BCM2835_REG(BCM2835_SPI_CS) |= (1 << chip_select_bit);
break;
default:
return RTEMS_INVALID_ADDRESS;
}
return RTEMS_SUCCESSFUL;
}
/**
* @brief Low level function which addresses a SPI slave device.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] addr SPI slave select line address (0 for CE0 or 1 for CE1).
* @param[in] rw This values is unnecessary to address a SPI device and its
* presence here is only to fulfill a libi2c requirement.
*
* @retval RTEMS_SUCCESSFUL The slave device has been successfully addressed.
* @retval RTEMS_INVALID_ADDRESS The received address is neither 0 or 1.
*/
static rtems_status_code rpi_libi2c_spi_send_addr(
rtems_libi2c_bus_t * bushdl,
uint32_t addr,
int rw
) {
rpi_spi_softc_t *softc_ptr = &(((rpi_spi_desc_t *)(bushdl))->softc);
/* Calculates the bit corresponding to the received address
* on the SPI control register. */
uint32_t chip_select_bit = 21 + addr;
/* Save which slave will be currently addressed,
* so it can be unselected later. */
softc_ptr->current_slave_addr = addr;
/* Select one of the two available SPI slave address lines. */
switch ( addr ) {
case 0:
case 1:
BCM2835_REG(BCM2835_SPI_CS) &= ~(1 << chip_select_bit);
break;
default:
return RTEMS_INVALID_ADDRESS;
}
return RTEMS_SUCCESSFUL;
}
/**
* @brief Low level function that reads a number of bytes from the SPI bus
* on to a buffer.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] bytes Buffer where the data read from the bus will be stored.
* @param[in] nbytes Number of bytes to be read from the bus to the bytes buffer.
*
* @retval @see rpi_spi_read_write().
*/
static int rpi_libi2c_spi_read_bytes(
rtems_libi2c_bus_t * bushdl,
unsigned char *bytes,
int nbytes
) {
return rpi_spi_read_write(bushdl, bytes, NULL, nbytes);
}
/**
* @brief Low level function that writes a number of bytes from a buffer
* to the SPI bus.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] bytes Buffer with data to send over the SPI bus.
* @param[in] nbytes Number of bytes to be written from the bytes buffer
to the bus.
*
* @retval @see rpi_spi_read_write().
*/
static int rpi_libi2c_spi_write_bytes(
rtems_libi2c_bus_t * bushdl,
unsigned char *bytes,
int nbytes
) {
return rpi_spi_read_write(bushdl, NULL, bytes, nbytes);
}
/**
* @brief Low level function that is used to perform ioctl
* operations on the bus. Currently only setups
* the bus transfer mode.
* This function is used by the libi2c API.
*
* @param[in] bushdl Pointer to the libi2c API bus driver data structure.
* @param[in] cmd IOCTL request command.
* @param[in] arg Arguments needed to fulfill the requested IOCTL command.
*
* @retval -1 Unknown request command.
* @retval >=0 @see rpi_spi_set_tfr_mode().
*/
static int rpi_libi2c_spi_ioctl(rtems_libi2c_bus_t * bushdl, int cmd, void *arg)
{
switch ( cmd ) {
case RTEMS_LIBI2C_IOCTL_SET_TFRMODE:
return rpi_spi_set_tfr_mode(
bushdl,
(const rtems_libi2c_tfr_mode_t *)arg
);
default:
return -1;
}
return 0;
}
static rtems_libi2c_bus_ops_t rpi_spi_ops = {
.init = rpi_libi2c_spi_init,
.send_start = rpi_libi2c_spi_send_start,
.send_stop = rpi_libi2c_spi_stop,
.send_addr = rpi_libi2c_spi_send_addr,
.read_bytes = rpi_libi2c_spi_read_bytes,
.write_bytes = rpi_libi2c_spi_write_bytes,
.ioctl = rpi_libi2c_spi_ioctl
};
static rpi_spi_desc_t rpi_spi_bus_desc = {
{
.ops = &rpi_spi_ops,
.size = sizeof(rpi_spi_bus_desc)
},
{
.initialized = 0
}
};
int rpi_spi_init(bool bidirectional_mode)
{
/* Initialize the libi2c API. */
rtems_libi2c_initialize();
/* Enable the SPI interface on the Raspberry Pi. */
rtems_gpio_initialize();
assert ( rpi_gpio_select_spi() == RTEMS_SUCCESSFUL );
bidirectional = bidirectional_mode;
/* Clear SPI control register and clear SPI FIFOs. */
BCM2835_REG(BCM2835_SPI_CS) = (3 << 4);
/* Register the SPI bus. */
return rtems_libi2c_register_bus("/dev/spi", &(rpi_spi_bus_desc.bus_desc));
}

View File

@@ -0,0 +1,852 @@
/*===============================================================*\
| Project: RTEMS support for PGH360 |
+-----------------------------------------------------------------+
| Copyright (c) 2008 |
| Embedded Brains GmbH |
| Obere Lagerstr. 30 |
| D-82178 Puchheim |
| Germany |
| rtems@embedded-brains.de |
+-----------------------------------------------------------------+
| The license and distribution terms for this file may be |
| found in the file LICENSE in this distribution or at |
| |
| http://www.rtems.org/license/LICENSE. |
| |
+-----------------------------------------------------------------+
| this file contains the M360 SPI driver |
\*===============================================================*/
#include <stdlib.h>
#include <bsp.h>
#include <rtems/m68k/m68360.h>
#include <rtems/m68k/m360_spi.h>
#include <rtems/error.h>
#include <rtems/bspIo.h>
#include <errno.h>
#include <rtems/libi2c.h>
#undef DEBUG
static m360_spi_softc_t *m360_spi_softc_ptr;
/*
* this is a dummy receive buffer for sequences,
* where only send data are available
*/
uint8_t m360_spi_dummy_rxbuf[2];
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code m360_spi_baud_to_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| determine proper divider value |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
uint32_t baudrate, /* desired baudrate */
uint32_t *spimode /* result value */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint32_t divider;
uint16_t tmpmode = 0;
/*
* determine clock divider and DIV16 bit
*/
divider = m360_clock_rate/baudrate;
if (divider > 64) {
tmpmode = M360_SPMODE_DIV16;
divider /= 16;
}
if ((divider < 1) ||
(divider > 64)) {
return RTEMS_INVALID_NUMBER;
}
else {
tmpmode |= M360_SPMODE_PM(divider/4-1);
}
*spimode = tmpmode;
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code m360_spi_char_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| determine proper value for character size |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m360_spi_softc_t *softc_ptr, /* handle */
uint32_t bits_per_char, /* bits per character */
bool lsb_first, /* TRUE: send LSB first */
uint16_t *spimode /* result value */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint16_t tmpmode;
/*
* calculate data format
*/
if ((bits_per_char >= 4) &&
(bits_per_char <= 16)) {
tmpmode = M360_SPMODE_CLEN( bits_per_char-1);
}
else {
return RTEMS_INVALID_NUMBER;
}
*spimode = tmpmode;
return 0;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static int m360_spi_wait
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| wait for spi to become idle |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m360_spi_softc_t *softc_ptr /* handle */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint16_t act_status;
rtems_status_code rc;
uint32_t tout;
#if defined(DEBUG)
printk("m360_spi_wait called... ");
#endif
if (softc_ptr->initialized) {
/*
* allow interrupts, when receiver is not empty
*/
m360.spim = (M360_SPIE_TXE | M360_SPIE_TXB |
M360_SPIE_BSY | M360_SPIE_MME);
rc = rtems_semaphore_obtain(softc_ptr->irq_sema_id,
RTEMS_WAIT,
RTEMS_NO_TIMEOUT);
if (rc != RTEMS_SUCCESSFUL) {
return rc;
}
}
else {
tout = 0;
do {
if (tout++ > 1000000) {
#if defined(DEBUG)
printk("... exit with RTEMS_TIMEOUT\r\n");
#endif
return RTEMS_TIMEOUT;
}
/*
* wait for SPI to terminate
*/
} while (!(m360.spie & M360_SPIE_TXB));
}
act_status = m360.spie;
if ((act_status & (M360_SPIE_TXE | M360_SPIE_TXB |
M360_SPIE_BSY | M360_SPIE_MME))!= M360_SPIE_TXB) {
#if defined(DEBUG)
printk("... exit with RTEMS_IO_ERROR,"
"act_status=0x%04x,mask=0x%04x,desired_status=0x%04x\r\n",
act_status,status_mask,desired_status);
#endif
return RTEMS_IO_ERROR;
}
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_isr m360_spi_irq_handler
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| handle interrupts |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_vector_number v /* vector number */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| <none> |
\*=========================================================================*/
{
m360_spi_softc_t *softc_ptr = m360_spi_softc_ptr;
/*
* disable interrupt mask
*/
m360.spim = 0;
if (softc_ptr->initialized) {
rtems_semaphore_release(softc_ptr->irq_sema_id);
}
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static void m360_spi_install_irq_handler
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| (un-)install the interrupt handler |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m360_spi_softc_t *softc_ptr, /* ptr to control structure */
int install /* TRUE: install, FALSE: remove */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| <none> |
\*=========================================================================*/
{
rtems_status_code rc = RTEMS_SUCCESSFUL;
/*
* (un-)install handler for SPI device
*/
if (install) {
/*
* create semaphore for IRQ synchronization
*/
rc = rtems_semaphore_create(rtems_build_name('s','p','i','s'),
0,
RTEMS_FIFO
| RTEMS_SIMPLE_BINARY_SEMAPHORE,
0,
&softc_ptr->irq_sema_id);
if (rc != RTEMS_SUCCESSFUL) {
rtems_panic("SPI: cannot create semaphore");
}
if (rc == RTEMS_SUCCESSFUL) {
rc = rtems_interrupt_catch (m360_spi_irq_handler,
(m360.cicr & 0xE0) | 0x05,
&softc_ptr->old_handler);
if (rc != RTEMS_SUCCESSFUL) {
rtems_panic("SPI: cannot install IRQ handler");
}
}
/*
* enable IRQ in CPIC
*/
if (rc == RTEMS_SUCCESSFUL) {
m360.cimr |= (1 << 5);
}
}
else {
rtems_isr_entry old_handler;
/*
* disable IRQ in CPIC
*/
if (rc == RTEMS_SUCCESSFUL) {
m360.cimr &= ~(1 << 5);
}
rc = rtems_interrupt_catch (softc_ptr->old_handler,
(m360.cicr & 0xE0) | 0x05,
&old_handler);
if (rc != RTEMS_SUCCESSFUL) {
rtems_panic("SPI: cannot uninstall IRQ handler");
}
/*
* delete sync semaphore
*/
if (softc_ptr->irq_sema_id != 0) {
rc = rtems_semaphore_delete(softc_ptr->irq_sema_id);
if (rc != RTEMS_SUCCESSFUL) {
rtems_panic("SPI: cannot delete semaphore");
}
}
}
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m360_spi_init
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| initialize the driver |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
m360_spi_softc_t *softc_ptr = &(((m360_spi_desc_t *)(bh))->softc);
rtems_status_code rc = RTEMS_SUCCESSFUL;
#if defined(DEBUG)
printk("m360_spi_init called... ");
#endif
/*
* init HW registers:
*/
/*
* FIXME: set default mode in SPMODE
*/
/*
* allocate BDs (1x RX, 1x TX)
*/
if (rc == RTEMS_SUCCESSFUL) {
softc_ptr->rx_bd = M360AllocateBufferDescriptors (1);
softc_ptr->tx_bd = M360AllocateBufferDescriptors (1);
if ((softc_ptr->rx_bd == NULL) ||
(softc_ptr->tx_bd == NULL)) {
rc = RTEMS_NO_MEMORY;
}
}
/*
* set parameter RAM
*/
m360.spip.rbase = (char *)softc_ptr->rx_bd - (char *)&m360;
m360.spip.tbase = (char *)softc_ptr->tx_bd - (char *)&m360;
m360.spip.rfcr = M360_RFCR_MOT | M360_RFCR_DMA_SPACE;
m360.spip.tfcr = M360_RFCR_MOT | M360_RFCR_DMA_SPACE;
m360.spip.mrblr = 2;
/*
* issue "InitRxTx" Command to CP
*/
M360ExecuteRISC (M360_CR_OP_INIT_RX_TX | M360_CR_CHAN_SPI);
/*
* init interrupt stuff
*/
if (rc == RTEMS_SUCCESSFUL) {
m360_spi_install_irq_handler(softc_ptr,TRUE);
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* set up ports
* LINE PAR DIR DAT
* -----------------------
* MOSI 1 1 x
* MISO 1 1 x
* CLK 1 1 x
*/
/* set Port B Pin Assignment Register... */
m360.pbpar =
m360.pbpar
| M360_PB_SPI_MISO_MSK
| M360_PB_SPI_MOSI_MSK
| M360_PB_SPI_CLK_MSK;
/* set Port B Data Direction Register... */
m360.pbdir =
m360.pbdir
| M360_PB_SPI_MISO_MSK
| M360_PB_SPI_MOSI_MSK
| M360_PB_SPI_CLK_MSK;
}
/*
* mark, that we have initialized
*/
if (rc == RTEMS_SUCCESSFUL) {
softc_ptr->initialized = TRUE;
}
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static int m360_spi_read_write_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| transmit/receive some bytes from SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *rbuf, /* buffer to store bytes */
const unsigned char *tbuf, /* buffer to send bytes */
int len /* number of bytes to transceive */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes received or (negative) error code |
\*=========================================================================*/
{
m360_spi_softc_t *softc_ptr = &(((m360_spi_desc_t *)(bh))->softc);
rtems_status_code rc = RTEMS_SUCCESSFUL;
int bc = 0;
#if defined(DEBUG)
printk("m360_spi_read_write_bytes called... ");
#endif
/*
* prepare RxBD
*/
if (rc == RTEMS_SUCCESSFUL) {
if (rbuf == NULL) {
/*
* no Tx buffer: receive to dummy buffer
*/
m360.spip.mrblr = sizeof(m360_spi_dummy_rxbuf);
softc_ptr->rx_bd->buffer = m360_spi_dummy_rxbuf;
softc_ptr->rx_bd->length = 0;
softc_ptr->rx_bd->status = (M360_BD_EMPTY | M360_BD_WRAP |
M360_BD_CONTINUOUS);
}
else {
m360.spip.mrblr = len;
softc_ptr->rx_bd->buffer = rbuf;
softc_ptr->rx_bd->length = 0;
softc_ptr->rx_bd->status = (M360_BD_EMPTY | M360_BD_WRAP);
}
}
/*
* prepare TxBD
*/
if (rc == RTEMS_SUCCESSFUL) {
if (tbuf == NULL) {
/*
* FIXME: no Tx buffer: transmit from dummy buffer
*/
softc_ptr->tx_bd->buffer = m360_spi_dummy_rxbuf;
softc_ptr->tx_bd->length = len;
softc_ptr->tx_bd->status = (M360_BD_READY | M360_BD_WRAP |
M360_BD_CONTINUOUS);
}
else {
softc_ptr->tx_bd->buffer = tbuf;
softc_ptr->tx_bd->length = len;
softc_ptr->tx_bd->status = (M360_BD_READY | M360_BD_WRAP);
}
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* set START command
*/
m360.spcom = M360_SPCOM_STR;
/*
* wait for SPI to finish
*/
rc = m360_spi_wait(softc_ptr);
}
#if defined(DEBUG)
printk("... exit OK, rc=%d\r\n",bc);
#endif
return (rc == RTEMS_SUCCESSFUL) ? bc : -rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_read_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| receive some bytes from SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to store bytes */
int len /* number of bytes to receive */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes received or (negative) error code |
\*=========================================================================*/
{
return m360_spi_read_write_bytes(bh,buf,NULL,len);
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_write_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| send some bytes to SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to send */
int len /* number of bytes to send */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes sent or (negative) error code |
\*=========================================================================*/
{
return m360_spi_read_write_bytes(bh,NULL,buf,len);
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m360_spi_set_tfr_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| set SPI to desired baudrate/clock mode/character mode |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
const rtems_libi2c_tfr_mode_t *tfr_mode /* transfer mode info */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
{
m360_spi_softc_t *softc_ptr = &(((m360_spi_desc_t *)(bh))->softc);
uint32_t spimode_baud,spimode;
rtems_status_code rc = RTEMS_SUCCESSFUL;
/*
* FIXME: set proper mode
*/
if (rc == RTEMS_SUCCESSFUL) {
rc = m360_spi_baud_to_mode(tfr_mode->baudrate,&spimode_baud);
}
if (rc == RTEMS_SUCCESSFUL) {
rc = m360_spi_char_mode(softc_ptr,
tfr_mode->bits_per_char,
tfr_mode->lsb_first,
&spimode);
}
if (rc == RTEMS_SUCCESSFUL) {
spimode |= spimode_baud;
spimode |= M360_SPMODE_MASTER; /* set master mode */
if (!tfr_mode->lsb_first) {
spimode |= M360_SPMODE_REV;
}
if (tfr_mode->clock_inv) {
spimode |= M360_SPMODE_CI;
}
if (tfr_mode->clock_phs) {
spimode |= M360_SPMODE_CP;
}
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* disable SPI
*/
m360.spmode &= ~M360_SPMODE_EN;
/*
* set new mode and reenable SPI
*/
m360.spmode = spimode | M360_SPMODE_EN;
}
return rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_ioctl
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| perform selected ioctl function for SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
int cmd, /* ioctl command code */
void *arg /* additional argument array */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
{
int ret_val = -1;
switch(cmd) {
case RTEMS_LIBI2C_IOCTL_SET_TFRMODE:
ret_val =
-m360_spi_set_tfr_mode(bh,
(const rtems_libi2c_tfr_mode_t *)arg);
break;
case RTEMS_LIBI2C_IOCTL_READ_WRITE:
ret_val =
m360_spi_read_write_bytes(bh,
((rtems_libi2c_read_write_t *)arg)->rd_buf,
((rtems_libi2c_read_write_t *)arg)->wr_buf,
((rtems_libi2c_read_write_t *)arg)->byte_cnt);
break;
default:
ret_val = -RTEMS_NOT_DEFINED;
break;
}
return ret_val;
}
/*=========================================================================*\
| Board-specific adaptation functions |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_sel_addr
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| address a slave device on the bus |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
uint32_t addr, /* address to send on bus */
int rw /* 0=write,1=read */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined(PGH360)
/*
* select given device
*/
/*
* GPIO1[24] is SPI_A0
* GPIO1[25] is SPI_A1
* GPIO1[26] is SPI_A2
* set pins to address
*/
switch(addr) {
case PGH360_SPI_ADDR_EEPROM:
m360.pbdat &= ~PGH360_PB_SPI_EEP_CE_MSK;
break;
case PGH360_SPI_ADDR_DISP4_DATA:
m360.pbdat = (m360.pbdat
& ~(PGH360_PB_SPI_DISP4_CE_MSK |
PGH360_PB_SPI_DISP4_RS_MSK));
break;
case PGH360_SPI_ADDR_DISP4_CTRL:
m360.pbdat = (m360.pbdat
& ~(PGH360_PB_SPI_DISP4_CE_MSK)
| PGH360_PB_SPI_DISP4_RS_MSK);
break;
default:
return RTEMS_INVALID_NUMBER;
}
#endif /* PGH360 */
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_start_dummy
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| dummy function, SPI has no start condition |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
return 0;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_stop
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| deselect SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined(DEBUG)
printk("bsp_spi_send_stop called... ");
#endif
#if defined(PGH360)
m360.pbdat = (m360.pbdat
| PGH360_PB_SPI_DISP4_CE_MSK
| PGH360_PB_SPI_EEP_CE_MSK);
#endif
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return 0;
}
/*=========================================================================*\
| list of handlers |
\*=========================================================================*/
rtems_libi2c_bus_ops_t bsp_spi_ops = {
init: m360_spi_init,
send_start: bsp_spi_send_start_dummy,
send_stop: bsp_spi_send_stop,
send_addr: bsp_spi_sel_addr,
read_bytes: m360_spi_read_bytes,
write_bytes: m360_spi_write_bytes,
ioctl: m360_spi_ioctl
};
static m360_spi_desc_t bsp_spi_bus_desc = {
{/* public fields */
ops: &bsp_spi_ops,
size: sizeof(bsp_spi_bus_desc)
},
{ /* our private fields */
initialized: FALSE
}
};
/*=========================================================================*\
| initialization |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code bsp_register_spi
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| register SPI bus and devices |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
void /* <none> */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| 0 or error code |
\*=========================================================================*/
{
int ret_code;
int spi_busno;
/*
* init I2C library (if not already done)
*/
rtems_libi2c_initialize ();
/*
* init port pins used to address/select SPI devices
*/
#if defined(PGH360)
/*
* set up ports
* LINE PAR DIR DAT
* -----------------------
* EEP_CE 0 1 act-high
* DISP4_CS 0 1 act-high
* DISP4_RS 0 1 active
*/
/* set Port B Pin Assignment Register... */
m360.pbpar =
(m360.pbpar
& ~(PGH360_PB_SPI_EEP_CE_MSK
| PGH360_PB_SPI_DISP4_CE_MSK
| PGH360_PB_SPI_DISP4_RS_MSK));
/* set Port B Data Direction Register... */
m360.pbdir =
m360.pbdir
| PGH360_PB_SPI_EEP_CE_MSK
| PGH360_PB_SPI_DISP4_CE_MSK
| PGH360_PB_SPI_DISP4_RS_MSK;
/* set Port B Data Register to inactive CE state */
m360.pbdat =
m360.pbdat
| PGH360_PB_SPI_DISP4_CE_MSK
| PGH360_PB_SPI_DISP4_RS_MSK;
#endif
/*
* register SPI bus
*/
ret_code = rtems_libi2c_register_bus("/dev/spi",
&(bsp_spi_bus_desc.bus_desc));
if (ret_code < 0) {
return -ret_code;
}
spi_busno = ret_code;
#if defined(PGH360)
/*
* register devices
*/
#if 0
ret_code = rtems_libi2c_register_drv(RTEMS_BSP_SPI_FLASH_DEVICE_NAME,
spi_flash_m25p40_rw_driver_descriptor,
spi_busno,0x00);
if (ret_code < 0) {
return -ret_code;
}
#endif
#endif /* defined(PGH360) */
/*
* FIXME: further drivers, when available
*/
return 0;
}

View File

@@ -0,0 +1,161 @@
/**
* @file
*
* @ingroup m68k_m360spi
*
* @brief this file contains the MC68360 SPI driver declarations
*/
/*===============================================================*\
| Project: RTEMS support for MC68360 |
+-----------------------------------------------------------------+
| Copyright (c) 2008 |
| Embedded Brains GmbH |
| Obere Lagerstr. 30 |
| D-82178 Puchheim |
| Germany |
| rtems@embedded-brains.de |
+-----------------------------------------------------------------+
| The license and distribution terms for this file may be |
| found in the file LICENSE in this distribution or at |
| |
| http://www.rtems.org/license/LICENSE. |
| |
\*===============================================================*/
/**
* @defgroup m68k_m360spi M360_SPIDRV Support
*
* @ingroup m68k_gen68360
*
* @brief M360_SPIDRV Support Package
*/
#ifndef _M360_SPIDRV_H
#define _M360_SPIDRV_H
#include <rtems/m68k/m68360.h>
#include <rtems/libi2c.h>
#include <rtems/irq.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct m360_spi_softc {
int initialized;
rtems_id irq_sema_id;
rtems_isr_entry old_handler;
m360BufferDescriptor_t *rx_bd;
m360BufferDescriptor_t *tx_bd;
} m360_spi_softc_t ;
typedef struct {
rtems_libi2c_bus_t bus_desc;
m360_spi_softc_t softc;
} m360_spi_desc_t;
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m360_spi_init
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| initialize the driver |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
);
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_read_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| receive some bytes from SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to store bytes */
int len /* number of bytes to receive */
);
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes received or (negative) error code |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_write_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| send some bytes to SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to send */
int len /* number of bytes to send */
);
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes sent or (negative) error code |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m360_spi_set_tfr_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| set SPI to desired baudrate/clock mode/character mode |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
const rtems_libi2c_tfr_mode_t *tfr_mode /* transfer mode info */
);
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m360_spi_ioctl
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| perform selected ioctl function for SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
int cmd, /* ioctl command code */
void *arg /* additional argument array */
);
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
#ifdef __cplusplus
}
#endif
#endif /* _M360_SPIDRV_H */

View File

@@ -0,0 +1,416 @@
/*===============================================================*\
| Project: RTEMS support for MPC83xx |
+-----------------------------------------------------------------+
| Copyright (c) 2007 |
| Embedded Brains GmbH |
| Obere Lagerstr. 30 |
| D-82178 Puchheim |
| Germany |
| rtems@embedded-brains.de |
+-----------------------------------------------------------------+
| The license and distribution terms for this file may be |
| found in the file LICENSE in this distribution or at |
| |
| http://www.rtems.org/license/LICENSE. |
| |
+-----------------------------------------------------------------+
| this file contains the low level MPC83xx SPI driver parameters |
| and board-specific functions |
\*===============================================================*/
#include <mpc83xx/mpc83xx_spidrv.h>
#include <bsp/irq.h>
#include <bsp.h>
#if defined(MPC83XX_BOARD_MPC8313ERDB)
#include <libchip/spi-sd-card.h>
#elif defined(MPC83XX_BOARD_MPC8349EAMDS)
#include <libchip/spi-flash-m25p40.h>
#elif defined(MPC83XX_BOARD_HSC_CM01)
#include <libchip/spi-fram-fm25l256.h>
#endif
/*=========================================================================*\
| Board-specific adaptation functions |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_sel_addr
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| address a slave device on the bus |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
uint32_t addr, /* address to send on bus */
int rw /* 0=write,1=read */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined( MPC83XX_BOARD_MPC8313ERDB)
/* Check address */
if (addr > 0) {
return RTEMS_INVALID_NUMBER;
}
/* SCS (active low) */
mpc83xx.gpio [0].gpdat &= ~0x20000000;
#elif defined( MPC83XX_BOARD_MPC8349EAMDS)
/*
* check device address for valid range
*/
if (addr > 0) {
return RTEMS_INVALID_NUMBER;
}
/*
* select given device
* GPIO1[0] is nSEL_SPI for M25P40
* set it to be active/low
*/
mpc83xx.gpio[0].gpdat &= ~(1 << (31- 0));
#elif defined( MPC83XX_BOARD_HSC_CM01)
/*
* check device address for valid range
*/
if (addr > 7) {
return RTEMS_INVALID_NUMBER;
}
/*
* select given device
*/
/*
* GPIO1[24] is SPI_A0
* GPIO1[25] is SPI_A1
* GPIO1[26] is SPI_A2
* set pins to address
*/
mpc83xx.gpio[0].gpdat =
(mpc83xx.gpio[0].gpdat & ~(0x7 << (31-26)))
| (addr << (31-26));
/*
* GPIO1[27] is high-active strobe
*/
mpc83xx.gpio[0].gpdat |= (1 << (31- 27));
#endif
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_start_dummy
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| dummy function, SPI has no start condition |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined( MPC83XX_BOARD_MPC8313ERDB)
/* SCS (inactive high) */
mpc83xx.gpio [0].gpdat |= 0x20000000;
#elif defined( MPC83XX_BOARD_MPC8349EAMDS)
/*
* GPIO1[0] is nSEL_SPI for M25P40
* set it to inactive/high
*/
mpc83xx.gpio[0].gpdat |= (1 << (31- 0));
#elif defined( MPC83XX_BOARD_HSC_CM01)
/*
* GPIO1[27] is high-active strobe
* set it to inactive/ low
*/
mpc83xx.gpio[0].gpdat &= ~(0x1 << (31-27));
#endif
return 0;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_stop
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| deselect SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined(DEBUG)
printk("bsp_spi_send_stop called... ");
#endif
#if defined( MPC83XX_BOARD_MPC8313ERDB)
/* SCS (inactive high) */
mpc83xx.gpio [0].gpdat |= 0x20000000;
#elif defined( MPC83XX_BOARD_MPC8349EAMDS)
/*
* deselect given device
* GPIO1[0] is nSEL_SPI for M25P40
* set it to be inactive/high
*/
mpc83xx.gpio[0].gpdat |= (1 << (31- 0));
#elif defined( MPC83XX_BOARD_HSC_CM01)
/*
* deselect device
* GPIO1[27] is high-active strobe
*/
mpc83xx.gpio[0].gpdat &= ~(1 << (31- 27));
#endif
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return 0;
}
/*=========================================================================*\
| list of handlers |
\*=========================================================================*/
rtems_libi2c_bus_ops_t bsp_spi_ops = {
.init = mpc83xx_spi_init,
.send_start = bsp_spi_send_start_dummy,
.send_stop = bsp_spi_send_stop,
.send_addr = bsp_spi_sel_addr,
.read_bytes = mpc83xx_spi_read_bytes,
.write_bytes = mpc83xx_spi_write_bytes,
.ioctl = mpc83xx_spi_ioctl
};
static mpc83xx_spi_desc_t bsp_spi_bus_desc = {
{/* public fields */
.ops = &bsp_spi_ops,
.size = sizeof(bsp_spi_bus_desc)
},
{ /* our private fields */
.reg_ptr =&mpc83xx.spi,
.initialized = FALSE,
.irq_number = BSP_IPIC_IRQ_SPI,
.base_frq = 0 /* filled in during init */
}
};
#ifdef MPC83XX_BOARD_MPC8313ERDB
#include <libchip/spi-sd-card.h>
#define SD_CARD_NUMBER 1
size_t sd_card_driver_table_size = SD_CARD_NUMBER;
sd_card_driver_entry sd_card_driver_table [SD_CARD_NUMBER] = {
{
.device_name = "/dev/sd-card-a",
.bus = 0,
.transfer_mode = SD_CARD_TRANSFER_MODE_DEFAULT,
.command = SD_CARD_COMMAND_DEFAULT,
/* .response = whatever, */
.response_index = SD_CARD_COMMAND_SIZE,
.n_ac_max = SD_CARD_N_AC_MAX_DEFAULT,
.block_number = 0,
.block_size = 0,
.block_size_shift = 0,
.busy = true,
.verbose = true,
.schedule_if_busy = false
}
};
#endif /* MPC83XX_BOARD_MPC8313ERDB */
/*=========================================================================*\
| initialization |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code bsp_register_spi
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| register SPI bus and devices |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
void /* <none> */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| 0 or error code |
\*=========================================================================*/
{
#if defined(MPC83XX_BOARD_MPC8313ERDB)
rtems_status_code sc = RTEMS_SUCCESSFUL;
#endif
unsigned spi_busno;
int ret_code;
/*
* init I2C library (if not already done)
*/
rtems_libi2c_initialize ();
/*
* init port pins used to address/select SPI devices
*/
#if defined(MPC83XX_BOARD_MPC8313ERDB)
/*
* Configured as master (direct connection to SD card)
*
* GPIO[28] : SOUT
* GPIO[29] : SIN
* GPIO[30] : SCLK
* GPIO[02] : SCS (inactive high), GPIO[02] is normally connected to U43 at
* pin 15 of MC74LCX244DT.
*/
/* Function */
mpc83xx.syscon.sicrl = (mpc83xx.syscon.sicrl & ~0x03fc0000) | 0x30000000;
/* Direction */
mpc83xx.gpio [0].gpdir = (mpc83xx.gpio [0].gpdir & ~0x0000000f) | 0x2000000b;
/* Data */
mpc83xx.gpio [0].gpdat |= 0x20000000;
/* Open Drain */
/* mpc83xx.gpio [0].gpdr |= 0x0000000f; */
#elif defined(MPC83XX_BOARD_MPC8349EAMDS)
/*
* GPIO1[0] is nSEL_SPI for M25P40
* set it to be output, high
*/
mpc83xx.gpio[0].gpdat |= (1 << (31- 0));
mpc83xx.gpio[0].gpdir |= (1 << (31- 0));
mpc83xx.gpio[0].gpdr &= ~(1 << (31- 0));
#elif defined(MPC83XX_BOARD_HSC_CM01)
/*
* GPIO1[24] is SPI_A0
* GPIO1[25] is SPI_A1
* GPIO1[26] is SPI_A2
* GPIO1[27] is high-active strobe
* set pins to be output, low
*/
mpc83xx.gpio[0].gpdat &= ~(0xf << (31-27));
mpc83xx.gpio[0].gpdir |= (0xf << (31-27));
mpc83xx.gpio[0].gpdr &= ~(0xf << (31-27));
#else
/*
* There is no SPI configuration information for this variant.
*/
(void) spi_busno; /* avoid set but not used warning */
#endif
/*
* update base frequency in spi descriptor
*/
bsp_spi_bus_desc.softc.base_frq = BSP_bus_frequency;
/*
* register SPI bus
*/
ret_code = rtems_libi2c_register_bus("/dev/spi",
&(bsp_spi_bus_desc.bus_desc));
if (ret_code < 0) {
return -ret_code;
}
spi_busno = (unsigned) ret_code;
#if defined(MPC83XX_BOARD_MPC8313ERDB)
/* Register SD Card driver */
sd_card_driver_table [0].bus = spi_busno;
sc = sd_card_register();
if (sc != RTEMS_SUCCESSFUL) {
return sc;
}
#elif defined(MPC83XX_BOARD_MPC8349EAMDS)
/*
* register M25P40 Flash
*/
ret_code = rtems_libi2c_register_drv(RTEMS_BSP_SPI_FLASH_DEVICE_NAME,
spi_flash_m25p40_rw_driver_descriptor,
spi_busno,0x00);
#elif defined(MPC83XX_BOARD_HSC_CM01)
/*
* register FM25L256 FRAM
*/
ret_code = rtems_libi2c_register_drv(RTEMS_BSP_SPI_FRAM_DEVICE_NAME,
spi_fram_fm25l256_rw_driver_descriptor,
spi_busno,0x02);
#endif
if (ret_code < 0) {
return -ret_code;
}
/*
* FIXME: further drivers, when available
*/
return 0;
}

View File

@@ -0,0 +1,873 @@
/*===============================================================*\
| Project: RTEMS support for tqm8xx |
+-----------------------------------------------------------------+
| Copyright (c) 2009 |
| Embedded Brains GmbH |
| Obere Lagerstr. 30 |
| D-82178 Puchheim |
| Germany |
| rtems@embedded-brains.de |
+-----------------------------------------------------------------+
| The license and distribution terms for this file may be |
| found in the file LICENSE in this distribution or at |
| |
| http://www.rtems.org/license/LICENSE. |
| |
+-----------------------------------------------------------------+
| this file contains the MPC8xx SPI driver |
\*===============================================================*/
#include <stdlib.h>
#include <bsp.h>
#include <mpc8xx.h>
#include <bsp/spi.h>
#include <libchip/disp_hcms29xx.h>
#include <rtems/error.h>
#include <rtems/bspIo.h>
#include <errno.h>
#include <rtems/libi2c.h>
#include <bsp/irq.h>
#define M8xx_PB_SPI_MISO_MSK (1<<(31-28))
#define M8xx_PB_SPI_MOSI_MSK (1<<(31-29))
#define M8xx_PB_SPI_CLK_MSK (1<<(31-30))
#undef DEBUG
/*
* this is a dummy receive buffer for sequences,
* where only send data are available
*/
uint8_t m8xx_spi_dummy_rxbuf[2];
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code m8xx_spi_baud_to_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| determine proper divider value |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
uint32_t baudrate, /* desired baudrate */
uint32_t *spimode /* result value */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint32_t divider;
uint16_t tmpmode = 0;
/*
* determine clock divider and DIV16 bit
*/
divider = BSP_bus_frequency/baudrate;
if (divider > 64) {
tmpmode = M8xx_SPMODE_DIV16;
divider /= 16;
}
if ((divider < 1) ||
(divider > 64)) {
return RTEMS_INVALID_NUMBER;
}
else {
tmpmode |= M8xx_SPMODE_PM(divider/4-1);
}
*spimode = tmpmode;
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code m8xx_spi_char_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| determine proper value for character size |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m8xx_spi_softc_t *softc_ptr, /* handle */
uint32_t bits_per_char, /* bits per character */
bool lsb_first, /* TRUE: send LSB first */
uint16_t *spimode /* result value */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint16_t tmpmode;
/*
* calculate data format
*/
if ((bits_per_char >= 4) &&
(bits_per_char <= 16)) {
tmpmode = M8xx_SPMODE_CLEN( bits_per_char-1);
}
else {
return RTEMS_INVALID_NUMBER;
}
*spimode = tmpmode;
return 0;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static int m8xx_spi_wait
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| wait for spi to become idle |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m8xx_spi_softc_t *softc_ptr /* handle */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
uint16_t act_status;
rtems_status_code rc;
uint32_t tout;
#if defined(DEBUG)
printk("m8xx_spi_wait called... ");
#endif
if (softc_ptr->initialized) {
/*
* allow interrupts, when receiver is not empty
*/
m8xx.spim = (M8xx_SPIE_TXE | M8xx_SPIE_TXB |
M8xx_SPIE_BSY | M8xx_SPIE_MME);
rc = rtems_semaphore_obtain(softc_ptr->irq_sema_id,
RTEMS_WAIT,
RTEMS_NO_TIMEOUT);
if (rc != RTEMS_SUCCESSFUL) {
return rc;
}
}
else {
tout = 0;
do {
if (tout++ > 1000000) {
#if defined(DEBUG)
printk("... exit with RTEMS_TIMEOUT\r\n");
#endif
return RTEMS_TIMEOUT;
}
/*
* wait for SPI to terminate
*/
} while (!(m8xx.spie & M8xx_SPIE_TXB));
}
act_status = m8xx.spie;
if ((act_status & (M8xx_SPIE_TXE | M8xx_SPIE_TXB |
M8xx_SPIE_BSY | M8xx_SPIE_MME))!= M8xx_SPIE_TXB) {
#if defined(DEBUG)
printk("... exit with RTEMS_IO_ERROR,"
"act_status=0x%04x,mask=0x%04x,desired_status=0x%04x\r\n",
act_status,status_mask,desired_status);
#endif
return RTEMS_IO_ERROR;
}
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_isr m8xx_spi_irq_handler
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| handle interrupts |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
void *arg
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| <none> |
\*=========================================================================*/
{
m8xx_spi_softc_t *softc_ptr = arg;
/*
* disable interrupt mask
*/
m8xx.spim = 0;
if (softc_ptr->initialized) {
rtems_semaphore_release(softc_ptr->irq_sema_id);
}
}
static void
mpc8xx_spi_irq_on(const rtems_irq_connect_data *irq)
{
}
static void
mpc8xx_spi_irq_off(const rtems_irq_connect_data *irq)
{
}
static int
mpc8xx_spi_irq_isOn(const rtems_irq_connect_data *irq)
{
return 1;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static void m8xx_spi_install_irq_handler
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| install the interrupt handler |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
m8xx_spi_softc_t *softc_ptr, /* ptr to control structure */
int install /* TRUE: install, FALSE: remove */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| <none> |
\*=========================================================================*/
{
rtems_status_code rc = RTEMS_SUCCESSFUL;
/*
* install handler for SPI device
*/
/*
* create semaphore for IRQ synchronization
*/
rc = rtems_semaphore_create(rtems_build_name('s','p','i','s'),
0,
RTEMS_FIFO
| RTEMS_SIMPLE_BINARY_SEMAPHORE,
0,
&softc_ptr->irq_sema_id);
if (rc != RTEMS_SUCCESSFUL) {
rtems_panic("SPI: cannot create semaphore");
}
if (rc == RTEMS_SUCCESSFUL) {
rtems_irq_connect_data irq_conn_data = {
BSP_CPM_IRQ_SPI,
m8xx_spi_irq_handler, /* rtems_irq_hdl */
(rtems_irq_hdl_param)softc_ptr, /* (rtems_irq_hdl_param) */
mpc8xx_spi_irq_on, /* (rtems_irq_enable) */
mpc8xx_spi_irq_off, /* (rtems_irq_disable) */
mpc8xx_spi_irq_isOn /* (rtems_irq_is_enabled) */
};
if (!BSP_install_rtems_irq_handler (&irq_conn_data)) {
rtems_panic("SPI: cannot install IRQ handler");
}
}
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m8xx_spi_init
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| initialize the driver |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
m8xx_spi_softc_t *softc_ptr = &(((m8xx_spi_desc_t *)(bh))->softc);
rtems_status_code rc = RTEMS_SUCCESSFUL;
#if defined(DEBUG)
printk("m8xx_spi_init called... ");
#endif
/*
* init HW registers:
*/
/*
* FIXME: set default mode in SPMODE
*/
/*
* allocate BDs (1x RX, 1x TX)
*/
if (rc == RTEMS_SUCCESSFUL) {
softc_ptr->rx_bd = m8xx_bd_allocate (1);
softc_ptr->tx_bd = m8xx_bd_allocate (1);
if ((softc_ptr->rx_bd == NULL) ||
(softc_ptr->tx_bd == NULL)) {
rc = RTEMS_NO_MEMORY;
}
}
/*
* set parameter RAM
*/
m8xx.spip.rbase = (char *)softc_ptr->rx_bd - (char *)&m8xx;
m8xx.spip.tbase = (char *)softc_ptr->tx_bd - (char *)&m8xx;
m8xx.spip.rfcr = M8xx_RFCR_MOT | M8xx_RFCR_DMA_SPACE(0);
m8xx.spip.tfcr = M8xx_RFCR_MOT | M8xx_RFCR_DMA_SPACE(0);
m8xx.spip.mrblr = 2;
/*
* issue "InitRxTx" Command to CP
*/
m8xx_cp_execute_cmd (M8xx_CR_OP_INIT_RX_TX | M8xx_CR_CHAN_SPI);
/*
* init interrupt stuff
*/
if (rc == RTEMS_SUCCESSFUL) {
m8xx_spi_install_irq_handler(softc_ptr,TRUE);
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* set up ports
* LINE PAR DIR DAT
* -----------------------
* MOSI 1 1 x
* MISO 1 1 x
* CLK 1 1 x
*/
/* set Port B Pin Assignment Register... */
m8xx.pbpar =
m8xx.pbpar
| M8xx_PB_SPI_MISO_MSK
| M8xx_PB_SPI_MOSI_MSK
| M8xx_PB_SPI_CLK_MSK;
/* set Port B Data Direction Register... */
m8xx.pbdir =
m8xx.pbdir
| M8xx_PB_SPI_MISO_MSK
| M8xx_PB_SPI_MOSI_MSK
| M8xx_PB_SPI_CLK_MSK;
}
/*
* mark, that we have initialized
*/
if (rc == RTEMS_SUCCESSFUL) {
softc_ptr->initialized = TRUE;
}
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static int m8xx_spi_read_write_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| transmit/receive some bytes from SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *rbuf, /* buffer to store bytes */
const unsigned char *tbuf, /* buffer to send bytes */
int len /* number of bytes to transceive */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes received or (negative) error code |
\*=========================================================================*/
{
m8xx_spi_softc_t *softc_ptr = &(((m8xx_spi_desc_t *)(bh))->softc);
rtems_status_code rc = RTEMS_SUCCESSFUL;
int bc = 0;
#if defined(DEBUG)
printk("m8xx_spi_read_write_bytes called... ");
#endif
/*
* prepare RxBD
*/
if (rc == RTEMS_SUCCESSFUL) {
if (rbuf == NULL) {
/*
* no Tx buffer: receive to dummy buffer
*/
m8xx.spip.mrblr = sizeof(m8xx_spi_dummy_rxbuf);
softc_ptr->rx_bd->buffer = m8xx_spi_dummy_rxbuf;
softc_ptr->rx_bd->length = 0;
softc_ptr->rx_bd->status = (M8xx_BD_EMPTY | M8xx_BD_WRAP |
M8xx_BD_CONTINUOUS);
}
else {
m8xx.spip.mrblr = len;
softc_ptr->rx_bd->buffer = rbuf;
softc_ptr->rx_bd->length = 0;
softc_ptr->rx_bd->status = (M8xx_BD_EMPTY | M8xx_BD_WRAP);
}
}
/*
* prepare TxBD
*/
if (rc == RTEMS_SUCCESSFUL) {
if (tbuf == NULL) {
/*
* no Tx buffer: transmit from dummy buffer
*/
softc_ptr->tx_bd->buffer = m8xx_spi_dummy_rxbuf;
softc_ptr->tx_bd->length = len;
softc_ptr->tx_bd->status = (M8xx_BD_READY | M8xx_BD_WRAP |
M8xx_BD_CONTINUOUS);
}
else {
softc_ptr->tx_bd->buffer = (char *)tbuf;
softc_ptr->tx_bd->length = len;
softc_ptr->tx_bd->status = (M8xx_BD_READY | M8xx_BD_WRAP);
}
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* set START command
*/
m8xx.spcom = M8xx_SPCOM_STR;
/*
* wait for SPI to finish
*/
rc = m8xx_spi_wait(softc_ptr);
}
#if defined(DEBUG)
printk("... exit OK, rc=%d\r\n",bc);
#endif
return (rc == RTEMS_SUCCESSFUL) ? bc : -rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m8xx_spi_read_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| receive some bytes from SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to store bytes */
int len /* number of bytes to receive */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes received or (negative) error code |
\*=========================================================================*/
{
return m8xx_spi_read_write_bytes(bh,buf,NULL,len);
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m8xx_spi_write_bytes
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| send some bytes to SPI device |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
unsigned char *buf, /* buffer to send */
int len /* number of bytes to send */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| number of bytes sent or (negative) error code |
\*=========================================================================*/
{
return m8xx_spi_read_write_bytes(bh,NULL,buf,len);
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code m8xx_spi_set_tfr_mode
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| set SPI to desired baudrate/clock mode/character mode |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
const rtems_libi2c_tfr_mode_t *tfr_mode /* transfer mode info */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
{
m8xx_spi_softc_t *softc_ptr = &(((m8xx_spi_desc_t *)(bh))->softc);
uint32_t spimode_baud;
uint16_t spimode;
rtems_status_code rc = RTEMS_SUCCESSFUL;
/*
* FIXME: set proper mode
*/
if (rc == RTEMS_SUCCESSFUL) {
rc = m8xx_spi_baud_to_mode(tfr_mode->baudrate,&spimode_baud);
}
if (rc == RTEMS_SUCCESSFUL) {
rc = m8xx_spi_char_mode(softc_ptr,
tfr_mode->bits_per_char,
tfr_mode->lsb_first,
&spimode);
}
if (rc == RTEMS_SUCCESSFUL) {
spimode |= spimode_baud;
spimode |= M8xx_SPMODE_MASTER; /* set master mode */
if (!tfr_mode->lsb_first) {
spimode |= M8xx_SPMODE_REV;
}
if (tfr_mode->clock_inv) {
spimode |= M8xx_SPMODE_CI;
}
if (tfr_mode->clock_phs) {
spimode |= M8xx_SPMODE_CP;
}
}
if (rc == RTEMS_SUCCESSFUL) {
/*
* disable SPI
*/
m8xx.spmode &= ~M8xx_SPMODE_EN;
/*
* set new mode and reenable SPI
*/
m8xx.spmode = spimode | M8xx_SPMODE_EN;
}
return rc;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
int m8xx_spi_ioctl
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| perform selected ioctl function for SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
int cmd, /* ioctl command code */
void *arg /* additional argument array */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
{
int ret_val = -1;
switch(cmd) {
case RTEMS_LIBI2C_IOCTL_SET_TFRMODE:
ret_val =
-m8xx_spi_set_tfr_mode(bh,
(const rtems_libi2c_tfr_mode_t *)arg);
break;
case RTEMS_LIBI2C_IOCTL_READ_WRITE:
ret_val =
m8xx_spi_read_write_bytes(bh,
((rtems_libi2c_read_write_t *)arg)->rd_buf,
((rtems_libi2c_read_write_t *)arg)->wr_buf,
((rtems_libi2c_read_write_t *)arg)->byte_cnt);
break;
default:
ret_val = -RTEMS_NOT_DEFINED;
break;
}
return ret_val;
}
/*=========================================================================*\
| Board-specific adaptation functions |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_start
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| dummy function, SPI has no start condition |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_sel_addr
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| address a slave device on the bus |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh, /* bus specifier structure */
uint32_t addr, /* address to send on bus */
int rw /* 0=write,1=read */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| rtems_status_code |
\*=========================================================================*/
{
#if defined(PGHPLUS)
pbdat_val = m8xx.pbdat | (PGHPLUS_SPI_PB_DISP4_RS_MSK |
PGHPLUS_SPI_PB_DISP4_CE_MSK |
PGHPLUS_SPI_PB_EEP_CE_MSK);
/*
* select given device
*/
switch(addr) {
case PGHPLUS_SPI_ADDR_EEPROM:
pbdat_val &= ~PGHPLUS_SPI_PB_EEP_CE_MSK;
break;
case PGHPLUS_SPI_ADDR_DISP4_DATA:
pbdat_val = (m8xx.pbdat
& ~(PGHPLUS_PB_SPI_DISP4_CE_MSK |
PGHPLUS_PB_SPI_DISP4_RS_MSK));
break;
case PGHPLUS_SPI_ADDR_DISP4_CTRL:
pbdat_val = (m8xx.pbdat
& ~(PGHPLUS_PB_SPI_DISP4_CE_MSK)
| PGHPLUS_PB_SPI_DISP4_RS_MSK);
break;
default:
return RTEMS_INVALID_NUMBER;
}
m8xx_pbdat = pbdat_val
#endif /* PGHPLUS */
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_send_stop
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| deselect SPI |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
rtems_libi2c_bus_t *bh /* bus specifier structure */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
#if defined(DEBUG)
printk("bsp_spi_send_stop called... ");
#endif
m8xx.pbdat = (m8xx.pbdat
| PGHPLUS_PB_SPI_DISP4_CE_MSK
| PGHPLUS_PB_SPI_EEP_CE_MSK);
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
static rtems_status_code bsp_spi_init
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| do board specific init: |
| - initialize pins for addressing |
| - register further drivers |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
int spi_busno
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| o = ok or error code |
\*=========================================================================*/
{
int ret_code;
#if defined(DEBUG)
printk("bsp_spi_init called... ");
#endif
/*
* init port pins used to address/select SPI devices
*/
/*
* set up ports
* LINE PAR DIR DAT
* -----------------------
* EEP_CE 0 1 act-high
* DISP4_CS 0 1 act-high
* DISP4_RS 0 1 active
*/
/* set Port B Pin Assignment Register... */
m8xx.pbpar =
(m8xx.pbpar
& ~(PGHPLUS_PB_SPI_EEP_CE_MSK
| PGHPLUS_PB_SPI_DISP4_CE_MSK
| PGHPLUS_PB_SPI_DISP4_RS_MSK));
/* set Port B Data Direction Register... */
m8xx.pbdir =
m8xx.pbdir
| PGHPLUS_PB_SPI_EEP_CE_MSK
| PGHPLUS_PB_SPI_DISP4_CE_MSK
| PGHPLUS_PB_SPI_DISP4_RS_MSK;
/* set Port B Data Register to inactive CE state */
m8xx.pbdat =
m8xx.pbdat
| PGHPLUS_PB_SPI_DISP4_CE_MSK
| PGHPLUS_PB_SPI_DISP4_RS_MSK;
/*
* register devices
*/
ret_code = rtems_libi2c_register_drv("disp",
disp_hcms29xx_driver_descriptor,
spi_busno,PGHPLUS_SPI_ADDR_DISP4);
if (ret_code < 0) {
return -ret_code;
}
#if defined(DEBUG)
printk("... exit OK\r\n");
#endif
return RTEMS_SUCCESSFUL;
}
/*=========================================================================*\
| list of handlers |
\*=========================================================================*/
rtems_libi2c_bus_ops_t bsp_spi_ops = {
init: m8xx_spi_init,
send_start: bsp_spi_send_start,
send_stop: bsp_spi_send_stop,
send_addr: bsp_spi_sel_addr,
read_bytes: m8xx_spi_read_bytes,
write_bytes: m8xx_spi_write_bytes,
ioctl: m8xx_spi_ioctl
};
static m8xx_spi_desc_t bsp_spi_bus_desc = {
{/* public fields */
ops: &bsp_spi_ops,
size: sizeof(bsp_spi_bus_desc)
},
{ /* our private fields */
initialized: FALSE
}
};
/*=========================================================================*\
| initialization |
\*=========================================================================*/
/*=========================================================================*\
| Function: |
\*-------------------------------------------------------------------------*/
rtems_status_code bsp_register_spi
(
/*-------------------------------------------------------------------------*\
| Purpose: |
| register SPI bus and devices |
+---------------------------------------------------------------------------+
| Input Parameters: |
\*-------------------------------------------------------------------------*/
void /* <none> */
)
/*-------------------------------------------------------------------------*\
| Return Value: |
| 0 or error code |
\*=========================================================================*/
{
int ret_code;
int spi_busno;
/*
* init I2C library (if not already done)
*/
rtems_libi2c_initialize ();
/*
* register SPI bus
*/
ret_code = rtems_libi2c_register_bus("/dev/spi",
&(bsp_spi_bus_desc.bus_desc));
if (ret_code < 0) {
return -ret_code;
}
spi_busno = ret_code;
bsp_spi_init(spi_busno);
/*
* FIXME: further drivers, when available
*/
return RTEMS_SUCCESSFUL;
}