2011-03-16 Jennifer Averett <jennifer.averett@OARcorp.com>

PR 1729/cpukit
	* configure.ac, sapi/include/confdefs.h, sapi/src/exinit.c,
	score/Makefile.am, score/preinstall.am,
	score/cpu/i386/rtems/score/cpu.h, score/cpu/sparc/cpu_asm.S,
	score/cpu/sparc/rtems/score/cpu.h,
	score/include/rtems/score/basedefs.h,
	score/include/rtems/score/context.h,
	score/include/rtems/score/percpu.h, score/src/percpu.c,
	score/src/thread.c, score/src/threadcreateidle.c: Add next step in
	SMP support. This adds an allocated array of the Per_CPU structures
	to support multiple cpus vs a single instance of the structure which
	is still used if SMP support is disabled. Configuration support is
	also added to explicitly enable or disable SMP. But SMP can only be
	enabled for the CPUs which will support it initially -- SPARC and
	i386. With the stub BSP support, a BSP can be run as a single core
	SMP system from an RTEMS data structure standpoint.
	* aclocal/check-smp.m4, aclocal/enable-smp.m4,
	score/include/rtems/bspsmp.h, score/include/rtems/score/smplock.h,
	score/src/smp.c, score/src/smplock.c: New files.
This commit is contained in:
Joel Sherrill
2011-03-16 20:05:06 +00:00
parent ef99f23a7b
commit 06dcaf09e6
21 changed files with 998 additions and 601 deletions

View File

@@ -1,3 +1,25 @@
2011-03-16 Jennifer Averett <jennifer.averett@OARcorp.com>
PR 1729/cpukit
* configure.ac, sapi/include/confdefs.h, sapi/src/exinit.c,
score/Makefile.am, score/preinstall.am,
score/cpu/i386/rtems/score/cpu.h, score/cpu/sparc/cpu_asm.S,
score/cpu/sparc/rtems/score/cpu.h,
score/include/rtems/score/basedefs.h,
score/include/rtems/score/context.h,
score/include/rtems/score/percpu.h, score/src/percpu.c,
score/src/thread.c, score/src/threadcreateidle.c: Add next step in
SMP support. This adds an allocated array of the Per_CPU structures
to support multiple cpus vs a single instance of the structure which
is still used if SMP support is disabled. Configuration support is
also added to explicitly enable or disable SMP. But SMP can only be
enabled for the CPUs which will support it initially -- SPARC and
i386. With the stub BSP support, a BSP can be run as a single core
SMP system from an RTEMS data structure standpoint.
* aclocal/check-smp.m4, aclocal/enable-smp.m4,
score/include/rtems/bspsmp.h, score/include/rtems/score/smplock.h,
score/src/smp.c, score/src/smplock.c: New files.
2011-03-16 Jennifer Averett <jennifer.averett@OARcorp.com>
PR 1743/cpu

View File

@@ -0,0 +1,19 @@
dnl $Id$
dnl
AC_DEFUN([RTEMS_CHECK_SMP],
[dnl
AC_REQUIRE([RTEMS_ENABLE_SMP])dnl
AC_CACHE_CHECK([whether CPU supports libposix],
rtems_cv_HAS_SMP,
[dnl
case "$RTEMS_CPU" in
*)
if test "${RTEMS_HAS_SMP}" = "yes"; then
rtems_cv_HAS_SMP="yes";
else
rtems_cv_HAS_SMP="disabled";
fi
;;
esac])
])

View File

@@ -0,0 +1,18 @@
dnl $Id$
AC_DEFUN([RTEMS_ENABLE_SMP],
[
## AC_BEFORE([$0], [RTEMS_CHECK_SMP])dnl
AC_ARG_ENABLE(smp,
[AS_HELP_STRING([--enable-smp],[enable smp interface])],
[case "${enableval}" in
yes) case "${RTEMS_CPU}" in
sparc|i386) RTEMS_HAS_SMP=yes ;;
*) RTEMS_HAS_SMP=no ;;
esac
;;
no) RTEMS_HAS_SMP=no ;;
*) AC_MSG_ERROR(bad value ${enableval} for enable-smp option) ;;
esac],[RTEMS_HAS_SMP=no])
])

View File

@@ -138,6 +138,7 @@ AC_CHECK_HEADER([signal.h],[
RTEMS_CHECK_MULTIPROCESSING
RTEMS_CHECK_POSIX_API
RTEMS_CHECK_NETWORKING
RTEMS_CHECK_SMP
rtems_major=`echo _RTEMS_VERSION | sed "s/\..*//"`
rtems_minor=`echo _RTEMS_VERSION | sed "s/[[0-9]][[0-9]]*\.//;s/\..*//"`
@@ -169,6 +170,11 @@ RTEMS_CPUOPT([RTEMS_POSIX_API],
[1],
[if posix api is supported])
RTEMS_CPUOPT([RTEMS_SMP],
[test x"$RTEMS_HAS_SMP" = xyes],
[1],
[if SMP is enabled])
RTEMS_CPUOPT([RTEMS_NETWORKING],
[test x"$rtems_cv_HAS_NETWORKING" = xyes],
[1],
@@ -290,6 +296,7 @@ AM_CONDITIONAL(LIBRPC,[test x"$rtems_cv_HAS_NETWORKING" = x"yes"])
AM_CONDITIONAL(NEWLIB,test x"$RTEMS_USE_NEWLIB" = x"yes")
AM_CONDITIONAL(HAS_MP,test x"$enable_multiprocessing" = x"yes" )
AM_CONDITIONAL(HAS_SMP,[test "$RTEMS_HAS_SMP" = "yes"])
AM_CONDITIONAL(HAS_PTHREADS,test x"$rtems_cv_HAS_POSIX_API" = x"yes")
AM_CONDITIONAL(LIBNETWORKING,test x"$rtems_cv_HAS_NETWORKING" = x"yes")

View File

@@ -174,6 +174,21 @@ rtems_fs_init_functions_t rtems_fs_init_helper =
extern int rtems_telnetd_maximum_ptys;
#endif
#if defined(RTEMS_SMP)
/*
* If configured for SMP, then we need to know the maximum CPU cores.
*/
#if !defined(CONFIGURE_SMP_APPLICATION)
#if !defined(CONFIGURE_SMP_MAXIMUM_PROCESSORS)
#define CONFIGURE_SMP_MAXIMUM_PROCESSORS 1
#endif
#else
#if !defined(CONFIGURE_SMP_MAXIMUM_PROCESSORS)
#error "CONFIGURE_SMP_MAXIMUM_PROCESSORS not specified for SMP Application"
#endif
#endif
#endif
/*
* Filesystems and Mount Table Configuration.
*
@@ -1805,12 +1820,25 @@ rtems_fs_init_functions_t rtems_fs_init_helper =
_Configure_Object_RAM(1, sizeof(API_Mutex_Control))
/**
* This defines the amount of memory reserved for the IDLE task
* control structures and stack.
* This defines the formula used to compute the amount of memory
* reserved for IDLE task control structures and stacks.
*/
#define CONFIGURE_MEMORY_FOR_IDLE_TASK \
(CONFIGURE_MEMORY_FOR_TASKS(1, 0) + \
(CONFIGURE_IDLE_TASK_STACK_SIZE - CONFIGURE_MINIMUM_TASK_STACK_SIZE))
#define CONFIGURE_IDLE_TASKS(_count) \
(CONFIGURE_MEMORY_FOR_TASKS(_count, 0) + \
_count * _Configure_From_workspace( \
(CONFIGURE_IDLE_TASK_STACK_SIZE - CONFIGURE_MINIMUM_TASK_STACK_SIZE)))
/**
* This calculates the amount of memory reserved for the IDLE tasks.
* In an SMP system, each CPU core has its own idle task.
*/
#if defined(RTEMS_SMP)
#define CONFIGURE_MEMORY_FOR_IDLE_TASK \
CONFIGURE_IDLE_TASKS(CONFIGURE_SMP_MAXIMUM_PROCESSORS)
#else
#define CONFIGURE_MEMORY_FOR_IDLE_TASK \
CONFIGURE_IDLE_TASKS(1)
#endif
/**
* This macro accounts for general RTEMS system overhead.
@@ -1898,6 +1926,15 @@ rtems_fs_init_functions_t rtems_fs_init_helper =
CONFIGURE_MEMORY_FOR_USER_EXTENSIONS(CONFIGURE_MAXIMUM_USER_EXTENSIONS) \
)
#if defined(RTEMS_SMP)
#define CONFIGURE_MEMORY_FOR_SMP \
(CONFIGURE_SMP_MAXIMUM_PROCESSORS * \
_Configure_From_workspace( CONFIGURE_INTERRUPT_STACK_SIZE ) \
)
#else
#define CONFIGURE_MEMORY_FOR_SMP 0
#endif
#if defined(CONFIGURE_CONFDEFS_DEBUG) && defined(CONFIGURE_INIT)
/**
* This is a debug mechanism, so if you need to, the executable will
@@ -2012,10 +2049,11 @@ rtems_fs_init_functions_t rtems_fs_init_helper =
CONFIGURE_MEMORY_FOR_CLASSIC + \
CONFIGURE_MEMORY_FOR_POSIX + \
(CONFIGURE_MAXIMUM_POSIX_THREADS * CONFIGURE_MINIMUM_TASK_STACK_SIZE ) + \
(CONFIGURE_MAXIMUM_GOROUTINES * CONFIGURE_MINIMUM_TASK_STACK_SIZE ) + \
(CONFIGURE_MAXIMUM_GOROUTINES * CONFIGURE_MINIMUM_TASK_STACK_SIZE) + \
CONFIGURE_INITIALIZATION_THREADS_STACKS + \
CONFIGURE_MEMORY_FOR_STATIC_EXTENSIONS + \
CONFIGURE_MEMORY_FOR_MP + \
CONFIGURE_MEMORY_FOR_SMP + \
CONFIGURE_MESSAGE_BUFFER_MEMORY + \
(CONFIGURE_MEMORY_OVERHEAD * 1024) + \
(CONFIGURE_EXTRA_TASK_STACKS) + (CONFIGURE_ADA_TASKS_STACK) \
@@ -2117,6 +2155,26 @@ rtems_fs_init_functions_t rtems_fs_init_helper =
#endif /* CONFIGURE_HAS_OWN_CONFIGURATION_TABLE */
#if defined(RTEMS_SMP)
/**
* Instantiate the variable which specifies the number of CPUs
* in an SMP configuration.
*/
#if defined(CONFIGURE_INIT)
uint32_t rtems_smp_maximum_processors = CONFIGURE_SMP_MAXIMUM_PROCESSORS;
#else
extern uint32_t rtems_smp_maximum_processors;
#endif
/*
* Instantiate the Per CPU information based upon the user configuration.
*/
#if defined(CONFIGURE_INIT)
Per_CPU_Control _Per_CPU_Information[CONFIGURE_SMP_MAXIMUM_PROCESSORS];
Per_CPU_Control *_Per_CPU_Information_p[CONFIGURE_SMP_MAXIMUM_PROCESSORS];
#endif
#endif
/*
* If the user has configured a set of Classic API Initialization Tasks,
* then we need to install the code that runs that loop.

View File

@@ -1,7 +1,7 @@
/*
* Initialization Manager
*
* COPYRIGHT (c) 1989-2008.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -57,6 +57,11 @@
#include <rtems/posix/posixapi.h>
#endif
#if defined(RTEMS_SMP)
#include <rtems/bspsmp.h>
#include <rtems/score/percpu.h>
#endif
Objects_Information *_Internal_Objects[ OBJECTS_INTERNAL_CLASSES_LAST + 1 ];
void rtems_initialize_data_structures(void)
@@ -114,6 +119,10 @@ void rtems_initialize_data_structures(void)
*/
_Workspace_Handler_initialization();
#if defined(RTEMS_SMP)
_SMP_Handler_initialize();
#endif
_User_extensions_Handler_initialization();
_ISR_Handler_initialization();
@@ -150,6 +159,13 @@ void rtems_initialize_data_structures(void)
_POSIX_API_Initialize();
#endif
/*
* Discover and initialize the secondary cores in an SMP system.
*/
#if defined(RTEMS_SMP)
_SMP_Processor_count = bsp_smp_initialize( rtems_smp_maximum_processors );
#endif
_System_state_Set( SYSTEM_STATE_BEFORE_MULTITASKING );
/*

View File

@@ -12,7 +12,7 @@ SUBDIRS = cpu
include_rtemsdir = $(includedir)/rtems
include_rtems_HEADERS = include/rtems/debug.h include/rtems/system.h \
include/rtems/seterr.h
include/rtems/seterr.h include/rtems/bspsmp.h
include_rtems_scoredir = $(includedir)/rtems/score
@@ -35,7 +35,8 @@ include_rtems_score_HEADERS = include/rtems/score/address.h \
include/rtems/score/timestamp64.h include/rtems/score/tod.h \
include/rtems/score/tqdata.h include/rtems/score/userext.h \
include/rtems/score/watchdog.h include/rtems/score/wkspace.h \
include/rtems/score/cpuopts.h include/rtems/score/basedefs.h
include/rtems/score/cpuopts.h include/rtems/score/basedefs.h \
include/rtems/score/smplock.h
if HAS_PTHREADS
include_rtems_score_HEADERS += include/rtems/score/corespinlock.h \
@@ -88,6 +89,8 @@ if HAS_MP
libscore_a_SOURCES += src/mpci.c src/objectmp.c src/threadmp.c
endif
libscore_a_SOURCES += src/smp.c src/smplock.c
## CORE_APIMUTEX_C_FILES
libscore_a_SOURCES += src/apimutex.c src/apimutexallocate.c \
src/apimutexlock.c src/apimutexunlock.c

View File

@@ -6,7 +6,7 @@
* This include file contains information pertaining to the Intel
* i386 processor.
*
* COPYRIGHT (c) 1989-2008.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -270,8 +270,6 @@ typedef enum {
/* variables */
SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context;
SCORE_EXTERN void *_CPU_Interrupt_stack_low;
SCORE_EXTERN void *_CPU_Interrupt_stack_high;
#endif /* ASM */
@@ -437,6 +435,20 @@ uint32_t _CPU_ISR_Get_level( void );
#define _CPU_Context_Restart_self( _the_context ) \
_CPU_Context_restore( (_the_context) );
#if defined(RTEMS_SMP)
#define _CPU_Context_switch_to_first_task_smp( _the_context ) \
_CPU_Context_restore( (_the_context) );
/* address space 1 is uncacheable */
#define SMP_CPU_SWAP( _address, _value, _previous ) \
do { \
asm volatile("lock; xchgl %0, %1" : \
"+m" (*_address), "=a" (_previous) : \
"1" (_value) : \
"cc"); \
} while (0)
#endif
#define _CPU_Context_Fp_start( _base, _offset ) \
( (void *) _Addresses_Add_offset( (_base), (_offset) ) )

View File

@@ -4,7 +4,7 @@
* in an specific CPU port of RTEMS. These algorithms must be implemented
* in assembly language.
*
* COPYRIGHT (c) 1989-2010.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -319,7 +319,6 @@ done_flushing:
*
* NOTE: It is unnecessary to reload some registers.
*/
.align 4
PUBLIC(_CPU_Context_restore)
SYM(_CPU_Context_restore):
@@ -327,532 +326,32 @@ SYM(_CPU_Context_restore):
rd %psr, %o2
ba SYM(_CPU_Context_restore_heir)
mov %i0, %o1 ! in the delay slot
/*
* void _ISR_Handler()
*
* This routine provides the RTEMS interrupt management.
*
* We enter this handler from the 4 instructions in the trap table with
* the following registers assumed to be set as shown:
*
* l0 = PSR
* l1 = PC
* l2 = nPC
* l3 = trap type
*
* NOTE: By an executive defined convention, trap type is between 0 and 255 if
* it is an asynchonous trap and 256 and 511 if it is synchronous.
*/
.align 4
PUBLIC(_ISR_Handler)
SYM(_ISR_Handler):
/*
* Fix the return address for synchronous traps.
*/
andcc %l3, SPARC_SYNCHRONOUS_TRAP_BIT_MASK, %g0
! Is this a synchronous trap?
be,a win_ovflow ! No, then skip the adjustment
nop ! DELAY
mov %l1, %l6 ! save trapped pc for debug info
mov %l2, %l1 ! do not return to the instruction
add %l2, 4, %l2 ! indicated
#if defined(RTEMS_SMP)
/*
* void _CPU_Context_switch_to_first_task_smp(
* Context_Control *new_context
* )
*
* This routine is only used to switch to the first task on a
* secondary core in an SMP configuration. We do not need to
* flush all the windows and, in fact, this can be dangerous
* as they may or may not be initialized properly. So we just
* reinitialize the PSR and WIM.
*/
PUBLIC(_CPU_Context_switch_to_first_task_smp)
SYM(_CPU_Context_switch_to_first_task_smp):
save %sp, -CPU_MINIMUM_STACK_FRAME_SIZE, %sp
win_ovflow:
/*
* Save the globals this block uses.
*
* These registers are not restored from the locals. Their contents
* are saved directly from the locals into the ISF below.
*/
mov %g4, %l4 ! save the globals this block uses
mov %g5, %l5
/*
* When at a "window overflow" trap, (wim == (1 << cwp)).
* If we get here like that, then process a window overflow.
*/
rd %wim, %g4
srl %g4, %l0, %g5 ! g5 = win >> cwp ; shift count and CWP
! are LS 5 bits ; how convenient :)
cmp %g5, 1 ! Is this an invalid window?
bne dont_do_the_window ! No, then skip all this stuff
! we are using the delay slot
/*
* The following is same as a 1 position right rotate of WIM
*/
srl %g4, 1, %g5 ! g5 = WIM >> 1
sll %g4, SPARC_NUMBER_OF_REGISTER_WINDOWS-1 , %g4
! g4 = WIM << (Number Windows - 1)
or %g4, %g5, %g4 ! g4 = (WIM >> 1) |
! (WIM << (Number Windows - 1))
/*
* At this point:
*
* g4 = the new WIM
* g5 is free
*/
/*
* Since we are tinkering with the register windows, we need to
* make sure that all the required information is in global registers.
*/
save ! Save into the window
wr %g4, 0, %wim ! WIM = new WIM
nop ! delay slots
nop
nop
/*
* Now save the window just as if we overflowed to it.
*/
std %l0, [%sp + CPU_STACK_FRAME_L0_OFFSET]
std %l2, [%sp + CPU_STACK_FRAME_L2_OFFSET]
std %l4, [%sp + CPU_STACK_FRAME_L4_OFFSET]
std %l6, [%sp + CPU_STACK_FRAME_L6_OFFSET]
std %i0, [%sp + CPU_STACK_FRAME_I0_OFFSET]
std %i2, [%sp + CPU_STACK_FRAME_I2_OFFSET]
std %i4, [%sp + CPU_STACK_FRAME_I4_OFFSET]
std %i6, [%sp + CPU_STACK_FRAME_I6_FP_OFFSET]
restore
nop
dont_do_the_window:
/*
* Global registers %g4 and %g5 are saved directly from %l4 and
* %l5 directly into the ISF below.
*/
save_isf:
/*
* Save the state of the interrupted task -- especially the global
* registers -- in the Interrupt Stack Frame. Note that the ISF
* includes a regular minimum stack frame which will be used if
* needed by register window overflow and underflow handlers.
*
* REGISTERS SAME AS AT _ISR_Handler
*/
sub %fp, CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE, %sp
! make space for ISF
std %l0, [%sp + ISF_PSR_OFFSET] ! save psr, PC
st %l2, [%sp + ISF_NPC_OFFSET] ! save nPC
st %g1, [%sp + ISF_G1_OFFSET] ! save g1
std %g2, [%sp + ISF_G2_OFFSET] ! save g2, g3
std %l4, [%sp + ISF_G4_OFFSET] ! save g4, g5 -- see above
std %g6, [%sp + ISF_G6_OFFSET] ! save g6, g7
std %i0, [%sp + ISF_I0_OFFSET] ! save i0, i1
std %i2, [%sp + ISF_I2_OFFSET] ! save i2, i3
std %i4, [%sp + ISF_I4_OFFSET] ! save i4, i5
std %i6, [%sp + ISF_I6_FP_OFFSET] ! save i6/fp, i7
rd %y, %g1
st %g1, [%sp + ISF_Y_OFFSET] ! save y
st %l6, [%sp + ISF_TPC_OFFSET] ! save real trapped pc
mov %sp, %o1 ! 2nd arg to ISR Handler
/*
* Increment ISR nest level and Thread dispatch disable level.
*
* Register usage for this section:
*
* l4 = _Thread_Dispatch_disable_level pointer
* l5 = per cpu info pointer
* l6 = _Thread_Dispatch_disable_level value
* l7 = _ISR_Nest_level value
*
* NOTE: It is assumed that l4 - l7 will be preserved until the ISR
* nest and thread dispatch disable levels are unnested.
*/
sethi %hi(SYM(_Thread_Dispatch_disable_level)), %l4
ld [%l4 + %lo(SYM(_Thread_Dispatch_disable_level))], %l6
sethi %hi(_Per_CPU_Information), %l5
add %l5, %lo(_Per_CPU_Information), %l5
ld [%l5 + PER_CPU_ISR_NEST_LEVEL], %l7
add %l6, 1, %l6
st %l6, [%l4 + %lo(SYM(_Thread_Dispatch_disable_level))]
add %l7, 1, %l7
st %l7, [%l5 + PER_CPU_ISR_NEST_LEVEL]
/*
* If ISR nest level was zero (now 1), then switch stack.
*/
mov %sp, %fp
subcc %l7, 1, %l7 ! outermost interrupt handler?
bnz dont_switch_stacks ! No, then do not switch stacks
nop
ld [%l5 + PER_CPU_INTERRUPT_STACK_HIGH], %sp
dont_switch_stacks:
/*
* Make sure we have a place on the stack for the window overflow
* trap handler to write into. At this point it is safe to
* enable traps again.
*/
sub %sp, CPU_MINIMUM_STACK_FRAME_SIZE, %sp
/*
* Check if we have an external interrupt (trap 0x11 - 0x1f). If so,
* set the PIL in the %psr to mask off interrupts with lower priority.
* The original %psr in %l0 is not modified since it will be restored
* when the interrupt handler returns.
*/
mov %l0, %g5
and %l3, 0x0ff, %g4
/* This is a fix for ERC32 with FPU rev.B or rev.C */
#if defined(FPU_REVB)
subcc %g4, 0x08, %g0
be fpu_revb
subcc %g4, 0x11, %g0
bl dont_fix_pil
subcc %g4, 0x1f, %g0
bg dont_fix_pil
sll %g4, 8, %g4
and %g4, SPARC_PSR_PIL_MASK, %g4
andn %l0, SPARC_PSR_PIL_MASK, %g5
or %g4, %g5, %g5
srl %l0, 12, %g4
andcc %g4, 1, %g0
be dont_fix_pil
nop
ba,a enable_irq
fpu_revb:
srl %l0, 12, %g4 ! check if EF is set in %psr
andcc %g4, 1, %g0
be dont_fix_pil ! if FPU disabled than continue as normal
and %l3, 0xff, %g4
subcc %g4, 0x08, %g0
bne enable_irq ! if not a FPU exception then do two fmovs
set __sparc_fq, %g4
st %fsr, [%g4] ! if FQ is not empty and FQ[1] = fmovs
ld [%g4], %g4 ! than this is bug 3.14
srl %g4, 13, %g4
andcc %g4, 1, %g0
be dont_fix_pil
set __sparc_fq, %g4
std %fq, [%g4]
ld [%g4+4], %g4
set 0x81a00020, %g5
subcc %g4, %g5, %g0
bne,a dont_fix_pil2
wr %l0, SPARC_PSR_ET_MASK, %psr ! **** ENABLE TRAPS ****
ba,a simple_return
enable_irq:
or %g5, SPARC_PSR_PIL_MASK, %g4
wr %g4, SPARC_PSR_ET_MASK, %psr ! **** ENABLE TRAPS ****
nop; nop; nop
fmovs %f0, %f0
ba dont_fix_pil
fmovs %f0, %f0
.data
.global __sparc_fq
.align 8
__sparc_fq:
.word 0,0
.text
/* end of ERC32 FPU rev.B/C fix */
#else
subcc %g4, 0x11, %g0
bl dont_fix_pil
subcc %g4, 0x1f, %g0
bg dont_fix_pil
sll %g4, 8, %g4
and %g4, SPARC_PSR_PIL_MASK, %g4
andn %l0, SPARC_PSR_PIL_MASK, %g5
ba pil_fixed
or %g4, %g5, %g5
mov %psr, %g1 ! Initialize WIM
add %g1, 1, %g2
and %g2, 0x7, %g2
set 1, %g3
sll %g3, %g2, %g3
mov %g3, %wim
ba done_flushing
mov %i0, %o1 ! in the delay slot
#endif
dont_fix_pil:
or %g5, SPARC_PSR_PIL_MASK, %g5
pil_fixed:
wr %g5, SPARC_PSR_ET_MASK, %psr ! **** ENABLE TRAPS ****
dont_fix_pil2:
/*
* Vector to user's handler.
*
* NOTE: TBR may no longer have vector number in it since
* we just enabled traps. It is definitely in l3.
*/
sethi %hi(SYM(_ISR_Vector_table)), %g4
ld [%g4+%lo(SYM(_ISR_Vector_table))], %g4
and %l3, 0xFF, %g5 ! remove synchronous trap indicator
sll %g5, 2, %g5 ! g5 = offset into table
ld [%g4 + %g5], %g4 ! g4 = _ISR_Vector_table[ vector ]
! o1 = 2nd arg = address of the ISF
! WAS LOADED WHEN ISF WAS SAVED!!!
mov %l3, %o0 ! o0 = 1st arg = vector number
call %g4, 0
nop ! delay slot
/*
* Redisable traps so we can finish up the interrupt processing.
* This is a VERY conservative place to do this.
*
* NOTE: %l0 has the PSR which was in place when we took the trap.
*/
mov %l0, %psr ! **** DISABLE TRAPS ****
nop; nop; nop
/*
* Decrement ISR nest level and Thread dispatch disable level.
*
* Register usage for this section:
*
* l4 = _Thread_Dispatch_disable_level pointer
* l5 = _ISR_Nest_level pointer
* l6 = _Thread_Dispatch_disable_level value
* l7 = _ISR_Nest_level value
*/
sub %l6, 1, %l6
st %l6, [%l4 + %lo(SYM(_Thread_Dispatch_disable_level))]
st %l7, [%l5 + PER_CPU_ISR_NEST_LEVEL]
/*
* If dispatching is disabled (includes nested interrupt case),
* then do a "simple" exit.
*/
orcc %l6, %g0, %g0 ! Is dispatching disabled?
bnz simple_return ! Yes, then do a "simple" exit
! NOTE: Use the delay slot
sethi %hi(SYM(_CPU_ISR_Dispatch_disable)), %l6
! Are we dispatching from a previous ISR in the interrupted thread?
ld [%l6 + %lo(SYM(_CPU_ISR_Dispatch_disable))], %l7
orcc %l7, %g0, %g0 ! Is this thread already doing an ISR?
bnz simple_return ! Yes, then do a "simple" exit
nop
/*
* If a context switch is necessary, then do fudge stack to
* return to the interrupt dispatcher.
*/
ldub [%l5 + PER_CPU_DISPATCH_NEEDED], %l5
orcc %l5, %g0, %g0 ! Is thread switch necessary?
bz simple_return ! no, then do a simple return
nop
/*
* Invoke interrupt dispatcher.
*/
PUBLIC(_ISR_Dispatch)
SYM(_ISR_Dispatch):
! Set ISR dispatch nesting prevention flag
mov 1,%l6
sethi %hi(SYM(_CPU_ISR_Dispatch_disable)), %l5
st %l6,[%l5 + %lo(SYM(_CPU_ISR_Dispatch_disable))]
/*
* The following subtract should get us back on the interrupted
* tasks stack and add enough room to invoke the dispatcher.
* When we enable traps, we are mostly back in the context
* of the task and subsequent interrupts can operate normally.
*/
sub %fp, CPU_MINIMUM_STACK_FRAME_SIZE, %sp
or %l0, SPARC_PSR_ET_MASK, %l7 ! l7 = PSR with ET=1
mov %l7, %psr ! **** ENABLE TRAPS ****
nop
nop
nop
isr_dispatch:
call SYM(_Thread_Dispatch), 0
nop
/*
* We invoked _Thread_Dispatch in a state similar to the interrupted
* task. In order to safely be able to tinker with the register
* windows and get the task back to its pre-interrupt state,
* we need to disable interrupts disabled so we can safely tinker
* with the register windowing. In particular, the CWP in the PSR
* is fragile during this period. (See PR578.)
*/
mov 2,%g1 ! syscall (disable interrupts)
ta 0 ! syscall (disable interrupts)
/*
* While we had ISR dispatching disabled in this thread,
* did we miss anything. If so, then we need to do another
* _Thread_Dispatch before leaving this ISR Dispatch context.
*/
sethi %hi(_Per_CPU_Information), %l5
add %l5, %lo(_Per_CPU_Information), %l5
ldub [%l5 + PER_CPU_DISPATCH_NEEDED], %l7
orcc %l7, %g0, %g0 ! Is thread switch necesary?
bz allow_nest_again ! No, then clear out and return
nop
! Yes, then invoke the dispatcher
dispatchAgain:
mov 3,%g1 ! syscall (enable interrupts)
ta 0 ! syscall (enable interrupts)
ba isr_dispatch
nop
allow_nest_again:
! Zero out ISR stack nesting prevention flag
sethi %hi(SYM(_CPU_ISR_Dispatch_disable)), %l5
st %g0,[%l5 + %lo(SYM(_CPU_ISR_Dispatch_disable))]
/*
* The CWP in place at this point may be different from
* that which was in effect at the beginning of the ISR if we
* have been context switched between the beginning of this invocation
* of _ISR_Handler and this point. Thus the CWP and WIM should
* not be changed back to their values at ISR entry time. Any
* changes to the PSR must preserve the CWP.
*/
simple_return:
ld [%fp + ISF_Y_OFFSET], %l5 ! restore y
wr %l5, 0, %y
ldd [%fp + ISF_PSR_OFFSET], %l0 ! restore psr, PC
ld [%fp + ISF_NPC_OFFSET], %l2 ! restore nPC
rd %psr, %l3
and %l3, SPARC_PSR_CWP_MASK, %l3 ! want "current" CWP
andn %l0, SPARC_PSR_CWP_MASK, %l0 ! want rest from task
or %l3, %l0, %l0 ! install it later...
andn %l0, SPARC_PSR_ET_MASK, %l0
/*
* Restore tasks global and out registers
*/
mov %fp, %g1
! g1 is restored later
ldd [%fp + ISF_G2_OFFSET], %g2 ! restore g2, g3
ldd [%fp + ISF_G4_OFFSET], %g4 ! restore g4, g5
ldd [%fp + ISF_G6_OFFSET], %g6 ! restore g6, g7
ldd [%fp + ISF_I0_OFFSET], %i0 ! restore i0, i1
ldd [%fp + ISF_I2_OFFSET], %i2 ! restore i2, i3
ldd [%fp + ISF_I4_OFFSET], %i4 ! restore i4, i5
ldd [%fp + ISF_I6_FP_OFFSET], %i6 ! restore i6/fp, i7
/*
* Registers:
*
* ALL global registers EXCEPT G1 and the input registers have
* already been restored and thuse off limits.
*
* The following is the contents of the local registers:
*
* l0 = original psr
* l1 = return address (i.e. PC)
* l2 = nPC
* l3 = CWP
*/
/*
* if (CWP + 1) is an invalid window then we need to reload it.
*
* WARNING: Traps should now be disabled
*/
mov %l0, %psr ! **** DISABLE TRAPS ****
nop
nop
nop
rd %wim, %l4
add %l0, 1, %l6 ! l6 = cwp + 1
and %l6, SPARC_PSR_CWP_MASK, %l6 ! do the modulo on it
srl %l4, %l6, %l5 ! l5 = win >> cwp + 1 ; shift count
! and CWP are conveniently LS 5 bits
cmp %l5, 1 ! Is tasks window invalid?
bne good_task_window
/*
* The following code is the same as a 1 position left rotate of WIM.
*/
sll %l4, 1, %l5 ! l5 = WIM << 1
srl %l4, SPARC_NUMBER_OF_REGISTER_WINDOWS-1 , %l4
! l4 = WIM >> (Number Windows - 1)
or %l4, %l5, %l4 ! l4 = (WIM << 1) |
! (WIM >> (Number Windows - 1))
/*
* Now restore the window just as if we underflowed to it.
*/
wr %l4, 0, %wim ! WIM = new WIM
nop ! must delay after writing WIM
nop
nop
restore ! now into the tasks window
ldd [%g1 + CPU_STACK_FRAME_L0_OFFSET], %l0
ldd [%g1 + CPU_STACK_FRAME_L2_OFFSET], %l2
ldd [%g1 + CPU_STACK_FRAME_L4_OFFSET], %l4
ldd [%g1 + CPU_STACK_FRAME_L6_OFFSET], %l6
ldd [%g1 + CPU_STACK_FRAME_I0_OFFSET], %i0
ldd [%g1 + CPU_STACK_FRAME_I2_OFFSET], %i2
ldd [%g1 + CPU_STACK_FRAME_I4_OFFSET], %i4
ldd [%g1 + CPU_STACK_FRAME_I6_FP_OFFSET], %i6
! reload of sp clobbers ISF
save ! Back to ISR dispatch window
good_task_window:
mov %l0, %psr ! **** DISABLE TRAPS ****
nop; nop; nop
! and restore condition codes.
ld [%g1 + ISF_G1_OFFSET], %g1 ! restore g1
jmp %l1 ! transfer control and
rett %l2 ! go back to tasks window
/* end of file */

View File

@@ -6,7 +6,7 @@
* This include file contains information pertaining to the port of
* the executive to the SPARC processor.
*
* COPYRIGHT (c) 1989-2006.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -927,6 +927,35 @@ void _CPU_Context_restore(
Context_Control *new_context
) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
#if defined(RTEMS_SMP)
/*
* _CPU_Context_switch_to_first_task_smp
*
* This routine is only used to switch to the first task on a
* secondary core in an SMP configuration. We do not need to
* flush all the windows and, in fact, this can be dangerous
* as they may or may not be initialized properly.
*/
void _CPU_Context_switch_to_first_task_smp(
Context_Control *new_context
);
/* address space 1 is uncacheable */
#define SMP_CPU_SWAP( _address, _value, _previous ) \
do { \
register unsigned int _val = _value; \
asm volatile( \
"swapa [%2] %3, %0" : \
"=r" (_val) : \
"0" (_val), \
"r" (_address), \
"i" (1) \
); \
_previous = _val; \
} while (0)
#endif
/*
* _CPU_Context_save_fp
*

View File

@@ -0,0 +1,233 @@
/**
* @file rtems/bspsmp.h
*
* This include file defines the interface between RTEMS and an
* SMP aware BSP. These methods will only be used when RTEMS
* is configured with SMP support enabled.
*/
/*
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*
* $Id$
*/
#ifndef _RTEMS_BSPSMP_H
#define _RTEMS_BSPSMP_H
#if defined (RTEMS_SMP)
#include <rtems/score/percpu.h>
/**
* @defgroup RTEMS BSP SMP Interface
*
* This defines the interface between RTEMS and the BSP for
* SMP support. The interface uses the term primary
* to refer to the "boot" processor and secondary to refer
* to the "application" processors. Different architectures
* use different terminology.
*
* It is assumed that when the processor is reset and thus
* when RTEMS is initialized, that the primary processor is
* the only one executing. The others are assumed to be in
* a quiescent or reset state awaiting a command to come online.
*/
/**@{*/
#ifdef __cplusplus
extern "C" {
#endif
/**
* This defines the bit which indicates the interprocessor interrupt
* has been requested so that RTEMS will reschedule on this CPU
* because the currently executing thread needs to be switched out.
*/
#define RTEMS_BSP_SMP_CONTEXT_SWITCH_NECESSARY 0x01
/**
* This defines the bit which indicates the interprocessor interrupt
* has been requested so that RTEMS will reschedule on this CPU
* because the currently executing thread has been sent a signal.
*/
#define RTEMS_BSP_SMP_SIGNAL_TO_SELF 0x02
/**
* This defines the bit which indicates the interprocessor interrupt
* has been requested so that this CPU will be shutdown. This is done
* as part of rtems_executive_shutdown().
*/
#define RTEMS_BSP_SMP_SHUTDOWN 0x04
/**
* This defines the bit which indicates the interprocessor interrupt
* has been requested that the receiving CPU needs to perform a context
* switch to the first task.
*/
#define RTEMS_BSP_SMP_FIRST_TASK 0x08
#ifndef ASM
/**
* @brief Number of CPUs in SMP System
*
* This variable is set during the SMP initialization sequence to
* indicate the number of CPUs in this system.
*/
SCORE_EXTERN uint32_t _SMP_Processor_count;
/**
* @brief Maximum Number of CPUs in SMP System
*
* This variable is set during the SMP initialization sequence to
* indicate the Maximum number of CPUs in this system.
*/
extern uint32_t rtems_smp_maximum_processors;
/**
* @brief Initialize Secondary CPUs
*
* This method is invoked by RTEMS during initialization to bring the
* secondary CPUs out of reset.
*
* @param [in] maximum is the maximum number of CPU cores that RTEMS
* can handle
*
* @return This method returns the number of cores available in the
* system.
*/
int bsp_smp_initialize(
int maximum
);
/**
* @brief Obtain Current CPU Index
*
* This method is invoked by RTEMS when it needs to know the index
* of the CPU it is executing on.
*
* @return This method returns the current CPU index.
*/
int bsp_smp_processor_id(void) RTEMS_COMPILER_PURE_ATTRIBUTE;
/**
* @brief Make Request of Another CPU
*
* This method is invoked by RTEMS when it needs to make a request
* of another CPU. It should be implemented using some type of
* interprocessor interrupt.
*
* @param [in] cpu is the target CPU for this request.
* @param [in] message is message to send
*/
void bsp_smp_send_message(
int cpu,
uint32_t message
);
/**
* @brief Make Request of Others CPUs
*
* This method is invoked by RTEMS when it needs to make a request
* of the other CPUs. It should be implemented using some type of
* interprocessor interrupt. CPUs not including the originating
* CPU should receive the message.
*
* @param [in] message is message to send
*/
void bsp_smp_broadcast_message(
uint32_t message
);
/**
* @brief Generate a Interprocessor Broadcast Interrupt
*
* This method is invoked when RTEMS wants to let all of the other
* CPUs know that it has sent them message. CPUs not including
* the originating CPU should receive the interrupt.
*
* @note On CPUs without the capability to generate a broadcast
* to all other CPUs interrupt, this can be implemented by
* a loop of sending interrupts to specific CPUs.
*/
void bsp_smp_broadcast_interrupt(void);
/**
* @brief Generate a Interprocessor Interrupt
*
* This method is invoked by RTEMS to let @a cpu know that it
* has sent it a message.
*
* @param [in] cpu is the recipient CPU
*/
void bsp_smp_interrupt_cpu(
int cpu
);
/**
* @brief Obtain CPU Core Number
*
* This method is invoked by RTEMS when it needs to know which core
* number it is executing on. This is used when it needs to perform
* some action or bookkeeping and needs to distinguish itself from
* the other cores. For example, it may need to realize it needs to
* preempt a thread on another node.
*
* @return This method returns the Id of the current CPU core.
*/
int bsp_smp_processor_id( void );
/**
* This method is invoked by @ref rtems_smp_secondary_cpu_initialize
* to allow the BSP to perform some intialization. The @a cpu
* parameter indicates the secondary CPU that the code is executing on
* and is currently being initialized.
*
* @note This is called by @ref rtems_smp_secondary_cpu_initialize.
*/
void bsp_smp_secondary_cpu_initialize(int cpu);
/**
* This method is the C entry point which secondary CPUs should
* arrange to call. It performs OS initialization for the secondary
* CPU and coordinates bring it to a useful state.
*
* @note This is provided by RTEMS.
*/
void rtems_smp_secondary_cpu_initialize(void);
/**
* This method is invoked by the BSP to initialize the per CPU structure
* for the specified @a cpu while it is bringing the secondary CPUs
* out of their reset state and into a useful state.
*
* @param [in] cpu indicates the CPU whose per cpu structure is to
* be initialized.
*/
void rtems_smp_initialize_per_cpu(int cpu);
/**
* This is the method called by the BSP's interrupt handler
* to process the incoming interprocessor request.
*/
void rtems_smp_process_interrupt(void);
#endif
#ifdef __cplusplus
}
#endif
#else
#define bsp_smp_processor_id() 0
#endif
#endif
/* end of include file */

View File

@@ -135,6 +135,19 @@
#define RTEMS_COMPILER_NO_RETURN_ATTRIBUTE
#endif
/**
* The following defines a compiler specific attribute which informs
* the compiler that the method has no effect except the return value
* and that the return value depends only on parameters and/or global
* variables.
*/
#ifdef __GNUC__
#define RTEMS_COMPILER_PURE_ATTRIBUTE \
__attribute__ ((pure))
#else
#define RTEMS_COMPILER_PURE_ATTRIBUTE
#endif
/**
* Instructs the compiler to issue a warning whenever a variable or function
* with this attribute will be used.

View File

@@ -101,6 +101,23 @@ extern "C" {
#define _Context_Restart_self( _the_context ) \
_CPU_Context_Restart_self( _the_context )
#if defined(RTEMS_SMP)
/*
* @brief Switch to First Task on Secondary Core
*
* This routine is only used to switch to the first task on a
* secondary core in an SMP configuration. Since the switch
* to the first task is done from an interrupt handler, this
* may be different from simply restarting the currently running
* task.
*
* @param[in] _the_context is the context of the first thread to
* run on this core
*/
#define _Context_Switch_to_first_task_smp( _the_context ) \
_CPU_Context_switch_to_first_task_smp( _the_context )
#endif
/**
* @brief Return Starting Address of Floating Point Context
*

View File

@@ -6,14 +6,14 @@
*/
/*
* COPYRIGHT (c) 1989-2010.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*
* $Id$
* $Id$
*/
#ifndef _RTEMS_PERCPU_H
@@ -23,6 +23,11 @@
#ifdef ASM
#include <rtems/asm.h>
#else
#if defined(RTEMS_SMP)
#include <rtems/score/smplock.h>
#endif
#include <rtems/bspsmp.h>
#endif
/**
@@ -41,11 +46,35 @@ extern "C" {
#endif
#ifndef ASM
/**
* This forward defines the Thread Control Block structure.
*/
#ifndef __THREAD_CONTROL_DEFINED__
#define __THREAD_CONTROL_DEFINED__
typedef struct Thread_Control_struct Thread_Control;
#endif
#if (CPU_ALLOCATE_INTERRUPT_STACK == FALSE) && defined(RTEMS_SMP)
#error "RTEMS must allocate per CPU interrupt stack for SMP"
#endif
typedef enum {
/**
* This defines the constant used to indicate that the cpu code is in
* its initial powered up start.
*/
RTEMS_BSP_SMP_CPU_INITIAL_STATE = 1,
/**
* This defines the constant used to indicate that the cpu code has
* completed basic initialization and awaits further commands.
*/
RTEMS_BSP_SMP_CPU_INITIALIZED = 2,
/**
* This defines the constant used to indicate that the cpu code has
* shut itself down.
*/
RTEMS_BSP_SMP_CPU_SHUTDOWN = 3
} bsp_smp_cpu_state;
/**
* @brief Per CPU Core Structure
@@ -53,6 +82,22 @@ typedef struct Thread_Control_struct Thread_Control;
* This structure is used to hold per core state information.
*/
typedef struct {
#if defined(RTEMS_SMP)
/** This element is used to lock this structure */
SMP_lock_Control lock;
/** This indicates that the CPU is online. */
uint32_t state;
/**
* This is the request for the interrupt.
*
* @note This may become a chain protected by atomic instructions.
*/
uint32_t message;
#endif
#if (CPU_ALLOCATE_INTERRUPT_STACK == TRUE) || \
(CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE)
/**
@@ -69,7 +114,6 @@ typedef struct {
#endif
/**
*
* This contains the current interrupt nesting level on this
* CPU.
*/
@@ -91,6 +135,14 @@ typedef struct {
#endif
#ifdef ASM
#if defined(RTEMS_SMP)
#define PER_CPU_LOCK 0
#define PER_CPU_STATE (1 * __RTEMS_SIZEOF_VOID_P__)
#define PER_CPU_MESSAGE (2 * __RTEMS_SIZEOF_VOID_P__)
#define PER_CPU_END_SMP (3 * __RTEMS_SIZEOF_VOID_P__)
#else
#define PER_CPU_END_SMP 0
#endif
#if (CPU_ALLOCATE_INTERRUPT_STACK == TRUE) || \
(CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE)
@@ -98,14 +150,13 @@ typedef struct {
* If this CPU target lets RTEMS allocates the interrupt stack, then
* we need to have places in the per cpu table to hold them.
*/
#define PER_CPU_INTERRUPT_STACK_LOW 0
#define PER_CPU_INTERRUPT_STACK_HIGH (1 * __RTEMS_SIZEOF_VOID_P__)
#define PER_CPU_END_STACK (2 * __RTEMS_SIZEOF_VOID_P__)
#define PER_CPU_INTERRUPT_STACK_LOW PER_CPU_END_SMP
#define PER_CPU_INTERRUPT_STACK_HIGH \
PER_CPU_INTERRUPT_STACK_LOW + (1 * __RTEMS_SIZEOF_VOID_P__)
#define PER_CPU_END_STACK \
PER_CPU_INTERRUPT_STACK_HIGH + (1 * __RTEMS_SIZEOF_VOID_P__)
#else
/*
* Otherwise, there are no interrupt stack addresses in the per CPU table.
*/
#define PER_CPU_END_STACK 0
#define PER_CPU_END_STACK PER_CPU_END_SMP
#endif
/*
@@ -147,20 +198,52 @@ typedef struct {
*
* This is an array of per CPU core information.
*/
extern Per_CPU_Control _Per_CPU_Information;
extern Per_CPU_Control _Per_CPU_Information[];
#if defined(RTEMS_SMP)
/**
* @brief Set of Pointers to Per CPU Core Information
*
* This is an array of pointers to each CPU's per CPU data structure.
* It should be simpler to retrieve this pointer in assembly language
* that to calculate the array offset.
*/
extern Per_CPU_Control *_Per_CPU_Information_p[];
/**
* @brief Initialize SMP Handler
*
* This method initialize the SMP Handler.
*/
void _SMP_Handler_initialize(void);
/**
* @brief Allocate and Initialize Per CPU Structures
*
* This method allocates and initialize the per CPU structure.
*/
void _Per_CPU_Initialize(void);
#endif
/*
* On an SMP system, these macros dereference the CPU core number.
* But on a non-SMP system, these macros are simple references.
* On a non SMP system, the bsp_smp_processor_id is defined to 0.
* Thus when built for non-SMP, there should be no performance penalty.
*/
#define _Thread_Heir _Per_CPU_Information.heir
#define _Thread_Executing _Per_CPU_Information.executing
#define _Thread_Idle _Per_CPU_Information.idle
#define _ISR_Nest_level _Per_CPU_Information.isr_nest_level
#define _CPU_Interrupt_stack_low _Per_CPU_Information.interrupt_stack_low
#define _CPU_Interrupt_stack_high _Per_CPU_Information.interrupt_stack_high
#define _Thread_Dispatch_necessary _Per_CPU_Information.dispatch_necessary
#define _Thread_Heir \
_Per_CPU_Information[bsp_smp_processor_id()].heir
#define _Thread_Executing \
_Per_CPU_Information[bsp_smp_processor_id()].executing
#define _Thread_Idle \
_Per_CPU_Information[bsp_smp_processor_id()].idle
#define _ISR_Nest_level \
_Per_CPU_Information[bsp_smp_processor_id()].isr_nest_level
#define _CPU_Interrupt_stack_low \
_Per_CPU_Information[bsp_smp_processor_id()].interrupt_stack_low
#define _CPU_Interrupt_stack_high \
_Per_CPU_Information[bsp_smp_processor_id()].interrupt_stack_high
#define _Thread_Dispatch_necessary \
_Per_CPU_Information[bsp_smp_processor_id()].dispatch_necessary
#endif /* ASM */

View File

@@ -0,0 +1,95 @@
/**
* @file rtems/score/smplock.h
*
* This include file defines the interface for atomic locks
* which can be used in multiprocessor configurations.
*/
/*
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*
* $Id$
*/
#ifndef _RTEMS_LOCK_H
#define _RTEMS_LOCK_H
#include <rtems/score/isr.h>
/**
* @defgroup RTEMS Lock Interface
*
*/
/**@{*/
#ifdef __cplusplus
extern "C" {
#endif
/**
* This type is used to lock elements for atomic access.
*
* @note This type may move to RTEMS.
*/
typedef volatile uint32_t SMP_lock_Control;
/**
* @brief Initialize a Lock
*
* This method is used to initialize the lock at @a lock.
*
* @param [in] lock is the address of the lock to obtain.
*
* @note This lock may be "too low" here. It may need to move
* out of the BSP area.
*/
void _SMP_lock_Spinlock_Initialize(
SMP_lock_Control *lock
);
/**
* @brief Obtain a Lock
*
* This method is used to obtain the lock at @a lock.
*
* @param [in] lock is the address of the lock to obtain.
*
* @return This method returns with processor interrupts disabled.
* The previous level is returned.
*
* @note This lock may be "too low" here. It may need to move
* out of the BSP area.
*/
ISR_Level _SMP_lock_Spinlock_Obtain(
SMP_lock_Control *lock
);
/**
* @brief Release a Lock
*
* This method is used to release the lock at @a lock.
*
* @param [in] lock is the address of the lock to obtain.
*
* @note This lock may be "too low" here. It may need to move
* out of the BSP area.
*/
void _SMP_lock_Spinlock_Release(
SMP_lock_Control *lock,
ISR_Level level
);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif
/* end of include file */

View File

@@ -30,6 +30,10 @@ $(PROJECT_INCLUDE)/rtems/seterr.h: include/rtems/seterr.h $(PROJECT_INCLUDE)/rte
$(INSTALL_DATA) $< $(PROJECT_INCLUDE)/rtems/seterr.h
PREINSTALL_FILES += $(PROJECT_INCLUDE)/rtems/seterr.h
$(PROJECT_INCLUDE)/rtems/bspsmp.h: include/rtems/bspsmp.h $(PROJECT_INCLUDE)/rtems/$(dirstamp)
$(INSTALL_DATA) $< $(PROJECT_INCLUDE)/rtems/bspsmp.h
PREINSTALL_FILES += $(PROJECT_INCLUDE)/rtems/bspsmp.h
$(PROJECT_INCLUDE)/rtems/score/$(dirstamp):
@$(MKDIR_P) $(PROJECT_INCLUDE)/rtems/score
@: > $(PROJECT_INCLUDE)/rtems/score/$(dirstamp)
@@ -187,6 +191,10 @@ $(PROJECT_INCLUDE)/rtems/score/basedefs.h: include/rtems/score/basedefs.h $(PROJ
$(INSTALL_DATA) $< $(PROJECT_INCLUDE)/rtems/score/basedefs.h
PREINSTALL_FILES += $(PROJECT_INCLUDE)/rtems/score/basedefs.h
$(PROJECT_INCLUDE)/rtems/score/smplock.h: include/rtems/score/smplock.h $(PROJECT_INCLUDE)/rtems/score/$(dirstamp)
$(INSTALL_DATA) $< $(PROJECT_INCLUDE)/rtems/score/smplock.h
PREINSTALL_FILES += $(PROJECT_INCLUDE)/rtems/score/smplock.h
if HAS_PTHREADS
$(PROJECT_INCLUDE)/rtems/score/corespinlock.h: include/rtems/score/corespinlock.h $(PROJECT_INCLUDE)/rtems/score/$(dirstamp)
$(INSTALL_DATA) $< $(PROJECT_INCLUDE)/rtems/score/corespinlock.h

View File

@@ -1,5 +1,5 @@
/*
* COPYRIGHT (c) 1989-2010.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -19,11 +19,46 @@
#include <rtems/score/wkspace.h>
#include <rtems/score/wkspace.h>
#include <rtems/config.h>
#include <rtems/bspsmp.h>
#include <string.h>
/*
* On single core systems, we can efficiently directly access a single
* statically allocated per cpu structure. And the fields are initialized
* as individual elements just like it has always been done.
*/
Per_CPU_Control _Per_CPU_Information;
#if defined(RTEMS_SMP)
void _SMP_Handler_initialize(void)
{
int cpu;
size_t size;
uintptr_t ptr;
/*
* Initialize per CPU structures.
*/
size = (_SMP_Processor_count) * sizeof(Per_CPU_Control);
memset( _Per_CPU_Information, '\0', size );
/*
* Initialize per cpu pointer table
*/
size = Configuration.interrupt_stack_size;
_Per_CPU_Information_p[0] = &_Per_CPU_Information[0];
for (cpu=1 ; cpu < _SMP_Processor_count ; cpu++ ) {
Per_CPU_Control *p = &_Per_CPU_Information[cpu];
_Per_CPU_Information_p[cpu] = p;
p->interrupt_stack_low = _Workspace_Allocate_or_fatal_error( size );
ptr = (uintptr_t) _Addresses_Add_offset( p->interrupt_stack_low, size );
ptr &= ~CPU_STACK_ALIGNMENT;
p->interrupt_stack_high = (void *)ptr;
p->state = RTEMS_BSP_SMP_CPU_INITIAL_STATE;
RTEMS_COMPILER_MEMORY_BARRIER();
}
}
#else
/*
* On single core systems, we can efficiently directly access a single
* statically allocated per cpu structure. And the fields are initialized
* as individual elements just like it has always been done.
*/
Per_CPU_Control _Per_CPU_Information[1];
#endif

153
cpukit/score/src/smp.c Normal file
View File

@@ -0,0 +1,153 @@
/*
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*
* $Id$
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include <rtems/system.h>
#include <rtems/bspsmp.h>
#include <rtems/score/thread.h>
#if defined(RTEMS_SMP)
#define SMP_DEBUG
#if defined(SMP_DEBUG)
#include <rtems/bspIo.h>
#endif
void rtems_smp_run_first_task(int cpu)
{
Thread_Control *heir;
/*
* This CPU has an heir thread so we need to dispatch it.
*/
heir = _Thread_Heir;
/*
* This is definitely a hack until we have SMP scheduling. Since there
* is only one executing and heir right now, we have to fake this out.
*/
_Thread_Dispatch_disable_level = 1;
_Thread_Executing = heir;
_CPU_Context_switch_to_first_task_smp( &heir->Registers );
}
void rtems_smp_secondary_cpu_initialize(void)
{
int cpu;
cpu = bsp_smp_processor_id();
bsp_smp_secondary_cpu_initialize(cpu);
#if defined(SMP_DEBUG)
printk( "Made it to %d -- ", cpu );
#endif
/*
* Inform the primary CPU that this secondary CPU is initialized
* and ready to dispatch to the first thread it is supposed to
* execute when the primary CPU is ready.
*/
_Per_CPU_Information[cpu].state = RTEMS_BSP_SMP_CPU_INITIALIZED;
/*
* HACK: Should not have to enable interrupts in real system here.
* It should happen as part of switching to the first task.
*/
_Per_CPU_Information[cpu].isr_nest_level = 1;
_ISR_Set_level( 0 );
while(1) ;
}
void rtems_smp_process_interrupt(void)
{
int cpu;
uint32_t message;
ISR_Level level;
cpu = bsp_smp_processor_id();
level = _SMP_lock_Spinlock_Obtain( &_Per_CPU_Information[cpu].lock );
message = _Per_CPU_Information[cpu].message;
_Per_CPU_Information[cpu].message &= ~message;
_SMP_lock_Spinlock_Release( &_Per_CPU_Information[cpu].lock, level );
#if defined(SMP_DEBUG)
{
void *sp = __builtin_frame_address(0);
if ( !(message & RTEMS_BSP_SMP_SHUTDOWN) )
printk( "ISR on CPU %d -- (0x%02x) (0x%p)\n", cpu, message, sp );
printk( "Dispatch level %d\n", _Thread_Dispatch_disable_level );
}
#endif
if ( message & RTEMS_BSP_SMP_FIRST_TASK ) {
_Per_CPU_Information[cpu].isr_nest_level = 0;
_Per_CPU_Information[cpu].message = 0;
_Per_CPU_Information[cpu].state = RTEMS_BSP_SMP_CPU_INITIALIZED;
rtems_smp_run_first_task(cpu);
/* does not return */
}
if ( message & RTEMS_BSP_SMP_SHUTDOWN ) {
ISR_Level level;
_Thread_Dispatch_disable_level = 0;
_Per_CPU_Information[cpu].isr_nest_level = 0;
_Per_CPU_Information[cpu].state = RTEMS_BSP_SMP_CPU_SHUTDOWN;
_ISR_Disable( level );
while(1)
;
/* does not continue past here */
}
if ( message & RTEMS_BSP_SMP_CONTEXT_SWITCH_NECESSARY ) {
printk( "switch needed\n" );
_Per_CPU_Information[cpu].dispatch_necessary = true;
}
}
void rtems_smp_send_message(
int cpu,
uint32_t message
)
{
ISR_Level level;
level = _SMP_lock_Spinlock_Obtain( &_Per_CPU_Information[cpu].lock );
_Per_CPU_Information[cpu].message |= message;
_SMP_lock_Spinlock_Release( &_Per_CPU_Information[cpu].lock, level );
bsp_smp_interrupt_cpu( cpu );
}
void rtems_smp_broadcast_message(
uint32_t message
)
{
int dest_cpu;
int cpu;
ISR_Level level;
cpu = bsp_smp_processor_id();
for ( dest_cpu=0 ; dest_cpu < _SMP_Processor_count; dest_cpu++ ) {
if ( cpu == dest_cpu )
continue;
level = _SMP_lock_Spinlock_Obtain( &_Per_CPU_Information[cpu].lock );
_Per_CPU_Information[dest_cpu].message |= message;
_SMP_lock_Spinlock_Release( &_Per_CPU_Information[cpu].lock, level );
}
bsp_smp_broadcast_interrupt();
}
#endif

View File

@@ -0,0 +1,49 @@
/*
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*
* $Id$
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include <rtems/system.h>
#include <rtems/score/smplock.h>
void _SMP_lock_Spinlock_Initialize(
SMP_lock_Control *lock
)
{
*lock = 0;
}
ISR_Level _SMP_lock_Spinlock_Obtain(
SMP_lock_Control *lock
)
{
ISR_Level level;
uint32_t value = 1;
uint32_t previous;
/* Note: Disable provides an implicit memory barrier. */
_ISR_Disable( level );
do {
SMP_CPU_SWAP( lock, value, previous );
} while (previous == 1);
return level;
}
void _SMP_lock_Spinlock_Release(
SMP_lock_Control *lock,
ISR_Level level
)
{
*lock = 0;
_ISR_Enable( level );
}

View File

@@ -2,7 +2,7 @@
* Thread Handler
*
*
* COPYRIGHT (c) 1989-2008.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -33,8 +33,11 @@
#include <rtems/score/wkspace.h>
#include <rtems/config.h>
/*PAGE
*
#if defined(RTEMS_SMP)
#include <rtems/bspsmp.h>
#endif
/*
* _Thread_Handler_initialization
*
* This routine initializes all thread manager related data structures.
@@ -48,6 +51,7 @@ void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice;
uint32_t maximum_extensions;
uint32_t maximum_internal_threads;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies;
#endif
@@ -80,32 +84,40 @@ void _Thread_Handler_initialization(void)
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
#if defined(RTEMS_MULTIPROCESSING)
_Thread_MP_Handler_initialization( maximum_proxies );
#endif
#if defined(RTEMS_MULTIPROCESSING)
_Thread_MP_Handler_initialization( maximum_proxies );
#endif
/*
* Initialize this class of objects.
* Initialize the internal class of threads. We need an IDLE thread
* per CPU in an SMP system. In addition, if this is a loosely
* coupled multiprocessing system, account for the MPCI Server Thread.
*/
#if defined(RTEMS_SMP)
maximum_internal_threads = rtems_smp_maximum_processors;
#else
maximum_internal_threads = 1;
#endif
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
&_Thread_Internal_information,
OBJECTS_INTERNAL_API,
OBJECTS_INTERNAL_THREADS,
#if defined(RTEMS_MULTIPROCESSING)
( _System_state_Is_multiprocessing ) ? 2 : 1,
#else
1,
#endif
maximum_internal_threads,
sizeof( Thread_Control ),
/* size of this object's control block */
false, /* true if names for this object are strings */
8 /* maximum length of each object's name */
#if defined(RTEMS_MULTIPROCESSING)
,
false, /* true if this is a global object class */
NULL /* Proxy extraction support callout */
#endif
#if defined(RTEMS_MULTIPROCESSING)
,
false, /* true if this is a global object class */
NULL /* Proxy extraction support callout */
#endif
);
}

View File

@@ -2,7 +2,7 @@
* Thread Handler
*
*
* COPYRIGHT (c) 1989-2008.
* COPYRIGHT (c) 1989-2011.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
@@ -30,24 +30,24 @@
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <rtems/config.h>
#include <rtems/bspsmp.h>
/*PAGE
*
* _Thread_Create_idle
*/
void _Thread_Create_idle( void )
static inline void _Thread_Create_idle_helper(
uint32_t name_u32,
int cpu
)
{
Objects_Name name;
Objects_Name name;
Thread_Control *idle;
name.name_u32 = _Objects_Build_name( 'I', 'D', 'L', 'E' );
name.name_u32 = name_u32;
/*
* The entire workspace is zeroed during its initialization. Thus, all
* fields not explicitly assigned were explicitly zeroed by
* _Workspace_Initialization.
*/
_Thread_Idle = _Thread_Internal_allocate();
idle = _Thread_Internal_allocate();
/*
* This is only called during initialization and we better be sure
@@ -58,7 +58,7 @@ void _Thread_Create_idle( void )
_Thread_Initialize(
&_Thread_Internal_information,
_Thread_Idle,
idle,
NULL, /* allocate the stack */
_Stack_Ensure_minimum( Configuration.idle_task_stack_size ),
CPU_IDLE_TASK_IS_FP,
@@ -76,15 +76,31 @@ void _Thread_Create_idle( void )
* WARNING!!! This is necessary to "kick" start the system and
* MUST be done before _Thread_Start is invoked.
*/
_Thread_Heir =
_Thread_Executing = _Thread_Idle;
_Per_CPU_Information[ cpu ].idle =
_Per_CPU_Information[ cpu ].heir =
_Per_CPU_Information[ cpu ].executing = idle;
_Thread_Start(
_Thread_Idle,
idle,
THREAD_START_NUMERIC,
Configuration.idle_task,
NULL,
0
);
}
void _Thread_Create_idle( void )
{
#if defined(RTEMS_SMP)
int cpu;
for ( cpu=0 ; cpu < _SMP_Processor_count ; cpu++ ) {
_Thread_Create_idle_helper(
_Objects_Build_name( 'I', 'D', 'L', 'E' ),
cpu
);
}
#else
_Thread_Create_idle_helper(_Objects_Build_name( 'I', 'D', 'L', 'E' ), 0);
#endif
}