Move API description text from rawapi.txt to doxygen docs

This commit is contained in:
Dirk Ziegelmeier
2017-10-20 18:44:58 +02:00
parent a8edee8268
commit 33ce04019d
3 changed files with 102 additions and 105 deletions

View File

@@ -2,8 +2,84 @@
* @defgroup lwip lwIP
*
* @defgroup infrastructure Infrastructure
*
* @defgroup api APIs
* lwIP provides three Application Program's Interfaces (APIs) for programs
* to use for communication with the TCP/IP code:
* - low-level "core" / "callback" or @ref callbackstyle_api.
* - higher-level @ref sequential_api.
* - BSD-style @ref socket.
*
* The raw TCP/IP interface allows the application program to integrate
* better with the TCP/IP code. Program execution is event based by
* having callback functions being called from within the TCP/IP
* code. The TCP/IP code and the application program both run in the same
* thread. The sequential API has a much higher overhead and is not very
* well suited for small systems since it forces a multithreaded paradigm
* on the application.
*
* The raw TCP/IP interface is not only faster in terms of code execution
* time but is also less memory intensive. The drawback is that program
* development is somewhat harder and application programs written for
* the raw TCP/IP interface are more difficult to understand. Still, this
* is the preferred way of writing applications that should be small in
* code size and memory usage.
*
* All APIs can be used simultaneously by different application
* programs. In fact, the sequential API is implemented as an application
* program using the raw TCP/IP interface.
*
* Do not confuse the lwIP raw API with raw Ethernet or IP sockets.
* The former is a way of interfacing the lwIP network stack (including
* TCP and UDP), the latter refers to processing raw Ethernet or IP data
* instead of TCP connections or UDP packets.
*
* Raw API applications may never block since all packet processing
* (input and output) as well as timer processing (TCP mainly) is done
* in a single execution context.
*
* Multithreading
* --------------
* lwIP started targeting single-threaded environments. When adding multi-
* threading support, instead of making the core thread-safe, another
* approach was chosen: there is one main thread running the lwIP core
* (also known as the "tcpip_thread"). When running in a multithreaded
* environment, raw API functions MUST only be called from the core thread
* since raw API functions are not protected from concurrent access (aside
* from pbuf- and memory management functions). Application threads using
* the sequential- or socket API communicate with this main thread through
* message passing.
*
* As such, the list of functions that may be called from
* other threads or an ISR is very limited! Only functions
* from these API header files are thread-safe:
* - api.h
* - netbuf.h
* - netdb.h
* - netifapi.h
* - pppapi.h
* - sockets.h
* - sys.h
*
* Additionaly, memory (de-)allocation functions may be
* called from multiple threads (not ISR!) with NO_SYS=0
* since they are protected by SYS_LIGHTWEIGHT_PROT and/or
* semaphores.
*
* Netconn or Socket API functions are thread safe against the
* core thread but they are not reentrant at the control block
* granularity level. That is, a UDP or TCP control block must
* not be shared among multiple threads without proper locking.
*
* If SYS_LIGHTWEIGHT_PROT is set to 1 and
* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT is set to 1,
* pbuf_free() may also be called from another thread or
* an ISR (since only then, mem_free - for PBUF_RAM - may
* be called from an ISR: otherwise, the HEAP is only
* protected by semaphores).
*
* @defgroup callbackstyle_api Callback-style APIs
* @defgroup callbackstyle_api "raw" APIs
* @ingroup api
* Non thread-safe APIs, callback style for maximum performance and minimum
* memory footprint.
* Program execution is driven by callbacks functions, which are then
@@ -18,10 +94,35 @@
* argument. Also, in order to be able to keep program specific state,
* the callback functions are called with a program specified argument
* that is independent of the TCP/IP state.
* The raw API (sometimes called native API) is an event-driven API designed
* to be used without an operating system that implements zero-copy send and
* receive. This API is also used by the core stack for interaction between
* the various protocols. It is the only API available when running lwIP
* without an operating system.
*
* @defgroup sequential_api Sequential-style APIs
* @ingroup api
* Sequential-style APIs, blocking functions. More overhead, but can be called
* from any thread except TCPIP thread.
* The sequential API provides a way for ordinary, sequential, programs
* to use the lwIP stack. It is quite similar to the BSD socket API. The
* model of execution is based on the blocking open-read-write-close
* paradigm. Since the TCP/IP stack is event based by nature, the TCP/IP
* code and the application program must reside in different execution
* contexts (threads).
*
* @defgroup socket Socket API
* @ingroup api
* BSD-style socket API.\n
* Thread-safe, to be called from non-TCPIP threads only.\n
* Can be activated by defining @ref LWIP_SOCKET to 1.\n
* Header is in posix/sys/socket.h\n
* The socket API is a compatibility API for existing applications,
* currently it is built on top of the sequential API. It is meant to
* provide all functions needed to run socket API applications running
* on other platforms (e.g. unix / windows etc.). However, due to limitations
* in the specification of this API, there might be incompatibilities
* that require small modifications of existing programs.
*
* @defgroup netifs NETIFs
*