Files
littlefs/lfs.c
Christopher Haster e5609c98ec Renamed bsprout -> bmoss, bleaf -> bsprout
I just really don't like saying bleaf. Also I think the term moss
describes inlined data a bit better.
2025-01-28 14:41:45 -06:00

19994 lines
617 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "lfs.h"
#include "lfs_util.h"
//// TODO do we still need these?
//// some constants used throughout the code
//#define LFS_BLOCK_NULL ((lfs_block_t)-1)
//#define LFS_BLOCK_INLINE ((lfs_block_t)-2)
// TODO do we still need these?
enum {
LFS_OK_RELOCATED = 1,
LFS_OK_DROPPED = 2,
LFS_OK_ORPHANED = 3,
};
// internally used disk-comparison enum
//
// note LT < EQ < GT
enum lfs_scmp {
LFS_CMP_LT = 0, // disk < query
LFS_CMP_EQ = 1, // disk = query
LFS_CMP_GT = 2, // disk > query
};
typedef int lfs_scmp_t;
// this is just a hint that the function returns a bool + err union
typedef int lfs_sbool_t;
/// Simple bd wrappers (asserts go here) ///
static int lfsr_bd_read__(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
void *buffer, lfs_size_t size) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
// must be aligned
LFS_ASSERT(off % lfs->cfg->read_size == 0);
LFS_ASSERT(size % lfs->cfg->read_size == 0);
// bd read
int err = lfs->cfg->read(lfs->cfg, block, off, buffer, size);
LFS_ASSERT(err <= 0);
if (err) {
LFS_DEBUG("Bad read 0x%"PRIx32".%"PRIx32" %"PRIu32" (%d)",
block, off, size, err);
return err;
}
return 0;
}
static int lfsr_bd_prog__(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
const void *buffer, lfs_size_t size) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
// must be aligned
LFS_ASSERT(off % lfs->cfg->prog_size == 0);
LFS_ASSERT(size % lfs->cfg->prog_size == 0);
// bd prog
int err = lfs->cfg->prog(lfs->cfg, block, off, buffer, size);
LFS_ASSERT(err <= 0);
if (err) {
LFS_DEBUG("Bad prog 0x%"PRIx32".%"PRIx32" %"PRIu32" (%d)",
block, off, size, err);
return err;
}
return 0;
}
static int lfsr_bd_erase__(lfs_t *lfs, lfs_block_t block) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
// bd erase
int err = lfs->cfg->erase(lfs->cfg, block);
LFS_ASSERT(err <= 0);
if (err) {
LFS_DEBUG("Bad erase 0x%"PRIx32" (%d)",
block, err);
return err;
}
return 0;
}
static int lfsr_bd_sync__(lfs_t *lfs) {
// bd sync
int err = lfs->cfg->sync(lfs->cfg);
LFS_ASSERT(err <= 0);
if (err) {
LFS_DEBUG("Bad sync (%d)", err);
return err;
}
return 0;
}
/// Caching block device operations ///
static inline void lfsr_bd_droprcache(lfs_t *lfs) {
lfs->rcache.size = 0;
}
static inline void lfsr_bd_droppcache(lfs_t *lfs) {
lfs->pcache.size = 0;
}
// caching read that lends you a buffer
//
// note hint has two conveniences:
// 0 => minimal caching
// -1 => maximal caching
static int lfsr_bd_readnext(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
lfs_size_t size,
const uint8_t **buffer_, lfs_size_t *size_) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t hint_ = lfs_max(hint, size); // make sure hint >= size
while (true) {
lfs_size_t d = hint_;
// already in pcache?
if (block == lfs->pcache.block
&& off < lfs->pcache.off + lfs->pcache.size) {
if (off >= lfs->pcache.off) {
*buffer_ = &lfs->pcache.buffer[off-lfs->pcache.off];
*size_ = lfs_min(
lfs_min(d, size),
lfs->pcache.size - (off-lfs->pcache.off));
return 0;
}
// pcache takes priority
d = lfs_min(d, lfs->pcache.off - off);
}
// already in rcache?
if (block == lfs->rcache.block
&& off < lfs->rcache.off + lfs->rcache.size
&& off >= lfs->rcache.off) {
*buffer_ = &lfs->rcache.buffer[off-lfs->rcache.off];
*size_ = lfs_min(
lfs_min(d, size),
lfs->rcache.size - (off-lfs->rcache.off));
return 0;
}
// drop rcache in case read fails
lfsr_bd_droprcache(lfs);
// load into rcache, above conditions can no longer fail
//
// note it's ok if we overlap the pcache a bit, pcache always
// takes priority until flush, which updates the rcache
lfs_size_t off__ = lfs_aligndown(off, lfs->cfg->read_size);
lfs_size_t size__ = lfs_alignup(
lfs_min(
// watch out for overflow when hint_=-1!
(off-off__) + lfs_min(
d,
lfs->cfg->block_size - off),
lfs->cfg->rcache_size),
lfs->cfg->read_size);
int err = lfsr_bd_read__(lfs, block, off__,
lfs->rcache.buffer, size__);
if (err) {
return err;
}
lfs->rcache.block = block;
lfs->rcache.off = off__;
lfs->rcache.size = size__;
}
}
// caching read
//
// note hint has two conveniences:
// 0 => minimal caching
// -1 => maximal caching
static int lfsr_bd_read(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
void *buffer, lfs_size_t size) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t off_ = off;
lfs_size_t hint_ = lfs_max(hint, size); // make sure hint >= size
uint8_t *buffer_ = buffer;
lfs_size_t size_ = size;
while (size_ > 0) {
lfs_size_t d = hint_;
// already in pcache?
if (block == lfs->pcache.block
&& off_ < lfs->pcache.off + lfs->pcache.size) {
if (off_ >= lfs->pcache.off) {
d = lfs_min(
lfs_min(d, size_),
lfs->pcache.size - (off_-lfs->pcache.off));
lfs_memcpy(buffer_,
&lfs->pcache.buffer[off_-lfs->pcache.off],
d);
off_ += d;
hint_ -= d;
buffer_ += d;
size_ -= d;
continue;
}
// pcache takes priority
d = lfs_min(d, lfs->pcache.off - off_);
}
// already in rcache?
if (block == lfs->rcache.block
&& off_ < lfs->rcache.off + lfs->rcache.size) {
if (off_ >= lfs->rcache.off) {
d = lfs_min(
lfs_min(d, size_),
lfs->rcache.size - (off_-lfs->rcache.off));
lfs_memcpy(buffer_,
&lfs->rcache.buffer[off_-lfs->rcache.off],
d);
off_ += d;
hint_ -= d;
buffer_ += d;
size_ -= d;
continue;
}
// rcache takes priority
d = lfs_min(d, lfs->rcache.off - off_);
}
// bypass rcache?
if (off_ % lfs->cfg->read_size == 0
&& lfs_min(d, size_) >= lfs_min(hint_, lfs->cfg->rcache_size)
&& lfs_min(d, size_) >= lfs->cfg->read_size) {
d = lfs_aligndown(size_, lfs->cfg->read_size);
int err = lfsr_bd_read__(lfs, block, off_, buffer_, d);
if (err) {
return err;
}
off_ += d;
hint_ -= d;
buffer_ += d;
size_ -= d;
continue;
}
// drop rcache in case read fails
lfsr_bd_droprcache(lfs);
// load into rcache, above conditions can no longer fail
//
// note it's ok if we overlap the pcache a bit, pcache always
// takes priority until flush, which updates the rcache
lfs_size_t off__ = lfs_aligndown(off_, lfs->cfg->read_size);
lfs_size_t size__ = lfs_alignup(
lfs_min(
// watch out for overflow when hint_=-1!
(off_-off__) + lfs_min(
lfs_min(hint_, d),
lfs->cfg->block_size - off_),
lfs->cfg->rcache_size),
lfs->cfg->read_size);
int err = lfsr_bd_read__(lfs, block, off__,
lfs->rcache.buffer, size__);
if (err) {
return err;
}
lfs->rcache.block = block;
lfs->rcache.off = off__;
lfs->rcache.size = size__;
}
return 0;
}
// needed in lfsr_bd_prog_ for prog validation
#ifdef LFS_CKPROGS
static inline bool lfsr_m_isckprogs(uint32_t flags);
#endif
static lfs_scmp_t lfsr_bd_cmp(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
const void *buffer, lfs_size_t size);
// low-level prog stuff
static int lfsr_bd_prog_(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
const void *buffer, lfs_size_t size,
uint32_t *cksum, bool align) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
// prog to disk
int err = lfsr_bd_prog__(lfs, block, off, buffer, size);
if (err) {
return err;
}
#ifdef LFS_CKPROGS
// checking progs?
if (lfsr_m_isckprogs(lfs->flags)) {
// pcache should have been dropped at this point
LFS_ASSERT(lfs->pcache.size == 0);
// invalidate rcache, we're going to clobber it anyways
lfsr_bd_droprcache(lfs);
lfs_scmp_t cmp = lfsr_bd_cmp(lfs, block, off, 0,
buffer, size);
if (cmp < 0) {
return cmp;
}
if (cmp != LFS_CMP_EQ) {
LFS_DEBUG("Found ckprog mismatch "
"0x%"PRIx32".%"PRIx32" %"PRId32,
block, off, size);
return LFS_ERR_CORRUPT;
}
}
#endif
// update rcache if we can
if (block == lfs->rcache.block
&& off <= lfs->rcache.off + lfs->rcache.size) {
lfs->rcache.off = lfs_min(off, lfs->rcache.off);
lfs->rcache.size = lfs_min(
(off-lfs->rcache.off) + size,
lfs->cfg->rcache_size);
lfs_memcpy(&lfs->rcache.buffer[off-lfs->rcache.off],
buffer,
lfs->rcache.size - (off-lfs->rcache.off));
}
// optional aligned checksum
if (cksum && align) {
*cksum = lfs_crc32c(*cksum, buffer, size);
}
return 0;
}
// flush the pcache
static int lfsr_bd_flush(lfs_t *lfs, uint32_t *cksum, bool align) {
if (lfs->pcache.size != 0) {
// must be in-bounds
LFS_ASSERT(lfs->pcache.block < lfs->block_count);
// must be aligned
LFS_ASSERT(lfs->pcache.off % lfs->cfg->prog_size == 0);
lfs_size_t size = lfs_alignup(lfs->pcache.size, lfs->cfg->prog_size);
// make this cache available, if we error anything in this cache
// would be useless anyways
lfsr_bd_droppcache(lfs);
// flush
int err = lfsr_bd_prog_(lfs, lfs->pcache.block,
lfs->pcache.off, lfs->pcache.buffer, size,
cksum, align);
if (err) {
return err;
}
}
return 0;
}
// caching prog that lends you a buffer
//
// with optional checksum
static int lfsr_bd_prognext(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
lfs_size_t size,
uint8_t **buffer_, lfs_size_t *size_,
uint32_t *cksum, bool align) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
while (true) {
// active pcache?
if (lfs->pcache.block == block
&& lfs->pcache.size != 0) {
// fits in pcache?
if (off < lfs->pcache.off + lfs->cfg->pcache_size) {
// you can't prog backwards silly
LFS_ASSERT(off >= lfs->pcache.off);
// expand the pcache?
lfs->pcache.size = lfs_min(
(off-lfs->pcache.off) + size,
lfs->cfg->pcache_size);
*buffer_ = &lfs->pcache.buffer[off-lfs->pcache.off];
*size_ = lfs_min(
size,
lfs->pcache.size - (off-lfs->pcache.off));
return 0;
}
// flush pcache?
int err = lfsr_bd_flush(lfs, cksum, align);
if (err) {
return err;
}
}
// move the pcache, above conditions can no longer fail
lfs->pcache.block = block;
lfs->pcache.off = lfs_aligndown(off, lfs->cfg->prog_size);
lfs->pcache.size = lfs_min(
(off-lfs->pcache.off) + size,
lfs->cfg->pcache_size);
// zero to avoid any information leaks
lfs_memset(lfs->pcache.buffer, 0xff, lfs->cfg->pcache_size);
}
}
// caching prog
//
// with optional checksum
static int lfsr_bd_prog(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
const void *buffer, lfs_size_t size,
uint32_t *cksum, bool align) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t off_ = off;
const uint8_t *buffer_ = buffer;
lfs_size_t size_ = size;
while (size_ > 0) {
// active pcache?
if (lfs->pcache.block == block
&& lfs->pcache.size != 0) {
// fits in pcache?
if (off_ < lfs->pcache.off + lfs->cfg->pcache_size) {
// you can't prog backwards silly
LFS_ASSERT(off_ >= lfs->pcache.off);
// expand the pcache?
lfs->pcache.size = lfs_min(
(off_-lfs->pcache.off) + size_,
lfs->cfg->pcache_size);
lfs_size_t d = lfs_min(
size_,
lfs->pcache.size - (off_-lfs->pcache.off));
lfs_memcpy(&lfs->pcache.buffer[off_-lfs->pcache.off],
buffer_,
d);
off_ += d;
buffer_ += d;
size_ -= d;
continue;
}
// flush pcache?
//
// flush even if we're bypassing pcache, some devices don't
// support out-of-order progs in a block
int err = lfsr_bd_flush(lfs, cksum, align);
if (err) {
return err;
}
}
// bypass pcache?
if (off_ % lfs->cfg->prog_size == 0
&& size_ >= lfs->cfg->pcache_size) {
lfs_size_t d = lfs_aligndown(size_, lfs->cfg->prog_size);
int err = lfsr_bd_prog_(lfs, block, off_, buffer_, d,
cksum, align);
if (err) {
return err;
}
off_ += d;
buffer_ += d;
size_ -= d;
continue;
}
// move the pcache, above conditions can no longer fail
lfs->pcache.block = block;
lfs->pcache.off = lfs_aligndown(off_, lfs->cfg->prog_size);
lfs->pcache.size = lfs_min(
(off_-lfs->pcache.off) + size_,
lfs->cfg->pcache_size);
// zero to avoid any information leaks
lfs_memset(lfs->pcache.buffer, 0xff, lfs->cfg->pcache_size);
}
// optional checksum
if (cksum && !align) {
*cksum = lfs_crc32c(*cksum, buffer, size);
}
return 0;
}
static int lfsr_bd_sync(lfs_t *lfs) {
// make sure we flush any caches
int err = lfsr_bd_flush(lfs, NULL, false);
if (err) {
return err;
}
return lfsr_bd_sync__(lfs);
}
static int lfsr_bd_erase(lfs_t *lfs, lfs_block_t block) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
// invalidate any relevant caches
if (lfs->pcache.block == block) {
lfsr_bd_droppcache(lfs);
}
if (lfs->rcache.block == block) {
lfsr_bd_droprcache(lfs);
}
return lfsr_bd_erase__(lfs, block);
}
// other block device utils
static int lfsr_bd_cksum(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
lfs_size_t size,
uint32_t *cksum) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t off_ = off;
lfs_size_t hint_ = lfs_max(hint, size); // make sure hint >= size
lfs_size_t size_ = size;
while (size_ > 0) {
const uint8_t *buffer__;
lfs_size_t size__;
int err = lfsr_bd_readnext(lfs, block, off_, hint_, size_,
&buffer__, &size__);
if (err) {
return err;
}
*cksum = lfs_crc32c(*cksum, buffer__, size__);
off_ += size__;
hint_ -= size__;
size_ -= size__;
}
return 0;
}
static lfs_scmp_t lfsr_bd_cmp(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
const void *buffer, lfs_size_t size) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t off_ = off;
lfs_size_t hint_ = lfs_max(hint, size); // make sure hint >= size
const uint8_t *buffer_ = buffer;
lfs_size_t size_ = size;
while (size_ > 0) {
const uint8_t *buffer__;
lfs_size_t size__;
int err = lfsr_bd_readnext(lfs, block, off_, hint_, size_,
&buffer__, &size__);
if (err) {
return err;
}
int cmp = lfs_memcmp(buffer__, buffer_, size__);
if (cmp != 0) {
return (cmp < 0) ? LFS_CMP_LT : LFS_CMP_GT;
}
off_ += size__;
hint_ -= size__;
buffer_ += size__;
size_ -= size__;
}
return LFS_CMP_EQ;
}
static int lfsr_bd_cpy(lfs_t *lfs,
lfs_block_t dst_block, lfs_size_t dst_off,
lfs_block_t src_block, lfs_size_t src_off, lfs_size_t hint,
lfs_size_t size,
uint32_t *cksum, bool align) {
// must be in-bounds
LFS_ASSERT(dst_block < lfs->block_count);
LFS_ASSERT(dst_off+size <= lfs->cfg->block_size);
LFS_ASSERT(src_block < lfs->block_count);
LFS_ASSERT(src_off+size <= lfs->cfg->block_size);
lfs_size_t dst_off_ = dst_off;
lfs_size_t src_off_ = src_off;
lfs_size_t hint_ = lfs_max(hint, size); // make sure hint >= size
lfs_size_t size_ = size;
while (size_ > 0) {
// prefer the pcache here to avoid rcache conflicts with prog
// validation, if we're lucky we might even be able to avoid
// clobbering the rcache at all
uint8_t *buffer__;
lfs_size_t size__;
int err = lfsr_bd_prognext(lfs, dst_block, dst_off_, size_,
&buffer__, &size__,
cksum, align);
if (err) {
return err;
}
err = lfsr_bd_read(lfs, src_block, src_off_, hint_,
buffer__, size__);
if (err) {
return err;
}
// optional checksum
if (cksum && !align) {
*cksum = lfs_crc32c(*cksum, buffer__, size__);
}
dst_off_ += size__;
src_off_ += size__;
hint_ -= size__;
size_ -= size__;
}
return 0;
}
static int lfsr_bd_set(lfs_t *lfs, lfs_block_t block, lfs_size_t off,
uint8_t c, lfs_size_t size,
uint32_t *cksum, bool align) {
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(off+size <= lfs->cfg->block_size);
lfs_size_t off_ = off;
lfs_size_t size_ = size;
while (size_ > 0) {
uint8_t *buffer__;
lfs_size_t size__;
int err = lfsr_bd_prognext(lfs, block, off_, size_,
&buffer__, &size__,
cksum, align);
if (err) {
return err;
}
lfs_memset(buffer__, c, size__);
// optional checksum
if (cksum && !align) {
*cksum = lfs_crc32c(*cksum, buffer__, size__);
}
off_ += size__;
size_ -= size__;
}
return 0;
}
// lfsr_tailp_t stuff
//
// tailp tracks the most recent trunk's parity so we can parity-check
// if it hasn't been written to disk yet
#ifdef LFS_CKPARITY
#define LFSR_TAILP_PARITY 0x80000000
#endif
#ifdef LFS_CKPARITY
static inline bool lfsr_tailp_parity(const lfsr_tailp_t *tailp) {
return tailp->off & LFSR_TAILP_PARITY;
}
#endif
#ifdef LFS_CKPARITY
static inline lfs_size_t lfsr_tailp_off(const lfsr_tailp_t *tailp) {
return tailp->off & ~LFSR_TAILP_PARITY;
}
#endif
// checked read helpers
#ifdef LFS_CKDATACKSUMS
static int lfsr_bd_ckprefix(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
lfs_size_t cksize, uint32_t cksum,
lfs_size_t *hint_,
uint32_t *cksum__) {
(void)cksum;
// checked read with no cksum?
LFS_ASSERT(cksize != 0);
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(cksize <= lfs->cfg->block_size);
// make sure hint includes our prefix/suffix
lfs_size_t hint__ = lfs_max(
// watch out for overflow when hint=-1!
off + lfs_min(
hint,
lfs->cfg->block_size - off),
cksize);
// checksum any prefixed data
int err = lfsr_bd_cksum(lfs,
block, 0, hint__,
off,
cksum__);
if (err) {
return err;
}
// return adjusted hint, note we clamped this to a positive range
// earlier, otherwise we'd have real problems with hint=-1!
*hint_ = hint__ - off;
return 0;
}
#endif
#ifdef LFS_CKDATACKSUMS
static int lfsr_bd_cksuffix(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
lfs_size_t cksize, uint32_t cksum,
uint32_t cksum__) {
// checked read with no cksum?
LFS_ASSERT(cksize != 0);
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(cksize <= lfs->cfg->block_size);
// checksum any suffixed data
int err = lfsr_bd_cksum(lfs,
block, off, hint,
cksize - off,
&cksum__);
if (err) {
return err;
}
// do checksums match?
if (cksum__ != cksum) {
LFS_ERROR("Found ckdatacksums mismatch "
"0x%"PRIx32".%"PRIx32" %"PRId32", "
"cksum %08"PRIx32" (!= %08"PRIx32")",
block, 0, cksize,
cksum__, cksum);
return LFS_ERR_CORRUPT;
}
return 0;
}
#endif
// checked read functions
#ifdef LFS_CKDATACKSUMS
// caching read with parity/checksum checks
//
// the main downside of checking reads is we need to read all data that
// contributes to the relevant parity/checksum, this may be
// significantly more than the data we actually end up using
//
static int lfsr_bd_readck(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
void *buffer, lfs_size_t size,
lfs_size_t cksize, uint32_t cksum) {
// checked read with no cksum?
LFS_ASSERT(cksize != 0);
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(cksize <= lfs->cfg->block_size);
// read should fit in ck info
LFS_ASSERT(off+size <= cksize);
// checksum any prefixed data
uint32_t cksum__ = 0;
lfs_size_t hint_;
int err = lfsr_bd_ckprefix(lfs, block, off, hint,
cksize, cksum,
&hint_,
&cksum__);
if (err) {
return err;
}
// read and checksum the data we're interested in
err = lfsr_bd_read(lfs,
block, off, hint_,
buffer, size);
if (err) {
return err;
}
cksum__ = lfs_crc32c(cksum__, buffer, size);
// checksum any suffixed data and validate
err = lfsr_bd_cksuffix(lfs, block, off+size, hint_-size,
cksize, cksum,
cksum__);
if (err) {
return err;
}
return 0;
}
#endif
// these could probably be a bit better deduplicated with their
// unchecked counterparts, but we don't generally use both at the same
// time
//
// we'd also need to worry about early termination in lfsr_bd_cmp/cmpck
#ifdef LFS_CKDATACKSUMS
static lfs_scmp_t lfsr_bd_cmpck(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
const void *buffer, lfs_size_t size,
lfs_size_t cksize, uint32_t cksum) {
// checked read with no cksum?
LFS_ASSERT(cksize != 0);
// must be in-bounds
LFS_ASSERT(block < lfs->block_count);
LFS_ASSERT(cksize <= lfs->cfg->block_size);
// read should fit in ck info
LFS_ASSERT(off+size <= cksize);
// checksum any prefixed data
uint32_t cksum__ = 0;
lfs_size_t hint_;
int err = lfsr_bd_ckprefix(lfs, block, off, hint,
cksize, cksum,
&hint_,
&cksum__);
if (err) {
return err;
}
// compare the data while simultaneously updating the checksum
lfs_size_t off_ = off;
lfs_size_t hint__ = hint_ - off;
const uint8_t *buffer_ = buffer;
lfs_size_t size_ = size;
int cmp = LFS_CMP_EQ;
while (size_ > 0) {
const uint8_t *buffer__;
lfs_size_t size__;
err = lfsr_bd_readnext(lfs, block, off_, hint__, size_,
&buffer__, &size__);
if (err) {
return err;
}
cksum__ = lfs_crc32c(cksum__, buffer__, size__);
if (cmp == LFS_CMP_EQ) {
int cmp_ = lfs_memcmp(buffer__, buffer_, size__);
if (cmp_ != 0) {
cmp = (cmp_ < 0) ? LFS_CMP_LT : LFS_CMP_GT;
}
}
off_ += size__;
hint__ -= size__;
buffer_ += size__;
size_ -= size__;
}
// checksum any suffixed data and validate
err = lfsr_bd_cksuffix(lfs, block, off+size, hint_-size,
cksize, cksum,
cksum__);
if (err) {
return err;
}
return cmp;
}
#endif
#ifdef LFS_CKDATACKSUMS
static int lfsr_bd_cpyck(lfs_t *lfs,
lfs_block_t dst_block, lfs_size_t dst_off,
lfs_block_t src_block, lfs_size_t src_off, lfs_size_t hint,
lfs_size_t size,
lfs_size_t src_cksize, uint32_t src_cksum,
uint32_t *cksum, bool align) {
// checked read with no cksum?
LFS_ASSERT(src_cksize != 0);
// must be in-bounds
LFS_ASSERT(dst_block < lfs->block_count);
LFS_ASSERT(dst_off+size <= lfs->cfg->block_size);
LFS_ASSERT(src_block < lfs->block_count);
LFS_ASSERT(src_cksize <= lfs->cfg->block_size);
// read should fit in ck info
LFS_ASSERT(src_off+size <= src_cksize);
// checksum any prefixed data
uint32_t cksum__ = 0;
lfs_size_t hint_;
int err = lfsr_bd_ckprefix(lfs, src_block, src_off, hint,
src_cksize, src_cksum,
&hint_,
&cksum__);
if (err) {
return err;
}
// copy the data while simultaneously updating our checksum
lfs_size_t dst_off_ = dst_off;
lfs_size_t src_off_ = src_off;
lfs_size_t hint__ = hint_;
lfs_size_t size_ = size;
while (size_ > 0) {
// prefer the pcache here to avoid rcache conflicts with prog
// validation, if we're lucky we might even be able to avoid
// clobbering the rcache at all
uint8_t *buffer__;
lfs_size_t size__;
err = lfsr_bd_prognext(lfs, dst_block, dst_off_, size_,
&buffer__, &size__,
cksum, align);
if (err) {
return err;
}
err = lfsr_bd_read(lfs, src_block, src_off_, hint__,
buffer__, size__);
if (err) {
return err;
}
// validating checksum
cksum__ = lfs_crc32c(cksum__, buffer__, size__);
// optional prog checksum
if (cksum && !align) {
*cksum = lfs_crc32c(*cksum, buffer__, size__);
}
dst_off_ += size__;
src_off_ += size__;
hint__ -= size__;
size_ -= size__;
}
// checksum any suffixed data and validate
err = lfsr_bd_cksuffix(lfs, src_block, src_off+size, hint_-size,
src_cksize, src_cksum,
cksum__);
if (err) {
return err;
}
return 0;
}
#endif
/// Small type-level utilities ///
//// operations on block pairs
//static inline void lfs_pair_swap(lfs_block_t pair[2]) {
// lfs_block_t t = pair[0];
// pair[0] = pair[1];
// pair[1] = t;
//}
//
//static inline bool lfs_pair_isnull(const lfs_block_t pair[2]) {
// return pair[0] == LFS_BLOCK_NULL || pair[1] == LFS_BLOCK_NULL;
//}
//
//static inline int lfs_pair_cmp(
// const lfs_block_t paira[2],
// const lfs_block_t pairb[2]) {
// return !(paira[0] == pairb[0] || paira[1] == pairb[1] ||
// paira[0] == pairb[1] || paira[1] == pairb[0]);
//}
//
//static inline bool lfs_pair_issync(
// const lfs_block_t paira[2],
// const lfs_block_t pairb[2]) {
// return (paira[0] == pairb[0] && paira[1] == pairb[1]) ||
// (paira[0] == pairb[1] && paira[1] == pairb[0]);
//}
//
//static inline void lfs_pair_fromle32(lfs_block_t pair[2]) {
// pair[0] = lfs_fromle32(pair[0]);
// pair[1] = lfs_fromle32(pair[1]);
//}
//
//#ifndef LFS_READONLY
//static inline void lfs_pair_tole32(lfs_block_t pair[2]) {
// pair[0] = lfs_tole32(pair[0]);
// pair[1] = lfs_tole32(pair[1]);
//}
//#endif
//
//// operations on 32-bit entry tags
//typedef uint32_t lfs_tag_t;
//typedef int32_t lfs_stag_t;
//
//#define LFS_MKTAG(type, id, size)
// (((lfs_tag_t)(type) << 20) | ((lfs_tag_t)(id) << 10) | (lfs_tag_t)(size))
//
//#define LFS_MKTAG_IF(cond, type, id, size)
// ((cond) ? LFS_MKTAG(type, id, size) : LFS_MKTAG(LFS_FROM_NOOP, 0, 0))
//
//#define LFS_MKTAG_IF_ELSE(cond, type1, id1, size1, type2, id2, size2)
// ((cond) ? LFS_MKTAG(type1, id1, size1) : LFS_MKTAG(type2, id2, size2))
//
//static inline bool lfs_tag_isvalid(lfs_tag_t tag) {
// return !(tag & 0x80000000);
//}
//
//static inline bool lfs_tag_isdelete(lfs_tag_t tag) {
// return ((int32_t)(tag << 22) >> 22) == -1;
//}
//
//static inline uint16_t lfs_tag_type1(lfs_tag_t tag) {
// return (tag & 0x70000000) >> 20;
//}
//
//static inline uint16_t lfs_tag_type2(lfs_tag_t tag) {
// return (tag & 0x78000000) >> 20;
//}
//
//static inline uint16_t lfs_tag_type3(lfs_tag_t tag) {
// return (tag & 0x7ff00000) >> 20;
//}
//
//static inline uint8_t lfs_tag_chunk(lfs_tag_t tag) {
// return (tag & 0x0ff00000) >> 20;
//}
//
//static inline int8_t lfs_tag_splice(lfs_tag_t tag) {
// return (int8_t)lfs_tag_chunk(tag);
//}
//
//static inline uint16_t lfs_tag_id(lfs_tag_t tag) {
// return (tag & 0x000ffc00) >> 10;
//}
//
//static inline lfs_size_t lfs_tag_size(lfs_tag_t tag) {
// return tag & 0x000003ff;
//}
//
//static inline lfs_size_t lfs_tag_dsize(lfs_tag_t tag) {
// return sizeof(tag) + lfs_tag_size(tag + lfs_tag_isdelete(tag));
//}
/// lfsr_tag_t stuff ///
// 16-bit metadata tags
enum lfsr_tag {
// the null tag is reserved
LFSR_TAG_NULL = 0x0000,
// config tags
LFSR_TAG_CONFIG = 0x0000,
LFSR_TAG_MAGIC = 0x0003,
LFSR_TAG_VERSION = 0x0004,
LFSR_TAG_RCOMPAT = 0x0005,
LFSR_TAG_WCOMPAT = 0x0006,
LFSR_TAG_OCOMPAT = 0x0007,
LFSR_TAG_GEOMETRY = 0x0009,
LFSR_TAG_NAMELIMIT = 0x000c,
LFSR_TAG_FILELIMIT = 0x000d,
// global-state tags
LFSR_TAG_GDELTA = 0x0100,
LFSR_TAG_GRMDELTA = 0x0100,
// name tags
LFSR_TAG_NAME = 0x0200,
LFSR_TAG_REG = 0x0201,
LFSR_TAG_DIR = 0x0202,
LFSR_TAG_BOOKMARK = 0x0204,
LFSR_TAG_STICKYNOTE = 0x0205,
// struct tags
LFSR_TAG_STRUCT = 0x0300,
LFSR_TAG_DATA = 0x0300,
LFSR_TAG_BLOCK = 0x0304,
LFSR_TAG_BSHRUB = 0x0308,
LFSR_TAG_BTREE = 0x030c,
LFSR_TAG_MROOT = 0x0311,
LFSR_TAG_MDIR = 0x0315,
LFSR_TAG_MTREE = 0x031c,
LFSR_TAG_DID = 0x0320,
LFSR_TAG_BRANCH = 0x032c,
// user/sys attributes
LFSR_TAG_ATTR = 0x0400,
LFSR_TAG_UATTR = 0x0400,
LFSR_TAG_SATTR = 0x0500,
// shrub tags belong to secondary trees
LFSR_TAG_SHRUB = 0x1000,
// alt pointers form the inner nodes of our rbyd trees
LFSR_TAG_ALT = 0x4000,
LFSR_TAG_B = 0x0000,
LFSR_TAG_R = 0x2000,
LFSR_TAG_LE = 0x0000,
LFSR_TAG_GT = 0x1000,
// checksum tags
LFSR_TAG_CKSUM = 0x3000,
LFSR_TAG_P = 0x0001,
LFSR_TAG_Q = 0x0002,
LFSR_TAG_NOTE = 0x3100,
LFSR_TAG_ECKSUM = 0x3200,
// in-device only tags, these should never get written to disk
LFSR_TAG_INTERNAL = 0x0800,
LFSR_TAG_RATS = 0x0800,
LFSR_TAG_SHRUBCOMMIT = 0x0801,
LFSR_TAG_SHRUBTRUNK = 0x0802,
LFSR_TAG_MOVE = 0x0803,
LFSR_TAG_ATTRS = 0x0804,
// some in-device only tag modifiers
LFSR_TAG_RM = 0x8000,
LFSR_TAG_GROW = 0x4000,
LFSR_TAG_SUP = 0x2000,
LFSR_TAG_SUB = 0x1000,
};
// some other tag encodings with their own subfields
#define LFSR_TAG_ALT(c, d, key) \
(LFSR_TAG_ALT \
| (0x2000 & (c)) \
| (0x1000 & (d)) \
| (0x0fff & (lfsr_tag_t)(key)))
#define LFSR_TAG_ATTR(attr) \
(LFSR_TAG_ATTR \
| ((0x80 & (lfsr_tag_t)(attr)) << 1) \
| (0x7f & (lfsr_tag_t)(attr)))
// tag type operations
static inline lfsr_tag_t lfsr_tag_mode(lfsr_tag_t tag) {
return tag & 0xf000;
}
static inline lfsr_tag_t lfsr_tag_suptype(lfsr_tag_t tag) {
return tag & 0xff00;
}
static inline uint8_t lfsr_tag_subtype(lfsr_tag_t tag) {
return tag & 0x00ff;
}
static inline lfsr_tag_t lfsr_tag_key(lfsr_tag_t tag) {
return tag & 0x0fff;
}
static inline lfsr_tag_t lfsr_tag_supkey(lfsr_tag_t tag) {
return tag & 0x0f00;
}
static inline lfsr_tag_t lfsr_tag_subkey(lfsr_tag_t tag) {
return tag & 0x00ff;
}
static inline bool lfsr_tag_isalt(lfsr_tag_t tag) {
return tag & LFSR_TAG_ALT;
}
static inline bool lfsr_tag_isshrub(lfsr_tag_t tag) {
return tag & LFSR_TAG_SHRUB;
}
static inline bool lfsr_tag_istrunk(lfsr_tag_t tag) {
return lfsr_tag_mode(tag) != LFSR_TAG_CKSUM;
}
static inline bool lfsr_tag_p(lfsr_tag_t tag) {
return tag & LFSR_TAG_P;
}
static inline bool lfsr_tag_q(lfsr_tag_t tag) {
return tag & LFSR_TAG_Q;
}
static inline bool lfsr_tag_isinternal(lfsr_tag_t tag) {
return tag & LFSR_TAG_INTERNAL;
}
static inline bool lfsr_tag_isrm(lfsr_tag_t tag) {
return tag & LFSR_TAG_RM;
}
static inline bool lfsr_tag_isgrow(lfsr_tag_t tag) {
return tag & LFSR_TAG_GROW;
}
static inline bool lfsr_tag_issup(lfsr_tag_t tag) {
return tag & LFSR_TAG_SUP;
}
static inline bool lfsr_tag_issub(lfsr_tag_t tag) {
return tag & LFSR_TAG_SUB;
}
// alt operations
static inline bool lfsr_tag_isblack(lfsr_tag_t tag) {
return !(tag & LFSR_TAG_R);
}
static inline bool lfsr_tag_isred(lfsr_tag_t tag) {
return tag & LFSR_TAG_R;
}
static inline bool lfsr_tag_isle(lfsr_tag_t tag) {
return !(tag & LFSR_TAG_GT);
}
static inline bool lfsr_tag_isgt(lfsr_tag_t tag) {
return tag & LFSR_TAG_GT;
}
static inline bool lfsr_tag_isa(lfsr_tag_t tag) {
return (tag & 0x1fff) == (LFSR_TAG_GT | 0);
}
static inline bool lfsr_tag_isn(lfsr_tag_t tag) {
return (tag & 0x1fff) == (LFSR_TAG_LE | 0);
}
static inline lfsr_tag_t lfsr_tag_isparallel(lfsr_tag_t a, lfsr_tag_t b) {
return (a & LFSR_TAG_GT) == (b & LFSR_TAG_GT);
}
static inline bool lfsr_tag_follow(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_srid_t rid, lfsr_tag_t tag) {
// null tags break the following logic for altns/altas
LFS_ASSERT(lfsr_tag_key(tag) != 0);
if (lfsr_tag_isgt(alt)) {
return rid > upper_rid - (lfsr_srid_t)weight - 1
|| (rid == upper_rid - (lfsr_srid_t)weight - 1
&& lfsr_tag_key(tag) > lfsr_tag_key(alt));
} else {
return rid < lower_rid + (lfsr_srid_t)weight - 1
|| (rid == lower_rid + (lfsr_srid_t)weight - 1
&& lfsr_tag_key(tag) <= lfsr_tag_key(alt));
}
}
static inline bool lfsr_tag_follow2(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_tag_t alt2, lfsr_rid_t weight2,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_srid_t rid, lfsr_tag_t tag) {
if (lfsr_tag_isred(alt2) && lfsr_tag_isparallel(alt, alt2)) {
weight += weight2;
}
return lfsr_tag_follow(alt, weight, lower_rid, upper_rid, rid, tag);
}
static inline void lfsr_tag_flip(
lfsr_tag_t *alt, lfsr_rid_t *weight,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid) {
*alt = *alt ^ LFSR_TAG_GT;
*weight = (upper_rid - lower_rid) - *weight;
}
static inline void lfsr_tag_flip2(
lfsr_tag_t *alt, lfsr_rid_t *weight,
lfsr_tag_t alt2, lfsr_rid_t weight2,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid) {
if (lfsr_tag_isred(alt2)) {
*weight += weight2;
}
lfsr_tag_flip(alt, weight, lower_rid, upper_rid);
}
static inline void lfsr_tag_trim(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_srid_t *lower_rid, lfsr_srid_t *upper_rid,
lfsr_tag_t *lower_tag, lfsr_tag_t *upper_tag) {
LFS_ASSERT((lfsr_srid_t)weight >= 0);
if (lfsr_tag_isgt(alt)) {
*upper_rid -= weight;
if (upper_tag && !lfsr_tag_isn(alt)) {
*upper_tag = alt + 1;
}
} else {
*lower_rid += weight;
if (lower_tag && !lfsr_tag_isn(alt)) {
*lower_tag = alt;
}
}
}
static inline void lfsr_tag_trim2(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_tag_t alt2, lfsr_rid_t weight2,
lfsr_srid_t *lower_rid, lfsr_srid_t *upper_rid,
lfsr_tag_t *lower_tag, lfsr_tag_t *upper_tag) {
if (lfsr_tag_isred(alt2)) {
lfsr_tag_trim(
alt2, weight2,
lower_rid, upper_rid,
lower_tag, upper_tag);
}
lfsr_tag_trim(
alt, weight,
lower_rid, upper_rid,
lower_tag, upper_tag);
}
static inline bool lfsr_tag_unreachable(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_tag_t lower_tag, lfsr_tag_t upper_tag) {
if (lfsr_tag_isgt(alt)) {
return !lfsr_tag_follow(
alt, weight,
lower_rid, upper_rid,
upper_rid-1, upper_tag-1);
} else {
return !lfsr_tag_follow(
alt, weight,
lower_rid, upper_rid,
lower_rid-1, lower_tag+1);
}
}
static inline bool lfsr_tag_unreachable2(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_tag_t alt2, lfsr_rid_t weight2,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_tag_t lower_tag, lfsr_tag_t upper_tag) {
if (lfsr_tag_isred(alt2)) {
lfsr_tag_trim(
alt2, weight2,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
}
return lfsr_tag_unreachable(
alt, weight,
lower_rid, upper_rid,
lower_tag, upper_tag);
}
static inline bool lfsr_tag_diverging(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_srid_t a_rid, lfsr_tag_t a_tag,
lfsr_srid_t b_rid, lfsr_tag_t b_tag) {
return lfsr_tag_follow(
alt, weight,
lower_rid, upper_rid,
a_rid, a_tag)
^ lfsr_tag_follow(
alt, weight,
lower_rid, upper_rid,
b_rid, b_tag);
}
static inline bool lfsr_tag_diverging2(
lfsr_tag_t alt, lfsr_rid_t weight,
lfsr_tag_t alt2, lfsr_rid_t weight2,
lfsr_srid_t lower_rid, lfsr_srid_t upper_rid,
lfsr_srid_t a_rid, lfsr_tag_t a_tag,
lfsr_srid_t b_rid, lfsr_tag_t b_tag) {
return lfsr_tag_follow2(
alt, weight,
alt2, weight2,
lower_rid, upper_rid,
a_rid, a_tag)
^ lfsr_tag_follow2(
alt, weight,
alt2, weight2,
lower_rid, upper_rid,
b_rid, b_tag);
}
// support for encoding/decoding tags on disk
// tag encoding:
// .---+---+---+- -+- -+- -+- -+---+- -+- -+- -. tag: 1 be16 2 bytes
// | tag | weight | size | weight: 1 leb128 <=5 bytes
// '---+---+---+- -+- -+- -+- -+---+- -+- -+- -' size: 1 leb128 <=4 bytes
// total: <=11 bytes
#define LFSR_TAG_DSIZE (2+5+4)
// needed in lfsr_bd_readtag
#ifdef LFS_CKPARITY
static inline bool lfsr_m_isckparity(uint32_t flags);
#endif
static lfs_ssize_t lfsr_bd_readtag(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfs_size_t hint,
lfsr_tag_t *tag_, lfsr_rid_t *weight_, lfs_size_t *size_,
uint32_t *cksum) {
// read the largest possible tag size
uint8_t tag_buf[LFSR_TAG_DSIZE];
lfs_size_t tag_dsize = lfs_min(LFSR_TAG_DSIZE, lfs->cfg->block_size-off);
if (tag_dsize < 4) {
return LFS_ERR_CORRUPT;
}
int err = lfsr_bd_read(lfs, block, off, hint,
tag_buf, tag_dsize);
if (err < 0) {
return err;
}
// check the valid bit?
if (cksum) {
// on-disk, the tag's valid bit must reflect the parity of the
// preceding data
//
// fortunately crc32cs are parity-preserving, so this is the
// same as the parity of the checksum
if ((tag_buf[0] >> 7) != lfs_parity(*cksum)) {
return LFS_ERR_CORRUPT;
}
}
lfsr_tag_t tag
= ((lfsr_tag_t)tag_buf[0] << 8)
| ((lfsr_tag_t)tag_buf[1] << 0);
lfs_ssize_t d = 2;
lfsr_rid_t weight;
lfs_ssize_t d_ = lfs_fromleb128(&weight, &tag_buf[d], tag_dsize-d);
if (d_ < 0) {
return d_;
}
// weights should be limited to 31-bits
if (weight > 0x7fffffff) {
return LFS_ERR_CORRUPT;
}
d += d_;
lfs_size_t size;
d_ = lfs_fromleb128(&size, &tag_buf[d], tag_dsize-d);
if (d_ < 0) {
return d_;
}
// sizes should be limited to 28-bits
if (size > 0x0fffffff) {
return LFS_ERR_CORRUPT;
}
d += d_;
// check our tag does not go out of bounds
if (!lfsr_tag_isalt(tag) && off+d + size > lfs->cfg->block_size) {
return LFS_ERR_CORRUPT;
}
#ifdef LFS_CKPARITY
// check the parity if we're checking parity
//
// this requires reading all of the data as well, but with any luck
// the data will stick around in the cache
if (lfsr_m_isckparity(lfs->flags)
// don't bother checking parity if we're already calculating
// a checksum
&& !cksum) {
// checksum the tag, including our valid bit
uint32_t cksum_ = lfs_crc32c(0, tag_buf, d);
// checksum the data, if we have any
lfs_size_t hint_ = hint - lfs_min(d, hint);
lfs_size_t d_ = d;
if (!lfsr_tag_isalt(tag)) {
err = lfsr_bd_cksum(lfs,
// make sure hint includes our pesky parity byte
block, off+d_, lfs_max(hint_, size+1),
size,
&cksum_);
if (err) {
return err;
}
hint_ -= lfs_min(size, hint_);
d_ += size;
}
// pesky parity byte
if (off+d_ > lfs->cfg->block_size-1) {
return LFS_ERR_CORRUPT;
}
// read the pesky parity byte
//
// _usually_, the byte following a tag contains the tag's parity
//
// unless we're in the middle of building a commit, where things get
// tricky... to avoid problems with not-yet-written parity bits
// tailp tracks the most recent trunk's parity
//
// parity in in tailp?
bool parity;
if (block == lfs->tailp.block
&& off+d_ == lfsr_tailp_off(&lfs->tailp)) {
parity = lfsr_tailp_parity(&lfs->tailp);
// parity on disk?
} else {
uint8_t p;
err = lfsr_bd_read(lfs, block, off+d_, hint_,
&p, 1);
if (err) {
return err;
}
parity = p >> 7;
}
// does parity match?
if (lfs_parity(cksum_) != parity) {
LFS_ERROR("Found ckparity mismatch "
"0x%"PRIx32".%"PRIx32" %"PRId32", "
"parity %01"PRIx32" (!= %01"PRIx32")",
block, off, d_,
lfs_parity(cksum_), parity);
return LFS_ERR_CORRUPT;
}
}
#endif
// optional checksum
if (cksum) {
// exclude valid bit from checksum
*cksum ^= tag_buf[0] & 0x00000080;
// calculate checksum
*cksum = lfs_crc32c(*cksum, tag_buf, d);
}
// save what we found, clearing the valid bit, we don't need it
// anymore
*tag_ = tag & 0x7fff;
*weight_ = weight;
*size_ = size;
return d;
}
static lfs_ssize_t lfsr_bd_progtag(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, bool perturb,
lfsr_tag_t tag, lfsr_rid_t weight, lfs_size_t size,
uint32_t *cksum, bool align) {
// we set the valid bit here
LFS_ASSERT(!(tag & 0x8000));
// bit 7 is reserved for future subtype extensions
LFS_ASSERT(!(tag & 0x80));
// weight should not exceed 31-bits
LFS_ASSERT(weight <= 0x7fffffff);
// size should not exceed 28-bits
LFS_ASSERT(size <= 0x0fffffff);
// set the valid bit to the parity of the current checksum, inverted
// if the perturb bit is set, and exclude from the next checksum
LFS_ASSERT(cksum);
bool v = lfs_parity(*cksum) ^ perturb;
tag |= (lfsr_tag_t)v << 15;
*cksum ^= (uint32_t)v << 7;
// encode into a be16 and pair of leb128s
uint8_t tag_buf[LFSR_TAG_DSIZE];
tag_buf[0] = (uint8_t)(tag >> 8);
tag_buf[1] = (uint8_t)(tag >> 0);
lfs_ssize_t d = 2;
lfs_ssize_t d_ = lfs_toleb128(weight, &tag_buf[d], 5);
if (d_ < 0) {
return d_;
}
d += d_;
d_ = lfs_toleb128(size, &tag_buf[d], 4);
if (d_ < 0) {
return d_;
}
d += d_;
int err = lfsr_bd_prog(lfs, block, off, tag_buf, d,
cksum, align);
if (err < 0) {
return err;
}
return d;
}
/// lfsr_data_t stuff ///
#define LFSR_DATA_ONDISK 0x80000000
#define LFSR_DATA_NULL() \
((lfsr_data_t){ \
.size=0, \
.u.buffer=NULL})
#define LFSR_DATA_BUF(_buffer, _size) \
((lfsr_data_t){ \
.size=_size, \
.u.buffer=(const void*)(_buffer)})
#define LFSR_DATA_DISK(_block, _off, _size) \
((lfsr_data_t){ \
.size=LFSR_DATA_ONDISK | (_size), \
.u.disk.block=_block, \
.u.disk.off=_off})
#ifdef LFS_CKDATACKSUMS
#define LFSR_DATA_DISKCKSUM(_block, _off, _size, _cksize, _cksum) \
((lfsr_data_t){ \
.size=LFSR_DATA_ONDISK | (_size), \
.u.disk.block=_block, \
.u.disk.off=_off, \
.u.disk.cksize=_cksize, \
.u.disk.cksum=_cksum})
#else
#define LFSR_DATA_DISKCKSUM(_block, _off, _size, _cksize, _cksum) \
((lfsr_data_t){ \
.size=LFSR_DATA_ONDISK | (_size), \
.u.disk.block=_block, \
.u.disk.off=_off})
#endif
// data helpers
static inline bool lfsr_data_ondisk(lfsr_data_t data) {
return data.size & LFSR_DATA_ONDISK;
}
static inline bool lfsr_data_isbuf(lfsr_data_t data) {
return !(data.size & LFSR_DATA_ONDISK);
}
static inline lfs_size_t lfsr_data_size(lfsr_data_t data) {
return data.size & ~LFSR_DATA_ONDISK;
}
// data slicing
static inline lfsr_data_t lfsr_data_fromslice(lfsr_data_t data,
lfs_ssize_t off, lfs_ssize_t size) {
// limit our off/size to data range, note the use of unsigned casts
// here to treat -1 as unbounded
lfs_size_t off_ = lfs_min(
lfs_smax(off, 0),
lfsr_data_size(data));
lfs_size_t size_ = lfs_min(
(lfs_size_t)size,
lfsr_data_size(data) - off_);
// on-disk?
if (lfsr_data_ondisk(data)) {
data.u.disk.off += off_;
data.size = LFSR_DATA_ONDISK | size_;
// buffer?
} else {
data.u.buffer += off_;
data.size = size_;
}
return data;
}
#define LFSR_DATA_SLICE(_data, _off, _size) \
((struct {lfsr_data_t d;}){lfsr_data_fromslice(_data, _off, _size)}.d)
static inline lfsr_data_t lfsr_data_fromtruncate(lfsr_data_t data,
lfs_size_t size) {
return LFSR_DATA_SLICE(data, -1, size);
}
#define LFSR_DATA_TRUNCATE(_data, _size) \
((struct {lfsr_data_t d;}){lfsr_data_fromtruncate(_data, _size)}.d)
static inline lfsr_data_t lfsr_data_fromfruncate(lfsr_data_t data,
lfs_size_t size) {
return LFSR_DATA_SLICE(data,
lfsr_data_size(data) - lfs_min(
size,
lfsr_data_size(data)),
-1);
}
#define LFSR_DATA_FRUNCATE(_data, _size) \
((struct {lfsr_data_t d;}){lfsr_data_fromfruncate(_data, _size)}.d)
// macros for le32/leb128/lleb128 encoding, these are useful for
// building rats
#define LFSR_LE32_DSIZE 4
#define LFSR_DATA_LE32(_word, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromle32(_word, _buffer)}.d)
static inline lfsr_data_t lfsr_data_fromle32(uint32_t word,
uint8_t buffer[static LFSR_LE32_DSIZE]) {
lfs_tole32_(word, buffer);
return LFSR_DATA_BUF(buffer, LFSR_LE32_DSIZE);
}
#define LFSR_LEB128_DSIZE 5
#define LFSR_DATA_LEB128(_word, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromleb128(_word, _buffer)}.d)
static inline lfsr_data_t lfsr_data_fromleb128(uint32_t word,
uint8_t buffer[static LFSR_LEB128_DSIZE]) {
// leb128s should not exceed 31-bits
LFS_ASSERT(word <= 0x7fffffff);
lfs_ssize_t d = lfs_toleb128(word, buffer, LFSR_LEB128_DSIZE);
if (d < 0) {
LFS_UNREACHABLE();
}
return LFSR_DATA_BUF(buffer, d);
}
#define LFSR_LLEB128_DSIZE 4
#define LFSR_DATA_LLEB128(_word, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromlleb128(_word, _buffer)}.d)
static inline lfsr_data_t lfsr_data_fromlleb128(uint32_t word,
uint8_t buffer[static LFSR_LLEB128_DSIZE]) {
// little-leb128s should not exceed 28-bits
LFS_ASSERT(word <= 0x0fffffff);
lfs_ssize_t d = lfs_toleb128(word, buffer, LFSR_LLEB128_DSIZE);
if (d < 0) {
LFS_UNREACHABLE();
}
return LFSR_DATA_BUF(buffer, d);
}
// data <-> bd interactions
// lfsr_data_read* operations update the lfsr_data_t, effectively
// consuming the data
// needed in lfsr_data_read and friends
#ifdef LFS_CKDATACKSUMS
static inline bool lfsr_m_isckdatacksums(uint32_t flags);
#endif
static lfs_ssize_t lfsr_data_read(lfs_t *lfs, lfsr_data_t *data,
void *buffer, lfs_size_t size) {
// limit our size to data range
lfs_size_t d = lfs_min(size, lfsr_data_size(*data));
// on-disk?
if (lfsr_data_ondisk(*data)) {
// validating data cksums?
if (LFS_IFDEF_CKDATACKSUMS(
lfsr_m_isckdatacksums(lfs->flags)
&& data->u.disk.cksize != 0,
false)) {
#ifdef LFS_CKDATACKSUMS
int err = lfsr_bd_readck(lfs,
data->u.disk.block, data->u.disk.off,
// note our hint includes the full data range
lfsr_data_size(*data),
buffer, d,
data->u.disk.cksize, data->u.disk.cksum);
if (err < 0) {
return err;
}
#endif
} else {
int err = lfsr_bd_read(lfs,
data->u.disk.block, data->u.disk.off,
// note our hint includes the full data range
lfsr_data_size(*data),
buffer, d);
if (err < 0) {
return err;
}
}
// buffer?
} else {
lfs_memcpy(buffer, data->u.buffer, d);
}
*data = LFSR_DATA_SLICE(*data, d, -1);
return d;
}
static int lfsr_data_readle32(lfs_t *lfs, lfsr_data_t *data,
uint32_t *word) {
uint8_t buf[4];
lfs_ssize_t d = lfsr_data_read(lfs, data, buf, 4);
if (d < 0) {
return d;
}
// truncated?
if (d < 4) {
return LFS_ERR_CORRUPT;
}
*word = lfs_fromle32_(buf);
return 0;
}
// note all leb128s in our system reserve the sign bit
static int lfsr_data_readleb128(lfs_t *lfs, lfsr_data_t *data,
uint32_t *word_) {
// note we make sure not to update our data offset until after leb128
// decoding
lfsr_data_t data_ = *data;
// for 32-bits we can assume worst-case leb128 size is 5-bytes
uint8_t buf[5];
lfs_ssize_t d = lfsr_data_read(lfs, &data_, buf, 5);
if (d < 0) {
return d;
}
d = lfs_fromleb128(word_, buf, d);
if (d < 0) {
return d;
}
// all leb128s in our system reserve the sign bit
if (*word_ > 0x7fffffff) {
return LFS_ERR_CORRUPT;
}
*data = LFSR_DATA_SLICE(*data, d, -1);
return 0;
}
// a little-leb128 in our system is truncated to align nicely
//
// for 32-bit words, little-leb128s are truncated to 28-bits, so the
// resulting leb128 encoding fits nicely in 4-bytes
static inline int lfsr_data_readlleb128(lfs_t *lfs, lfsr_data_t *data,
uint32_t *word_) {
// just call readleb128 here
int err = lfsr_data_readleb128(lfs, data, word_);
if (err) {
return err;
}
// little-leb128s should be limited to 28-bits
if (*word_ > 0x0fffffff) {
return LFS_ERR_CORRUPT;
}
return 0;
}
static lfs_scmp_t lfsr_data_cmp(lfs_t *lfs, lfsr_data_t data,
const void *buffer, lfs_size_t size) {
// compare common prefix
lfs_size_t d = lfs_min(size, lfsr_data_size(data));
// on-disk?
if (lfsr_data_ondisk(data)) {
// validating data cksums?
if (LFS_IFDEF_CKDATACKSUMS(
lfsr_m_isckdatacksums(lfs->flags)
&& data.u.disk.cksize != 0,
false)) {
#ifdef LFS_CKDATACKSUMS
int cmp = lfsr_bd_cmpck(lfs,
// note the 0 hint, we don't usually use any
// following data
data.u.disk.block, data.u.disk.off, 0,
buffer, d,
data.u.disk.cksize, data.u.disk.cksum);
if (cmp != LFS_CMP_EQ) {
return cmp;
}
#endif
} else {
int cmp = lfsr_bd_cmp(lfs,
// note the 0 hint, we don't usually use any
// following data
data.u.disk.block, data.u.disk.off, 0,
buffer, d);
if (cmp != LFS_CMP_EQ) {
return cmp;
}
}
// buffer?
} else {
int cmp = lfs_memcmp(data.u.buffer, buffer, d);
if (cmp < 0) {
return LFS_CMP_LT;
} else if (cmp > 0) {
return LFS_CMP_GT;
}
}
// if data is equal, check for size mismatch
if (lfsr_data_size(data) < size) {
return LFS_CMP_LT;
} else if (lfsr_data_size(data) > size) {
return LFS_CMP_GT;
} else {
return LFS_CMP_EQ;
}
}
static lfs_scmp_t lfsr_data_namecmp(lfs_t *lfs, lfsr_data_t data,
lfsr_did_t did, const char *name, lfs_size_t name_len) {
// first compare the did
lfsr_did_t did_;
int err = lfsr_data_readleb128(lfs, &data, &did_);
if (err < 0) {
return err;
}
if (did_ < did) {
return LFS_CMP_LT;
} else if (did_ > did) {
return LFS_CMP_GT;
}
// then compare the actual name
return lfsr_data_cmp(lfs, data, name, name_len);
}
static int lfsr_bd_progdata(lfs_t *lfs,
lfs_block_t block, lfs_size_t off, lfsr_data_t data,
uint32_t *cksum, bool align) {
// on-disk?
if (lfsr_data_ondisk(data)) {
// validating data cksums?
if (LFS_IFDEF_CKDATACKSUMS(
lfsr_m_isckdatacksums(lfs->flags)
&& data.u.disk.cksize != 0,
false)) {
#ifdef LFS_CKDATACKSUMS
int err = lfsr_bd_cpyck(lfs, block, off,
data.u.disk.block, data.u.disk.off, lfsr_data_size(data),
lfsr_data_size(data),
data.u.disk.cksize, data.u.disk.cksum,
cksum, align);
if (err) {
return err;
}
#endif
} else {
int err = lfsr_bd_cpy(lfs, block, off,
data.u.disk.block, data.u.disk.off, lfsr_data_size(data),
lfsr_data_size(data),
cksum, align);
if (err) {
return err;
}
}
// buffer?
} else {
int err = lfsr_bd_prog(lfs, block, off,
data.u.buffer, data.size,
cksum, align);
if (err) {
return err;
}
}
return 0;
}
// operations on attribute lists
typedef struct lfsr_rat {
lfsr_tag_t tag;
int16_t count;
lfsr_srid_t weight;
// sign(count)=0 => single in-RAM buffer
// sign(count)=1 => multiple concatenated datas
// special tags => other things
const void *cat;
} lfsr_rat_t;
#define LFSR_RAT_(_tag, _weight, _cat, _count) \
((lfsr_rat_t){ \
.tag=_tag, \
.count=(uint16_t){_count}, \
.weight=_weight, \
.cat=_cat})
#define LFSR_RAT(_tag, _weight, _data) \
((struct {lfsr_rat_t a;}){lfsr_rat(_tag, _weight, _data)}.a)
static inline lfsr_rat_t lfsr_rat(
lfsr_tag_t tag, lfsr_srid_t weight, lfsr_data_t data) {
// only simple data works here
LFS_ASSERT(lfsr_data_isbuf(data));
LFS_ASSERT(lfsr_data_size(data) <= 0x7fff);
return (lfsr_rat_t){
.tag=tag,
.count=lfsr_data_size(data),
.weight=weight,
.cat=data.u.buffer};
}
#define LFSR_RAT_CAT_(_tag, _weight, _datas, _data_count) \
((lfsr_rat_t){ \
.tag=_tag, \
.count=-(uint16_t){_data_count}, \
.weight=_weight, \
.cat=_datas})
#define LFSR_RAT_CAT(_tag, _weight, ...) \
LFSR_RAT_CAT_( \
_tag, \
_weight, \
((const lfsr_data_t[]){__VA_ARGS__}), \
sizeof((const lfsr_data_t[]){__VA_ARGS__}) / sizeof(lfsr_data_t))
#define LFSR_RAT_NOOP() \
LFSR_RAT_(LFSR_TAG_NULL, 0, NULL, 0)
// create an attribute list
#define LFSR_RATS(...) \
(const lfsr_rat_t[]){__VA_ARGS__}, \
sizeof((const lfsr_rat_t[]){__VA_ARGS__}) / sizeof(lfsr_rat_t)
// rat helpers
static inline bool lfsr_rat_isnoop(lfsr_rat_t rat) {
// noop rats must have zero weight
LFS_ASSERT(rat.tag || rat.weight == 0);
return !rat.tag;
}
static inline bool lfsr_rat_isinsert(lfsr_rat_t rat) {
return !lfsr_tag_isgrow(rat.tag) && rat.weight > 0;
}
static inline lfsr_srid_t lfsr_rat_nextrid(lfsr_rat_t rat,
lfsr_srid_t rid) {
if (lfsr_rat_isinsert(rat)) {
return rid + rat.weight-1;
} else {
return rid + rat.weight;
}
}
static inline lfs_size_t lfsr_rat_size(lfsr_rat_t rat) {
// note this does not include the tag size
// this gets a bit complicated for concatenated data
if (rat.count >= 0) {
return rat.count;
} else {
const lfsr_data_t *datas = rat.cat;
lfs_size_t data_count = -rat.count;
lfs_size_t size = 0;
for (lfs_size_t i = 0; i < data_count; i++) {
size += lfsr_data_size(datas[i]);
}
return size;
}
}
// special rats - here be hacks
// helper macro for did+name pairs
#define LFSR_RAT_NAME(_tag, _weight, _did, _name, _name_len) \
LFSR_RAT_CAT( \
_tag, \
_weight, \
LFSR_DATA_LEB128(_did, (uint8_t[LFSR_LEB128_DSIZE]){0}), \
LFSR_DATA_BUF(_name, _name_len))
// hacky rats - these end up handled as special cases in high-level
// commit layers
// chain another rat-list, only allowed as last rat
#define LFSR_RAT_RATS(_tag, _weight, _rats, _rat_count) \
LFSR_RAT_(_tag, _weight, (const lfsr_rat_t*){_rats}, _rat_count)
// chain a list of user attributes, these require a bit of last-minute
// reencoding during commits
#define LFSR_RAT_ATTRS(_tag, _weight, _attrs, _attr_count) \
LFSR_RAT_(_tag, _weight, (const struct lfs_attr*){_attrs}, _attr_count)
// a move of all rats from an mdir entry
#define LFSR_RAT_MOVE(_tag, _weight, _mdir) \
LFSR_RAT_(_tag, _weight, (const lfsr_mdir_t*){_mdir}, 0)
// a grm update, note this is mutable! we may update the grm during
// mdir commits
#define LFSR_RAT_GRM(_tag, _weight, _grm) \
LFSR_RAT_(_tag, _weight, (const lfsr_grm_t*){_grm}, 0)
// writing to an unrelated trunk in the rbyd
typedef struct lfsr_shrubcommit lfsr_shrubcommit_t;
#define LFSR_RAT_SHRUBCOMMIT(_tag, _weight, \
_shrub, _rid, _rats, _rat_count) \
LFSR_RAT_(_tag, _weight, \
(&(const lfsr_shrubcommit_t){ \
.shrub=_shrub, \
.rid=_rid, \
.rats=_rats, \
.rat_count=_rat_count}), \
0)
#define LFSR_RAT_SHRUBTRUNK(_tag, _weight, _shrub) \
LFSR_RAT_(_tag, _weight, (const lfsr_shrub_t*){_shrub}, 0)
// operations on custom attribute lists
//
// a slightly different struct because it's user facing
static inline lfs_ssize_t lfsr_attr_size(const struct lfs_attr *attr) {
// we default to the buffer_size if a mutable size is not provided
if (attr->size) {
return *attr->size;
} else {
return attr->buffer_size;
}
}
static inline bool lfsr_attr_isnoattr(const struct lfs_attr *attr) {
return lfsr_attr_size(attr) == LFS_ERR_NOATTR;
}
static lfs_scmp_t lfsr_attr_cmp(lfs_t *lfs, const struct lfs_attr *attr,
const lfsr_data_t *data) {
// note data=NULL => NOATTR
if (!data) {
return (lfsr_attr_isnoattr(attr)) ? LFS_CMP_EQ : LFS_CMP_GT;
} else {
if (lfsr_attr_isnoattr(attr)) {
return LFS_CMP_LT;
} else {
return lfsr_data_cmp(lfs, *data,
attr->buffer,
lfsr_attr_size(attr));
}
}
}
//struct lfsr_attr_from {
// const lfsr_rbyd_t *rbyd;
// const struct lfsr_attr *attrs;
// lfs_size_t start;
//};
//
//#define LFSR_ATTR_FROM(_id, _rbyd, _attrs, _start, _stop, _next)
// LFSR_ATTR(FROM, _id,
// (&(const struct lfsr_attr_from){_rbyd, _attrs, _start}),
// (_stop)-(_start), _next)
//
//#define LFS_MKRATTR_(...)
// (&(const struct lfsr_attr){__VA_ARGS__})
//
//#define LFS_MKRATTR(type1, type2, id, buffer, size, next)
// (&(const struct lfsr_attr){
// LFS_MKRTAG(type1, type2, id),
// buffer, size, next})
//
//#define LFS_MKRRMATTR(type1, type2, id, next)
// (&(const struct lfsr_attr){
// LFS_MKRRMTAG(type1, type2, id),
// NULL, 0, next})
//// find state when looking up by name
//typedef struct lfsr_find {
// // what to search for
// const char *name;
// lfs_size_t name_size;
//
// // if found, the tag/id will be placed in found_tag/found_id,
// // otherwise found_tag will be zero and found_id will be set to
// // the largest, smaller id (a good place to insert)
// lfs_ssize_t predicted_id;
// lfs_ssize_t found_id;
// lfsr_tag_t predicted_tag;
// lfsr_tag_t found_tag;
//} lfsr_find_t;
//// operations on global state
//static inline void lfs_gstate_xor(lfs_gstate_t *a, const lfs_gstate_t *b) {
// for (int i = 0; i < 3; i++) {
// ((uint32_t*)a)[i] ^= ((const uint32_t*)b)[i];
// }
//}
//
//static inline bool lfs_gstate_iszero(const lfs_gstate_t *a) {
// for (int i = 0; i < 3; i++) {
// if (((uint32_t*)a)[i] != 0) {
// return false;
// }
// }
// return true;
//}
//
//#ifndef LFS_READONLY
//static inline bool lfs_gstate_hasorphans(const lfs_gstate_t *a) {
// return lfs_tag_size(a->tag);
//}
//
//static inline uint8_t lfs_gstate_getorphans(const lfs_gstate_t *a) {
// return lfs_tag_size(a->tag);
//}
//
//static inline bool lfs_gstate_hasmove(const lfs_gstate_t *a) {
// return lfs_tag_type1(a->tag);
//}
//#endif
//
//static inline bool lfs_gstate_hasmovehere(const lfs_gstate_t *a,
// const lfs_block_t *pair) {
// return lfs_tag_type1(a->tag) && lfs_pair_cmp(a->pair, pair) == 0;
//}
//
//static inline void lfs_gstate_fromle32(lfs_gstate_t *a) {
// a->tag = lfs_fromle32(a->tag);
// a->pair[0] = lfs_fromle32(a->pair[0]);
// a->pair[1] = lfs_fromle32(a->pair[1]);
//}
//
//#ifndef LFS_READONLY
//static inline void lfs_gstate_tole32(lfs_gstate_t *a) {
// a->tag = lfs_tole32(a->tag);
// a->pair[0] = lfs_tole32(a->pair[0]);
// a->pair[1] = lfs_tole32(a->pair[1]);
//}
//#endif
//
//// operations on forward-CRCs used to track erased state
//struct lfs_fcrc {
// lfs_size_t size;
// uint32_t crc;
//};
//
//static void lfs_fcrc_fromle32(struct lfs_fcrc *fcrc) {
// fcrc->size = lfs_fromle32(fcrc->size);
// fcrc->crc = lfs_fromle32(fcrc->crc);
//}
//
//#ifndef LFS_READONLY
//static void lfs_fcrc_tole32(struct lfs_fcrc *fcrc) {
// fcrc->size = lfs_tole32(fcrc->size);
// fcrc->crc = lfs_tole32(fcrc->crc);
//}
//#endif
// erased-state checksum
typedef struct lfsr_ecksum {
// cksize=-1 indicates no ecksum
lfs_ssize_t cksize;
uint32_t cksum;
} lfsr_ecksum_t;
// erased-state checksum on-disk encoding
// ecksum encoding:
// .---+- -+- -+- -. cksize: 1 leb128 <=4 bytes
// | cksize | cksum: 1 le32 4 bytes
// +---+- -+- -+- -+ total: <=8 bytes
// | cksum |
// '---+---+---+---'
//
#define LFSR_ECKSUM_DSIZE (4+4)
#define LFSR_DATA_ECKSUM(_ecksum, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromecksum(_ecksum, _buffer)}.d)
static lfsr_data_t lfsr_data_fromecksum(const lfsr_ecksum_t *ecksum,
uint8_t buffer[static LFSR_ECKSUM_DSIZE]) {
// you shouldn't try to encode a not-ecksum, that doesn't make sense
LFS_ASSERT(ecksum->cksize != -1);
// cksize should not exceed 28-bits
LFS_ASSERT((lfs_size_t)ecksum->cksize <= 0x0fffffff);
lfs_ssize_t d = 0;
lfs_ssize_t d_ = lfs_toleb128(ecksum->cksize, &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
lfs_tole32_(ecksum->cksum, &buffer[d]);
d += 4;
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readecksum(lfs_t *lfs, lfsr_data_t *data,
lfsr_ecksum_t *ecksum) {
int err = lfsr_data_readlleb128(lfs, data, (lfs_size_t*)&ecksum->cksize);
if (err) {
return err;
}
err = lfsr_data_readle32(lfs, data, &ecksum->cksum);
if (err) {
return err;
}
return 0;
}
// block pointer things
// bptr encoding:
// .---+- -+- -+- -. size: 1 leb128 <=4 bytes
// | size | block: 1 leb128 <=5 bytes
// +---+- -+- -+- -+- -. off: 1 leb128 <=4 bytes
// | block | cksize: 1 leb128 <=4 bytes
// +---+- -+- -+- -+- -' cksum: 1 le32 4 bytes
// | off | total: <=21 bytes
// +---+- -+- -+- -+
// | cksize |
// +---+- -+- -+- -+
// | cksum |
// '---+---+---+---'
//
#define LFSR_BPTR_DSIZE (4+5+4+4+4)
#define LFSR_DATA_BPTR(_bptr, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_frombptr(_bptr, _buffer)}.d)
// checked reads adds ck info to lfsr_data_t that we don't want to
// unnecessarily duplicate, this makes accessing ck info annoyingly
// messy...
static inline lfs_size_t lfsr_bptr_cksize(const lfsr_bptr_t *bptr) {
#ifdef LFS_CKDATACKSUMS
return bptr->data.u.disk.cksize;
#else
return bptr->cksize;
#endif
}
static inline uint32_t lfsr_bptr_cksum(const lfsr_bptr_t *bptr) {
#ifdef LFS_CKDATACKSUMS
return bptr->data.u.disk.cksum;
#else
return bptr->cksum;
#endif
}
static lfsr_data_t lfsr_data_frombptr(const lfsr_bptr_t *bptr,
uint8_t buffer[static LFSR_BPTR_DSIZE]) {
// size should not exceed 28-bits
LFS_ASSERT(lfsr_data_size(bptr->data) <= 0x0fffffff);
// block should not exceed 31-bits
LFS_ASSERT(bptr->data.u.disk.block <= 0x7fffffff);
// off should not exceed 28-bits
LFS_ASSERT(bptr->data.u.disk.off <= 0x0fffffff);
// cksize should not exceed 28-bits
LFS_ASSERT(lfsr_bptr_cksize(bptr) <= 0x0fffffff);
lfs_ssize_t d = 0;
// write the block, offset, size
lfs_ssize_t d_ = lfs_toleb128(lfsr_data_size(bptr->data), &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
d_ = lfs_toleb128(bptr->data.u.disk.block, &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
d_ = lfs_toleb128(bptr->data.u.disk.off, &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
// write the cksize, cksum
d_ = lfs_toleb128(lfsr_bptr_cksize(bptr), &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
lfs_tole32_(lfsr_bptr_cksum(bptr), &buffer[d]);
d += 4;
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readbptr(lfs_t *lfs, lfsr_data_t *data,
lfsr_bptr_t *bptr) {
// read the block, offset, size
int err = lfsr_data_readlleb128(lfs, data, &bptr->data.size);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, data, &bptr->data.u.disk.block);
if (err) {
return err;
}
err = lfsr_data_readlleb128(lfs, data, &bptr->data.u.disk.off);
if (err) {
return err;
}
// read the cksize, cksum
err = lfsr_data_readlleb128(lfs, data,
LFS_IFDEF_CKDATACKSUMS(
&bptr->data.u.disk.cksize,
&bptr->cksize));
if (err) {
return err;
}
err = lfsr_data_readle32(lfs, data,
LFS_IFDEF_CKDATACKSUMS(
&bptr->data.u.disk.cksum,
&bptr->cksum));
if (err) {
return err;
}
// all bptrs have this flag set, this is used to differentiate
// bptrs from btrees in files
bptr->data.size |= LFSR_DATA_ONDISK;
return 0;
}
// check the contents of a bptr
static int lfsr_bptr_ck(lfs_t *lfs, const lfsr_bptr_t *bptr) {
uint32_t cksum = 0;
int err = lfsr_bd_cksum(lfs,
bptr->data.u.disk.block, 0, 0,
lfsr_bptr_cksize(bptr),
&cksum);
if (err) {
return err;
}
// test that our cksum matches what's expected
if (cksum != lfsr_bptr_cksum(bptr)) {
LFS_ERROR("Found bptr cksum mismatch "
"0x%"PRIx32".%"PRIx32" %"PRId32", "
"cksum %08"PRIx32" (!= %08"PRIx32")",
bptr->data.u.disk.block, 0,
lfsr_bptr_cksize(bptr),
cksum, lfsr_bptr_cksum(bptr));
return LFS_ERR_CORRUPT;
}
return 0;
}
//// other endianness operations
//static void lfs_ctz_fromle32(struct lfs_ctz *ctz) {
// ctz->head = lfs_fromle32(ctz->head);
// ctz->size = lfs_fromle32(ctz->size);
//}
//
//#ifndef LFS_READONLY
//static void lfs_ctz_tole32(struct lfs_ctz *ctz) {
// ctz->head = lfs_tole32(ctz->head);
// ctz->size = lfs_tole32(ctz->size);
//}
//#endif
//
//static inline void lfs_superblock_fromle32(lfs_superblock_t *superblock) {
// superblock->version = lfs_fromle32(superblock->version);
// superblock->block_size = lfs_fromle32(superblock->block_size);
// superblock->block_count = lfs_fromle32(superblock->block_count);
// superblock->name_max = lfs_fromle32(superblock->name_max);
// superblock->file_max = lfs_fromle32(superblock->file_max);
// superblock->attr_max = lfs_fromle32(superblock->attr_max);
//}
//
//#ifndef LFS_READONLY
//static inline void lfs_superblock_tole32(lfs_superblock_t *superblock) {
// superblock->version = lfs_tole32(superblock->version);
// superblock->block_size = lfs_tole32(superblock->block_size);
// superblock->block_count = lfs_tole32(superblock->block_count);
// superblock->name_max = lfs_tole32(superblock->name_max);
// superblock->file_max = lfs_tole32(superblock->file_max);
// superblock->attr_max = lfs_tole32(superblock->attr_max);
//}
//#endif
//
//#ifndef LFS_NO_ASSERT
//static bool lfs_mlist_isopen(struct lfs_mlist *head,
// struct lfs_mlist *node) {
// for (struct lfs_mlist **p = &head; *p; p = &(*p)->next) {
// if (*p == (struct lfs_mlist*)node) {
// return true;
// }
// }
//
// return false;
//}
//#endif
//
//static void lfs_mlist_remove(lfs_t *lfs, struct lfs_mlist *mlist) {
// for (struct lfs_mlist **p = &lfs->mlist; *p; p = &(*p)->next) {
// if (*p == mlist) {
// *p = (*p)->next;
// break;
// }
// }
//}
//
//static void lfs_mlist_append(lfs_t *lfs, struct lfs_mlist *mlist) {
// mlist->next = lfs->mlist;
// lfs->mlist = mlist;
//}
/// Internal operations predeclared here ///
//#ifndef LFS_READONLY
//static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
// const struct lfs_mattr *attrs, int attrcount);
//static int lfs_dir_compact(lfs_t *lfs,
// lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
// lfs_mdir_t *source, uint16_t begin, uint16_t end);
//static lfs_ssize_t lfs_file_flushedwrite(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size);
//static lfs_ssize_t lfs_file_rawwrite(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size);
//static int lfs_file_rawsync(lfs_t *lfs, lfs_file_t *file);
//static int lfs_file_outline(lfs_t *lfs, lfs_file_t *file);
//static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file);
//
//static int lfs_fs_deorphan(lfs_t *lfs, bool powerloss);
//static int lfs_fs_preporphans(lfs_t *lfs, int8_t orphans);
//static void lfs_fs_prepmove(lfs_t *lfs,
// uint16_t id, const lfs_block_t pair[2]);
//static int lfs_fs_pred(lfs_t *lfs, const lfs_block_t dir[2],
// lfs_mdir_t *pdir);
//static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t dir[2],
// lfs_mdir_t *parent);
//static int lfs_fs_forceconsistency(lfs_t *lfs);
//#endif
//
//#ifdef LFS_MIGRATE
//static int lfs1_traverse(lfs_t *lfs,
// int (*cb)(void*, lfs_block_t), void *data);
//#endif
//
//static int lfs_dir_rawrewind(lfs_t *lfs, lfs_dir_t *dir);
//
//static lfs_ssize_t lfs_file_flushedread(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size);
//static lfs_ssize_t lfs_file_rawread(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size);
//static int lfs_file_rawclose(lfs_t *lfs, lfs_file_t *file);
//static lfs_soff_t lfs_file_rawsize(lfs_t *lfs, lfs_file_t *file);
//
//static lfs_ssize_t lfs_fs_rawsize(lfs_t *lfs);
//static int lfs_fs_rawtraverse(lfs_t *lfs,
// int (*cb)(void *data, lfs_block_t block), void *data,
// bool includeorphans);
//static int lfs_deinit(lfs_t *lfs);
//static int lfs_rawunmount(lfs_t *lfs);
/// Red-black-yellow Dhara tree operations ///
#define LFSR_RBYD_ISSHRUB 0x80000000
#define LFSR_RBYD_ISPERTURB 0x80000000
// helper functions
static inline bool lfsr_rbyd_isshrub(const lfsr_rbyd_t *rbyd) {
return rbyd->trunk & LFSR_RBYD_ISSHRUB;
}
static inline lfs_size_t lfsr_rbyd_trunk(const lfsr_rbyd_t *rbyd) {
return rbyd->trunk & ~LFSR_RBYD_ISSHRUB;
}
static inline bool lfsr_rbyd_isfetched(const lfsr_rbyd_t *rbyd) {
return !lfsr_rbyd_trunk(rbyd) || rbyd->eoff;
}
static inline bool lfsr_rbyd_isperturb(const lfsr_rbyd_t *rbyd) {
return rbyd->eoff & LFSR_RBYD_ISPERTURB;
}
static inline lfs_size_t lfsr_rbyd_eoff(const lfsr_rbyd_t *rbyd) {
return rbyd->eoff & ~LFSR_RBYD_ISPERTURB;
}
static inline int lfsr_rbyd_cmp(
const lfsr_rbyd_t *a,
const lfsr_rbyd_t *b) {
if (a->blocks[0] != b->blocks[0]) {
return a->blocks[0] - b->blocks[0];
} else {
return a->trunk - b->trunk;
}
}
// needed in lfsr_rbyd_alloc
static lfs_sblock_t lfs_alloc(lfs_t *lfs, bool erase);
// allocate an rbyd block
static int lfsr_rbyd_alloc(lfs_t *lfs, lfsr_rbyd_t *rbyd) {
lfs_sblock_t block = lfs_alloc(lfs, true);
if (block < 0) {
return block;
}
rbyd->blocks[0] = block;
rbyd->trunk = 0;
rbyd->weight = 0;
rbyd->eoff = 0;
rbyd->cksum = 0;
return 0;
}
static int lfsr_rbyd_ckecksum(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
const lfsr_ecksum_t *ecksum) {
// check that the ecksum looks right
if (lfsr_rbyd_eoff(rbyd) + ecksum->cksize >= lfs->cfg->block_size
|| lfsr_rbyd_eoff(rbyd) % lfs->cfg->prog_size != 0) {
return LFS_ERR_CORRUPT;
}
// the next valid bit must _not_ match, or a commit was attempted,
// this should hopefully stay in our cache
uint8_t e;
int err = lfsr_bd_read(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd), ecksum->cksize,
&e, 1);
if (err) {
return err;
}
if (((e >> 7)^lfsr_rbyd_isperturb(rbyd)) == lfs_parity(rbyd->cksum)) {
return LFS_ERR_CORRUPT;
}
// check that erased-state matches our checksum, if this fails
// most likely a write was interrupted
uint32_t ecksum_ = 0;
err = lfsr_bd_cksum(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd), 0,
ecksum->cksize,
&ecksum_);
if (err) {
return err;
}
// found erased-state?
return (ecksum_ == ecksum->cksum) ? 0 : LFS_ERR_CORRUPT;
}
// fetch an rbyd
static int lfsr_rbyd_fetch(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfs_block_t block, lfs_size_t trunk) {
// set up some initial state
rbyd->blocks[0] = block;
rbyd->trunk = (trunk & LFSR_RBYD_ISSHRUB) | 0;
rbyd->eoff = 0;
// ignore the shrub bit here
trunk &= ~LFSR_RBYD_ISSHRUB;
// checksum the revision count to get the cksum started
uint32_t cksum = 0;
int err = lfsr_bd_cksum(lfs, block, 0, -1, sizeof(uint32_t),
&cksum);
if (err) {
return err;
}
// temporary state until we validate a cksum
uint32_t cksum_ = cksum;
lfs_size_t off = sizeof(uint32_t);
lfs_size_t trunk_ = 0;
lfs_size_t trunk__ = 0;
lfsr_rid_t weight = 0;
lfsr_rid_t weight_ = 0;
// assume unerased until proven otherwise
lfsr_data_t ecksum = LFSR_DATA_NULL();
lfsr_data_t ecksum_ = LFSR_DATA_NULL();
// scan tags, checking valid bits, cksums, etc
while (off < lfs->cfg->block_size
&& (!trunk || lfsr_rbyd_eoff(rbyd) <= trunk)) {
// read next tag
lfsr_tag_t tag;
lfsr_rid_t weight__;
lfs_size_t size;
lfs_ssize_t d = lfsr_bd_readtag(lfs, block, off, -1,
&tag, &weight__, &size,
&cksum_);
if (d < 0) {
if (d == LFS_ERR_CORRUPT) {
break;
}
return d;
}
lfs_size_t off_ = off + d;
// readtag should already check we're in-bounds
LFS_ASSERT(lfsr_tag_isalt(tag)
|| off_ + size <= lfs->cfg->block_size);
// take care of cksum
if (!lfsr_tag_isalt(tag)) {
// not an end-of-commit cksum
if (lfsr_tag_suptype(tag) != LFSR_TAG_CKSUM) {
// cksum the entry, hopefully leaving it in the cache
err = lfsr_bd_cksum(lfs, block, off_, -1, size,
&cksum_);
if (err) {
if (err == LFS_ERR_CORRUPT) {
break;
}
return err;
}
// found an ecksum? save for later
if (tag == LFSR_TAG_ECKSUM) {
ecksum_ = LFSR_DATA_DISK(block, off_, size);
}
// is an end-of-commit cksum
} else {
// check checksum
uint32_t cksum__ = 0;
err = lfsr_bd_read(lfs, block, off_, -1,
&cksum__, sizeof(uint32_t));
if (err) {
if (err == LFS_ERR_CORRUPT) {
break;
}
return err;
}
cksum__ = lfs_fromle32_(&cksum__);
if (cksum_ != cksum__) {
// uh oh, checksums don't match
break;
}
// if checksums match, perturb bits should also match
LFS_ASSERT(lfsr_tag_q(tag) == lfsr_rbyd_isperturb(rbyd));
// save what we've found so far
rbyd->eoff
= ((lfs_size_t)lfsr_tag_p(tag)
<< (8*sizeof(lfs_size_t)-1))
| (off_ + size);
rbyd->cksum = cksum;
rbyd->trunk = (LFSR_RBYD_ISSHRUB & rbyd->trunk) | trunk_;
rbyd->weight = weight;
ecksum = ecksum_;
// revert to canonical checksum and perturb if necessary
cksum_ = cksum
^ ((lfsr_rbyd_isperturb(rbyd))
? LFS_CRC32C_ODDZERO
: 0);
ecksum_ = LFSR_DATA_NULL();
}
}
// found a trunk?
if (lfsr_tag_istrunk(tag)) {
if (!(trunk && off > trunk && !trunk__)) {
// start of trunk?
if (!trunk__) {
// keep track of trunk's entry point
trunk__ = off;
// reset weight
weight_ = 0;
}
// derive weight of the tree from alt pointers
//
// NOTE we can't check for overflow/underflow here because we
// may be overeagerly parsing an invalid commit, it's ok for
// this to overflow/underflow as long as we throw it out later
// on a bad cksum
weight_ += weight__;
// end of trunk?
if (!lfsr_tag_isalt(tag)) {
// update trunk and weight, unless we are a shrub trunk
if (!lfsr_tag_isshrub(tag) || trunk__ == trunk) {
trunk_ = trunk__;
weight = weight_;
}
trunk__ = 0;
}
}
// update canonical checksum, xoring out any perturb
// state, we don't want erased-state affecting our
// canonical checksum
cksum = cksum_
^ ((lfsr_rbyd_isperturb(rbyd))
? LFS_CRC32C_ODDZERO
: 0);
}
// skip data
if (!lfsr_tag_isalt(tag)) {
off_ += size;
}
off = off_;
}
// no valid commits?
if (!lfsr_rbyd_trunk(rbyd)) {
return LFS_ERR_CORRUPT;
}
// did we end on a valid commit? we may have erased-state
bool erased = false;
if (lfsr_data_size(ecksum) != 0) {
// read the erased-state checksum
lfsr_ecksum_t ecksum__;
err = lfsr_data_readecksum(lfs, &ecksum,
&ecksum__);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err != LFS_ERR_CORRUPT) {
// check the erased-state checksum
err = lfsr_rbyd_ckecksum(lfs, rbyd, &ecksum__);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// found valid erased-state?
erased = (err != LFS_ERR_CORRUPT);
}
}
// used eoff=-1 to indicate when there is no erased-state
if (!erased) {
rbyd->eoff = -1;
}
return 0;
}
// a more aggressive fetch when checksum is known
static int lfsr_rbyd_fetchck(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfs_block_t block, lfs_size_t trunk,
uint32_t cksum) {
int err = lfsr_rbyd_fetch(lfs, rbyd, block, trunk);
if (err) {
if (err == LFS_ERR_CORRUPT) {
LFS_ERROR("Found corrupted rbyd 0x%"PRIx32".%"PRIx32", "
"cksum %08"PRIx32,
block, trunk, cksum);
}
return err;
}
// test that our cksum matches what's expected
//
// it should be noted that this is very unlikely to happen without the
// above fetch failing, since that would require the rbyd to have the
// same trunk and pass its internal cksum
if (rbyd->cksum != cksum) {
LFS_ERROR("Found rbyd cksum mismatch "
"0x%"PRIx32".%"PRIx32", "
"cksum %08"PRIx32" (!= %08"PRIx32")",
rbyd->blocks[0], lfsr_rbyd_trunk(rbyd),
rbyd->cksum, cksum);
return LFS_ERR_CORRUPT;
}
// if trunk/weight mismatch _after_ cksums match, that's not a storage
// error, that's a programming error
LFS_ASSERT(lfsr_rbyd_trunk(rbyd) == trunk);
return 0;
}
static int lfsr_rbyd_lookupnext(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, lfsr_tag_t tag,
lfsr_srid_t *rid_, lfsr_tag_t *tag_, lfsr_rid_t *weight_,
lfsr_data_t *data_) {
// these bits should be clear at this point
LFS_ASSERT(lfsr_tag_mode(tag) == 0);
// make sure we never look up zero tags, the way we create
// unreachable tags has a hole here
tag = lfs_max(tag, 0x1);
// out of bounds? no trunk yet?
if (rid >= (lfsr_srid_t)rbyd->weight || !lfsr_rbyd_trunk(rbyd)) {
return LFS_ERR_NOENT;
}
// keep track of bounds as we descend down the tree
lfs_size_t branch = lfsr_rbyd_trunk(rbyd);
lfsr_srid_t lower_rid = 0;
lfsr_srid_t upper_rid = rbyd->weight;
// descend down tree
while (true) {
lfsr_tag_t alt;
lfsr_rid_t weight;
lfs_size_t jump;
lfs_ssize_t d = lfsr_bd_readtag(lfs,
rbyd->blocks[0], branch, 0,
&alt, &weight, &jump,
NULL);
if (d < 0) {
return d;
}
// found an alt?
if (lfsr_tag_isalt(alt)) {
lfs_size_t branch_ = branch + d;
// take alt?
if (lfsr_tag_follow(
alt, weight,
lower_rid, upper_rid,
rid, tag)) {
lfsr_tag_flip(
&alt, &weight,
lower_rid, upper_rid);
branch_ = branch - jump;
}
lfsr_tag_trim(
alt, weight,
&lower_rid, &upper_rid,
NULL, NULL);
LFS_ASSERT(branch_ != branch);
branch = branch_;
// found end of tree?
} else {
// update the tag rid
lfsr_srid_t rid__ = upper_rid-1;
lfsr_tag_t tag__ = lfsr_tag_key(alt);
// not what we're looking for?
if (!tag__
|| rid__ < rid
|| (rid__ == rid && tag__ < tag)) {
return LFS_ERR_NOENT;
}
// save what we found
// TODO how many of these need to be conditional?
if (rid_) {
*rid_ = rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = upper_rid - lower_rid;
}
if (data_) {
*data_ = LFSR_DATA_DISK(rbyd->blocks[0], branch + d, jump);
}
return 0;
}
}
}
static int lfsr_rbyd_lookup(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, lfsr_tag_t tag,
lfsr_data_t *data_) {
lfsr_srid_t rid_;
lfsr_tag_t tag_;
int err = lfsr_rbyd_lookupnext(lfs, rbyd, rid, tag,
&rid_, &tag_, NULL, data_);
if (err) {
return err;
}
// lookup finds the next-smallest tag, all we need to do is fail if it
// picks up the wrong tag
if (rid_ != rid || tag_ != tag) {
return LFS_ERR_NOENT;
}
return 0;
}
static int lfsr_rbyd_sublookup(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, lfsr_tag_t tag,
lfsr_tag_t *tag_, lfsr_data_t *data_) {
// looking up a wide tag with subtype is probably a mistake
LFS_ASSERT(lfsr_tag_subtype(tag) == 0);
lfsr_srid_t rid_;
lfsr_tag_t tag__;
int err = lfsr_rbyd_lookupnext(lfs, rbyd, rid, tag,
&rid_, &tag__, NULL, data_);
if (err) {
return err;
}
// the difference between lookup and sublookup is we accept any
// subtype of the requested tag
if (rid_ != rid || lfsr_tag_suptype(tag__) != tag) {
return LFS_ERR_NOENT;
}
if (tag_) {
*tag_ = tag__;
}
return 0;
}
static int lfsr_rbyd_suplookup(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_srid_t rid,
lfsr_tag_t *tag_, lfsr_data_t *data_) {
lfsr_srid_t rid_;
lfsr_tag_t tag__;
int err = lfsr_rbyd_lookupnext(lfs, rbyd, rid, 0,
&rid_, &tag__, NULL, data_);
if (err) {
return err;
}
// the difference between lookup and suplookup is we accept any tag
if (rid_ != rid) {
return LFS_ERR_NOENT;
}
if (tag_) {
*tag_ = tag__;
}
return 0;
}
// rbyd append operations
// append a revision count
//
// this is optional, if not called revision count defaults to 0 (for btrees)
static int lfsr_rbyd_appendrev(lfs_t *lfs, lfsr_rbyd_t *rbyd, uint32_t rev) {
// should only be called before any tags are written
LFS_ASSERT(rbyd->eoff == 0);
LFS_ASSERT(rbyd->cksum == 0);
// revision count stored as le32, we don't use a leb128 encoding as we
// intentionally allow the revision count to overflow
uint8_t rev_buf[sizeof(uint32_t)];
lfs_tole32_(rev, &rev_buf);
int err = lfsr_bd_prog(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd),
&rev_buf, sizeof(uint32_t),
&rbyd->cksum, false);
if (err) {
return err;
}
rbyd->eoff += sizeof(uint32_t);
return 0;
}
// other low-level appends
static int lfsr_rbyd_appendtag(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_tag_t tag, lfsr_rid_t weight, lfs_size_t size) {
// do we fit?
if (lfsr_rbyd_eoff(rbyd) + LFSR_TAG_DSIZE
> lfs->cfg->block_size) {
return LFS_ERR_RANGE;
}
lfs_ssize_t d = lfsr_bd_progtag(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd), lfsr_rbyd_isperturb(rbyd),
tag, weight, size,
&rbyd->cksum, false);
if (d < 0) {
return d;
}
rbyd->eoff += d;
#ifdef LFS_CKPARITY
// keep track of most recent parity
lfs->tailp.block = rbyd->blocks[0];
lfs->tailp.off
= ((lfs_size_t)(
lfs_parity(rbyd->cksum) ^ lfsr_rbyd_isperturb(rbyd)
) << (8*sizeof(lfs_size_t)-1))
| lfsr_rbyd_eoff(rbyd);
#endif
return 0;
}
static int lfsr_rbyd_appendrat_(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_rat_t rat) {
// do we fit?
lfs_size_t size = lfsr_rat_size(rat);
if (lfsr_rbyd_eoff(rbyd) + LFSR_TAG_DSIZE + size
> lfs->cfg->block_size) {
return LFS_ERR_RANGE;
}
// append tag
int err = lfsr_rbyd_appendtag(lfs, rbyd,
rat.tag, rat.weight, size);
if (err) {
return err;
}
// direct buffer?
if (rat.count >= 0) {
err = lfsr_bd_prog(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd), rat.cat, rat.count,
&rbyd->cksum, false);
if (err) {
return err;
}
rbyd->eoff += rat.count;
// indirect concatenated data?
} else {
const lfsr_data_t *datas = rat.cat;
lfs_size_t data_count = -rat.count;
for (lfs_size_t i = 0; i < data_count; i++) {
err = lfsr_bd_progdata(lfs,
rbyd->blocks[0], lfsr_rbyd_eoff(rbyd), datas[i],
&rbyd->cksum, false);
if (err) {
return err;
}
rbyd->eoff += lfsr_data_size(datas[i]);
}
}
#ifdef LFS_CKPARITY
// keep track of most recent parity
lfs->tailp.block = rbyd->blocks[0];
lfs->tailp.off
= ((lfs_size_t)(
lfs_parity(rbyd->cksum) ^ lfsr_rbyd_isperturb(rbyd)
) << (8*sizeof(lfs_size_t)-1))
| lfsr_rbyd_eoff(rbyd);
#endif
return 0;
}
// checks before we append
static int lfsr_rbyd_appendinit(lfs_t *lfs, lfsr_rbyd_t *rbyd) {
// must fetch before mutating!
LFS_ASSERT(lfsr_rbyd_isfetched(rbyd));
// we can't do anything if we're not erased
if (lfsr_rbyd_eoff(rbyd) >= lfs->cfg->block_size) {
return LFS_ERR_RANGE;
}
// make sure every rbyd starts with a revision count
if (rbyd->eoff == 0) {
int err = lfsr_rbyd_appendrev(lfs, rbyd, 0);
if (err) {
return err;
}
}
return 0;
}
// helper functions for managing the 3-element fifo used in
// lfsr_rbyd_appendrat
typedef struct lfsr_alt {
lfsr_tag_t alt;
lfsr_rid_t weight;
lfs_size_t jump;
} lfsr_alt_t;
static int lfsr_rbyd_p_flush(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_alt_t p[static 3],
int count) {
// write out some number of alt pointers in our queue
for (int i = 0; i < count; i++) {
if (p[3-1-i].alt) {
// change to a relative jump at the last minute
lfsr_tag_t alt = p[3-1-i].alt;
lfsr_rid_t weight = p[3-1-i].weight;
lfs_size_t jump = (p[3-1-i].jump)
? lfsr_rbyd_eoff(rbyd) - p[3-1-i].jump
: 0;
int err = lfsr_rbyd_appendtag(lfs, rbyd, alt, weight, jump);
if (err) {
return err;
}
}
}
return 0;
}
static inline int lfsr_rbyd_p_push(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_alt_t p[static 3],
lfsr_tag_t alt, lfsr_rid_t weight, lfs_size_t jump) {
int err = lfsr_rbyd_p_flush(lfs, rbyd, p, 1);
if (err) {
return err;
}
lfs_memmove(p+1, p, 2*sizeof(lfsr_alt_t));
p[0].alt = alt;
p[0].weight = weight;
p[0].jump = jump;
return 0;
}
static inline void lfsr_rbyd_p_pop(
lfsr_alt_t p[static 3]) {
lfs_memmove(p, p+1, 2*sizeof(lfsr_alt_t));
p[2].alt = 0;
}
static void lfsr_rbyd_p_recolor(
lfsr_alt_t p[static 3]) {
// propagate a red edge upwards
p[0].alt &= ~LFSR_TAG_R;
if (p[1].alt) {
p[1].alt |= LFSR_TAG_R;
// alt-never? we can prune this now
if (lfsr_tag_isn(p[1].alt)) {
p[1] = p[2];
p[2].alt = 0;
// reorder so that top two edges always go in the same direction
} else if (lfsr_tag_isred(p[2].alt)) {
if (lfsr_tag_isparallel(p[1].alt, p[2].alt)) {
// no reorder needed
} else if (lfsr_tag_isparallel(p[0].alt, p[2].alt)) {
lfsr_tag_t alt_ = p[1].alt;
lfsr_rid_t weight_ = p[1].weight;
lfs_size_t jump_ = p[1].jump;
p[1].alt = p[0].alt | LFSR_TAG_R;
p[1].weight = p[0].weight;
p[1].jump = p[0].jump;
p[0].alt = alt_ & ~LFSR_TAG_R;
p[0].weight = weight_;
p[0].jump = jump_;
} else if (lfsr_tag_isparallel(p[0].alt, p[1].alt)) {
lfsr_tag_t alt_ = p[2].alt;
lfsr_rid_t weight_ = p[2].weight;
lfs_size_t jump_ = p[2].jump;
p[2].alt = p[1].alt | LFSR_TAG_R;
p[2].weight = p[1].weight;
p[2].jump = p[1].jump;
p[1].alt = p[0].alt | LFSR_TAG_R;
p[1].weight = p[0].weight;
p[1].jump = p[0].jump;
p[0].alt = alt_ & ~LFSR_TAG_R;
p[0].weight = weight_;
p[0].jump = jump_;
} else {
LFS_UNREACHABLE();
}
}
}
}
// core rbyd algorithm
static int lfsr_rbyd_appendrat(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, lfsr_rat_t rat) {
// must fetch before mutating!
LFS_ASSERT(lfsr_rbyd_isfetched(rbyd));
// tag must not be internal at this point
LFS_ASSERT(!lfsr_tag_isinternal(rat.tag));
// bit 7 is reserved for future subtype extensions
LFS_ASSERT(!(rat.tag & 0x80));
// you can't delete more than what's in the rbyd
LFS_ASSERT(rat.weight >= -(lfsr_srid_t)rbyd->weight);
// ignore noops
if (lfsr_rat_isnoop(rat)) {
return 0;
}
// begin appending
int err = lfsr_rbyd_appendinit(lfs, rbyd);
if (err) {
return err;
}
// figure out what range of tags we're operating on
lfsr_srid_t a_rid;
lfsr_srid_t b_rid;
lfsr_tag_t a_tag;
lfsr_tag_t b_tag;
if (!lfsr_tag_isgrow(rat.tag) && rat.weight != 0) {
if (rat.weight > 0) {
LFS_ASSERT(rid <= (lfsr_srid_t)rbyd->weight);
// it's a bit ugly, but adjusting the rid here makes the following
// logic work out more consistently
rid -= 1;
a_rid = rid + 1;
b_rid = rid + 1;
} else {
LFS_ASSERT(rid < (lfsr_srid_t)rbyd->weight);
// it's a bit ugly, but adjusting the rid here makes the following
// logic work out more consistently
rid += 1;
a_rid = rid - lfs_smax(-rat.weight, 0);
b_rid = rid;
}
a_tag = 0;
b_tag = 0;
} else {
LFS_ASSERT(rid < (lfsr_srid_t)rbyd->weight);
a_rid = rid - lfs_smax(-rat.weight, 0);
b_rid = rid;
// note both normal and rm wide-tags have the same bounds, really it's
// the normal non-wide-tags that are an outlier here
if (lfsr_tag_issup(rat.tag)) {
a_tag = 0x000;
b_tag = 0xf00;
} else if (lfsr_tag_issub(rat.tag)) {
a_tag = lfsr_tag_supkey(rat.tag);
b_tag = lfsr_tag_supkey(rat.tag) + 0x100;
} else if (lfsr_tag_isrm(rat.tag)) {
a_tag = lfsr_tag_key(rat.tag);
b_tag = lfsr_tag_key(rat.tag) + 1;
} else {
a_tag = lfsr_tag_key(rat.tag);
b_tag = lfsr_tag_key(rat.tag);
}
}
a_tag = lfs_max(a_tag, 0x1);
b_tag = lfs_max(b_tag, 0x1);
// keep track of diverged state
//
// this is only used if we operate on a range of tags, in which case
// we may need to write two trunks
//
// to pull this off, we make two passes:
// 1. to write the common trunk + diverged-lower trunk
// 2. to write the common trunk + diverged-upper trunk, stitching the
// two diverged trunks together where they diverged
//
bool diverged = false;
lfsr_srid_t d_rid = 0;
lfsr_tag_t d_tag = 0;
// follow the current trunk
lfs_size_t branch = lfsr_rbyd_trunk(rbyd);
trunk:;
// the new trunk starts here
lfs_size_t trunk_ = lfsr_rbyd_eoff(rbyd);
// keep track of bounds as we descend down the tree
//
// this gets a bit confusing as we also may need to keep
// track of both the lower and upper bounds of diverging paths
// in the case of range deletions
lfsr_srid_t lower_rid = 0;
lfsr_srid_t upper_rid = rbyd->weight;
lfsr_tag_t lower_tag = 0x000;
lfsr_tag_t upper_tag = 0xf00;
// no trunk yet?
if (!branch) {
goto leaf;
}
// queue of pending alts we can emulate rotations with
lfsr_alt_t p[3] = {{0}, {0}, {0}};
// keep track of the last incoming branch for yellow splits
lfs_size_t y_branch = 0;
// keep track of the tag we find at the end of the trunk
lfsr_tag_t tag_ = 0;
// descend down tree, building alt pointers
while (true) {
// keep track of incoming branch
if (lfsr_tag_isblack(p[0].alt)) {
y_branch = branch;
}
// read the alt pointer
lfsr_tag_t alt;
lfsr_rid_t weight;
lfs_size_t jump;
lfs_ssize_t d = lfsr_bd_readtag(lfs,
rbyd->blocks[0], branch, 0,
&alt, &weight, &jump,
NULL);
if (d < 0) {
return d;
}
// found an alt?
if (lfsr_tag_isalt(alt)) {
// make jump absolute
jump = branch - jump;
lfs_size_t branch_ = branch + d;
// yellow alts should be parallel
LFS_ASSERT(!(lfsr_tag_isred(alt) && lfsr_tag_isred(p[0].alt))
|| lfsr_tag_isparallel(alt, p[0].alt));
// take black alt? needs a flip
// <b >b
// .-'| => .-'|
// 1 2 1 2 1
if (lfsr_tag_follow2(
alt, weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid,
a_rid, a_tag)) {
lfsr_tag_flip2(
&alt, &weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid);
LFS_SWAP(lfs_size_t, &jump, &branch_);
}
// should've taken red alt? needs a flip
// <r >r
// .----'| .-'|
// | <b => | >b
// | .-'| .--|-'|
// 1 2 3 1 2 3 1
if (lfsr_tag_isred(p[0].alt)
&& lfsr_tag_follow(
p[0].alt, p[0].weight,
lower_rid, upper_rid,
a_rid, a_tag)) {
LFS_SWAP(lfsr_tag_t, &p[0].alt, &alt);
LFS_SWAP(lfsr_rid_t, &p[0].weight, &weight);
LFS_SWAP(lfs_size_t, &p[0].jump, &jump);
alt = (alt & ~LFSR_TAG_R) | (p[0].alt & LFSR_TAG_R);
p[0].alt |= LFSR_TAG_R;
lfsr_tag_flip2(
&alt, &weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid);
LFS_SWAP(lfs_size_t, &jump, &branch_);
}
// do bounds want to take different paths? begin diverging
// >b <b
// .-'| .-'|
// <b => | nb => nb |
// .----'| .--------|--' .-----------' |
// <b <b | <b | nb
// .-'| .-'| | .-'| | .-----'
// 1 2 3 4 1 2 3 4 x 1 2 3 4 x x
bool diverging = lfsr_tag_diverging2(
alt, weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid,
a_rid, a_tag,
b_rid, b_tag);
bool diverging_red = lfsr_tag_isred(p[0].alt)
&& lfsr_tag_diverging(
p[0].alt, p[0].weight,
lower_rid, upper_rid,
a_rid, a_tag,
b_rid, b_tag);
if (!diverged
// diverging black?
&& (lfsr_tag_isblack(alt)
// give up if we find a yellow alt
|| lfsr_tag_isred(p[0].alt))
&& (diverging || diverging_red)) {
diverged = true;
// both diverging? collapse
// <r >b
// .----'| .-'|
// | <b => | |
// | .-'| .-----|--'
// 1 2 3 1 2 3 x
if (diverging && diverging_red) {
LFS_ASSERT(a_rid < b_rid || a_tag < b_tag);
LFS_ASSERT(lfsr_tag_isparallel(alt, p[0].alt));
p[0].alt = alt | LFSR_TAG_R;
p[0].weight += weight;
weight = 0;
}
// diverging upper? stitch together both trunks
// >b <b
// .-'| .-'|
// | nb => nb |
// .--------|--' .-----------' |
// | <b | nb
// | .-'| | .-----'
// 1 2 3 4 x 1 2 3 4 x x
if (a_rid > b_rid || a_tag > b_tag) {
lfsr_tag_trim2(
alt, weight,
p[0].alt, p[0].weight,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
// stitch together both trunks
err = lfsr_rbyd_p_push(lfs, rbyd, p,
LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_LE, d_tag),
d_rid - (lower_rid - weight),
jump);
if (err) {
return err;
}
// continue to next alt
branch = branch_;
continue;
}
// diverged?
// : :
// <b => nb
// .-'| .--'
// 3 4 3 4 x
} else if (diverged && diverging) {
// trim so alt is pruned
lfsr_tag_trim(
alt, weight,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
weight = 0;
}
// prune?
//
// note if only yellow pruning this could be much simpler
// prune unreachable red alts
// <b >b
// .-'| .-'|
// <y | | |
// .-------'| | | |
// | <r | => | >b
// | .----' | .--------|-'|
// | | <b | <b |
// | | .----'| | .----'| |
// 1 2 3 4 4 1 2 3 4 4 1
if (lfsr_tag_isred(p[0].alt)
&& lfsr_tag_unreachable(
p[0].alt, p[0].weight,
lower_rid, upper_rid,
lower_tag, upper_tag)) {
alt &= ~LFSR_TAG_R;
lfsr_rbyd_p_pop(p);
}
// prune other unreachable alts
// <b >b
// .-'| .-'|
// <y | | <b
// .-------'| | .-----------|-'|
// | <r | => | | |
// | .----' | | | |
// | | <b | <b |
// | | .----'| | .----'| |
// 1 2 3 4 4 1 2 3 4 4 2
if (lfsr_tag_unreachable2(
alt, weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid,
lower_tag, upper_tag)) {
// prune unreachable recolorable alts
// : :
// <r => <b
// .----'| .-------'|
// | <b | |
// | .-'| | .-----'
// 1 2 3 1 2 3 x
if (lfsr_tag_isred(p[0].alt)) {
alt = p[0].alt & ~LFSR_TAG_R;
weight = p[0].weight;
jump = p[0].jump;
lfsr_rbyd_p_pop(p);
// prune unreachable root alts and red alts
// : :
// <r => <b
// .----'| .----'|
// | <b | |
// | .-'| | .--'
// 3 4 5 3 4 5 x
} else if (!p[0].alt || lfsr_tag_isred(alt)) {
branch = branch_;
continue;
// convert unreachable non-root black alts into alt-nevers,
// if we prune these it would break the color balance of
// our tree
// : :
// <b => nb
// .-'| .--'
// 3 4 3 4 x
} else {
alt = LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_LE, 0);
weight = 0;
jump = 0;
}
}
// two reds makes a yellow, split?
//
// note we've lost the original yellow edge because of flips, but
// we know the red edge is the only branch_ > branch
if (lfsr_tag_isred(alt) && lfsr_tag_isred(p[0].alt)) {
// if we take the red or yellow alt we can just point
// to the black alt
// <y >b
// .-------'| .-'|
// | <r | >b
// | .----'| => .-----|-'|
// | | <b | <b |
// | | .-'| | .-'| |
// 1 2 3 4 1 2 3 4 1
if (branch_ < branch) {
if (jump > branch) {
LFS_SWAP(lfsr_tag_t, &p[0].alt, &alt);
LFS_SWAP(lfsr_rid_t, &p[0].weight, &weight);
LFS_SWAP(lfs_size_t, &p[0].jump, &jump);
}
alt &= ~LFSR_TAG_R;
lfsr_tag_trim(
p[0].alt, p[0].weight,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
lfsr_rbyd_p_recolor(p);
// otherwise we need to point to the yellow alt and
// prune later
// <b
// .-'|
// <y <y |
// .-------'| .-------'| |
// | <r => | <r |
// | .----'| | .----' |
// | | <b | | <b
// | | .-'| | | .----'|
// 1 2 3 4 1 2 3 4 4
} else {
LFS_ASSERT(y_branch != 0);
p[0].alt = alt;
p[0].weight += weight;
p[0].jump = y_branch;
lfsr_tag_trim(
p[0].alt, p[0].weight,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
lfsr_rbyd_p_recolor(p);
branch = branch_;
continue;
}
}
// red alt? we need to read the rest of the 2-3-4 node
if (lfsr_tag_isred(alt)) {
// undo flip temporarily
if (branch_ < branch) {
lfsr_tag_flip2(
&alt, &weight,
p[0].alt, p[0].weight,
lower_rid, upper_rid);
LFS_SWAP(lfs_size_t, &jump, &branch_);
}
// black alt? terminate 2-3-4 nodes
} else {
// trim alts from our current bounds
lfsr_tag_trim2(
alt, weight,
p[0].alt, p[0].weight,
&lower_rid, &upper_rid,
&lower_tag, &upper_tag);
}
// push alt onto our queue
err = lfsr_rbyd_p_push(lfs, rbyd, p,
alt, weight, jump);
if (err) {
return err;
}
// continue to next alt
LFS_ASSERT(branch_ != branch);
branch = branch_;
continue;
// found end of tree?
} else {
// update the found tag
tag_ = lfsr_tag_key(alt);
// the last alt should always end up black
LFS_ASSERT(lfsr_tag_isblack(p[0].alt));
if (diverged) {
// diverged lower trunk? move on to upper trunk
if (a_rid < b_rid || a_tag < b_tag) {
// keep track of the lower diverged bound
d_rid = lower_rid;
d_tag = lower_tag;
// flush any pending alts
err = lfsr_rbyd_p_flush(lfs, rbyd, p, 3);
if (err) {
return err;
}
// terminate diverged trunk with an unreachable tag
err = lfsr_rbyd_appendrat_(lfs, rbyd, LFSR_RAT(
(lfsr_rbyd_isshrub(rbyd) ? LFSR_TAG_SHRUB : 0)
| LFSR_TAG_NULL,
0,
LFSR_DATA_NULL()));
if (err) {
return err;
}
// swap tag/rid and move on to upper trunk
diverged = false;
branch = trunk_;
LFS_SWAP(lfsr_tag_t, &a_tag, &b_tag);
LFS_SWAP(lfsr_srid_t, &a_rid, &b_rid);
goto trunk;
} else {
// use the lower diverged bound for leaf weight
// calculation
lower_rid = d_rid;
lower_tag = d_tag;
}
}
goto stem;
}
}
stem:;
// split leaf nodes?
//
// note we bias the weights here so that lfsr_rbyd_lookupnext
// always finds the next biggest tag
//
// note also if tag_ is null, we found a removed tag that we should just
// prune
//
// this gets real messy because we have a lot of special behavior built in:
// - default => split if tags mismatch
// - weight>0, !grow => split if tags mismatch or we're inserting a new tag
// - wide-bit set => split if suptype of tags mismatch
// - rm-bit set => never split, but emit alt-always tags, making our
// tag effectively unreachable
//
lfsr_tag_t alt = 0;
lfsr_rid_t weight = 0;
if (tag_
&& (upper_rid-1 < rid-lfs_smax(-rat.weight, 0)
|| (upper_rid-1 == rid-lfs_smax(-rat.weight, 0)
&& ((!lfsr_tag_isgrow(rat.tag) && rat.weight > 0)
|| (!lfsr_tag_issup(rat.tag)
&& lfsr_tag_supkey(tag_)
< lfsr_tag_supkey(rat.tag))
|| (!lfsr_tag_issup(rat.tag)
&& !lfsr_tag_issub(rat.tag)
&& lfsr_tag_key(tag_)
< lfsr_tag_key(rat.tag)))))) {
if (lfsr_tag_isrm(rat.tag) || !lfsr_tag_key(rat.tag)) {
// if removed, make our tag unreachable
alt = LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_GT, lower_tag);
weight = upper_rid - lower_rid + rat.weight;
upper_rid -= weight;
} else {
// split less than
alt = LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_LE, tag_);
weight = upper_rid - lower_rid;
lower_rid += weight;
}
} else if (tag_
&& (upper_rid-1 > rid
|| (upper_rid-1 == rid
&& ((!lfsr_tag_isgrow(rat.tag) && rat.weight > 0)
|| (!lfsr_tag_issup(rat.tag)
&& lfsr_tag_supkey(tag_)
> lfsr_tag_supkey(rat.tag))
|| (!lfsr_tag_issup(rat.tag)
&& !lfsr_tag_issub(rat.tag)
&& lfsr_tag_key(tag_)
> lfsr_tag_key(rat.tag)))))) {
if (lfsr_tag_isrm(rat.tag) || !lfsr_tag_key(rat.tag)) {
// if removed, make our tag unreachable
alt = LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_GT, lower_tag);
weight = upper_rid - lower_rid + rat.weight;
upper_rid -= weight;
} else {
// split greater than
alt = LFSR_TAG_ALT(LFSR_TAG_B, LFSR_TAG_GT, rat.tag);
weight = upper_rid - (rid+1);
upper_rid -= weight;
}
}
if (alt) {
err = lfsr_rbyd_p_push(lfs, rbyd, p,
alt, weight, branch);
if (err) {
return err;
}
// introduce a red edge
lfsr_rbyd_p_recolor(p);
}
// flush any pending alts
err = lfsr_rbyd_p_flush(lfs, rbyd, p, 3);
if (err) {
return err;
}
leaf:;
// write the actual tag
//
// note we always need a non-alt to terminate the trunk, otherwise we
// can't find trunks during fetch
err = lfsr_rbyd_appendrat_(lfs, rbyd, LFSR_RAT_(
// mark as shrub if we are a shrub
(lfsr_rbyd_isshrub(rbyd) ? LFSR_TAG_SHRUB : 0)
// rm => null, otherwise strip off control bits
| ((lfsr_tag_isrm(rat.tag))
? LFSR_TAG_NULL
: lfsr_tag_key(rat.tag)),
upper_rid - lower_rid + rat.weight,
rat.cat, rat.count));
if (err) {
return err;
}
// update the trunk and weight
rbyd->trunk = (rbyd->trunk & LFSR_RBYD_ISSHRUB) | trunk_;
rbyd->weight += rat.weight;
return 0;
}
static int lfsr_rbyd_appendcksum(lfs_t *lfs, lfsr_rbyd_t *rbyd) {
// begin appending
int err = lfsr_rbyd_appendinit(lfs, rbyd);
if (err) {
return err;
}
// save the canonical checksum
uint32_t cksum = rbyd->cksum;
// align to the next prog unit
//
// this gets a bit complicated as we have two types of cksums:
//
// - 9-word cksum with ecksum to check following prog (middle of block):
// .---+---+---+---. ecksum tag: 1 be16 2 bytes
// | tag | 0 |siz| ecksum weight (0): 1 leb128 1 byte
// +---+---+---+---+ ecksum size: 1 leb128 1 byte
// | ecksize | ecksum cksize: 1 leb128 <=4 bytes
// +---+- -+- -+- -+ ecksum cksum: 1 le32 4 bytes
// | ecksum |
// +---+---+---+---+- -+- -+- -. cksum tag: 1 be16 2 bytes
// | tag | 0 | size | cksum weight (0): 1 leb128 1 byte
// +---+---+---+---+- -+- -+- -' cksum size: 1 leb128 <=4 bytes
// | cksum | cksum cksum: 1 le32 4 bytes
// '---+---+---+---' total: <=23 bytes
//
// - 4-word cksum with no following prog (end of block):
// .---+---+---+---+- -+- -+- -. cksum tag: 1 be16 2 bytes
// | tag | 0 | size | cksum weight (0): 1 leb128 1 byte
// +---+---+---+---+- -+- -+- -' cksum size: 1 leb128 <=4 bytes
// | cksum | cksum cksum: 1 le32 4 bytes
// '---+---+---+---' total: <=11 bytes
//
lfs_size_t off_ = lfs_alignup(
lfsr_rbyd_eoff(rbyd) + 2+1+1+4+4 + 2+1+4+4,
lfs->cfg->prog_size);
// space for ecksum?
bool perturb = false;
if (off_ < lfs->cfg->block_size) {
// read the leading byte in case we need to perturb the next commit,
// this should hopefully stay in our cache
uint8_t e = 0;
err = lfsr_bd_read(lfs,
rbyd->blocks[0], off_, lfs->cfg->prog_size,
&e, 1);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// we don't want the next commit to appear as valid, so we
// intentionally perturb the commit if this happens, this is
// roughly equivalent to inverting all tags' valid bits
perturb = ((e >> 7) == lfs_parity(cksum));
// calculate the erased-state checksum
uint32_t ecksum = 0;
err = lfsr_bd_cksum(lfs,
rbyd->blocks[0], off_, lfs->cfg->prog_size,
lfs->cfg->prog_size,
&ecksum);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
uint8_t ecksum_buf[LFSR_ECKSUM_DSIZE];
err = lfsr_rbyd_appendrat_(lfs, rbyd, LFSR_RAT(
LFSR_TAG_ECKSUM, 0, LFSR_DATA_ECKSUM(
(&(lfsr_ecksum_t){
.cksize=lfs->cfg->prog_size,
.cksum=ecksum}),
ecksum_buf)));
if (err) {
return err;
}
// at least space for a cksum?
} else if (lfsr_rbyd_eoff(rbyd) + 2+1+4+4 <= lfs->cfg->block_size) {
// note this implicitly marks the rbyd as unerased
off_ = lfs->cfg->block_size;
// not even space for a cksum? we can't finish the commit
} else {
return LFS_ERR_RANGE;
}
// build the end-of-commit checksum tag
//
// note padding-size depends on leb-encoding depends on padding-size
// depends leb-encoding depends on... to get around this catch-22 we
// just always write a fully-expanded leb128 encoding
//
bool v = lfs_parity(rbyd->cksum) ^ lfsr_rbyd_isperturb(rbyd);
uint8_t cksum_buf[2+1+4+4];
cksum_buf[0] = (uint8_t)(LFSR_TAG_CKSUM >> 8)
// set the valid bit to the cksum parity
| ((uint8_t)v << 7);
cksum_buf[1] = (uint8_t)(LFSR_TAG_CKSUM >> 0)
// include the current perturb bit
| ((uint8_t)lfsr_rbyd_isperturb(rbyd) << 1)
// set the perturb bit so next commit is invalid
| ((uint8_t)perturb << 0);
cksum_buf[2] = 0;
lfs_size_t padding = off_ - (lfsr_rbyd_eoff(rbyd) + 2+1+4);
cksum_buf[3] = 0x80 | (0x7f & (padding >> 0));
cksum_buf[4] = 0x80 | (0x7f & (padding >> 7));
cksum_buf[5] = 0x80 | (0x7f & (padding >> 14));
cksum_buf[6] = 0x00 | (0x7f & (padding >> 21));
// exclude the valid bit
uint32_t cksum_ = rbyd->cksum ^ ((uint32_t)v << 7);
// calculate the commit checksum
cksum_ = lfs_crc32c(cksum_, cksum_buf, 2+1+4);
// and perturb, perturbing the commit checksum avoids a perturb hole
// after the last valid bit without needing to manually validate q
//
// note the odd-parity zero preserves our position in the crc32c
// ring while only changing the parity
cksum_ ^= (lfsr_rbyd_isperturb(rbyd)) ? LFS_CRC32C_ODDZERO : 0;
lfs_tole32_(cksum_, &cksum_buf[2+1+4]);
// prog, when this lands on disk commit is committed
err = lfsr_bd_prog(lfs, rbyd->blocks[0], lfsr_rbyd_eoff(rbyd),
cksum_buf, 2+1+4+4,
NULL, false);
if (err) {
return err;
}
// flush any pending progs
err = lfsr_bd_flush(lfs, NULL, false);
if (err) {
return err;
}
// update the eoff and perturb
rbyd->eoff
= ((lfs_size_t)perturb << (8*sizeof(lfs_size_t)-1))
| off_;
// revert to canonical checksum
rbyd->cksum = cksum;
return 0;
}
static int lfsr_rbyd_appendrats(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, lfsr_srid_t start_rid, lfsr_srid_t end_rid,
const lfsr_rat_t *rats, lfs_size_t rat_count) {
// append each tag to the tree
for (lfs_size_t i = 0; i < rat_count; i++) {
// treat inserts after the first tag as though they are splits,
// sequential inserts don't really make sense otherwise
if (i > 0 && lfsr_rat_isinsert(rats[i])) {
rid += 1;
}
// don't write tags outside of the requested range
if (rid >= start_rid
// note the use of rid+1 and unsigned comparison here to
// treat end_rid=-1 as "unbounded" in such a way that rid=-1
// is still included
&& (lfs_size_t)(rid + 1) <= (lfs_size_t)end_rid) {
int err = lfsr_rbyd_appendrat(lfs, rbyd,
rid - lfs_smax(start_rid, 0),
rats[i]);
if (err) {
return err;
}
}
// we need to make sure we keep start_rid/end_rid updated with
// weight changes
if (rid < start_rid) {
start_rid += rats[i].weight;
}
if (rid < end_rid) {
end_rid += rats[i].weight;
}
// adjust rid
rid = lfsr_rat_nextrid(rats[i], rid);
}
return 0;
}
static int lfsr_rbyd_commit(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_srid_t rid, const lfsr_rat_t *rats, lfs_size_t rat_count) {
// append each tag to the tree
int err = lfsr_rbyd_appendrats(lfs, rbyd, rid, -1, -1,
rats, rat_count);
if (err) {
return err;
}
// append a cksum, finalizing the commit
err = lfsr_rbyd_appendcksum(lfs, rbyd);
if (err) {
return err;
}
return 0;
}
// Calculate the maximum possible disk usage required by this rbyd after
// compaction. This uses a conservative estimate so the actual on-disk cost
// should be smaller.
//
// This also returns a good split_rid in case the rbyd needs to be split.
//
// TODO do we need to include commit overhead here?
static lfs_ssize_t lfsr_rbyd_estimate(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_srid_t start_rid, lfsr_srid_t end_rid,
lfsr_srid_t *split_rid_) {
// calculate dsize by starting from the outside ids and working inwards,
// this naturally gives us a split rid
//
// TODO adopt this a/b naming scheme in lfsr_rbyd_appendrat?
lfsr_srid_t a_rid = start_rid;
lfsr_srid_t b_rid = lfs_min(rbyd->weight, end_rid);
lfs_size_t a_dsize = 0;
lfs_size_t b_dsize = 0;
lfs_size_t rbyd_dsize = 0;
while (a_rid != b_rid) {
if (a_dsize > b_dsize
// bias so lower dsize >= upper dsize
|| (a_dsize == b_dsize && a_rid > b_rid)) {
LFS_SWAP(lfsr_srid_t, &a_rid, &b_rid);
LFS_SWAP(lfs_size_t, &a_dsize, &b_dsize);
}
if (a_rid > b_rid) {
a_rid -= 1;
}
lfsr_tag_t tag = 0;
lfsr_rid_t weight = 0;
lfs_size_t dsize_ = 0;
while (true) {
lfsr_srid_t rid_;
lfsr_rid_t weight_;
lfsr_data_t data;
int err = lfsr_rbyd_lookupnext(lfs, rbyd,
a_rid, tag+1,
&rid_, &tag, &weight_, &data);
if (err < 0) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
if (rid_ > a_rid+lfs_smax(weight_-1, 0)) {
break;
}
// keep track of rid and weight
a_rid = rid_;
weight += weight_;
// include the cost of this tag
dsize_ += lfs->rat_estimate + lfsr_data_size(data);
}
if (a_rid == -1) {
rbyd_dsize += dsize_;
} else {
a_dsize += dsize_;
}
if (a_rid < b_rid) {
a_rid += 1;
} else {
a_rid -= lfs_smax(weight-1, 0);
}
}
if (split_rid_) {
*split_rid_ = a_rid;
}
return rbyd_dsize + a_dsize + b_dsize;
}
// appends a raw tag as a part of compaction, note these must
// be appended in order!
//
// also note rat.weight here is total weight not delta weight
static int lfsr_rbyd_appendcompactrat(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfsr_rat_t rat) {
// begin appending
int err = lfsr_rbyd_appendinit(lfs, rbyd);
if (err) {
return err;
}
// write the tag
err = lfsr_rbyd_appendrat_(lfs, rbyd, LFSR_RAT_(
(lfsr_rbyd_isshrub(rbyd) ? LFSR_TAG_SHRUB : 0) | rat.tag,
rat.weight,
rat.cat, rat.count));
if (err) {
return err;
}
return 0;
}
static int lfsr_rbyd_appendcompactrbyd(lfs_t *lfs, lfsr_rbyd_t *rbyd_,
const lfsr_rbyd_t *rbyd, lfsr_srid_t start_rid, lfsr_srid_t end_rid) {
// copy over tags in the rbyd in order
lfsr_srid_t rid = start_rid;
lfsr_tag_t tag = 0;
while (true) {
lfsr_rid_t weight;
lfsr_data_t data;
int err = lfsr_rbyd_lookupnext(lfs, rbyd,
rid, tag+1,
&rid, &tag, &weight, &data);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// end of range? note the use of rid+1 and unsigned comparison here to
// treat end_rid=-1 as "unbounded" in such a way that rid=-1 is still
// included
if ((lfs_size_t)(rid + 1) > (lfs_size_t)end_rid) {
break;
}
// write the tag
err = lfsr_rbyd_appendcompactrat(lfs, rbyd_, LFSR_RAT_CAT_(
tag, weight, &data, 1));
if (err) {
return err;
}
}
return 0;
}
static int lfsr_rbyd_appendcompaction(lfs_t *lfs, lfsr_rbyd_t *rbyd,
lfs_size_t off) {
// begin appending
int err = lfsr_rbyd_appendinit(lfs, rbyd);
if (err) {
return err;
}
// clamp offset to be after the revision count
off = lfs_max(off, sizeof(uint32_t));
// empty rbyd? write a null tag so our trunk can still point to something
if (lfsr_rbyd_eoff(rbyd) == off) {
err = lfsr_rbyd_appendtag(lfs, rbyd,
// mark as shrub if we are a shrub
(lfsr_rbyd_isshrub(rbyd) ? LFSR_TAG_SHRUB : 0)
| LFSR_TAG_NULL,
0,
0);
if (err) {
return err;
}
rbyd->trunk = (rbyd->trunk & LFSR_RBYD_ISSHRUB) | off;
rbyd->weight = 0;
return 0;
}
// connect every other trunk together, building layers of a perfectly
// balanced binary tree upwards until we have a single trunk
lfs_size_t layer = off;
lfsr_rid_t weight = 0;
while (true) {
lfs_size_t layer_ = lfsr_rbyd_eoff(rbyd);
off = layer;
while (off < layer_) {
// connect two trunks together with a new binary trunk
for (int i = 0; i < 2 && off < layer_; i++) {
lfs_size_t trunk = off;
lfsr_tag_t tag = 0;
weight = 0;
while (true) {
lfsr_tag_t tag__;
lfsr_rid_t weight__;
lfs_size_t size__;
lfs_ssize_t d = lfsr_bd_readtag(lfs,
rbyd->blocks[0], off, layer_ - off,
&tag__, &weight__, &size__,
NULL);
if (d < 0) {
return d;
}
off += d;
// skip any data
if (!lfsr_tag_isalt(tag__)) {
off += size__;
}
// ignore shrub trunks, unless we are actually compacting
// a shrub tree
if (!lfsr_tag_isalt(tag__)
&& lfsr_tag_isshrub(tag__)
&& !lfsr_rbyd_isshrub(rbyd)) {
trunk = off;
weight = 0;
continue;
}
// keep track of trunk's trunk and weight
weight += weight__;
// keep track of the last non-null tag in our trunk.
// Because of how we construct each layer, the last
// non-null tag is the largest tag in that part of
// the tree
if (tag__ & ~LFSR_TAG_SHRUB) {
tag = tag__;
}
// did we hit a tag that terminates our trunk?
if (!lfsr_tag_isalt(tag__)) {
break;
}
}
// do we only have one trunk? we must be done
if (trunk == layer && off >= layer_) {
goto done;
}
// connect with an altle
//
// note we can't use an altas here, we need to encode the
// exact tag so we know the largest tag when building the
// next layer
err = lfsr_rbyd_appendtag(lfs, rbyd,
LFSR_TAG_ALT(
(i == 0 && off < layer_)
? LFSR_TAG_R
: LFSR_TAG_B,
LFSR_TAG_LE,
tag),
weight,
lfsr_rbyd_eoff(rbyd) - trunk);
if (err) {
return err;
}
}
// terminate with a null tag
err = lfsr_rbyd_appendtag(lfs, rbyd,
// mark as shrub if we are a shrub
(lfsr_rbyd_isshrub(rbyd) ? LFSR_TAG_SHRUB : 0)
| LFSR_TAG_NULL,
0,
0);
if (err) {
return err;
}
}
layer = layer_;
}
done:;
// done! just need to update our trunk. Note we could have no trunks
// after compaction. Leave this to upper layers to take care of this.
rbyd->trunk = (rbyd->trunk & LFSR_RBYD_ISSHRUB) | layer;
rbyd->weight = weight;
return 0;
}
static int lfsr_rbyd_compact(lfs_t *lfs, lfsr_rbyd_t *rbyd_,
const lfsr_rbyd_t *rbyd, lfsr_srid_t start_rid, lfsr_srid_t end_rid) {
// append rbyd
int err = lfsr_rbyd_appendcompactrbyd(lfs, rbyd_,
rbyd, start_rid, end_rid);
if (err) {
return err;
}
// compact
err = lfsr_rbyd_appendcompaction(lfs, rbyd_, 0);
if (err) {
return err;
}
return 0;
}
// append a secondary "shrub" tree
static int lfsr_rbyd_appendshrub(lfs_t *lfs, lfsr_rbyd_t *rbyd,
const lfsr_shrub_t *shrub) {
// keep track of the start of the new tree
lfs_size_t off = lfsr_rbyd_eoff(rbyd);
// mark as shrub
rbyd->trunk |= LFSR_RBYD_ISSHRUB;
// compact our shrub
int err = lfsr_rbyd_appendcompactrbyd(lfs, rbyd,
(const lfsr_rbyd_t*)shrub, -1, -1);
if (err) {
return err;
}
err = lfsr_rbyd_appendcompaction(lfs, rbyd, off);
if (err) {
return err;
}
return 0;
}
// some low-level name things
//
// names in littlefs are tuples of directory-ids + ascii/utf8 strings
// binary search an rbyd for a name, leaving the rid_/tag_/weight_/data_
// with the best matching name if not found
static lfs_scmp_t lfsr_rbyd_namelookup(lfs_t *lfs, const lfsr_rbyd_t *rbyd,
lfsr_did_t did, const char *name, lfs_size_t name_len,
lfsr_srid_t *rid_,
lfsr_tag_t *tag_, lfsr_rid_t *weight_, lfsr_data_t *data_) {
// empty rbyd? leave it up to upper layers to handle this
if (rbyd->weight == 0) {
return LFS_ERR_NOENT;
}
// binary search for our name
lfsr_srid_t lower_rid = 0;
lfsr_srid_t upper_rid = rbyd->weight;
lfs_scmp_t cmp;
while (lower_rid < upper_rid) {
lfsr_tag_t tag__;
lfsr_srid_t rid__;
lfsr_rid_t weight__;
lfsr_data_t data__;
int err = lfsr_rbyd_lookupnext(lfs, rbyd,
// lookup ~middle rid, note we may end up in the middle
// of a weighted rid with this
lower_rid + (upper_rid-1-lower_rid)/2, 0,
&rid__, &tag__, &weight__, &data__);
if (err < 0) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// if we have no name, treat this rid as always lt
if (lfsr_tag_suptype(tag__) != LFSR_TAG_NAME) {
cmp = LFS_CMP_LT;
// compare names
} else {
cmp = lfsr_data_namecmp(lfs, data__, did, name, name_len);
if (cmp < 0) {
return cmp;
}
}
// bisect search space
if (cmp > LFS_CMP_EQ) {
upper_rid = rid__ - (weight__-1);
// only keep track of best-match rids > our target if we haven't
// seen an rid < our target
if (lower_rid == 0) {
if (rid_) {
*rid_ = rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = weight__;
}
if (data_) {
*data_ = data__;
}
}
} else if (cmp < LFS_CMP_EQ) {
lower_rid = rid__ + 1;
// keep track of best-matching rid < our target
if (rid_) {
*rid_ = rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = weight__;
}
if (data_) {
*data_ = data__;
}
} else {
// found a match?
if (rid_) {
*rid_ = rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = weight__;
}
if (data_) {
*data_ = data__;
}
return LFS_CMP_EQ;
}
}
// no match, return if found name was lt/gt expect
//
// this will always be lt unless all rids are gt
return (lower_rid == 0) ? LFS_CMP_GT : LFS_CMP_LT;
}
/// B-tree operations ///
// create an empty btree
static void lfsr_btree_init(lfsr_btree_t *btree) {
btree->weight = 0;
btree->trunk = 0;
}
// convenience operations
static inline int lfsr_btree_cmp(
const lfsr_btree_t *a,
const lfsr_btree_t *b) {
return lfsr_rbyd_cmp(a, b);
}
// branch on-disk encoding
// branch encoding:
// .---+- -+- -+- -+- -. block: 1 leb128 <=5 bytes
// | block | trunk: 1 leb128 <=4 bytes
// +---+- -+- -+- -+- -' cksum: 1 le32 4 bytes
// | trunk | total: <=13 bytes
// +---+- -+- -+- -+
// | cksum |
// '---+---+---+---'
//
#define LFSR_BRANCH_DSIZE (5+4+4)
#define LFSR_DATA_BRANCH(_branch, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_frombranch(_branch, _buffer)}.d)
static lfsr_data_t lfsr_data_frombranch(const lfsr_rbyd_t *branch,
uint8_t buffer[static LFSR_BRANCH_DSIZE]) {
// block should not exceed 31-bits
LFS_ASSERT(branch->blocks[0] <= 0x7fffffff);
// trunk should not exceed 28-bits
LFS_ASSERT(lfsr_rbyd_trunk(branch) <= 0x0fffffff);
lfs_ssize_t d = 0;
lfs_ssize_t d_ = lfs_toleb128(branch->blocks[0], &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
d_ = lfs_toleb128(lfsr_rbyd_trunk(branch), &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
lfs_tole32_(branch->cksum, &buffer[d]);
d += 4;
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readbranch(lfs_t *lfs,
lfsr_data_t *data, lfsr_bid_t weight,
lfsr_rbyd_t *branch) {
// setting off to 0 here will trigger asserts if we try to append
// without fetching first
branch->eoff = 0;
branch->weight = weight;
int err = lfsr_data_readleb128(lfs, data, &branch->blocks[0]);
if (err) {
return err;
}
err = lfsr_data_readlleb128(lfs, data, &branch->trunk);
if (err) {
return err;
}
err = lfsr_data_readle32(lfs, data, &branch->cksum);
if (err) {
return err;
}
return 0;
}
// needed in lfsr_branch_fetch
#ifdef LFS_CKFETCHES
static inline bool lfsr_m_isckfetches(uint32_t flags);
#endif
static int lfsr_branch_fetch(lfs_t *lfs, lfsr_rbyd_t *branch,
lfs_block_t block, lfs_size_t trunk, lfsr_bid_t weight,
uint32_t cksum) {
(void)lfs;
branch->blocks[0] = block;
branch->trunk = trunk;
branch->weight = weight;
branch->eoff = 0;
branch->cksum = cksum;
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)) {
int err = lfsr_rbyd_fetchck(lfs, branch,
branch->blocks[0], lfsr_rbyd_trunk(branch),
branch->cksum);
if (err) {
return err;
}
LFS_ASSERT(branch->weight == weight);
}
#endif
return 0;
}
static int lfsr_data_fetchbranch(lfs_t *lfs,
lfsr_data_t *data, lfsr_bid_t weight,
lfsr_rbyd_t *branch) {
// decode branch and fetch
int err = lfsr_data_readbranch(lfs, data, weight,
branch);
if (err) {
return err;
}
return lfsr_branch_fetch(lfs, branch,
branch->blocks[0], branch->trunk, branch->weight,
branch->cksum);
}
// btree on-disk encoding
//
// this is the same as the branch on-disk econding, but prefixed with the
// btree's weight
// btree encoding:
// .---+- -+- -+- -+- -. weight: 1 leb128 <=5 bytes
// | weight | block: 1 leb128 <=5 bytes
// +---+- -+- -+- -+- -+ trunk: 1 leb128 <=4 bytes
// | block | cksum: 1 le32 4 bytes
// +---+- -+- -+- -+- -' total: <=18 bytes
// | trunk |
// +---+- -+- -+- -+
// | cksum |
// '---+---+---+---'
//
#define LFSR_BTREE_DSIZE (5+LFSR_BRANCH_DSIZE)
#define LFSR_DATA_BTREE(_btree, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_frombtree(_btree, _buffer)}.d)
static lfsr_data_t lfsr_data_frombtree(const lfsr_btree_t *btree,
uint8_t buffer[static LFSR_BTREE_DSIZE]) {
// weight should not exceed 31-bits
LFS_ASSERT(btree->weight <= 0x7fffffff);
lfs_ssize_t d = 0;
lfs_ssize_t d_ = lfs_toleb128(btree->weight, &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
lfsr_data_t data = lfsr_data_frombranch(btree, &buffer[d]);
d += lfsr_data_size(data);
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readbtree(lfs_t *lfs, lfsr_data_t *data,
lfsr_btree_t *btree) {
lfsr_bid_t weight;
int err = lfsr_data_readleb128(lfs, data, &weight);
if (err) {
return err;
}
err = lfsr_data_readbranch(lfs, data, weight, btree);
if (err) {
return err;
}
return 0;
}
// core btree operations
static int lfsr_btree_fetch(lfs_t *lfs, lfsr_btree_t *btree,
lfs_block_t block, lfs_size_t trunk, lfsr_bid_t weight,
uint32_t cksum) {
// btree/branch fetch really are the same once we know the weight
return lfsr_branch_fetch(lfs, btree,
block, trunk, weight,
cksum);
}
static int lfsr_data_fetchbtree(lfs_t *lfs, lfsr_data_t *data,
lfsr_btree_t *btree) {
// decode btree and fetch
int err = lfsr_data_readbtree(lfs, data,
btree);
if (err) {
return err;
}
return lfsr_btree_fetch(lfs, btree,
btree->blocks[0], btree->trunk, btree->weight,
btree->cksum);
}
static int lfsr_btree_lookupnext_(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_bid_t bid,
lfsr_bid_t *bid_, lfsr_rbyd_t *rbyd_, lfsr_srid_t *rid_,
lfsr_tag_t *tag_, lfsr_bid_t *weight_, lfsr_data_t *data_) {
// descend down the btree looking for our bid
lfsr_rbyd_t branch = *btree;
lfsr_srid_t rid = bid;
while (true) {
// each branch is a pair of optional name + on-disk structure
lfsr_srid_t rid__;
lfsr_tag_t tag__;
lfsr_rid_t weight__;
lfsr_data_t data__;
int err = lfsr_rbyd_lookupnext(lfs, &branch, rid, 0,
&rid__, &tag__, &weight__, &data__);
if (err) {
return err;
}
if (lfsr_tag_suptype(tag__) == LFSR_TAG_NAME) {
err = lfsr_rbyd_sublookup(lfs, &branch, rid__, LFSR_TAG_STRUCT,
&tag__, &data__);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
// found another branch
if (tag__ == LFSR_TAG_BRANCH) {
// adjust rid with subtree's weight
rid -= (rid__ - (weight__-1));
// fetch the next branch
err = lfsr_data_fetchbranch(lfs, &data__, weight__,
&branch);
if (err) {
return err;
}
// found our bid
} else {
// TODO how many of these should be conditional?
if (bid_) {
*bid_ = bid + (rid__ - rid);
}
if (rbyd_) {
*rbyd_ = branch;
}
if (rid_) {
*rid_ = rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = weight__;
}
if (data_) {
*data_ = data__;
}
return 0;
}
}
}
static int lfsr_btree_lookupnext(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_bid_t bid,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_bid_t *weight_,
lfsr_data_t *data_) {
return lfsr_btree_lookupnext_(lfs, btree, bid,
bid_, NULL, NULL, tag_, weight_, data_);
}
static int lfsr_btree_lookup(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_bid_t bid,
lfsr_tag_t *tag_, lfsr_bid_t *weight_, lfsr_data_t *data_) {
lfsr_bid_t bid_;
int err = lfsr_btree_lookupnext(lfs, btree, bid,
&bid_, tag_, weight_, data_);
if (err) {
return err;
}
// lookup finds the next-smallest bid, all we need to do is fail if it
// picks up the wrong bid
if (bid_ != bid) {
return LFS_ERR_NOENT;
}
return 0;
}
// TODO should lfsr_btree_lookupnext/lfsr_btree_parent be deduplicated?
static int lfsr_btree_parent(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_bid_t bid, const lfsr_rbyd_t *child,
lfsr_rbyd_t *rbyd_, lfsr_srid_t *rid_) {
// we should only call this when we actually have parents
LFS_ASSERT(bid < (lfsr_bid_t)btree->weight);
LFS_ASSERT(lfsr_rbyd_cmp(btree, child) != 0);
// descend down the btree looking for our rid
lfsr_rbyd_t branch = *btree;
lfsr_srid_t rid = bid;
while (true) {
// each branch is a pair of optional name + on-disk structure
lfsr_srid_t rid__;
lfsr_tag_t tag__;
lfsr_rid_t weight__;
lfsr_data_t data__;
int err = lfsr_rbyd_lookupnext(lfs, &branch, rid, 0,
&rid__, &tag__, &weight__, &data__);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
if (lfsr_tag_suptype(tag__) == LFSR_TAG_NAME) {
err = lfsr_rbyd_sublookup(lfs, &branch, rid__, LFSR_TAG_STRUCT,
&tag__, &data__);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
// didn't find our child?
if (tag__ != LFSR_TAG_BRANCH) {
return LFS_ERR_NOENT;
}
// adjust rid with subtree's weight
rid -= (rid__ - (weight__-1));
// fetch the next branch
lfsr_rbyd_t branch_;
err = lfsr_data_readbranch(lfs, &data__, weight__, &branch_);
if (err) {
return err;
}
// found our child?
if (lfsr_rbyd_cmp(&branch_, child) == 0) {
// TODO how many of these should be conditional?
if (rbyd_) {
*rbyd_ = branch;
}
if (rid_) {
*rid_ = rid__;
}
return 0;
}
err = lfsr_branch_fetch(lfs, &branch_,
branch_.blocks[0], branch_.trunk, branch_.weight,
branch_.cksum);
if (err) {
return err;
}
branch = branch_;
}
}
// extra state needed for non-terminating lfsr_btree_commit__ calls
typedef struct lfsr_bscratch {
lfsr_rat_t rats[4];
lfsr_data_t split_data;
uint8_t buf[2*LFSR_BRANCH_DSIZE];
} lfsr_bscratch_t;
// core btree algorithm
//
// this commits up to the root, but stops if:
// 1. we need a new root
// 2. we have a shrub root
//
static int lfsr_btree_commit__(lfs_t *lfs, lfsr_btree_t *btree,
lfsr_bscratch_t *bscratch,
lfsr_bid_t *bid, lfsr_rbyd_t *rbyd, lfsr_srid_t rid,
const lfsr_rat_t **rats, lfs_size_t *rat_count) {
lfsr_bid_t bid_ = *bid;
LFS_ASSERT(bid_ <= (lfsr_bid_t)btree->weight);
const lfsr_rat_t *rats_ = *rats;
lfs_size_t rat_count_ = *rat_count;
// if rbyd is NULL, lookup which leaf our bid resides
//
// for lfsr_btree_commit operations to work out, we need to
// limit our bid to an rid in the tree, which is what this min
// is doing
lfsr_rbyd_t rbyd_;
lfsr_srid_t rid_;
if (!rbyd) {
rbyd_ = *btree;
rid_ = bid_;
if (btree->weight > 0) {
lfsr_srid_t rid__;
int err = lfsr_btree_lookupnext_(lfs, btree,
lfs_min(bid_, btree->weight-1),
&bid_, &rbyd_, &rid__, NULL, NULL, NULL);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// adjust rid
rid_ -= (bid_-rid__);
}
} else {
rbyd_ = *rbyd;
rid_ = rid;
}
// tail-recursively commit to btree
while (true) {
// we will always need our parent, so go ahead and find it
lfsr_rbyd_t parent = {.trunk=0, .weight=0};
lfsr_srid_t pid = 0;
// are we root?
if (!lfsr_rbyd_trunk(&rbyd_)
|| rbyd_.blocks[0] == btree->blocks[0]) {
// new root? shrub root? yield the final root commit to
// higher-level btree/bshrub logic
if (!lfsr_rbyd_trunk(&rbyd_)
|| lfsr_rbyd_isshrub(btree)) {
*bid = rid_;
*rats = rats_;
*rat_count = rat_count_;
return (!lfsr_rbyd_trunk(&rbyd_)) ? LFS_ERR_RANGE : 0;
}
// mark btree as unerased in case of failure, our btree rbyd and
// root rbyd can diverge if there's a split, but we would have
// marked the old root as unerased earlier anyways
btree->eoff = -1;
} else {
int err = lfsr_btree_parent(lfs, btree, bid_, &rbyd_,
&parent, &pid);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
// fetch our rbyd so we can mutate it
//
// note that some paths lead this to being a newly allocated rbyd,
// these will fail to fetch so we need to check that this rbyd is
// unfetched
//
// a funny benefit is we cache the root of our btree this way
if (!lfsr_rbyd_isfetched(&rbyd_)) {
int err = lfsr_rbyd_fetchck(lfs, &rbyd_,
rbyd_.blocks[0], lfsr_rbyd_trunk(&rbyd_),
rbyd_.cksum);
if (err) {
return err;
}
}
// is rbyd erased? can we sneak our commit into any remaining
// erased bytes? note that the btree trunk field prevents this from
// interacting with other references to the rbyd
lfsr_rbyd_t rbyd__ = rbyd_;
int err = lfsr_rbyd_commit(lfs, &rbyd__, rid_,
rats_, rat_count_);
if (err) {
if (err == LFS_ERR_RANGE || err == LFS_ERR_CORRUPT) {
goto compact;
}
return err;
}
goto recurse;
compact:;
// estimate our compacted size
lfsr_srid_t split_rid;
lfs_ssize_t estimate = lfsr_rbyd_estimate(lfs, &rbyd_, -1, -1,
&split_rid);
if (estimate < 0) {
return estimate;
}
// are we too big? need to split?
if ((lfs_size_t)estimate > lfs->cfg->block_size/2) {
// need to split
goto split;
}
// before we compact, can we merge with our siblings?
lfsr_rbyd_t sibling;
if ((lfs_size_t)estimate <= lfs->cfg->block_size/4
// no parent? can't merge
&& lfsr_rbyd_trunk(&parent)) {
// try the right sibling
if (pid+1 < (lfsr_srid_t)parent.weight) {
// try looking up the sibling
lfsr_srid_t sibling_rid;
lfsr_tag_t sibling_tag;
lfsr_rid_t sibling_weight;
lfsr_data_t sibling_data;
err = lfsr_rbyd_lookupnext(lfs, &parent,
pid+1, LFSR_TAG_NAME,
&sibling_rid, &sibling_tag, &sibling_weight,
&sibling_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
if (sibling_tag == LFSR_TAG_NAME) {
err = lfsr_rbyd_sublookup(lfs, &parent,
sibling_rid, LFSR_TAG_STRUCT,
&sibling_tag, &sibling_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
LFS_ASSERT(sibling_tag == LFSR_TAG_BRANCH);
err = lfsr_data_fetchbranch(lfs, &sibling_data, sibling_weight,
&sibling);
if (err) {
return err;
}
// estimate if our sibling will fit
lfs_ssize_t sibling_estimate = lfsr_rbyd_estimate(lfs,
&sibling, -1, -1,
NULL);
if (sibling_estimate < 0) {
return sibling_estimate;
}
// fits? try to merge
if ((lfs_size_t)(estimate + sibling_estimate)
< lfs->cfg->block_size/2) {
goto merge;
}
}
// try the left sibling
if (pid-(lfsr_srid_t)rbyd_.weight >= 0) {
// try looking up the sibling
lfsr_srid_t sibling_rid;
lfsr_tag_t sibling_tag;
lfsr_rid_t sibling_weight;
lfsr_data_t sibling_data;
err = lfsr_rbyd_lookupnext(lfs, &parent,
pid-rbyd_.weight, LFSR_TAG_NAME,
&sibling_rid, &sibling_tag, &sibling_weight,
&sibling_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
if (sibling_tag == LFSR_TAG_NAME) {
err = lfsr_rbyd_sublookup(lfs, &parent,
sibling_rid, LFSR_TAG_STRUCT,
&sibling_tag, &sibling_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
LFS_ASSERT(sibling_tag == LFSR_TAG_BRANCH);
err = lfsr_data_fetchbranch(lfs, &sibling_data, sibling_weight,
&sibling);
if (err) {
return err;
}
// estimate if our sibling will fit
lfs_ssize_t sibling_estimate = lfsr_rbyd_estimate(lfs,
&sibling, -1, -1,
NULL);
if (sibling_estimate < 0) {
return sibling_estimate;
}
// fits? try to merge
if ((lfs_size_t)(estimate + sibling_estimate)
< lfs->cfg->block_size/2) {
// if we're merging our left sibling, swap our rbyds
// so our sibling is on the right
bid_ -= sibling.weight;
rid_ += sibling.weight;
pid -= rbyd_.weight;
rbyd__ = sibling;
sibling = rbyd_;
rbyd_ = rbyd__;
goto merge;
}
}
}
relocate:;
// allocate a new rbyd
err = lfsr_rbyd_alloc(lfs, &rbyd__);
if (err) {
return err;
}
// try to compact
err = lfsr_rbyd_compact(lfs, &rbyd__, &rbyd_, -1, -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// append any pending rats, it's up to upper
// layers to make sure these always fit
err = lfsr_rbyd_commit(lfs, &rbyd__, rid_,
rats_, rat_count_);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
goto recurse;
split:;
// we should have something to split here
LFS_ASSERT(split_rid > 0
&& split_rid < (lfsr_srid_t)rbyd_.weight);
split_relocate_l:;
// allocate a new rbyd
err = lfsr_rbyd_alloc(lfs, &rbyd__);
if (err) {
return err;
}
// copy over tags < split_rid
err = lfsr_rbyd_compact(lfs, &rbyd__, &rbyd_, -1, split_rid);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_l;
}
return err;
}
// append pending rats < split_rid
//
// upper layers should make sure this can't fail by limiting the
// maximum commit size
err = lfsr_rbyd_appendrats(lfs, &rbyd__, rid_, -1, split_rid,
rats_, rat_count_);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_l;
}
return err;
}
// finalize commit
err = lfsr_rbyd_appendcksum(lfs, &rbyd__);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_l;
}
return err;
}
split_relocate_r:;
// allocate a sibling
err = lfsr_rbyd_alloc(lfs, &sibling);
if (err) {
return err;
}
// copy over tags >= split_rid
err = lfsr_rbyd_compact(lfs, &sibling, &rbyd_, split_rid, -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_r;
}
return err;
}
// append pending rats >= split_rid
//
// upper layers should make sure this can't fail by limiting the
// maximum commit size
err = lfsr_rbyd_appendrats(lfs, &sibling, rid_, split_rid, -1,
rats_, rat_count_);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_r;
}
return err;
}
// finalize commit
err = lfsr_rbyd_appendcksum(lfs, &sibling);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate_r;
}
return err;
}
// did one of our siblings drop to zero? yes this can happen! revert
// to a normal commit in that case
if (rbyd__.weight == 0 || sibling.weight == 0) {
if (rbyd__.weight == 0) {
rbyd__ = sibling;
}
goto recurse;
}
// lookup first name in sibling to use as the split name
//
// note we need to do this after playing out pending rats in case
// they introduce a new name!
lfsr_tag_t split_tag;
err = lfsr_rbyd_lookupnext(lfs, &sibling, 0, LFSR_TAG_NAME,
NULL, &split_tag, NULL, &bscratch->split_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// prepare commit to parent, tail recursing upwards
LFS_ASSERT(rbyd__.weight > 0);
LFS_ASSERT(sibling.weight > 0);
rat_count_ = 0;
// new root?
if (!lfsr_rbyd_trunk(&parent)) {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, +rbyd__.weight,
LFSR_DATA_BRANCH(
&rbyd__,
&bscratch->buf[0*LFSR_BRANCH_DSIZE]));
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, +sibling.weight,
LFSR_DATA_BRANCH(
&sibling,
&bscratch->buf[1*LFSR_BRANCH_DSIZE]));
if (lfsr_tag_suptype(split_tag) == LFSR_TAG_NAME) {
bscratch->rats[rat_count_++] = LFSR_RAT_CAT_(
LFSR_TAG_NAME, 0,
&bscratch->split_data, 1);
}
// split root?
} else {
bid_ -= pid - (rbyd_.weight-1);
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, 0,
LFSR_DATA_BRANCH(
&rbyd__,
&bscratch->buf[0*LFSR_BRANCH_DSIZE]));
if (rbyd__.weight != rbyd_.weight) {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_GROW, -rbyd_.weight + rbyd__.weight,
LFSR_DATA_NULL());
}
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, +sibling.weight,
LFSR_DATA_BRANCH(
&sibling,
&bscratch->buf[1*LFSR_BRANCH_DSIZE]));
if (lfsr_tag_suptype(split_tag) == LFSR_TAG_NAME) {
bscratch->rats[rat_count_++] = LFSR_RAT_CAT_(
LFSR_TAG_NAME, 0,
&bscratch->split_data, 1);
}
}
rats_ = bscratch->rats;
rbyd_ = parent;
rid_ = pid;
continue;
merge:;
merge_relocate:;
// allocate a new rbyd
err = lfsr_rbyd_alloc(lfs, &rbyd__);
if (err) {
return err;
}
// merge the siblings together
err = lfsr_rbyd_appendcompactrbyd(lfs, &rbyd__, &rbyd_, -1, -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto merge_relocate;
}
return err;
}
err = lfsr_rbyd_appendcompactrbyd(lfs, &rbyd__, &sibling, -1, -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto merge_relocate;
}
return err;
}
err = lfsr_rbyd_appendcompaction(lfs, &rbyd__, 0);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto merge_relocate;
}
return err;
}
// append any pending rats, it's up to upper
// layers to make sure these always fit
err = lfsr_rbyd_commit(lfs, &rbyd__, rid_,
rats_, rat_count_);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto merge_relocate;
}
return err;
}
// we must have a parent at this point, but is our parent the root
// and is the root degenerate?
LFS_ASSERT(lfsr_rbyd_trunk(&parent));
if (rbyd_.weight+sibling.weight == btree->weight) {
// collapse the root, decreasing the height of the tree
*btree = rbyd__;
*rat_count = 0;
return 0;
}
// prepare commit to parent, tail recursing upwards
LFS_ASSERT(rbyd__.weight > 0);
rat_count_ = 0;
bid_ -= pid - (rbyd_.weight-1);
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_RM, -sibling.weight, LFSR_DATA_NULL());
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, 0,
LFSR_DATA_BRANCH(&rbyd__, bscratch->buf));
if (rbyd__.weight != rbyd_.weight) {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_GROW, -rbyd_.weight + rbyd__.weight,
LFSR_DATA_NULL());
}
rats_ = bscratch->rats;
rbyd_ = parent;
rid_ = pid + sibling.weight;
continue;
recurse:;
// done?
if (!lfsr_rbyd_trunk(&parent)) {
*btree = rbyd__;
*rat_count = 0;
return 0;
}
// is our parent the root and is the root degenerate?
if (rbyd_.weight == btree->weight) {
// collapse the root, decreasing the height of the tree
*btree = rbyd__;
*rat_count = 0;
return 0;
}
// prepare commit to parent, tail recursing upwards
//
// note that since we defer merges to compaction time, we can
// end up removing an rbyd here
rat_count_ = 0;
bid_ -= pid - (rbyd_.weight-1);
if (rbyd__.weight == 0) {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_RM, -rbyd_.weight, LFSR_DATA_NULL());
} else {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_BRANCH, 0,
LFSR_DATA_BRANCH(&rbyd__, bscratch->buf));
if (rbyd__.weight != rbyd_.weight) {
bscratch->rats[rat_count_++] = LFSR_RAT(
LFSR_TAG_GROW, -rbyd_.weight + rbyd__.weight,
LFSR_DATA_NULL());
}
}
rats_ = bscratch->rats;
rbyd_ = parent;
rid_ = pid;
continue;
}
}
// commit to btree with optional rbyd
static int lfsr_btree_commit_(lfs_t *lfs, lfsr_btree_t *btree,
lfsr_bid_t bid, lfsr_rbyd_t *rbyd, lfsr_srid_t rid,
const lfsr_rat_t *rats, lfs_size_t rat_count) {
// try to commit to the btree
lfsr_bscratch_t bscratch;
int err = lfsr_btree_commit__(lfs, btree, &bscratch,
&bid, rbyd, rid, &rats, &rat_count);
if (err && err != LFS_ERR_RANGE) {
return err;
}
// needs a new root?
if (err == LFS_ERR_RANGE) {
LFS_ASSERT(rat_count > 0);
relocate:;
lfsr_rbyd_t rbyd_;
err = lfsr_rbyd_alloc(lfs, &rbyd_);
if (err) {
return err;
}
err = lfsr_rbyd_commit(lfs, &rbyd_, bid, rats, rat_count);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
*btree = rbyd_;
}
LFS_ASSERT(lfsr_rbyd_trunk(btree));
return 0;
}
// commit to a btree, this is atomic
static int lfsr_btree_commit(lfs_t *lfs, lfsr_btree_t *btree,
lfsr_bid_t bid, const lfsr_rat_t *rats, lfs_size_t rat_count) {
return lfsr_btree_commit_(lfs, btree, bid, NULL, -1,
rats, rat_count);
}
// lookup in a btree by name
static lfs_scmp_t lfsr_btree_namelookup(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_did_t did, const char *name, lfs_size_t name_len,
lfsr_bid_t *bid_,
lfsr_tag_t *tag_, lfsr_bid_t *weight_, lfsr_data_t *data_) {
// an empty tree?
if (btree->weight == 0) {
return LFS_ERR_NOENT;
}
// descend down the btree looking for our name
lfsr_rbyd_t branch = *btree;
lfsr_bid_t bid = 0;
while (true) {
// lookup our name in the rbyd via binary search
lfsr_srid_t rid__;
lfsr_rid_t weight__;
lfs_scmp_t cmp = lfsr_rbyd_namelookup(lfs, &branch,
did, name, name_len,
&rid__, NULL, &weight__, NULL);
if (cmp < 0) {
LFS_ASSERT(cmp != LFS_ERR_NOENT);
return cmp;
}
// the name may not match exactly, but indicates which branch to follow
lfsr_tag_t tag__;
lfsr_data_t data__;
int err = lfsr_rbyd_sublookup(lfs, &branch, rid__, LFSR_TAG_STRUCT,
&tag__, &data__);
if (err < 0) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// found another branch
if (tag__ == LFSR_TAG_BRANCH) {
// update our bid
bid += rid__ - (weight__-1);
// fetch the next branch
err = lfsr_data_fetchbranch(lfs, &data__, weight__,
&branch);
if (err < 0) {
return err;
}
// found our rid
} else {
// TODO how many of these should be conditional?
if (bid_) {
*bid_ = bid + rid__;
}
if (tag_) {
*tag_ = tag__;
}
if (weight_) {
*weight_ = weight__;
}
if (data_) {
*data_ = data__;
}
return cmp;
}
}
}
// incremental btree traversal
//
// note this is different from iteration, iteration should use
// lfsr_btree_lookupnext, traversal includes inner btree nodes
static void lfsr_btraversal_init(lfsr_btraversal_t *bt) {
bt->bid = 0;
bt->branch = NULL;
bt->rid = 0;
}
static int lfsr_btree_traverse(lfs_t *lfs, const lfsr_btree_t *btree,
lfsr_btraversal_t *bt,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_data_t *data_) {
// explicitly traverse the root even if weight=0
if (!bt->branch) {
bt->branch = btree;
bt->rid = bt->bid;
// traverse the root
if (bt->bid == 0
// unless we don't even have a root yet
&& lfsr_rbyd_trunk(btree) != 0
// or are a shrub
&& !lfsr_rbyd_isshrub(btree)) {
if (bid_) {
*bid_ = btree->weight-1;
}
if (tag_) {
*tag_ = LFSR_TAG_BRANCH;
}
if (data_) {
data_->u.buffer = (const uint8_t*)bt->branch;
}
return 0;
}
}
// need to restart from the root?
if (bt->rid >= (lfsr_srid_t)bt->branch->weight) {
bt->branch = btree;
bt->rid = bt->bid;
}
// descend down the tree
while (true) {
lfsr_srid_t rid__;
lfsr_tag_t tag__;
lfsr_rid_t weight__;
lfsr_data_t data__;
int err = lfsr_rbyd_lookupnext(lfs, bt->branch, bt->rid, 0,
&rid__, &tag__, &weight__, &data__);
if (err) {
return err;
}
if (lfsr_tag_suptype(tag__) == LFSR_TAG_NAME) {
err = lfsr_rbyd_sublookup(lfs, bt->branch, rid__, LFSR_TAG_STRUCT,
&tag__, &data__);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
}
// found another branch
if (tag__ == LFSR_TAG_BRANCH) {
// adjust rid with subtree's weight
bt->rid -= (rid__ - (weight__-1));
// fetch the next branch
err = lfsr_data_fetchbranch(lfs, &data__, weight__,
&bt->rbyd);
if (err) {
return err;
}
bt->branch = &bt->rbyd;
// return inner btree nodes if this is the first time we've
// seen them
if (bt->rid == 0) {
if (bid_) {
*bid_ = bt->bid + (rid__ - bt->rid);
}
if (tag_) {
*tag_ = LFSR_TAG_BRANCH;
}
if (data_) {
data_->u.buffer = (const uint8_t*)bt->branch;
}
return 0;
}
// found our bid
} else {
// move on to the next rid
//
// note this effectively traverses a full leaf without redoing
// the btree walk
lfsr_bid_t bid__ = bt->bid + (rid__ - bt->rid);
bt->bid = bid__ + 1;
bt->rid = rid__ + 1;
if (bid_) {
*bid_ = bid__;
}
if (tag_) {
*tag_ = tag__;
}
if (data_) {
*data_ = data__;
}
return 0;
}
}
}
/// B-shrub operations ///
#define LFSR_BSHRUB_ISBNULLORBMOSSORBPTR 0x80000000
// create an empty bshrub
static void lfsr_bshrub_init(lfsr_bshrub_t *bshrub) {
bshrub->u.size = LFSR_BSHRUB_ISBNULLORBMOSSORBPTR | 0;
}
static inline bool lfsr_bshrub_isbnull(const lfsr_bshrub_t *bshrub) {
return (lfs_size_t)bshrub->u.size
== (LFSR_BSHRUB_ISBNULLORBMOSSORBPTR | 0);
}
static inline bool lfsr_bshrub_isbmoss(
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub) {
return (lfs_size_t)bshrub->u.size
> (LFSR_BSHRUB_ISBNULLORBMOSSORBPTR | 0)
&& bshrub->u.bmoss.u.disk.block == mdir->rbyd.blocks[0];
}
static inline bool lfsr_bshrub_isbptr(
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub) {
return (lfs_size_t)bshrub->u.size
> (LFSR_BSHRUB_ISBNULLORBMOSSORBPTR | 0)
&& bshrub->u.bmoss.u.disk.block != mdir->rbyd.blocks[0];
}
static inline bool lfsr_bshrub_isbshrub(
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub) {
return !(bshrub->u.size & LFSR_BSHRUB_ISBNULLORBMOSSORBPTR)
&& bshrub->u.bshrub.blocks[0] == mdir->rbyd.blocks[0];
}
static inline bool lfsr_bshrub_isbtree(
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub) {
return !(bshrub->u.size & LFSR_BSHRUB_ISBNULLORBMOSSORBPTR)
&& bshrub->u.bshrub.blocks[0] != mdir->rbyd.blocks[0];
}
static inline bool lfsr_bshrub_isbnullorbmossorbptr(
const lfsr_bshrub_t *bshrub) {
return bshrub->u.size & LFSR_BSHRUB_ISBNULLORBMOSSORBPTR;
}
static inline bool lfsr_bshrub_isbshruborbtree(
const lfsr_bshrub_t *bshrub) {
return !(bshrub->u.size & LFSR_BSHRUB_ISBNULLORBMOSSORBPTR);
}
// the on-disk size/weight lines up to the same word across all unions
static inline lfs_off_t lfsr_bshrub_size(const lfsr_bshrub_t *bshrub) {
return bshrub->u.size & ~LFSR_BSHRUB_ISBNULLORBMOSSORBPTR;
}
// moss things
static inline int lfsr_moss_cmp(
const lfsr_data_t *a,
const lfsr_data_t *b) {
// big assumption for mosses, we convert straight to bshrubs,
// and never leave sliced mosses in our files, so we don't need
// to compare the size
LFS_ASSERT(a->u.disk.block != b->u.disk.block
|| a->u.disk.off != b->u.disk.off
|| lfsr_data_size(*a) == lfsr_data_size(*b));
if (a->u.disk.block != b->u.disk.block) {
return a->u.disk.block - b->u.disk.block;
} else {
return a->u.disk.off - b->u.disk.off;
}
}
// needed in lfsr_moss_estimate
static inline bool lfsr_o_isbshrub(uint32_t flags);
// these are used in mdir compaction
static lfs_ssize_t lfsr_moss_estimate(lfs_t *lfs,
const lfsr_data_t *moss) {
// only include the last reference
const lfsr_data_t *last = NULL;
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& lfsr_bshrub_isbmoss(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)
&& lfsr_moss_cmp(
&((lfsr_obshrub_t*)o)->bshrub.u.bmoss,
moss) == 0) {
last = &((lfsr_obshrub_t*)o)->bshrub.u.bmoss;
}
}
if (last && moss != last) {
return 0;
}
return LFSR_TAG_DSIZE + lfsr_data_size(*moss);
}
static int lfsr_moss_compact(lfs_t *lfs, const lfsr_rbyd_t *rbyd_,
lfsr_data_t *moss_, const lfsr_data_t *moss) {
// this gets a bit weird, since upper layers need to do the actual
// compaction, we just update internal state here
// this is a bit tricky since we don't know the tag size,
// but we have just enough info
lfsr_data_t moss__ = LFSR_DATA_DISK(
rbyd_->blocks[0],
rbyd_->eoff - lfsr_data_size(*moss),
lfsr_data_size(*moss));
// stage any opened inlined files with their new location so we
// can update these later if our commit is a success
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& lfsr_bshrub_isbmoss(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)
&& lfsr_moss_cmp(
&((lfsr_obshrub_t*)o)->bshrub.u.bmoss,
moss) == 0) {
((lfsr_obshrub_t*)o)->bshrub_.u.bmoss = moss__;
}
}
*moss_ = moss__;
return 0;
}
// shrub things
// create an empty shrub
static void lfsr_shrub_init(lfsr_shrub_t *shrub, lfs_block_t block) {
shrub->weight = 0;
shrub->blocks[0] = block;
shrub->trunk = LFSR_RBYD_ISSHRUB | 0;
// force estimate recalculation
shrub->estimate = -1;
}
// helper functions
static inline bool lfsr_shrub_isshrub(const lfsr_shrub_t *shrub) {
return lfsr_rbyd_isshrub((const lfsr_rbyd_t*)shrub);
}
static inline lfs_size_t lfsr_shrub_trunk(const lfsr_shrub_t *shrub) {
return lfsr_rbyd_trunk((const lfsr_rbyd_t*)shrub);
}
static inline int lfsr_shrub_cmp(
const lfsr_shrub_t *a,
const lfsr_shrub_t *b) {
return lfsr_rbyd_cmp(
(const lfsr_rbyd_t*)a,
(const lfsr_rbyd_t*)b);
}
// shrub on-disk encoding
// shrub encoding:
// .---+- -+- -+- -+- -. weight: 1 leb128 <=5 bytes
// | weight | trunk: 1 leb128 <=4 bytes
// +---+- -+- -+- -+- -' total: <=9 bytes
// | trunk |
// '---+- -+- -+- -'
//
#define LFSR_SHRUB_DSIZE (5+4)
#define LFSR_DATA_SHRUB(_rbyd, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromshrub(_rbyd, _buffer)}.d)
static lfsr_data_t lfsr_data_fromshrub(const lfsr_shrub_t *shrub,
uint8_t buffer[static LFSR_SHRUB_DSIZE]) {
// shrub trunks should never be null
LFS_ASSERT(lfsr_shrub_trunk(shrub) != 0);
// weight should not exceed 31-bits
LFS_ASSERT(shrub->weight <= 0x7fffffff);
// trunk should not exceed 28-bits
LFS_ASSERT(lfsr_shrub_trunk(shrub) <= 0x0fffffff);
lfs_ssize_t d = 0;
// just write the trunk and weight, the rest of the rbyd is contextual
lfs_ssize_t d_ = lfs_toleb128(shrub->weight, &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
d_ = lfs_toleb128(lfsr_shrub_trunk(shrub),
&buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readshrub(lfs_t *lfs, lfsr_data_t *data,
const lfsr_mdir_t *mdir,
lfsr_shrub_t *shrub) {
// copy the mdir block
shrub->blocks[0] = mdir->rbyd.blocks[0];
// force estimate recalculation if we write to this shrub
shrub->estimate = -1;
int err = lfsr_data_readleb128(lfs, data, &shrub->weight);
if (err) {
return err;
}
err = lfsr_data_readlleb128(lfs, data, &shrub->trunk);
if (err) {
return err;
}
// shrub trunks should never be null
LFS_ASSERT(lfsr_shrub_trunk(shrub));
// set the shrub bit in our trunk
shrub->trunk |= LFSR_RBYD_ISSHRUB;
return 0;
}
// these are used in mdir commit/compaction
static lfs_ssize_t lfsr_shrub_estimate(lfs_t *lfs,
const lfsr_shrub_t *shrub) {
// only include the last reference
const lfsr_shrub_t *last = NULL;
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& lfsr_bshrub_isbshrub(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)
&& lfsr_shrub_cmp(
&((lfsr_obshrub_t*)o)->bshrub.u.bshrub,
shrub) == 0) {
last = &((lfsr_obshrub_t*)o)->bshrub.u.bshrub;
}
}
if (last && shrub != last) {
return 0;
}
return lfsr_rbyd_estimate(lfs, (const lfsr_rbyd_t*)shrub, -1, -1,
NULL);
}
static int lfsr_shrub_compact(lfs_t *lfs, lfsr_rbyd_t *rbyd_,
lfsr_shrub_t *shrub_, const lfsr_shrub_t *shrub) {
// save our current trunk/weight
lfs_size_t trunk = rbyd_->trunk;
lfsr_srid_t weight = rbyd_->weight;
// compact our bshrub
int err = lfsr_rbyd_appendshrub(lfs, rbyd_, shrub);
if (err) {
return err;
}
// stage any opened shrubs with their new location so we can
// update these later if our commit is a success
//
// this should include our current bshrub
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& lfsr_bshrub_isbshrub(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)
&& lfsr_shrub_cmp(
&((lfsr_obshrub_t*)o)->bshrub.u.bshrub,
shrub) == 0) {
lfsr_obshrub_t *bshrub = (lfsr_obshrub_t*)o;
bshrub->bshrub_.u.bshrub.blocks[0] = rbyd_->blocks[0];
bshrub->bshrub_.u.bshrub.trunk = rbyd_->trunk;
bshrub->bshrub_.u.bshrub.weight = rbyd_->weight;
}
}
// revert rbyd trunk/weight
shrub_->blocks[0] = rbyd_->blocks[0];
shrub_->trunk = rbyd_->trunk;
shrub_->weight = rbyd_->weight;
rbyd_->trunk = trunk;
rbyd_->weight = weight;
return 0;
}
// this is needed to sneak shrub commits into mdir commits
struct lfsr_shrubcommit {
lfsr_shrub_t *shrub;
lfsr_srid_t rid;
const lfsr_rat_t *rats;
lfs_size_t rat_count;
};
static int lfsr_shrub_commit(lfs_t *lfs, lfsr_rbyd_t *rbyd_,
lfsr_shrub_t *shrub, lfsr_srid_t rid,
const lfsr_rat_t *rats, lfs_size_t rat_count) {
// swap out our trunk/weight temporarily, note we're
// operating on a copy so if this fails we shouldn't mess
// things up too much
//
// it is important that these rbyds share eoff/cksum/etc
lfs_size_t trunk = rbyd_->trunk;
lfsr_srid_t weight = rbyd_->weight;
rbyd_->trunk = shrub->trunk;
rbyd_->weight = shrub->weight;
// append any bshrub attributes
int err = lfsr_rbyd_appendrats(lfs, rbyd_, rid, -1, -1,
rats, rat_count);
if (err) {
return err;
}
// restore mdir to the main trunk/weight
shrub->trunk = rbyd_->trunk;
shrub->weight = rbyd_->weight;
rbyd_->trunk = trunk;
rbyd_->weight = weight;
return 0;
}
// ok, actual bshrub things
// needed in lfsr_bshrub_estimate
static int lfsr_mdir_lookupnext(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t tag,
lfsr_tag_t *tag_, lfsr_data_t *data_);
// find a tight upper bound on the _full_ bshrub size, this includes
// any on-disk bshrubs, and all pending bshrubs
static lfs_ssize_t lfsr_bshrub_estimate(lfs_t *lfs,
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub) {
(void)bshrub;
lfs_size_t estimate = 0;
// include all unique mosses/shrubs related to our file,
// including the on-disk moss/shrub
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_mdir_lookupnext(lfs, mdir, LFSR_TAG_DATA,
&tag, &data);
if (err < 0 && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT && tag == LFSR_TAG_DATA) {
lfs_ssize_t dsize = lfsr_moss_estimate(lfs, &data);
if (dsize < 0) {
return dsize;
}
estimate += dsize;
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BSHRUB) {
lfsr_shrub_t shrub;
err = lfsr_data_readshrub(lfs, &data, mdir,
&shrub);
if (err < 0) {
return err;
}
lfs_ssize_t dsize = lfsr_shrub_estimate(lfs, &shrub);
if (dsize < 0) {
return dsize;
}
estimate += dsize;
}
// this includes our current shrub
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& o->mdir.mid == mdir->mid) {
if (lfsr_bshrub_isbmoss(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)) {
lfs_ssize_t dsize = lfsr_moss_estimate(lfs,
&((lfsr_obshrub_t*)o)->bshrub.u.bmoss);
if (dsize < 0) {
return dsize;
}
estimate += dsize;
} else if (lfsr_bshrub_isbshrub(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)) {
lfs_ssize_t dsize = lfsr_shrub_estimate(lfs,
&((lfsr_obshrub_t*)o)->bshrub.u.bshrub);
if (dsize < 0) {
return dsize;
}
estimate += dsize;
}
}
}
return estimate;
}
static int lfsr_bshrub_lookupnext(lfs_t *lfs,
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub,
lfsr_bid_t bid,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_bid_t *weight_,
lfsr_bptr_t *bptr_) {
// out of bounds?
if (bid >= lfsr_bshrub_size(bshrub)) {
return LFS_ERR_NOENT;
}
// the above size check should make this impossible
LFS_ASSERT(!lfsr_bshrub_isbnull(bshrub));
// inlined data?
if (lfsr_bshrub_isbmoss(mdir, bshrub)) {
if (bid_) {
*bid_ = lfsr_data_size(bshrub->u.bmoss)-1;
}
if (tag_) {
*tag_ = LFSR_TAG_DATA;
}
if (weight_) {
*weight_ = lfsr_data_size(bshrub->u.bmoss);
}
if (bptr_) {
bptr_->data = bshrub->u.bmoss;
}
return 0;
// direct block?
} else if (lfsr_bshrub_isbptr(mdir, bshrub)) {
if (bid_) {
*bid_ = lfsr_data_size(bshrub->u.bsprout.data)-1;
}
if (tag_) {
*tag_ = LFSR_TAG_BLOCK;
}
if (weight_) {
*weight_ = lfsr_data_size(bshrub->u.bsprout.data);
}
if (bptr_) {
*bptr_ = bshrub->u.bsprout;
}
return 0;
// bshrub/btree?
} else if (lfsr_bshrub_isbshruborbtree(bshrub)) {
lfsr_bid_t bid__;
lfsr_rbyd_t rbyd;
lfsr_srid_t rid;
lfsr_tag_t tag;
lfsr_bid_t weight;
lfsr_data_t data;
int err = lfsr_btree_lookupnext_(lfs, &bshrub->u.btree, bid,
&bid__, &rbyd, &rid, &tag, &weight, &data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
LFS_ASSERT(tag == LFSR_TAG_DATA
|| tag == LFSR_TAG_BLOCK);
if (bid_) {
*bid_ = bid__;
}
if (tag_) {
*tag_ = tag;
}
if (weight_) {
*weight_ = weight;
}
if (bptr_) {
// decode bptrs
if (tag == LFSR_TAG_DATA) {
bptr_->data = data;
} else {
err = lfsr_data_readbptr(lfs, &data, bptr_);
if (err) {
return err;
}
}
LFS_ASSERT(lfsr_data_size(bptr_->data) <= weight);
}
return 0;
} else {
LFS_UNREACHABLE();
}
}
static int lfsr_bshrub_traverse(lfs_t *lfs,
const lfsr_mdir_t *mdir, const lfsr_bshrub_t *bshrub,
lfsr_btraversal_t *bt,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_bptr_t *bptr_) {
// bnull/bmoss does nothing
if (lfsr_bshrub_isbnull(bshrub)
|| lfsr_bshrub_isbmoss(mdir, bshrub)) {
return LFS_ERR_NOENT;
}
// bsprout?
if (lfsr_bshrub_isbptr(mdir, bshrub)) {
if (bt->bid > 0) {
return LFS_ERR_NOENT;
}
if (bid_) {
*bid_ = lfsr_data_size(bshrub->u.bsprout.data)-1;
}
if (tag_) {
*tag_ = LFSR_TAG_BLOCK;
}
if (bptr_) {
*bptr_ = bshrub->u.bsprout;
}
return 0;
// bshrub/btree?
} else if (lfsr_bshrub_isbshruborbtree(bshrub)) {
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_btree_traverse(lfs, &bshrub->u.btree, bt,
bid_, &tag, &data);
if (err) {
return err;
}
// decode bptrs
if (tag_) {
*tag_ = tag;
}
if (bptr_) {
if (tag == LFSR_TAG_BLOCK) {
err = lfsr_data_readbptr(lfs, &data,
bptr_);
if (err) {
return err;
}
} else {
bptr_->data = data;
}
}
return 0;
} else {
LFS_UNREACHABLE();
}
}
// needed in lfsr_bshrub_commit_
static int lfsr_mdir_commit(lfs_t *lfs, lfsr_mdir_t *mdir,
const lfsr_rat_t *rats, lfs_size_t rat_count);
// commit to bshrub with optional rbyd
static int lfsr_bshrub_commit_(lfs_t *lfs,
lfsr_mdir_t *mdir, lfsr_bshrub_t *bshrub,
lfsr_bid_t bid, lfsr_rbyd_t *rbyd, lfsr_srid_t rid,
const lfsr_rat_t *rats, lfs_size_t rat_count) {
// file must be a bshrub/btree here
LFS_ASSERT(lfsr_bshrub_isbshruborbtree(bshrub));
// before we touch anything, we need to mark all other btree references
// as unerased
if (lfsr_bshrub_isbtree(mdir, bshrub)) {
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& &((lfsr_obshrub_t*)o)->bshrub != bshrub
&& lfsr_bshrub_isbshruborbtree(
&((lfsr_obshrub_t*)o)->bshrub)
&& lfsr_btree_cmp(
&((lfsr_obshrub_t*)o)->bshrub.u.btree,
&bshrub->u.btree) == 0) {
// mark as unerased
((lfsr_obshrub_t*)o)->bshrub.u.btree.eoff = -1;
}
}
}
// try to commit to the btree
lfsr_bscratch_t bscratch;
int err = lfsr_btree_commit__(lfs, &bshrub->u.btree, &bscratch,
&bid, rbyd, rid, &rats, &rat_count);
if (err && err != LFS_ERR_RANGE) {
return err;
}
LFS_ASSERT(!err || rat_count > 0);
bool alloc = (err == LFS_ERR_RANGE);
// when btree is shrubbed, lfsr_btree_commit_ stops at the root
// and returns with pending rats
if (rat_count > 0) {
// we need to prevent our shrub from overflowing our mdir somehow
//
// maintaining an accurate estimate is tricky and error-prone,
// but recalculating an estimate every commit is expensive
//
// Instead, we keep track of an estimate of how many bytes have
// been progged to the shrub since the last estimate, and recalculate
// the estimate when this overflows our shrub_size. This mirrors how
// block_size and rbyds interact, and amortizes the estimate cost.
// figure out how much data this commit progs
lfs_size_t commit_estimate = 0;
for (lfs_size_t i = 0; i < rat_count; i++) {
// only include tag overhead if tag is not a grow/rm tag
if (!lfsr_tag_isgrow(rats[i].tag)
&& !lfsr_tag_isrm(rats[i].tag)) {
commit_estimate += lfs->rat_estimate;
}
commit_estimate += lfsr_rat_size(rats[i]);
}
// does our estimate exceed our shrub_size? need to recalculate an
// accurate estimate
lfs_ssize_t estimate = (alloc)
? (lfs_size_t)-1
: bshrub->u.bshrub.estimate;
// this double condition avoids overflow issues
if ((lfs_size_t)estimate > lfs->cfg->shrub_size
|| estimate + commit_estimate > lfs->cfg->shrub_size) {
estimate = lfsr_bshrub_estimate(lfs, mdir, bshrub);
if (estimate < 0) {
return estimate;
}
// two cases where we evict:
// - overlow shrub_size/2 - don't penalize for commits here
// - overlow shrub_size - must include commits or we risk overflow
//
// the 1/2 here prevents runaway performance with the shrub is
// near full, but it's a heuristic, so including the commit would
// just be mean
//
if ((lfs_size_t)estimate > lfs->cfg->shrub_size/2
|| estimate + commit_estimate > lfs->cfg->shrub_size) {
goto relocate;
}
}
// include our pending commit in the new estimate
estimate += commit_estimate;
// commit to shrub
int err = lfsr_mdir_commit(lfs, mdir, LFSR_RATS(
LFSR_RAT_SHRUBCOMMIT(
LFSR_TAG_SHRUBCOMMIT, 0,
&bshrub->u.bshrub, bid, rats, rat_count)));
if (err) {
return err;
}
LFS_ASSERT(bshrub->u.bshrub.blocks[0] == mdir->rbyd.blocks[0]);
// update _all_ shrubs with the new estimate
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)
&& o->mdir.mid == mdir->mid
&& lfsr_bshrub_isbshrub(&o->mdir,
&((lfsr_obshrub_t*)o)->bshrub)) {
((lfsr_obshrub_t*)o)->bshrub.u.bshrub.estimate = estimate;
}
}
LFS_ASSERT(bshrub->u.bshrub.estimate == (lfs_size_t)estimate);
return 0;
}
LFS_ASSERT(lfsr_shrub_trunk(&bshrub->u.bshrub));
return 0;
relocate:;
// convert to btree
lfsr_rbyd_t rbyd_;
err = lfsr_rbyd_alloc(lfs, &rbyd_);
if (err) {
return err;
}
// note this may be a new root
if (!alloc) {
err = lfsr_rbyd_compact(lfs, &rbyd_, &bshrub->u.btree, -1, -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
}
err = lfsr_rbyd_commit(lfs, &rbyd_, bid, rats, rat_count);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
bshrub->u.btree = rbyd_;
return 0;
}
// commit to a bshrub, this is atomic
static int lfsr_bshrub_commit(lfs_t *lfs,
lfsr_mdir_t *mdir, lfsr_bshrub_t *bshrub,
lfsr_bid_t bid, const lfsr_rat_t *rats, lfs_size_t rat_count) {
// file must be a bshrub/btree here
LFS_ASSERT(lfsr_bshrub_isbshruborbtree(bshrub));
return lfsr_bshrub_commit_(lfs, mdir, bshrub, bid, NULL, -1,
rats, rat_count);
}
/// metadata-id things ///
#define LFSR_MID(_lfs, _bid, _rid) \
(((_bid) & ~((1 << (_lfs)->mdir_bits)-1)) + (_rid))
static inline lfsr_sbid_t lfsr_mid_bid(const lfs_t *lfs, lfsr_smid_t mid) {
return mid | ((1 << lfs->mdir_bits) - 1);
}
static inline lfsr_srid_t lfsr_mid_rid(const lfs_t *lfs, lfsr_smid_t mid) {
// bit of a strange mapping, but we want to preserve mid=-1 => rid=-1
return (mid >> (8*sizeof(lfsr_smid_t)-1))
| (mid & ((1 << lfs->mdir_bits) - 1));
}
/// metadata-pointer things ///
// the mroot anchor, mdir 0x{0,1} is the entry point into the filesystem
#define LFSR_MPTR_MROOTANCHOR() ((const lfs_block_t[2]){0, 1})
static inline int lfsr_mptr_cmp(
const lfs_block_t a[static 2],
const lfs_block_t b[static 2]) {
// note these can be in either order
if (lfs_max(a[0], a[1]) != lfs_max(b[0], b[1])) {
return lfs_max(a[0], a[1]) - lfs_max(b[0], b[1]);
} else {
return lfs_min(a[0], a[1]) - lfs_min(b[0], b[1]);
}
}
static inline bool lfsr_mptr_ismrootanchor(
const lfs_block_t mptr[static 2]) {
// mrootanchor is always at 0x{0,1}
// just check that the first block is in mroot anchor range
return mptr[0] <= 1;
}
// mptr encoding:
// .---+- -+- -+- -+- -. blocks: 2 leb128s <=2x5 bytes
// | block x 2 | total: <=10 bytes
// + +
// | |
// '---+- -+- -+- -+- -'
//
#define LFSR_MPTR_DSIZE (5+5)
#define LFSR_DATA_MPTR(_mptr, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_frommptr(_mptr, _buffer)}.d)
static lfsr_data_t lfsr_data_frommptr(const lfs_block_t mptr[static 2],
uint8_t buffer[static LFSR_MPTR_DSIZE]) {
// blocks should not exceed 31-bits
LFS_ASSERT(mptr[0] <= 0x7fffffff);
LFS_ASSERT(mptr[1] <= 0x7fffffff);
lfs_ssize_t d = 0;
for (int i = 0; i < 2; i++) {
lfs_ssize_t d_ = lfs_toleb128(mptr[i], &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
}
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readmptr(lfs_t *lfs, lfsr_data_t *data,
lfs_block_t mptr[static 2]) {
for (int i = 0; i < 2; i++) {
int err = lfsr_data_readleb128(lfs, data, &mptr[i]);
if (err) {
return err;
}
}
return 0;
}
/// various flag things ///
// open flags
static inline bool lfsr_o_isrdonly(uint32_t flags) {
return (flags & LFS_O_MODE) == LFS_O_RDONLY;
}
static inline bool lfsr_o_iswronly(uint32_t flags) {
return (flags & LFS_O_MODE) == LFS_O_WRONLY;
}
static inline bool lfsr_o_iscreat(uint32_t flags) {
return flags & LFS_O_CREAT;
}
static inline bool lfsr_o_isexcl(uint32_t flags) {
return flags & LFS_O_EXCL;
}
static inline bool lfsr_o_istrunc(uint32_t flags) {
return flags & LFS_O_TRUNC;
}
static inline bool lfsr_o_isappend(uint32_t flags) {
return flags & LFS_O_APPEND;
}
static inline bool lfsr_o_isflush(uint32_t flags) {
return flags & LFS_O_FLUSH;
}
static inline bool lfsr_o_issync(uint32_t flags) {
return flags & LFS_O_SYNC;
}
static inline bool lfsr_o_isdesync(uint32_t flags) {
return flags & LFS_O_DESYNC;
}
// internal open flags
static inline uint8_t lfsr_o_type(uint32_t flags) {
return flags >> 28;
}
static inline uint32_t lfsr_o_settype(uint32_t flags, uint8_t type) {
return (flags & ~0xf0000000) | ((uint32_t)type << 28);
}
static inline bool lfsr_o_isbshrub(uint32_t flags) {
// it turns out that bshrub types share a bit
return flags & 0x10000000;
}
static inline bool lfsr_o_isunflush(uint32_t flags) {
return flags & LFS_o_UNFLUSH;
}
static inline bool lfsr_o_isunsync(uint32_t flags) {
return flags & LFS_o_UNSYNC;
}
static inline bool lfsr_o_isuncreat(uint32_t flags) {
return flags & LFS_o_UNCREAT;
}
static inline bool lfsr_o_iszombie(uint32_t flags) {
return flags & LFS_o_ZOMBIE;
}
// custom attr flags
static inline bool lfsr_a_islazy(uint32_t flags) {
return flags & LFS_A_LAZY;
}
// traversal flags
static inline bool lfsr_t_ismtreeonly(uint32_t flags) {
return flags & LFS_T_MTREEONLY;
}
static inline bool lfsr_t_ismkconsistent(uint32_t flags) {
return flags & LFS_T_MKCONSISTENT;
}
static inline bool lfsr_t_islookahead(uint32_t flags) {
return flags & LFS_T_LOOKAHEAD;
}
static inline bool lfsr_t_iscompact(uint32_t flags) {
return flags & LFS_T_COMPACT;
}
static inline bool lfsr_t_isckmeta(uint32_t flags) {
return flags & LFS_T_CKMETA;
}
static inline bool lfsr_t_isckdata(uint32_t flags) {
return flags & LFS_T_CKDATA;
}
// internal traversal flags
static inline uint8_t lfsr_t_tstate(uint32_t flags) {
return (flags >> 0) & 0xf;
}
static inline uint32_t lfsr_t_settstate(uint32_t flags, uint8_t tstate) {
return (flags & ~0x0000000f) | (tstate << 0);
}
static inline uint8_t lfsr_t_btype(uint32_t flags) {
return (flags >> 8) & 0x0f;
}
static inline uint32_t lfsr_t_setbtype(uint32_t flags, uint8_t btype) {
return (flags & ~0x00000f00) | (btype << 8);
}
static inline bool lfsr_t_isdirty(uint32_t flags) {
return flags & LFS_t_DIRTY;
}
static inline bool lfsr_t_ismutated(uint32_t flags) {
return flags & LFS_t_MUTATED;
}
static inline uint32_t lfsr_t_swapdirty(uint32_t flags) {
uint32_t x = ((flags >> 25) ^ (flags >> 24)) & 0x1;
return flags ^ (x << 25) ^ (x << 24);
}
// mount flags
static inline bool lfsr_m_isrdonly(uint32_t flags) {
return flags & LFS_M_RDONLY;
}
#ifdef LFS_CKPROGS
static inline bool lfsr_m_isckprogs(uint32_t flags) {
return flags & LFS_M_CKPROGS;
}
#endif
#ifdef LFS_CKFETCHES
static inline bool lfsr_m_isckfetches(uint32_t flags) {
return flags & LFS_M_CKFETCHES;
}
#endif
#ifdef LFS_CKPARITY
static inline bool lfsr_m_isckparity(uint32_t flags) {
return flags & LFS_M_CKPARITY;
}
#endif
#ifdef LFS_CKDATACKSUMS
static inline bool lfsr_m_isckdatacksums(uint32_t flags) {
return flags & LFS_M_CKDATACKSUMS;
}
#endif
// internal fs flags
static inline bool lfsr_i_isuntidy(uint32_t flags) {
return flags & LFS_i_UNTIDY;
}
/// opened mdir things ///
// we maintain a linked-list of all opened mdirs, in order to keep
// metadata state in-sync, these may be casted to specific file types
static bool lfsr_omdir_isopen(lfs_t *lfs, const lfsr_omdir_t *o) {
for (lfsr_omdir_t *o_ = lfs->omdirs; o_; o_ = o_->next) {
if (o_ == o) {
return true;
}
}
return false;
}
static void lfsr_omdir_open(lfs_t *lfs, lfsr_omdir_t *o) {
LFS_ASSERT(!lfsr_omdir_isopen(lfs, o));
// add to opened list
o->next = lfs->omdirs;
lfs->omdirs = o;
}
// needed in lfsr_omdir_close
static void lfsr_omdir_clobber(lfs_t *lfs, const lfsr_omdir_t *o,
bool dirty);
static void lfsr_omdir_close(lfs_t *lfs, lfsr_omdir_t *o) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, o));
// make sure we're not entangled in any traversals, note we don't
// set the dirty bit here
lfsr_omdir_clobber(lfs, o, false);
// remove from opened list
for (lfsr_omdir_t **o_ = &lfs->omdirs; *o_; o_ = &(*o_)->next) {
if (*o_ == o) {
*o_ = (*o_)->next;
break;
}
}
}
// check if a given mid is open
static bool lfsr_omdir_ismidopen(lfs_t *lfs, lfsr_smid_t mid, uint32_t mask) {
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// we really only care about regular open files here, all
// others are either transient (dirs) or fake (orphans)
if (lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == mid
// allow caller to ignore files with specific flags
&& !(o->flags & ~mask)) {
return true;
}
}
return false;
}
// traversal invalidation things
// needed in lfsr_omdir_clobber
static void lfsr_traversal_clobber(lfs_t *lfs, lfsr_traversal_t *t);
// clobber any traversals referencing our mdir
static void lfsr_omdir_clobber(lfs_t *lfs, const lfsr_omdir_t *o,
bool dirty) {
for (lfsr_omdir_t *o_ = lfs->omdirs; o_; o_ = o_->next) {
if (lfsr_o_type(o_->flags) == LFS_TYPE_TRAVERSAL) {
o_->flags |= (dirty) ? LFS_t_DIRTY : 0;
if (o && ((lfsr_traversal_t*)o_)->ot == o) {
lfsr_traversal_clobber(lfs, (lfsr_traversal_t*)o_);
}
}
}
}
// clobber and mark traversals as dirty
static void lfsr_omdir_mkdirty(lfs_t *lfs, const lfsr_omdir_t *o) {
lfsr_omdir_clobber(lfs, o, true);
}
// mark all traversals as dirty
static void lfsr_fs_mkdirty(lfs_t *lfs) {
lfsr_omdir_clobber(lfs, NULL, true);
}
/// Global-state things ///
static inline bool lfsr_gdelta_iszero(
const uint8_t *gdelta, lfs_size_t size) {
return lfs_memcchr(gdelta, 0, size) == NULL;
}
static inline lfs_size_t lfsr_gdelta_size(
const uint8_t *gdelta, lfs_size_t size) {
// truncate based on number of trailing zeros
while (size > 0 && gdelta[size-1] == 0) {
size -= 1;
}
return size;
}
static inline void lfsr_gdelta_xor(
uint8_t *a, const uint8_t *b, lfs_size_t size) {
lfs_memxor(a, b, size);
}
// grm (global remove) things
static inline uint8_t lfsr_grm_count_(const lfsr_grm_t *grm) {
return (grm->mids[0] >= 0) + (grm->mids[1] >= 0);
}
static inline uint8_t lfsr_grm_count(const lfs_t *lfs) {
return lfsr_grm_count_(&lfs->grm);
}
static inline void lfsr_grm_push(lfs_t *lfs, lfsr_smid_t mid) {
LFS_ASSERT(lfs->grm.mids[1] == -1);
lfs->grm.mids[1] = lfs->grm.mids[0];
lfs->grm.mids[0] = mid;
}
static inline lfsr_smid_t lfsr_grm_pop(lfs_t *lfs) {
lfsr_smid_t mid = lfs->grm.mids[0];
lfs->grm.mids[0] = lfs->grm.mids[1];
lfs->grm.mids[1] = -1;
return mid;
}
static inline bool lfsr_grm_ismidrm(const lfs_t *lfs, lfsr_smid_t mid) {
return lfs->grm.mids[0] == mid || lfs->grm.mids[1] == mid;
}
#define LFSR_DATA_GRM(_grm, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromgrm(_grm, _buffer)}.d)
static lfsr_data_t lfsr_data_fromgrm(const lfsr_grm_t *grm,
uint8_t buffer[static LFSR_GRM_DSIZE]) {
// make sure to zero so we don't leak any info
lfs_memset(buffer, 0, LFSR_GRM_DSIZE);
// first encode the number of grms, this can be 0, 1, or 2 and may
// be extended to a general purpose leb128 type field in the future
uint8_t mode = lfsr_grm_count_(grm);
lfs_ssize_t d = 0;
buffer[d] = mode;
d += 1;
for (uint8_t i = 0; i < mode; i++) {
lfs_ssize_t d_ = lfs_toleb128(grm->mids[i], &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
}
return LFSR_DATA_BUF(buffer, lfsr_gdelta_size(buffer, LFSR_GRM_DSIZE));
}
// required by lfsr_data_readgrm
static inline lfsr_mid_t lfsr_mtree_weight(lfs_t *lfs);
static int lfsr_data_readgrm(lfs_t *lfs, lfsr_data_t *data,
lfsr_grm_t *grm) {
// clear first
grm->mids[0] = -1;
grm->mids[1] = -1;
// first read the mode field
uint8_t mode;
lfs_ssize_t d = lfsr_data_read(lfs, data, &mode, 1);
if (d < 0) {
return d;
}
LFS_ASSERT(d == 1);
// unknown mode? return an error, we may be able to mount read-only
if (mode > 2) {
return LFS_ERR_CORRUPT;
}
for (uint8_t i = 0; i < mode; i++) {
int err = lfsr_data_readleb128(lfs, data, (lfsr_mid_t*)&grm->mids[i]);
if (err) {
return err;
}
LFS_ASSERT((lfsr_mid_t)grm->mids[i] < lfsr_mtree_weight(lfs));
}
return 0;
}
// some mdir-related gstate things we need
static void lfsr_fs_flushgdelta(lfs_t *lfs) {
lfs_memset(lfs->grm_d, 0, LFSR_GRM_DSIZE);
}
static void lfsr_fs_preparegdelta(lfs_t *lfs) {
// first flush everything
lfsr_fs_flushgdelta(lfs);
// any pending grms?
lfsr_data_fromgrm(&lfs->grm, lfs->grm_d);
// xor with current gstate to find our initial gdelta
lfsr_gdelta_xor(lfs->grm_d, lfs->grm_p, LFSR_GRM_DSIZE);
}
static void lfsr_fs_revertgdelta(lfs_t *lfs) {
// revert gstate to on-disk state
int err = lfsr_data_readgrm(lfs,
&LFSR_DATA_BUF(lfs->grm_p, LFSR_GRM_DSIZE),
&lfs->grm);
if (err) {
LFS_UNREACHABLE();
}
}
static void lfsr_fs_commitgdelta(lfs_t *lfs) {
// commit any pending gdeltas
lfsr_data_fromgrm(&lfs->grm, lfs->grm_p);
}
// append and consume any pending gstate
static int lfsr_rbyd_appendgdelta(lfs_t *lfs, lfsr_rbyd_t *rbyd) {
// need grm delta?
if (!lfsr_gdelta_iszero(lfs->grm_d, LFSR_GRM_DSIZE)) {
// make sure to xor any existing delta
lfsr_data_t data;
int err = lfsr_rbyd_lookup(lfs, rbyd, -1, LFSR_TAG_GRMDELTA,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
uint8_t grm_d[LFSR_GRM_DSIZE];
lfs_memset(grm_d, 0, LFSR_GRM_DSIZE);
if (err != LFS_ERR_NOENT) {
lfs_ssize_t d = lfsr_data_read(lfs, &data, grm_d, LFSR_GRM_DSIZE);
if (d < 0) {
return d;
}
}
lfsr_gdelta_xor(grm_d, lfs->grm_d, LFSR_GRM_DSIZE);
// append to our rbyd, replacing any existing delta
lfs_size_t size = lfsr_gdelta_size(grm_d, LFSR_GRM_DSIZE);
err = lfsr_rbyd_appendrat(lfs, rbyd, -1, LFSR_RAT(
// opportunistically remove this tag if delta is all zero
(size == 0)
? LFSR_TAG_RM | LFSR_TAG_GRMDELTA
: LFSR_TAG_GRMDELTA, 0,
LFSR_DATA_BUF(grm_d, size)));
if (err) {
return err;
}
}
return 0;
}
static int lfsr_fs_consumegdelta(lfs_t *lfs, const lfsr_mdir_t *mdir) {
// consume any grm deltas
lfsr_data_t data;
int err = lfsr_rbyd_lookup(lfs, &mdir->rbyd, -1, LFSR_TAG_GRMDELTA,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
uint8_t grm_d[LFSR_GRM_DSIZE];
lfs_ssize_t d = lfsr_data_read(lfs, &data, grm_d, LFSR_GRM_DSIZE);
if (d < 0) {
return d;
}
lfsr_gdelta_xor(lfs->grm_d, grm_d, d);
}
return 0;
}
/// Revision count things ///
// in mdirs, our revision count is broken down into three parts:
//
// vvvvrrrr rrrrrrnn nnnnnnnn nnnnnnnn
// '-.''----.----''---------.--------'
// '------|---------------|---------- 4-bit relocation revision
// '---------------|---------- recycle-bits recycle counter
// '---------- pseudorandom nonce
static inline uint32_t lfsr_rev_init(lfs_t *lfs, uint32_t rev) {
// we really only care about the top revision bits here
rev &= ~((1 << 28)-1);
// increment revision
rev += 1 << 28;
// xor in a pseudorandom nonce
rev ^= ((1 << (28-lfs_smax(lfs->recycle_bits, 0)))-1) & lfs->seed;
return rev;
}
static inline bool lfsr_rev_needsrelocation(lfs_t *lfs, uint32_t rev) {
if (lfs->recycle_bits == -1) {
return false;
}
// does out recycle counter overflow?
uint32_t rev_ = rev + (1 << (28-lfs_smax(lfs->recycle_bits, 0)));
return (rev_ >> 28) != (rev >> 28);
}
static inline uint32_t lfsr_rev_inc(lfs_t *lfs, uint32_t rev) {
// increment recycle counter/revision
rev += 1 << (28-lfs_smax(lfs->recycle_bits, 0));
// xor in a pseudorandom nonce
rev ^= ((1 << (28-lfs_smax(lfs->recycle_bits, 0)))-1) & lfs->seed;
return rev;
}
/// Metadata pair stuff ///
// mdir convenience functions
static inline int lfsr_mdir_cmp(const lfsr_mdir_t *a, const lfsr_mdir_t *b) {
return lfsr_mptr_cmp(a->rbyd.blocks, b->rbyd.blocks);
}
static inline bool lfsr_mdir_ismrootanchor(const lfsr_mdir_t *mdir) {
return lfsr_mptr_ismrootanchor(mdir->rbyd.blocks);
}
// mdir operations
static int lfsr_mdir_fetch(lfs_t *lfs, lfsr_mdir_t *mdir,
lfsr_smid_t mid, const lfs_block_t mptr[static 2]) {
// create a copy of the mptr, both so we can swap the blocks to keep
// track of the current revision, and to prevents issues if mptr
// references the blocks in the mdir
lfs_block_t blocks[2] = {mptr[0], mptr[1]};
// read both revision counts, try to figure out which block
// has the most recent revision
uint32_t revs[2] = {0, 0};
for (int i = 0; i < 2; i++) {
int err = lfsr_bd_read(lfs, blocks[0], 0, 0,
&revs[0], sizeof(uint32_t));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
revs[i] = lfs_fromle32_(&revs[i]);
if (i == 0
|| err == LFS_ERR_CORRUPT
|| lfs_scmp(revs[1], revs[0]) > 0) {
LFS_SWAP(lfs_block_t, &blocks[0], &blocks[1]);
LFS_SWAP(uint32_t, &revs[0], &revs[1]);
}
}
// try to fetch rbyds in the order of most recent to least recent
for (int i = 0; i < 2; i++) {
int err = lfsr_rbyd_fetch(lfs, &mdir->rbyd, blocks[0], 0);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err != LFS_ERR_CORRUPT) {
mdir->mid = mid;
// keep track of other block for compactions
mdir->rbyd.blocks[1] = blocks[1];
return 0;
}
LFS_SWAP(lfs_block_t, &blocks[0], &blocks[1]);
LFS_SWAP(uint32_t, &revs[0], &revs[1]);
}
// could not find a non-corrupt rbyd
return LFS_ERR_CORRUPT;
}
static int lfsr_data_fetchmdir(lfs_t *lfs,
lfsr_data_t *data, lfsr_smid_t mid,
lfsr_mdir_t *mdir) {
// decode mptr and fetch
int err = lfsr_data_readmptr(lfs, data,
mdir->rbyd.blocks);
if (err) {
return err;
}
return lfsr_mdir_fetch(lfs, mdir, mid, mdir->rbyd.blocks);
}
static int lfsr_mdir_lookupnext(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t tag,
lfsr_tag_t *tag_, lfsr_data_t *data_) {
lfsr_srid_t rid__;
lfsr_tag_t tag__;
int err = lfsr_rbyd_lookupnext(lfs, &mdir->rbyd,
lfsr_mid_rid(lfs, mdir->mid), tag,
&rid__, &tag__, NULL, data_);
if (err) {
return err;
}
// this is very similar to lfsr_rbyd_lookupnext, but we error if
// lookupnext would change mids
if (rid__ != lfsr_mid_rid(lfs, mdir->mid)) {
return LFS_ERR_NOENT;
}
// intercept pending grms here and pretend they're orphaned
// stickynotes
//
// fortunately pending grms/orphaned stickynotes have roughly the
// same semantics, and it's easier to manage the implied mid gap in
// higher-levels
if (lfsr_tag_suptype(tag__) == LFSR_TAG_NAME
&& lfsr_grm_ismidrm(lfs, mdir->mid)) {
tag__ = LFSR_TAG_STICKYNOTE;
}
if (tag_) {
*tag_ = tag__;
}
return 0;
}
static int lfsr_mdir_lookup(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t tag,
lfsr_data_t *data_) {
lfsr_tag_t tag_;
int err = lfsr_mdir_lookupnext(lfs, mdir, tag,
&tag_, data_);
if (err) {
return err;
}
// lookup finds the next-smallest tag, all we need to do is fail if it
// picks up the wrong tag
if (tag_ != tag) {
return LFS_ERR_NOENT;
}
return 0;
}
static int lfsr_mdir_sublookup(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t tag,
lfsr_tag_t *tag_, lfsr_data_t *data_) {
// looking up a wide tag with subtype is probably a mistake
LFS_ASSERT(lfsr_tag_subtype(tag) == 0);
lfsr_tag_t tag__;
int err = lfsr_mdir_lookupnext(lfs, mdir, tag,
&tag__, data_);
if (err) {
return err;
}
// the difference between lookup and sublookup is we accept any
// subtype of the requested tag
if (lfsr_tag_suptype(tag__) != tag) {
return LFS_ERR_NOENT;
}
if (tag_) {
*tag_ = tag__;
}
return 0;
}
static int lfsr_mdir_suplookup(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t *tag_, lfsr_data_t *data_) {
lfsr_tag_t tag__;
int err = lfsr_mdir_lookupnext(lfs, mdir, 0,
&tag__, data_);
if (err) {
return err;
}
// the difference between lookup and sublookup is we accept any tag
if (tag_) {
*tag_ = tag__;
}
return 0;
}
/// Metadata-tree things ///
// the mtree is the core tree of mdirs in littlefs
#define LFSR_MTREE_ISMPTR 0x80000000
// create an empty mtree
static void lfsr_mtree_init(lfsr_mtree_t *mtree) {
mtree->u.weight = LFSR_MTREE_ISMPTR | 0;
}
// create an mtree with a single mdir
static void lfsr_mtree_frommptr(lfsr_mtree_t *mtree,
const lfs_block_t mptr[static 2],
lfsr_mid_t weight) {
mtree->u.mptr.weight = LFSR_MTREE_ISMPTR | weight;
mtree->u.mptr.blocks[0] = mptr[0];
mtree->u.mptr.blocks[1] = mptr[1];
}
static inline bool lfsr_mtree_isnull(const lfsr_mtree_t *mtree) {
return mtree->u.weight == (LFSR_MTREE_ISMPTR | 0);
}
static inline bool lfsr_mtree_ismptr(const lfsr_mtree_t *mtree) {
return mtree->u.weight & LFSR_MTREE_ISMPTR;
}
static inline bool lfsr_mtree_isbtree(const lfsr_mtree_t *mtree) {
return !(mtree->u.weight & LFSR_MTREE_ISMPTR);
}
static inline lfsr_mid_t lfsr_mtree_weight_(const lfsr_mtree_t *mtree) {
return mtree->u.weight & ~LFSR_MTREE_ISMPTR;
}
static inline int lfsr_mtree_cmp(
const lfsr_mtree_t *a,
const lfsr_mtree_t *b) {
if (a->u.weight != b->u.weight) {
return a->u.weight - b->u.weight;
} else if (lfsr_mtree_isnull(a)) {
return 0;
} else if (lfsr_mtree_ismptr(a)) {
return lfsr_mptr_cmp(a->u.mptr.blocks, b->u.mptr.blocks);
} else {
return lfsr_btree_cmp(&a->u.btree, &b->u.btree);
}
}
static inline lfsr_mid_t lfsr_mtree_weight(lfs_t *lfs) {
return lfs_max(
lfsr_mtree_weight_(&lfs->mtree),
1 << lfs->mdir_bits);
}
static int lfsr_mtree_lookup(lfs_t *lfs, lfsr_smid_t mid,
lfsr_mdir_t *mdir_) {
// looking up mid=-1 is probably a mistake
LFS_ASSERT(mid >= 0);
// out of bounds?
if ((lfsr_mid_t)mid >= lfsr_mtree_weight(lfs)) {
return LFS_ERR_NOENT;
}
// looking up mroot?
if (lfsr_mtree_isnull(&lfs->mtree)) {
mdir_->mid = mid;
mdir_->rbyd = lfs->mroot.rbyd;
return 0;
// looking up direct mdir?
} else if (lfsr_mtree_ismptr(&lfs->mtree)) {
// fetch mdir
return lfsr_mdir_fetch(lfs, mdir_, mid, lfs->mtree.u.mptr.blocks);
// look up mdir in actual mtree
} else {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_btree_lookupnext(lfs, &lfs->mtree.u.btree, mid,
&bid, &tag, NULL, &data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
LFS_ASSERT((lfsr_sbid_t)bid == lfsr_mid_bid(lfs, mid));
LFS_ASSERT(tag == LFSR_TAG_MDIR);
// fetch mdir
return lfsr_data_fetchmdir(lfs, &data, mid,
mdir_);
}
}
/// Mdir commit logic ///
// this is the gooey atomic center of littlefs
//
// any mutation must go through lfsr_mdir_commit to persist on disk
//
// this makes lfsr_mdir_commit also responsible for propagating changes
// up through the mtree/mroot chain, and through any internal structures,
// making lfsr_mdir_commit quite involved and a bit of a mess.
// low-level mdir operations needed by lfsr_mdir_commit
static int lfsr_mdir_alloc__(lfs_t *lfs, lfsr_mdir_t *mdir,
lfsr_smid_t mid, bool partial) {
// assign the mid
mdir->mid = mid;
if (!partial) {
// allocate one block without an erase
lfs_sblock_t block = lfs_alloc(lfs, false);
if (block < 0) {
return block;
}
mdir->rbyd.blocks[1] = block;
}
// read the new revision count
//
// we use whatever is on-disk to avoid needing to rewrite the
// redund block
uint32_t rev;
int err = lfsr_bd_read(lfs, mdir->rbyd.blocks[1], 0, 0,
&rev, sizeof(uint32_t));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// note we allow corrupt errors here, as long as they are consistent
rev = (err != LFS_ERR_CORRUPT) ? lfs_fromle32_(&rev) : 0;
// reset recycle bits in revision count and increment
rev = lfsr_rev_init(lfs, rev);
relocate:;
// allocate another block with an erase
lfs_sblock_t block = lfs_alloc(lfs, true);
if (block < 0) {
return block;
}
mdir->rbyd.blocks[0] = block;
mdir->rbyd.weight = 0;
mdir->rbyd.trunk = 0;
mdir->rbyd.eoff = 0;
mdir->rbyd.cksum = 0;
// write our revision count
err = lfsr_rbyd_appendrev(lfs, &mdir->rbyd, rev);
if (err) {
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
return 0;
}
static int lfsr_mdir_swap__(lfs_t *lfs, lfsr_mdir_t *mdir_,
const lfsr_mdir_t *mdir, bool force) {
// assign the mid
mdir_->mid = mdir->mid;
// first thing we need to do is read our current revision count
uint32_t rev;
int err = lfsr_bd_read(lfs, mdir->rbyd.blocks[0], 0, 0,
&rev, sizeof(uint32_t));
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
// note we allow corrupt errors here, as long as they are consistent
rev = (err != LFS_ERR_CORRUPT) ? lfs_fromle32_(&rev) : 0;
// increment our revision count
rev = lfsr_rev_inc(lfs, rev);
// decide if we need to relocate
if (!force && lfsr_rev_needsrelocation(lfs, rev)) {
return LFS_ERR_NOSPC;
}
// swap our blocks
mdir_->rbyd.blocks[0] = mdir->rbyd.blocks[1];
mdir_->rbyd.blocks[1] = mdir->rbyd.blocks[0];
mdir_->rbyd.weight = 0;
mdir_->rbyd.trunk = 0;
mdir_->rbyd.eoff = 0;
mdir_->rbyd.cksum = 0;
// erase, preparing for compact
err = lfsr_bd_erase(lfs, mdir_->rbyd.blocks[0]);
if (err) {
return err;
}
// increment our revision count and write it to our rbyd
err = lfsr_rbyd_appendrev(lfs, &mdir_->rbyd, rev);
if (err) {
return err;
}
return 0;
}
// low-level mdir commit, does not handle mtree/mlist/compaction/etc
static int lfsr_mdir_commit__(lfs_t *lfs, lfsr_mdir_t *mdir,
lfsr_srid_t start_rid, lfsr_srid_t end_rid,
lfsr_smid_t mid, const lfsr_rat_t *rats, lfs_size_t rat_count) {
// since we only ever commit to one mid or split, we can ignore the
// entire rat-list if our mid is out of range
lfsr_srid_t rid = lfsr_mid_rid(lfs, mid);
if (rid >= start_rid
// note the use of rid+1 and unsigned comparison here to
// treat end_rid=-1 as "unbounded" in such a way that rid=-1
// is still included
&& (lfs_size_t)(rid + 1) <= (lfs_size_t)end_rid) {
for (lfs_size_t i = 0; i < rat_count; i++) {
// we just happen to never split in an mdir commit
LFS_ASSERT(!(i > 0 && lfsr_rat_isinsert(rats[i])));
// rat lists can be chained, but only tail-recursively
if (rats[i].tag == LFSR_TAG_RATS) {
// must be the last tag
LFS_ASSERT(i == rat_count-1);
// how would weight make sense here?
LFS_ASSERT(rats[i].weight == 0);
const lfsr_rat_t *rats_ = rats[i].cat;
lfs_size_t rat_count_ = rats[i].count;
// switch to chained rat-list
rats = rats_;
rat_count = rat_count_;
i = -1;
continue;
// shrub tags append a set of attributes to an unrelated trunk
// in our rbyd
} else if (rats[i].tag == LFSR_TAG_SHRUBCOMMIT) {
const lfsr_shrubcommit_t *shrubcommit = rats[i].cat;
// find the staging shrub
lfsr_shrub_t *shrub = shrubcommit->shrub;
lfsr_shrub_t *shrub_ = &((lfsr_bshrub_t*)shrub + 1)->u.bshrub;
// reset shrub if it doesn't live in our block, this happens
// when converting from a btree
if (shrub_->blocks[0] != mdir->rbyd.blocks[0]) {
shrub_->blocks[0] = mdir->rbyd.blocks[0];
shrub_->trunk = LFSR_RBYD_ISSHRUB | 0;
shrub_->weight = 0;
}
// commit to shrub
int err = lfsr_shrub_commit(lfs, &mdir->rbyd,
shrub_, shrubcommit->rid,
shrubcommit->rats, shrubcommit->rat_count);
if (err) {
return err;
}
// lazily encode inlined trunks in case they change underneath
// us due to mdir compactions
//
// TODO should we preserve mode for all of these?
// TODO should we do the same for mosses?
} else if (lfsr_tag_key(rats[i].tag) == LFSR_TAG_SHRUBTRUNK) {
// find the staging shrub
lfsr_shrub_t *shrub = (lfsr_shrub_t*)rats[i].cat;
lfsr_shrub_t *shrub_ = &((lfsr_bshrub_t*)shrub + 1)->u.bshrub;
uint8_t shrub_buf[LFSR_SHRUB_DSIZE];
int err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
LFSR_RAT(
lfsr_tag_mode(rats[i].tag) | LFSR_TAG_BSHRUB,
rats[i].weight,
// note we use the staged trunk here
LFSR_DATA_SHRUB(shrub_, shrub_buf)));
if (err) {
return err;
}
// move tags copy over any tags associated with the source's rid
// TODO can this be deduplicated with lfsr_mdir_compact__ more?
// it _really_ wants to be deduplicated
} else if (rats[i].tag == LFSR_TAG_MOVE) {
// weighted moves are not supported
LFS_ASSERT(rats[i].weight == 0);
const lfsr_mdir_t *mdir__ = rats[i].cat;
// skip the name tag, this is always replaced by upper layers
lfsr_tag_t tag = LFSR_TAG_STRUCT-1;
while (true) {
lfsr_data_t data;
int err = lfsr_mdir_lookupnext(lfs, mdir__, tag+1,
&tag, &data);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// found an inlined moss? we can just copy this like
// normal but we need to update any opened inlined files
if (tag == LFSR_TAG_DATA) {
err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
LFSR_RAT_CAT_(tag, 0, &data, 1));
if (err) {
return err;
}
err = lfsr_moss_compact(lfs, &mdir->rbyd, &data,
&data);
if (err) {
return err;
}
// found an inlined shrub? we need to compact the shrub
// as well to bring it along with us
} else if (tag == LFSR_TAG_BSHRUB) {
lfsr_shrub_t shrub;
err = lfsr_data_readshrub(lfs, &data, mdir__,
&shrub);
if (err) {
return err;
}
// compact our shrub
err = lfsr_shrub_compact(lfs, &mdir->rbyd, &shrub,
&shrub);
if (err) {
return err;
}
// write our new shrub tag
uint8_t shrub_buf[LFSR_SHRUB_DSIZE];
err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
LFSR_RAT(
LFSR_TAG_BSHRUB, 0,
LFSR_DATA_SHRUB(&shrub, shrub_buf)));
if (err) {
return err;
}
// append the rat
} else {
err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
LFSR_RAT_CAT_(tag, 0, &data, 1));
if (err) {
return err;
}
}
}
// we're not quite done! we also need to bring over any
// unsynced files
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// belongs to our mid?
if (!(lfsr_o_isbshrub(o->flags)
&& o->mdir.mid == mdir__->mid)) {
continue;
}
lfsr_obshrub_t *bshrub = (lfsr_obshrub_t*)o;
// inlined moss?
if (lfsr_bshrub_isbmoss(&bshrub->o.mdir, &bshrub->bshrub)
// only compact once, first compact should stage
// the new block
&& bshrub->bshrub_.u.bmoss.u.disk.block
!= mdir->rbyd.blocks[0]) {
int err = lfsr_rbyd_appendcompactrat(lfs, &mdir->rbyd,
LFSR_RAT_CAT_(
LFSR_TAG_SHRUB | LFSR_TAG_DATA, 0,
&bshrub->bshrub.u.bmoss, 1));
if (err) {
return err;
}
err = lfsr_moss_compact(lfs, &mdir->rbyd,
&bshrub->bshrub_.u.bmoss,
&bshrub->bshrub.u.bmoss);
if (err) {
return err;
}
// inlined shrub?
} else if (lfsr_bshrub_isbshrub(
&bshrub->o.mdir, &bshrub->bshrub)
// only compact once, first compact should stage
// the new block
&& bshrub->bshrub_.u.bshrub.blocks[0]
!= mdir->rbyd.blocks[0]) {
int err = lfsr_shrub_compact(lfs, &mdir->rbyd,
&bshrub->bshrub_.u.bshrub,
&bshrub->bshrub.u.bshrub);
if (err) {
return err;
}
}
}
// custom attributes need to be reencoded into our tag format
} else if (lfsr_tag_key(rats[i].tag) == LFSR_TAG_ATTRS) {
const struct lfs_attr *attrs_ = rats[i].cat;
lfs_size_t attr_count_ = rats[i].count;
for (lfs_size_t j = 0; j < attr_count_; j++) {
// skip readonly attrs and lazy attrs
if (lfsr_o_isrdonly(attrs_[j].flags)) {
continue;
}
// first lets check if the attr changed, we don't want
// to append attrs unless we have to
lfsr_data_t data;
int err = lfsr_mdir_lookup(lfs, mdir,
LFSR_TAG_ATTR(attrs_[j].type),
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// does disk match our attr?
lfs_scmp_t cmp = lfsr_attr_cmp(lfs, &attrs_[j],
(err != LFS_ERR_NOENT) ? &data : NULL);
if (cmp < 0) {
return cmp;
}
if (cmp == LFS_CMP_EQ) {
continue;
}
// append the custom attr
err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
// removing or updating?
(lfsr_attr_isnoattr(&attrs_[j]))
? LFSR_RAT(
LFSR_TAG_RM
| LFSR_TAG_ATTR(attrs_[j].type), 0,
LFSR_DATA_NULL())
: LFSR_RAT(
LFSR_TAG_ATTR(attrs_[j].type), 0,
LFSR_DATA_BUF(
attrs_[j].buffer,
lfsr_attr_size(&attrs_[j]))));
if (err) {
return err;
}
}
// write out normal tags normally
} else {
LFS_ASSERT(!lfsr_tag_isinternal(rats[i].tag));
int err = lfsr_rbyd_appendrat(lfs, &mdir->rbyd,
rid - lfs_smax(start_rid, 0),
rats[i]);
if (err) {
return err;
}
}
// adjust rid
rid = lfsr_rat_nextrid(rats[i], rid);
}
}
// abort the commit if our weight dropped to zero!
//
// If we finish the commit it becomes immediately visible, but we really
// need to atomically remove this mdir from the mtree. Leave the actual
// remove up to upper layers.
if (mdir->rbyd.weight == 0
// unless we are an mroot
&& !(mdir->mid == -1 || lfsr_mdir_cmp(mdir, &lfs->mroot) == 0)) {
// note! we can no longer read from this mdir as our pcache may
// be clobbered
return LFS_ERR_NOENT;
}
// append any gstate?
if (start_rid == -1) {
int err = lfsr_rbyd_appendgdelta(lfs, &mdir->rbyd);
if (err) {
return err;
}
}
// finalize commit
int err = lfsr_rbyd_appendcksum(lfs, &mdir->rbyd);
if (err) {
return err;
}
// success? flush gstate?
if (start_rid == -1) {
lfsr_fs_flushgdelta(lfs);
}
return 0;
}
// TODO do we need to include commit overhead here?
static lfs_ssize_t lfsr_mdir_estimate__(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_srid_t start_rid, lfsr_srid_t end_rid,
lfsr_srid_t *split_rid_) {
// yet another function that is just begging to be deduplicated, but we
// can't because it would be recursive
//
// this is basically the same as lfsr_rbyd_estimate, except we assume all
// rids have weight 1 and have extra handling for opened files, shrubs, etc
// calculate dsize by starting from the outside ids and working inwards,
// this naturally gives us a split rid
lfsr_srid_t a_rid = start_rid;
lfsr_srid_t b_rid = lfs_min(mdir->rbyd.weight, end_rid);
lfs_size_t a_dsize = 0;
lfs_size_t b_dsize = 0;
lfs_size_t mdir_dsize = 0;
while (a_rid != b_rid) {
if (a_dsize > b_dsize
// bias so lower dsize >= upper dsize
|| (a_dsize == b_dsize && a_rid > b_rid)) {
LFS_SWAP(lfsr_srid_t, &a_rid, &b_rid);
LFS_SWAP(lfs_size_t, &a_dsize, &b_dsize);
}
if (a_rid > b_rid) {
a_rid -= 1;
}
lfsr_tag_t tag = 0;
lfs_size_t dsize_ = 0;
while (true) {
lfsr_srid_t rid_;
lfsr_data_t data;
int err = lfsr_rbyd_lookupnext(lfs, &mdir->rbyd,
a_rid, tag+1,
&rid_, &tag, NULL, &data);
if (err < 0) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
if (rid_ != a_rid) {
break;
}
// special handling for mosses, just to avoid duplicate cost
if (tag == LFSR_TAG_DATA) {
lfs_ssize_t dsize__ = lfsr_moss_estimate(lfs, &data);
if (dsize__ < 0) {
return dsize__;
}
dsize_ += lfs->rat_estimate + dsize__;
// special handling for shrub trunks, we need to include the
// compacted cost of the shrub in our estimate
//
// this is what would make lfsr_rbyd_estimate recursive, and
// why we need a second function...
//
} else if (tag == LFSR_TAG_BSHRUB) {
// include the cost of this trunk
dsize_ += LFSR_SHRUB_DSIZE;
lfsr_shrub_t shrub;
err = lfsr_data_readshrub(lfs, &data, mdir, &shrub);
if (err < 0) {
return err;
}
lfs_ssize_t dsize__ = lfsr_shrub_estimate(lfs, &shrub);
if (dsize__ < 0) {
return dsize__;
}
dsize_ += lfs->rat_estimate + dsize__;
} else {
// include the cost of this tag
dsize_ += lfs->rat_estimate + lfsr_data_size(data);
}
}
// include any opened+unsynced inlined files
//
// this is O(n^2), but littlefs is unlikely to have many open
// files, I suppose if this becomes a problem we could sort
// opened files by mid
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// belongs to our mdir + rid?
if (!(lfsr_o_isbshrub(o->flags)
&& lfsr_mdir_cmp(&o->mdir, mdir) == 0
&& lfsr_mid_rid(lfs, o->mdir.mid) == a_rid)) {
continue;
}
lfsr_obshrub_t *bshrub = (lfsr_obshrub_t*)o;
// inlined moss?
if (lfsr_bshrub_isbmoss(&bshrub->o.mdir,
&bshrub->bshrub)) {
lfs_ssize_t dsize__ = lfsr_moss_estimate(lfs,
&bshrub->bshrub.u.bmoss);
if (dsize__ < 0) {
return dsize__;
}
dsize_ += dsize__;
// inlined shrub?
} else if (lfsr_bshrub_isbshrub(&bshrub->o.mdir,
&bshrub->bshrub)) {
lfs_ssize_t dsize__ = lfsr_shrub_estimate(lfs,
&bshrub->bshrub.u.bshrub);
if (dsize__ < 0) {
return dsize__;
}
dsize_ += dsize__;
}
}
if (a_rid == -1) {
mdir_dsize += dsize_;
} else {
a_dsize += dsize_;
}
if (a_rid < b_rid) {
a_rid += 1;
}
}
if (split_rid_) {
*split_rid_ = a_rid;
}
return mdir_dsize + a_dsize + b_dsize;
}
static int lfsr_mdir_compact__(lfs_t *lfs, lfsr_mdir_t *mdir_,
const lfsr_mdir_t *mdir, lfsr_srid_t start_rid, lfsr_srid_t end_rid) {
// this is basically the same as lfsr_rbyd_compact, but with special
// handling for inlined trees.
//
// it's really tempting to deduplicate this via recursion! but we
// can't do that here
//
// TODO this true?
// note that any inlined updates here depend on the pre-commit state
// (btree), not the staged state (btree_), this is important,
// we can't trust btree_ after a failed commit
// copy over tags in the rbyd in order
lfsr_srid_t rid = start_rid;
lfsr_tag_t tag = 0;
while (true) {
lfsr_rid_t weight;
lfsr_data_t data;
int err = lfsr_rbyd_lookupnext(lfs, &mdir->rbyd,
rid, tag+1,
&rid, &tag, &weight, &data);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// end of range? note the use of rid+1 and unsigned comparison here to
// treat end_rid=-1 as "unbounded" in such a way that rid=-1 is still
// included
if ((lfs_size_t)(rid + 1) > (lfs_size_t)end_rid) {
break;
}
// found an inlined moss? we can just copy this like normal but
// we need to update any opened inlined files
if (tag == LFSR_TAG_DATA) {
err = lfsr_rbyd_appendcompactrat(lfs, &mdir_->rbyd,
LFSR_RAT_CAT_(tag, weight, &data, 1));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
err = lfsr_moss_compact(lfs, &mdir_->rbyd, &data,
&data);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
// found an inlined shrub? we need to compact the shrub as well to
// bring it along with us
} else if (tag == LFSR_TAG_BSHRUB) {
lfsr_shrub_t shrub;
err = lfsr_data_readshrub(lfs, &data, mdir,
&shrub);
if (err) {
return err;
}
// compact our shrub
err = lfsr_shrub_compact(lfs, &mdir_->rbyd, &shrub,
&shrub);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
// write the new shrub tag
uint8_t shrub_buf[LFSR_SHRUB_DSIZE];
err = lfsr_rbyd_appendcompactrat(lfs, &mdir_->rbyd,
LFSR_RAT(
tag, weight,
LFSR_DATA_SHRUB(&shrub, shrub_buf)));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
} else {
// write the tag
err = lfsr_rbyd_appendcompactrat(lfs, &mdir_->rbyd,
LFSR_RAT_CAT_(tag, weight, &data, 1));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
}
}
int err = lfsr_rbyd_appendcompaction(lfs, &mdir_->rbyd, 0);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
// we're not quite done! we also need to bring over any unsynced files
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// belongs to our mdir?
if (!(lfsr_o_isbshrub(o->flags)
&& lfsr_mdir_cmp(&o->mdir, mdir) == 0
&& lfsr_mid_rid(lfs, o->mdir.mid) >= start_rid
&& (lfsr_rid_t)lfsr_mid_rid(lfs, o->mdir.mid)
< (lfsr_rid_t)end_rid)) {
continue;
}
lfsr_obshrub_t *bshrub = (lfsr_obshrub_t*)o;
// inlined moss?
if (lfsr_bshrub_isbmoss(&bshrub->o.mdir, &bshrub->bshrub)
// only compact once, first compact should stage the new block
&& bshrub->bshrub_.u.bmoss.u.disk.block
!= mdir_->rbyd.blocks[0]) {
err = lfsr_rbyd_appendcompactrat(lfs, &mdir_->rbyd,
LFSR_RAT_CAT_(
LFSR_TAG_SHRUB | LFSR_TAG_DATA, 0,
&bshrub->bshrub.u.bmoss, 1));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
err = lfsr_moss_compact(lfs, &mdir_->rbyd,
&bshrub->bshrub_.u.bmoss, &bshrub->bshrub.u.bmoss);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
// inlined shrub?
} else if (lfsr_bshrub_isbshrub(&bshrub->o.mdir, &bshrub->bshrub)
// only compact once, first compact should stage the new block
&& bshrub->bshrub_.u.bshrub.blocks[0]
!= mdir_->rbyd.blocks[0]) {
err = lfsr_shrub_compact(lfs, &mdir_->rbyd,
&bshrub->bshrub_.u.bshrub, &bshrub->bshrub.u.bshrub);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
return err;
}
}
}
return 0;
}
// mid-level mdir commit, this one will at least compact on overflow
static int lfsr_mdir_commit_(lfs_t *lfs, lfsr_mdir_t *mdir,
lfsr_srid_t start_rid, lfsr_srid_t end_rid,
lfsr_srid_t *split_rid_,
lfsr_smid_t mid, const lfsr_rat_t *rats, lfs_size_t rat_count) {
// make a copy
lfsr_mdir_t mdir_ = *mdir;
// mark as erased in case of failure
mdir->rbyd.eoff = -1;
// try to commit
int err = lfsr_mdir_commit__(lfs, &mdir_, start_rid, end_rid,
mid, rats, rat_count);
if (err) {
if (err == LFS_ERR_RANGE || err == LFS_ERR_CORRUPT) {
goto swap;
}
return err;
}
// update mdir
*mdir = mdir_;
return 0;
swap:;
// can't commit, can we compact?
bool relocated = false;
bool overcompacted = false;
// check if we're within our compaction threshold
lfs_ssize_t estimate = lfsr_mdir_estimate__(lfs, mdir, start_rid, end_rid,
split_rid_);
if (estimate < 0) {
return estimate;
}
// TODO do we need to include mdir commit overhead here? in rbyd_estimate?
if ((lfs_size_t)estimate > lfs->cfg->block_size/2) {
return LFS_ERR_RANGE;
}
// swap blocks, increment revision count
err = lfsr_mdir_swap__(lfs, &mdir_, mdir, false);
if (err) {
if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
goto compact;
relocate:;
// needs relocation? bad prog? ok, try allocating a new mdir
err = lfsr_mdir_alloc__(lfs, &mdir_, mdir->mid, relocated);
if (err && !(err == LFS_ERR_NOSPC && !overcompacted)) {
return err;
}
relocated = true;
// no more blocks? wear-leveling falls apart here, but we can try
// without relocating
if (err == LFS_ERR_NOSPC) {
LFS_WARN("Overcompacting mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir->mid >> lfs->mdir_bits,
mdir->rbyd.blocks[0], mdir->rbyd.blocks[1]);
overcompacted = true;
err = lfsr_mdir_swap__(lfs, &mdir_, mdir, true);
if (err) {
// bad prog? can't do much here, mdir stuck
if (err == LFS_ERR_CORRUPT) {
LFS_DEBUG("Stuck mdir 0x{%"PRIx32",%"PRIx32"}",
mdir->rbyd.blocks[0],
mdir->rbyd.blocks[1]);
return LFS_ERR_NOSPC;
}
return err;
}
}
compact:;
// compact our mdir
err = lfsr_mdir_compact__(lfs, &mdir_, mdir, start_rid, end_rid);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// now try to commit again
//
// upper layers should make sure this can't fail by limiting the
// maximum commit size
err = lfsr_mdir_commit__(lfs, &mdir_, start_rid, end_rid,
mid, rats, rat_count);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// update mdir
*mdir = mdir_;
return 0;
}
static int lfsr_mroot_parent(lfs_t *lfs, const lfs_block_t mptr[static 2],
lfsr_mdir_t *mparent_) {
// we only call this when we actually have parents
LFS_ASSERT(!lfsr_mptr_ismrootanchor(mptr));
// scan list of mroots for our requested pair
lfs_block_t mptr_[2] = {
LFSR_MPTR_MROOTANCHOR()[0],
LFSR_MPTR_MROOTANCHOR()[1]};
while (true) {
// fetch next possible superblock
lfsr_mdir_t mdir;
int err = lfsr_mdir_fetch(lfs, &mdir, -1, mptr_);
if (err) {
return err;
}
// lookup next mroot
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, &mdir, LFSR_TAG_MROOT,
&data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// decode mdir
err = lfsr_data_readmptr(lfs, &data, mptr_);
if (err) {
return err;
}
// found our child?
if (lfsr_mptr_cmp(mptr_, mptr) == 0) {
*mparent_ = mdir;
return 0;
}
}
}
// high-level mdir commit
//
// this is atomic and updates any opened mdirs, lfs_t, etc
//
// note that if an error occurs, any gstate is reverted to the on-disk
// state
//
static int lfsr_mdir_commit(lfs_t *lfs, lfsr_mdir_t *mdir,
const lfsr_rat_t *rats, lfs_size_t rat_count) {
// non-mroot mdirs must have weight
LFS_ASSERT(mdir->mid == -1
// note inlined mdirs are mroots with mid != -1
|| lfsr_mdir_cmp(mdir, &lfs->mroot) == 0
|| mdir->rbyd.weight > 0);
// rid in-bounds?
LFS_ASSERT(lfsr_mid_rid(lfs, mdir->mid)
<= (lfsr_srid_t)mdir->rbyd.weight);
// lfs->mroot must have mid=-1
LFS_ASSERT(lfs->mroot.mid == -1);
// play out any rats that affect our grm _before_ committing to disk,
// keep in mind we revert to on-disk gstate if we run into an error
lfsr_smid_t mid_ = mdir->mid;
for (lfs_size_t i = 0; i < rat_count; i++) {
// automatically create grms for new bookmarks
if (rats[i].tag == LFSR_TAG_BOOKMARK) {
lfsr_grm_push(lfs, mid_);
// adjust pending grms?
} else {
for (int j = 0; j < 2; j++) {
if (lfsr_mid_bid(lfs, lfs->grm.mids[j])
== lfsr_mid_bid(lfs, mid_)
&& lfs->grm.mids[j] >= mid_) {
// deleting a pending grm doesn't really make sense
LFS_ASSERT(lfs->grm.mids[j] >= mid_ - rats[i].weight);
// adjust the grm
lfs->grm.mids[j] += rats[i].weight;
}
}
}
// adjust mid
mid_ = lfsr_rat_nextrid(rats[i], mid_);
}
// setup any pending gdeltas
lfsr_fs_preparegdelta(lfs);
// create a copy
lfsr_mdir_t mdir_[2];
mdir_[0] = *mdir;
// mark our mdir as unerased in case we fail
mdir->rbyd.eoff = -1;
// mark any copies of our mdir as unerased in case we fail
if (lfsr_mdir_cmp(mdir, &lfs->mroot) == 0) {
lfs->mroot.rbyd.eoff = -1;
}
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_mdir_cmp(&o->mdir, mdir) == 0) {
o->mdir.rbyd.eoff = -1;
}
// stage any bmosses/bshrubs
if (lfsr_o_isbshrub(o->flags)) {
((lfsr_obshrub_t*)o)->bshrub_ = ((lfsr_obshrub_t*)o)->bshrub;
}
}
// attempt to commit/compact the mdir normally
lfsr_srid_t split_rid;
int err = lfsr_mdir_commit_(lfs, &mdir_[0], -1, -1, &split_rid,
mdir->mid, rats, rat_count);
if (err && err != LFS_ERR_RANGE
&& err != LFS_ERR_NOENT) {
goto failed;
}
// keep track of any mroot changes
lfsr_mdir_t mroot_ = lfs->mroot;
if (!err && lfsr_mdir_cmp(mdir, &lfs->mroot) == 0) {
mroot_.rbyd = mdir_[0].rbyd;
}
// handle possible mtree updates, this gets a bit messy
lfsr_mtree_t mtree_ = lfs->mtree;
lfsr_smid_t mdelta = 0;
// need to split?
if (err == LFS_ERR_RANGE) {
// this should not happen unless we can't fit our mroot's metadata
LFS_ASSERT(lfsr_mdir_cmp(mdir, &lfs->mroot) != 0
|| lfsr_mtree_isnull(&lfs->mtree));
// if we're not the mroot, we need to consume the gstate so
// we don't lose any info during the split
//
// we do this here so we don't have to worry about corner cases
// with dropping mdirs during a split
if (lfsr_mdir_cmp(mdir, &lfs->mroot) != 0) {
err = lfsr_fs_consumegdelta(lfs, mdir);
if (err) {
goto failed;
}
}
for (int i = 0; i < 2; i++) {
// order the split compacts so that that mdir containing our mid
// is committed last, this is a bit of a hack but necessary so
// shrubs are staged correctly
bool left = lfsr_mid_rid(lfs, mdir->mid) < split_rid;
bool relocated = false;;
split_relocate:;
// alloc and compact into new mdirs
err = lfsr_mdir_alloc__(lfs, &mdir_[i^left],
lfs_smax(mdir->mid, 0), relocated);
if (err) {
goto failed;
}
relocated = true;
err = lfsr_mdir_compact__(lfs, &mdir_[i^left],
mdir,
((i^left) == 0) ? 0 : split_rid,
((i^left) == 0) ? split_rid : -1);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate;
}
goto failed;
}
err = lfsr_mdir_commit__(lfs, &mdir_[i^left],
((i^left) == 0) ? 0 : split_rid,
((i^left) == 0) ? split_rid : -1,
mdir->mid, rats, rat_count);
if (err && err != LFS_ERR_NOENT) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto split_relocate;
}
goto failed;
}
// empty? set weight to zero
if (err == LFS_ERR_NOENT) {
mdir_[i^left].rbyd.weight = 0;
}
}
// adjust our sibling's mid after committing rats
mdir_[1].mid += (1 << lfs->mdir_bits);
LFS_DEBUG("Splitting mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"} "
"-> 0x{%"PRIx32",%"PRIx32"}, "
"0x{%"PRIx32",%"PRIx32"}",
mdir->mid >> lfs->mdir_bits,
mdir->rbyd.blocks[0], mdir->rbyd.blocks[1],
mdir_[0].rbyd.blocks[0], mdir_[0].rbyd.blocks[1],
mdir_[1].rbyd.blocks[0], mdir_[1].rbyd.blocks[1]);
// because of defered commits, children can be reduced to zero
// when splitting, need to catch this here
// both siblings reduced to zero
if (mdir_[0].rbyd.weight == 0 && mdir_[1].rbyd.weight == 0) {
LFS_DEBUG("Dropping mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir_[0].mid >> lfs->mdir_bits,
mdir_[0].rbyd.blocks[0], mdir_[0].rbyd.blocks[1]);
LFS_DEBUG("Dropping mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir_[1].mid >> lfs->mdir_bits,
mdir_[1].rbyd.blocks[0], mdir_[1].rbyd.blocks[1]);
goto dropped;
// one sibling reduced to zero
} else if (mdir_[0].rbyd.weight == 0) {
LFS_DEBUG("Dropping mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir_[0].mid >> lfs->mdir_bits,
mdir_[0].rbyd.blocks[0], mdir_[0].rbyd.blocks[1]);
mdir_[0].rbyd = mdir_[1].rbyd;
goto relocated;
// other sibling reduced to zero
} else if (mdir_[1].rbyd.weight == 0) {
LFS_DEBUG("Dropping mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir_[1].mid >> lfs->mdir_bits,
mdir_[1].rbyd.blocks[0], mdir_[1].rbyd.blocks[1]);
goto relocated;
}
// no siblings reduced to zero, update our mtree
mdelta = +(1 << lfs->mdir_bits);
// lookup first name in sibling to use as the split name
//
// note we need to do this after playing out pending rats in
// case they introduce a new name!
lfsr_data_t split_data;
err = lfsr_rbyd_sublookup(lfs, &mdir_[1].rbyd, 0, LFSR_TAG_NAME,
NULL, &split_data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
goto failed;
}
// new mtree?
if (lfsr_mtree_ismptr(&lfs->mtree)) {
lfsr_btree_init(&mtree_.u.btree);
uint8_t mdir_buf[2*LFSR_MPTR_DSIZE];
err = lfsr_btree_commit(lfs, &mtree_.u.btree,
0, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MDIR, +(1 << lfs->mdir_bits),
LFSR_DATA_MPTR(
mdir_[0].rbyd.blocks,
&mdir_buf[0*LFSR_MPTR_DSIZE])),
LFSR_RAT_CAT_(
LFSR_TAG_NAME, +(1 << lfs->mdir_bits),
&split_data, 1),
LFSR_RAT(
LFSR_TAG_MDIR, 0,
LFSR_DATA_MPTR(
mdir_[1].rbyd.blocks,
&mdir_buf[1*LFSR_MPTR_DSIZE]))));
if (err) {
goto failed;
}
// update our mtree
} else {
// mark as unerased in case of failure
lfs->mtree.u.btree.eoff = -1;
uint8_t mdir_buf[2*LFSR_MPTR_DSIZE];
err = lfsr_btree_commit(lfs, &mtree_.u.btree,
lfsr_mid_bid(lfs, mdir->mid), LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MDIR, 0,
LFSR_DATA_MPTR(
mdir_[0].rbyd.blocks,
&mdir_buf[0*LFSR_MPTR_DSIZE])),
LFSR_RAT_CAT_(
LFSR_TAG_NAME, +(1 << lfs->mdir_bits),
&split_data, 1),
LFSR_RAT(
LFSR_TAG_MDIR, 0,
LFSR_DATA_MPTR(
mdir_[1].rbyd.blocks,
&mdir_buf[1*LFSR_MPTR_DSIZE]))));
if (err) {
goto failed;
}
}
// need to drop?
} else if (err == LFS_ERR_NOENT) {
LFS_DEBUG("Dropping mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"}",
mdir->mid >> lfs->mdir_bits,
mdir->rbyd.blocks[0], mdir->rbyd.blocks[1]);
// set weight to zero
mdir_[0].rbyd.weight = 0;
// consume gstate so we don't lose any info
err = lfsr_fs_consumegdelta(lfs, mdir);
if (err) {
goto failed;
}
dropped:;
mdelta = -(1 << lfs->mdir_bits);
// we should never drop a direct mdir, because we always have our
// root bookmark
LFS_ASSERT(!lfsr_mtree_ismptr(&lfs->mtree));
// mark as unerased in case of failure
lfs->mtree.u.btree.eoff = -1;
// update our mtree
err = lfsr_btree_commit(lfs, &mtree_.u.btree,
lfsr_mid_bid(lfs, mdir->mid), LFSR_RATS(
LFSR_RAT(
LFSR_TAG_RM, -(1 << lfs->mdir_bits),
LFSR_DATA_NULL())));
if (err) {
goto failed;
}
// need to relocate?
} else if (lfsr_mdir_cmp(&mdir_[0], mdir) != 0
&& lfsr_mdir_cmp(mdir, &lfs->mroot) != 0) {
LFS_DEBUG("Relocating mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"} -> 0x{%"PRIx32",%"PRIx32"}",
mdir->mid >> lfs->mdir_bits,
mdir->rbyd.blocks[0], mdir->rbyd.blocks[1],
mdir_[0].rbyd.blocks[0], mdir_[0].rbyd.blocks[1]);
relocated:;
// new mtree?
if (lfsr_mtree_ismptr(&lfs->mtree)) {
lfsr_mtree_frommptr(&mtree_,
mdir_[0].rbyd.blocks,
1 << lfs->mdir_bits);
} else {
// mark as unerased in case of failure
lfs->mtree.u.btree.eoff = -1;
// update our mtree
uint8_t mdir_buf[LFSR_MPTR_DSIZE];
err = lfsr_btree_commit(lfs, &mtree_.u.btree,
lfsr_mid_bid(lfs, mdir->mid), LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MDIR, 0,
LFSR_DATA_MPTR(
mdir_[0].rbyd.blocks,
mdir_buf))));
if (err) {
goto failed;
}
}
}
// patch any pending grms
//
// Assuming we already xored our gdelta with the grm, we first
// need to xor the grm out of the gdelta. We can't just zero
// the gdelta because we may have picked up extra gdelta from
// split/dropped mdirs
//
// gd' = gd xor (grm' xor grm)
//
uint8_t grm_d[LFSR_GRM_DSIZE];
lfsr_data_t data = lfsr_data_fromgrm(&lfs->grm, grm_d);
lfsr_gdelta_xor(lfs->grm_d, grm_d, lfsr_data_size(data));
// patch our grm
for (int j = 0; j < 2; j++) {
if (lfsr_mid_bid(lfs, lfs->grm.mids[j])
== lfsr_mid_bid(lfs, lfs_smax(mdir->mid, 0))) {
if (mdelta > 0
&& lfsr_mid_rid(lfs, lfs->grm.mids[j])
>= (lfsr_srid_t)mdir_[0].rbyd.weight) {
lfs->grm.mids[j]
+= (1 << lfs->mdir_bits) - mdir_[0].rbyd.weight;
}
} else if (lfs->grm.mids[j] > mdir->mid) {
lfs->grm.mids[j] += mdelta;
}
}
// xor our patch into our gdelta
data = lfsr_data_fromgrm(&lfs->grm, grm_d);
lfsr_gdelta_xor(lfs->grm_d, grm_d, lfsr_data_size(data));
// need to update mtree?
if (lfsr_mtree_cmp(&mtree_, &lfs->mtree) != 0) {
// mtree should never go to zero since we always have a root bookmark
LFS_ASSERT(lfsr_mtree_weight_(&mtree_) > 0);
// mark any copies of our mroot as unerased
lfs->mroot.rbyd.eoff = -1;
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_mdir_cmp(&o->mdir, &lfs->mroot) == 0) {
o->mdir.rbyd.eoff = -1;
}
}
// make sure mtree/mroot changes are on-disk before committing
// metadata
err = lfsr_bd_sync(lfs);
if (err) {
goto failed;
}
// commit new mtree into our mroot
//
// note end_rid=0 here will delete any files leftover from a split
// in our mroot
uint8_t mtree_buf[LFS_MAX(LFSR_MPTR_DSIZE, LFSR_BTREE_DSIZE)];
err = lfsr_mdir_commit_(lfs, &mroot_, -1, 0, NULL,
-1, LFSR_RATS(
(lfsr_mtree_ismptr(&mtree_))
? LFSR_RAT(
LFSR_TAG_SUB | LFSR_TAG_MDIR, 0,
LFSR_DATA_MPTR(mtree_.u.mptr.blocks, mtree_buf))
: LFSR_RAT(
LFSR_TAG_SUB | LFSR_TAG_MTREE, 0,
LFSR_DATA_BTREE(&mtree_.u.btree, mtree_buf)),
// were we committing to the mroot? include any -1 rats
(mdir->mid == -1)
? LFSR_RAT_RATS(
LFSR_TAG_RATS, 0,
rats, rat_count)
: LFSR_RAT_NOOP()));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
goto failed;
}
}
// need to update mroot chain?
if (lfsr_mdir_cmp(&mroot_, &lfs->mroot) != 0) {
// tail recurse, updating mroots until a commit sticks
lfsr_mdir_t mrootchild = lfs->mroot;
lfsr_mdir_t mrootchild_ = mroot_;
while (lfsr_mdir_cmp(&mrootchild_, &mrootchild) != 0
&& !lfsr_mdir_ismrootanchor(&mrootchild)) {
// find the mroot's parent
lfsr_mdir_t mrootparent_;
err = lfsr_mroot_parent(lfs, mrootchild.rbyd.blocks,
&mrootparent_);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
goto failed;
}
LFS_DEBUG("Relocating mroot 0x{%"PRIx32",%"PRIx32"} "
"-> 0x{%"PRIx32",%"PRIx32"}",
mrootchild.rbyd.blocks[0], mrootchild.rbyd.blocks[1],
mrootchild_.rbyd.blocks[0], mrootchild_.rbyd.blocks[1]);
mrootchild = mrootparent_;
// make sure mtree/mroot changes are on-disk before committing
// metadata
err = lfsr_bd_sync(lfs);
if (err) {
goto failed;
}
// commit mrootchild
uint8_t mrootchild_buf[LFSR_MPTR_DSIZE];
err = lfsr_mdir_commit_(lfs, &mrootparent_, -1, -1, NULL,
-1, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MROOT, 0,
LFSR_DATA_MPTR(
mrootchild_.rbyd.blocks,
mrootchild_buf))));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
LFS_ASSERT(err != LFS_ERR_NOENT);
goto failed;
}
mrootchild_ = mrootparent_;
}
// no more mroot parents? uh oh, need to extend mroot chain
if (lfsr_mdir_cmp(&mrootchild_, &mrootchild) != 0) {
// mrootchild should be our previous mroot anchor at this point
LFS_ASSERT(lfsr_mdir_ismrootanchor(&mrootchild));
LFS_DEBUG("Extending mroot 0x{%"PRIx32",%"PRIx32"}"
" -> 0x{%"PRIx32",%"PRIx32"}"
", 0x{%"PRIx32",%"PRIx32"}",
mrootchild.rbyd.blocks[0], mrootchild.rbyd.blocks[1],
mrootchild.rbyd.blocks[0], mrootchild.rbyd.blocks[1],
mrootchild_.rbyd.blocks[0], mrootchild_.rbyd.blocks[1]);
// make sure mtree/mroot changes are on-disk before committing
// metadata
err = lfsr_bd_sync(lfs);
if (err) {
goto failed;
}
// commit the new mroot anchor
lfsr_mdir_t mrootanchor_;
err = lfsr_mdir_swap__(lfs, &mrootanchor_, &mrootchild, true);
if (err) {
// bad prog? can't do much here, mroot stuck
if (err == LFS_ERR_CORRUPT) {
LFS_DEBUG("Stuck mroot 0x{%"PRIx32",%"PRIx32"}",
mrootanchor_.rbyd.blocks[0],
mrootanchor_.rbyd.blocks[1]);
return LFS_ERR_NOSPC;
}
goto failed;
}
uint8_t mrootchild_buf[LFSR_MPTR_DSIZE];
err = lfsr_mdir_commit__(lfs, &mrootanchor_, -1, -1,
-1, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MAGIC, 0,
LFSR_DATA_BUF("littlefs", 8)),
LFSR_RAT(
LFSR_TAG_MROOT, 0,
LFSR_DATA_MPTR(
mrootchild_.rbyd.blocks,
mrootchild_buf))));
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
LFS_ASSERT(err != LFS_ERR_NOENT);
// bad prog? can't do much here, mroot stuck
if (err == LFS_ERR_CORRUPT) {
LFS_DEBUG("Stuck mroot 0x{%"PRIx32",%"PRIx32"}",
mrootanchor_.rbyd.blocks[0],
mrootanchor_.rbyd.blocks[1]);
return LFS_ERR_NOSPC;
}
goto failed;
}
}
}
// gstate must have been committed by a lower-level function at this point
LFS_ASSERT(lfsr_gdelta_iszero(lfs->grm_d, LFSR_GRM_DSIZE));
// sync on-disk state
err = lfsr_bd_sync(lfs);
if (err) {
return err;
}
///////////////////////////////////////////////////////////////////////
// success? update in-device state, we must not error at this point! //
///////////////////////////////////////////////////////////////////////
// toss our cksum into the filesystem seed for pseudorandom numbers
if (mdelta >= 0) {
lfs->seed ^= mdir_[0].rbyd.cksum;
}
if (mdelta > 0) {
lfs->seed ^= mdir_[1].rbyd.cksum;
}
// we may have touched any number of mdirs, so assume uncompacted
// until lfsr_gc can prove otherwise
lfs->flags |= LFS_I_COMPACT;
// update any gstate changes
lfsr_fs_commitgdelta(lfs);
// play out any rats that affect internal state
mid_ = mdir->mid;
for (lfs_size_t i = 0; i < rat_count; i++) {
// adjust any opened mdirs
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// adjust opened mdirs?
if (lfsr_mdir_cmp(&o->mdir, mdir) == 0
&& o->mdir.mid >= mid_) {
// removed?
if (o->mdir.mid < mid_ - rats[i].weight) {
// we should not be removing opened regular files
LFS_ASSERT(lfsr_o_type(o->flags) != LFS_TYPE_REG);
o->flags |= LFS_o_ZOMBIE;
o->mdir.mid = mid_;
} else {
o->mdir.mid += rats[i].weight;
}
}
}
// adjust mid
mid_ = lfsr_rat_nextrid(rats[i], mid_);
}
// update any staged bmosses/bshrubs
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_isbshrub(o->flags)) {
((lfsr_obshrub_t*)o)->bshrub = ((lfsr_obshrub_t*)o)->bshrub_;
}
}
// mark all traversals as dirty
lfsr_fs_mkdirty(lfs);
// if mroot/mtree changed, clobber any mroot/mtree traversals
if (lfsr_mdir_cmp(&mroot_, &lfs->mroot) != 0
|| lfsr_mtree_cmp(&mtree_, &lfs->mtree) != 0) {
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_type(o->flags) == LFS_TYPE_TRAVERSAL
&& o->mdir.mid == -1
// don't clobber the current mdir, assume upper layers
// know what they're doing
&& &o->mdir != mdir) {
lfsr_traversal_clobber(lfs, (lfsr_traversal_t*)o);
}
}
}
// update internal mdir state
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// avoid double updating the current mdir
if (&o->mdir == mdir) {
continue;
}
// update any splits/drops
if (lfsr_mdir_cmp(&o->mdir, mdir) == 0) {
if (mdelta > 0
&& lfsr_mid_rid(lfs, o->mdir.mid)
>= (lfsr_srid_t)mdir_[0].rbyd.weight) {
o->mdir.mid += (1 << lfs->mdir_bits) - mdir_[0].rbyd.weight;
o->mdir.rbyd = mdir_[1].rbyd;
} else {
o->mdir.rbyd = mdir_[0].rbyd;
}
} else if (o->mdir.mid > mdir->mid) {
o->mdir.mid += mdelta;
}
}
// update mdir to follow requested rid
if (mdelta > 0
&& mdir->mid == -1) {
mdir->rbyd = mroot_.rbyd;
} else if (mdelta > 0
&& lfsr_mid_rid(lfs, mdir->mid)
>= (lfsr_srid_t)mdir_[0].rbyd.weight) {
mdir->mid += (1 << lfs->mdir_bits) - mdir_[0].rbyd.weight;
mdir->rbyd = mdir_[1].rbyd;
} else {
mdir->rbyd = mdir_[0].rbyd;
}
// update mroot and mtree
lfs->mroot = mroot_;
lfs->mtree = mtree_;
return 0;
failed:;
// revert gstate to on-disk state
lfsr_fs_revertgdelta(lfs);
return err;
}
static int lfsr_mdir_compact(lfs_t *lfs, lfsr_mdir_t *mdir) {
// the easiest way to do this is to just mark mdir as unerased
// and call lfsr_mdir_commit
mdir->rbyd.eoff = -1;
return lfsr_mdir_commit(lfs, mdir, NULL, 0);
}
/// Mtree path/name lookup ///
// lookup names in an mdir
//
// if not found, rid will be the best place to insert
static int lfsr_mdir_namelookup(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_did_t did, const char *name, lfs_size_t name_len,
lfsr_smid_t *mid_, lfsr_tag_t *tag_, lfsr_data_t *data_) {
// default to mid_ = 0, this blanket assignment is the only way to
// keep GCC happy
if (mid_) {
*mid_ = 0;
}
// empty mdir?
if (mdir->rbyd.weight == 0) {
return LFS_ERR_NOENT;
}
lfsr_srid_t rid;
lfsr_tag_t tag;
lfs_scmp_t cmp = lfsr_rbyd_namelookup(lfs, &mdir->rbyd,
did, name, name_len,
&rid, &tag, NULL, data_);
if (cmp < 0) {
LFS_ASSERT(cmp != LFS_ERR_NOENT);
return cmp;
}
// adjust mid if necessary
//
// note missing mids end up pointing to the next mid
lfsr_smid_t mid = LFSR_MID(lfs,
mdir->mid,
(cmp < LFS_CMP_EQ) ? rid+1 : rid);
// intercept pending grms here and pretend they're orphaned
// stickynotes
//
// fortunately pending grms/orphaned stickynotes have roughly the
// same semantics, and it's easier to manage the implied mid gap in
// higher-levels
if (lfsr_grm_ismidrm(lfs, mid)) {
tag = LFSR_TAG_STICKYNOTE;
}
if (mid_) {
*mid_ = mid;
}
if (tag_) {
*tag_ = tag;
}
return (cmp == LFS_CMP_EQ) ? 0 : LFS_ERR_NOENT;
}
// lookup names in our mtree
//
// if not found, rid will be the best place to insert
static int lfsr_mtree_namelookup(lfs_t *lfs,
lfsr_did_t did, const char *name, lfs_size_t name_len,
lfsr_mdir_t *mdir_, lfsr_tag_t *tag_, lfsr_data_t *data_) {
// do we only have mroot?
lfsr_mdir_t mdir;
if (lfsr_mtree_isnull(&lfs->mtree)) {
mdir = lfs->mroot;
// treat inlined mdir as mid=0
mdir.mid = 0;
// direct mdir?
} else if (lfsr_mtree_ismptr(&lfs->mtree)) {
int err = lfsr_mdir_fetch(lfs, &mdir, 0, lfs->mtree.u.mptr.blocks);
if (err) {
return err;
}
// lookup name in actual mtree
} else {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
lfsr_data_t data;
lfs_scmp_t cmp = lfsr_btree_namelookup(lfs, &lfs->mtree.u.btree,
did, name, name_len,
&bid, &tag, &weight, &data);
if (cmp < 0) {
LFS_ASSERT(cmp != LFS_ERR_NOENT);
return cmp;
}
LFS_ASSERT(tag == LFSR_TAG_MDIR);
LFS_ASSERT(weight == (1U << lfs->mdir_bits));
// fetch mdir
int err = lfsr_data_fetchmdir(lfs, &data, bid-(weight-1),
&mdir);
if (err) {
return err;
}
}
// and finally lookup name in our mdir
lfsr_smid_t mid;
int err = lfsr_mdir_namelookup(lfs, &mdir,
did, name, name_len,
&mid, tag_, data_);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// update mdir with best place to insert even if we fail
mdir.mid = mid;
if (mdir_) {
*mdir_ = mdir;
}
return err;
}
// special directory-ids
enum {
LFSR_DID_ROOT = 0,
};
// some operations on paths
static inline lfs_size_t lfsr_path_namelen(const char *path) {
return lfs_strcspn(path, "/");
}
static inline bool lfsr_path_islast(const char *path) {
lfs_size_t name_len = lfsr_path_namelen(path);
return path[name_len + lfs_strspn(path + name_len, "/")] == '\0';
}
static inline bool lfsr_path_isdir(const char *path) {
return path[lfsr_path_namelen(path)] != '\0';
}
// lookup a full path in our mtree, updating the path as we descend
//
// the errors get a bit subtle here, and rely on what ends up in the
// path/mdir:
// - 0 => file found
// - 0, lfsr_path_isdir(path) => dir found
// - 0, mdir.mid=-1 => root found
// - LFS_ERR_NOENT, lfsr_path_islast(path) => file not found
// - LFS_ERR_NOENT, !lfsr_path_islast(path) => parent not found
// - LFS_ERR_NOTDIR => parent not a dir
// - LFS_ERR_NOTSUP => parent of unknown type
//
// if not found, mdir_/did_ will at least be set up with what should be
// the parent
//
static int lfsr_mtree_pathlookup(lfs_t *lfs, const char **path,
lfsr_mdir_t *mdir_, lfsr_tag_t *tag_, lfsr_did_t *did_) {
// setup root
lfsr_mdir_t mdir = lfs->mroot;
lfsr_tag_t tag = LFSR_TAG_DIR;
lfsr_did_t did = LFSR_DID_ROOT;
// we reduce path to a single name if we can find it
const char *path_ = *path;
// empty paths are not allowed
if (path_[0] == '\0') {
return LFS_ERR_INVAL;
}
while (true) {
// skip slashes if we're a directory
if (tag == LFSR_TAG_DIR) {
path_ += lfs_strspn(path_, "/");
}
lfs_size_t name_len = lfs_strcspn(path_, "/");
// skip '.'
if (name_len == 1 && lfs_memcmp(path_, ".", 1) == 0) {
path_ += name_len;
goto next;
}
// error on unmatched '..', trying to go above root, eh?
if (name_len == 2 && lfs_memcmp(path_, "..", 2) == 0) {
return LFS_ERR_INVAL;
}
// skip if matched by '..' in name
const char *suffix = path_ + name_len;
lfs_size_t suffix_len;
int depth = 1;
while (true) {
suffix += lfs_strspn(suffix, "/");
suffix_len = lfs_strcspn(suffix, "/");
if (suffix_len == 0) {
break;
}
if (suffix_len == 1 && lfs_memcmp(suffix, ".", 1) == 0) {
// noop
} else if (suffix_len == 2 && lfs_memcmp(suffix, "..", 2) == 0) {
depth -= 1;
if (depth == 0) {
path_ = suffix + suffix_len;
goto next;
}
} else {
depth += 1;
}
suffix += suffix_len;
}
// found end of path, we must be done parsing our path now
if (path_[0] == '\0') {
if (mdir_) {
*mdir_ = mdir;
}
if (tag_) {
*tag_ = tag;
}
if (did_) {
*did_ = did;
}
return 0;
}
// only continue if we hit a directory
if (tag != LFSR_TAG_DIR) {
return (tag == LFSR_TAG_STICKYNOTE)
? LFS_ERR_NOENT
: (tag == LFSR_TAG_REG)
? LFS_ERR_NOTDIR
: LFS_ERR_NOTSUP;
}
// read the next did from the mdir if this is not the root
if (mdir.mid != -1) {
lfsr_data_t data;
int err = lfsr_mdir_lookup(lfs, &mdir, LFSR_TAG_DID,
&data);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, &data, &did);
if (err) {
return err;
}
}
// update path as we parse
*path = path_;
// lookup up this name in the mtree
int err = lfsr_mtree_namelookup(lfs, did, path_, name_len,
&mdir, &tag, NULL);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// keep track of where to insert if we can't find path
if (err == LFS_ERR_NOENT) {
if (mdir_) {
*mdir_ = mdir;
}
if (tag_) {
*tag_ = tag;
}
if (did_) {
*did_ = did;
}
return LFS_ERR_NOENT;
}
// go on to next name
path_ += name_len;
next:;
}
}
/// Mtree traversal ///
// traversing littlefs is a bit complex, so we use a state machine to keep
// track of where we are
enum {
LFSR_TSTATE_MROOTANCHOR = 0,
LFSR_TSTATE_MROOTCHAIN = 1,
LFSR_TSTATE_MTREE = 2,
LFSR_TSTATE_MDIRS = 3,
LFSR_TSTATE_MDIR = 4,
LFSR_TSTATE_BTREE = 5,
LFSR_TSTATE_OMDIRS = 6,
LFSR_TSTATE_OBTREE = 7,
LFSR_TSTATE_DONE = 8,
};
static void lfsr_traversal_init(lfsr_traversal_t *t, uint32_t flags) {
t->o.o.flags = lfsr_o_settype(0, LFS_TYPE_TRAVERSAL)
| lfsr_t_settstate(0, LFSR_TSTATE_MROOTANCHOR)
| flags;
t->o.o.mdir.mid = -1;
t->o.o.mdir.rbyd.weight = 0;
t->o.o.mdir.rbyd.blocks[0] = -1;
t->o.o.mdir.rbyd.blocks[1] = -1;
t->o.bshrub.u.bshrub.weight = 0;
t->o.bshrub.u.bshrub.blocks[0] = -1;
t->ot = NULL;
t->u.mtortoise.blocks[0] = -1;
t->u.mtortoise.blocks[1] = -1;
t->u.mtortoise.step = 0;
t->u.mtortoise.power = 0;
}
// low-level traversal _only_ finds blocks
static int lfsr_mtree_traverse_(lfs_t *lfs, lfsr_traversal_t *t,
lfsr_tag_t *tag_, lfsr_bptr_t *bptr_) {
while (true) {
switch (lfsr_t_tstate(t->o.o.flags)) {
// start with the mrootanchor 0x{0,1}
//
// note we make sure to include all mroots in our mroot chain!
//
case LFSR_TSTATE_MROOTANCHOR:;
// fetch the first mroot 0x{0,1}
int err = lfsr_mdir_fetch(lfs, &t->o.o.mdir,
-1, LFSR_MPTR_MROOTANCHOR());
if (err) {
return err;
}
// transition to traversing the mroot chain
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MROOTCHAIN);
if (tag_) {
*tag_ = LFSR_TAG_MDIR;
}
if (bptr_) {
bptr_->data.u.buffer = (const uint8_t*)&t->o.o.mdir;
}
return 0;
// traverse the mroot chain, checking for mroot/mtree/mdir
case LFSR_TSTATE_MROOTCHAIN:;
// lookup mroot, if we find one this is not the active mroot
lfsr_tag_t tag;
lfsr_data_t data;
err = lfsr_mdir_sublookup(lfs, &t->o.o.mdir, LFSR_TAG_STRUCT,
&tag, &data);
if (err) {
// if we have no mtree/mdir (inlined mdir), we need to
// traverse any files in our mroot next
if (err == LFS_ERR_NOENT) {
t->o.o.mdir.mid = 0;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIR);
continue;
}
return err;
}
// found a new mroot
if (tag == LFSR_TAG_MROOT) {
// fetch this mroot
err = lfsr_data_fetchmdir(lfs, &data, -1,
&t->o.o.mdir);
if (err) {
return err;
}
// detect cycles with Brent's algorithm
//
// note we only check for cycles in the mroot chain, the
// btree inner nodes require checksums of their pointers,
// so creating a valid cycle is actually quite difficult
//
if (lfsr_mptr_cmp(
t->o.o.mdir.rbyd.blocks,
t->u.mtortoise.blocks) == 0) {
LFS_ERROR("Cycle detected during mtree traversal "
"0x{%"PRIx32",%"PRIx32"}",
t->o.o.mdir.rbyd.blocks[0],
t->o.o.mdir.rbyd.blocks[1]);
return LFS_ERR_CORRUPT;
}
if (t->u.mtortoise.step == (1U << t->u.mtortoise.power)) {
t->u.mtortoise.blocks[0] = t->o.o.mdir.rbyd.blocks[0];
t->u.mtortoise.blocks[1] = t->o.o.mdir.rbyd.blocks[1];
t->u.mtortoise.step = 0;
t->u.mtortoise.power += 1;
}
t->u.mtortoise.step += 1;
if (tag_) {
*tag_ = LFSR_TAG_MDIR;
}
if (bptr_) {
bptr_->data.u.buffer = (const uint8_t*)&t->o.o.mdir;
}
return 0;
// found an mdir?
} else if (tag == LFSR_TAG_MDIR) {
// fetch this mdir
err = lfsr_data_fetchmdir(lfs, &data, 0,
&t->o.o.mdir);
if (err) {
return err;
}
// transition to traversing the mdir
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIR);
if (tag_) {
*tag_ = LFSR_TAG_MDIR;
}
if (bptr_) {
bptr_->data.u.buffer = (const uint8_t*)&t->o.o.mdir;
}
return 0;
// found an mtree?
} else if (tag == LFSR_TAG_MTREE) {
// fetch the root of the mtree
err = lfsr_data_fetchbtree(lfs, &data,
&t->o.bshrub.u.btree);
if (err) {
return err;
}
// transition to traversing the mtree
lfsr_btraversal_init(&t->u.bt);
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MTREE);
continue;
} else {
LFS_ERROR("Weird mroot entry? 0x%"PRIx32, tag);
return LFS_ERR_CORRUPT;
}
// iterate over mdirs in the mtree
case LFSR_TSTATE_MDIRS:;
// find the next mdir
err = lfsr_mtree_lookup(lfs, t->o.o.mdir.mid,
&t->o.o.mdir);
if (err) {
// end of mtree? guess we're done
if (err == LFS_ERR_NOENT) {
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_DONE);
continue;
}
return err;
}
// transition to traversing the mdir
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIR);
if (tag_) {
*tag_ = LFSR_TAG_MDIR;
}
if (bptr_) {
bptr_->data.u.buffer = (const uint8_t*)&t->o.o.mdir;
}
return 0;
// scan for blocks/btrees in the current mdir
case LFSR_TSTATE_MDIR:;
// not traversing all blocks? have we exceeded our mdir's weight?
// return to mtree iteration
if (lfsr_t_ismtreeonly(t->o.o.flags)
|| lfsr_mid_rid(lfs, t->o.o.mdir.mid)
>= (lfsr_srid_t)t->o.o.mdir.rbyd.weight) {
t->o.o.mdir.mid = lfsr_mid_bid(lfs, t->o.o.mdir.mid) + 1;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIRS);
continue;
}
// do we have a block/btree?
err = lfsr_mdir_lookupnext(lfs, &t->o.o.mdir, LFSR_TAG_DATA,
&tag, &data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// found a bsprout (direct block)?
if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BLOCK) {
err = lfsr_data_readbptr(lfs, &data, &t->o.bshrub.u.bsprout);
if (err) {
return err;
}
// found a bshrub (inlined btree)?
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BSHRUB) {
err = lfsr_data_readshrub(lfs, &data, &t->o.o.mdir,
&t->o.bshrub.u.bshrub);
if (err) {
return err;
}
// found a btree?
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BTREE) {
err = lfsr_data_fetchbtree(lfs, &data,
&t->o.bshrub.u.btree);
if (err) {
return err;
}
// no? next we need to check any opened files
} else {
t->ot = lfs->omdirs;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_OMDIRS);
continue;
}
// start traversing
lfsr_btraversal_init(&t->u.bt);
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_BTREE);
continue;
// scan for blocks/btrees in our opened file list
case LFSR_TSTATE_OMDIRS:;
// reached end of opened files? return to mdir traversal
if (!t->ot) {
t->o.o.mdir.mid += 1;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIR);
continue;
}
// skip unrelated files, we only care about unsync reg files
// associated with the current mid
//
// we traverse mids separately to make recovery from clobbered
// traversals easier, which means this grows O(n^2) if you have
// literally every file open, but other things grow O(n^2) with
// this list anyways
//
if (t->ot->mdir.mid != t->o.o.mdir.mid
|| lfsr_o_type(t->ot->flags) != LFS_TYPE_REG
|| !lfsr_o_isunsync(t->ot->flags)) {
t->ot = t->ot->next;
continue;
}
// start traversing the file
const lfsr_file_t *file = (const lfsr_file_t*)t->ot;
t->o.bshrub = file->o.bshrub;
lfsr_btraversal_init(&t->u.bt);
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_OBTREE);
continue;
// traverse any btrees we see, this includes the mtree and any file
// btrees/bshrubs
case LFSR_TSTATE_MTREE:;
case LFSR_TSTATE_BTREE:;
case LFSR_TSTATE_OBTREE:;
// traverse through our file
err = lfsr_bshrub_traverse(lfs, &t->o.o.mdir, &t->o.bshrub,
&t->u.bt,
NULL, &tag, bptr_);
if (err) {
if (err == LFS_ERR_NOENT) {
// end of mtree? start iterating over mdirs
if (lfsr_t_tstate(t->o.o.flags)
== LFSR_TSTATE_MTREE) {
t->o.o.mdir.mid = 0;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_MDIRS);
continue;
// end of mdir btree? start iterating over opened files
} else if (lfsr_t_tstate(t->o.o.flags)
== LFSR_TSTATE_BTREE) {
t->ot = lfs->omdirs;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_OMDIRS);
continue;
// end of opened btree? go to next opened file
} else if (lfsr_t_tstate(t->o.o.flags)
== LFSR_TSTATE_OBTREE) {
t->ot = t->ot->next;
t->o.o.flags = lfsr_t_settstate(t->o.o.flags,
LFSR_TSTATE_OMDIRS);
continue;
} else {
LFS_UNREACHABLE();
}
}
return err;
}
// found an inner btree node?
if (tag == LFSR_TAG_BRANCH) {
if (tag_) {
*tag_ = tag;
}
return 0;
// found an indirect block?
} else if (tag == LFSR_TAG_BLOCK) {
if (tag_) {
*tag_ = tag;
}
return 0;
}
continue;
case LFSR_TSTATE_DONE:;
return LFS_ERR_NOENT;
default:;
LFS_UNREACHABLE();
}
}
}
// needed in lfsr_mtree_traverse
static void lfs_alloc_markinuse(lfs_t *lfs,
lfsr_tag_t tag, const lfsr_bptr_t *bptr);
// high-level immutable traversal, handle extra features here,
// but no mutation! (we're called in lfs_alloc, so things would end up
// recursive, which would be a bit bad!)
static int lfsr_mtree_traverse(lfs_t *lfs, lfsr_traversal_t *t,
lfsr_tag_t *tag_, lfsr_bptr_t *bptr_) {
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_mtree_traverse_(lfs, t,
&tag, &bptr);
if (err) {
return err;
}
// validate btree nodes? note mdirs are already validated
if ((lfsr_t_isckmeta(t->o.o.flags)
|| lfsr_t_isckdata(t->o.o.flags))
// note ckfetches already validates btree nodes
&& LFS_IFDEF_CKFETCHES(
!lfsr_m_isckfetches(lfs->flags),
true)
&& tag == LFSR_TAG_BRANCH) {
lfsr_rbyd_t *rbyd = (lfsr_rbyd_t*)bptr.data.u.buffer;
err = lfsr_rbyd_fetchck(lfs, rbyd,
rbyd->blocks[0], rbyd->trunk,
rbyd->cksum);
if (err) {
return err;
}
}
// validate data blocks?
if (lfsr_t_isckdata(t->o.o.flags)
&& tag == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr);
if (err) {
return err;
}
}
if (tag_) {
*tag_ = tag;
}
if (bptr_) {
*bptr_ = bptr;
}
return 0;
}
// needed in lfsr_mtree_gc
static int lfsr_fs_mktidy_(lfs_t *lfs, lfsr_mdir_t *mdir);
static void lfs_alloc_ckpoint(lfs_t *lfs);
static void lfs_alloc_markfree(lfs_t *lfs);
// high-level mutating traversal, handle extra features that require
// mutation here, upper layers should call lfs_alloc_ckpoint as needed
static int lfsr_mtree_gc(lfs_t *lfs, lfsr_traversal_t *t,
lfsr_tag_t *tag_, lfsr_bptr_t *bptr_) {
dropped:;
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_mtree_traverse(lfs, t,
&tag, &bptr);
if (err) {
// end of traversal?
if (err == LFS_ERR_NOENT) {
goto eot;
}
goto failed;
}
// swap dirty/mutated flags while in lfsr_mtree_gc
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
// track in-use blocks?
if (lfsr_t_islookahead(t->o.o.flags)) {
lfs_alloc_markinuse(lfs, tag, &bptr);
}
// mkconsistencing mdirs?
if (lfsr_t_ismkconsistent(t->o.o.flags)
&& lfsr_i_isuntidy(lfs->flags)
&& tag == LFSR_TAG_MDIR) {
lfsr_mdir_t *mdir = (lfsr_mdir_t*)bptr.data.u.buffer;
err = lfsr_fs_mktidy_(lfs, mdir);
if (err) {
goto failed;
}
// make sure we clear any zombie flags
t->o.o.flags &= ~LFS_o_ZOMBIE;
// did this drop our mdir?
if (mdir->mid != -1 && mdir->rbyd.weight == 0) {
// swap back dirty/mutated flags
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
// continue traversal
t->o.o.flags = lfsr_t_settstate(t->o.o.flags, LFSR_TSTATE_MDIRS);
goto dropped;
}
}
// compacting mdirs?
if (lfsr_t_iscompact(t->o.o.flags)
&& tag == LFSR_TAG_MDIR
// exceed compaction threshold?
&& lfsr_rbyd_eoff(&((lfsr_mdir_t*)bptr.data.u.buffer)->rbyd)
> ((lfs->cfg->gc_compact_thresh)
? lfs->cfg->gc_compact_thresh
: lfs->cfg->block_size - lfs->cfg->block_size/8)) {
lfsr_mdir_t *mdir = (lfsr_mdir_t*)bptr.data.u.buffer;
LFS_DEBUG("Compacting mdir %"PRId32" "
"0x{%"PRIx32",%"PRIx32"} "
"(%"PRId32" > %"PRId32")",
mdir->mid >> lfs->mdir_bits,
mdir->rbyd.blocks[0],
mdir->rbyd.blocks[1],
lfsr_rbyd_eoff(&mdir->rbyd),
(lfs->cfg->gc_compact_thresh)
? lfs->cfg->gc_compact_thresh
: lfs->cfg->block_size - lfs->cfg->block_size/8);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// compact the mdir
err = lfsr_mdir_compact(lfs, mdir);
if (err) {
goto failed;
}
}
// swap back dirty/mutated flags
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
if (tag_) {
*tag_ = tag;
}
if (bptr_) {
*bptr_ = bptr;
}
return 0;
failed:;
// swap back dirty/mutated flags
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
return err;
eot:;
// was lookahead scan successful?
if (lfsr_t_islookahead(t->o.o.flags)
&& !lfsr_t_ismtreeonly(t->o.o.flags)
&& !lfsr_t_isdirty(t->o.o.flags)
&& !lfsr_t_ismutated(t->o.o.flags)) {
lfs_alloc_markfree(lfs);
}
// was mkconsistent successful?
if (lfsr_t_ismkconsistent(t->o.o.flags)
&& !lfsr_t_isdirty(t->o.o.flags)) {
lfs->flags &= ~LFS_i_UNTIDY;
}
// was compaction successful? note we may need multiple passes if
// we want to be sure everything is compacted
if (lfsr_t_iscompact(t->o.o.flags)
&& !lfsr_t_isdirty(t->o.o.flags)
&& !lfsr_t_ismutated(t->o.o.flags)) {
lfs->flags &= ~LFS_I_COMPACT;
}
// was ckmeta/ckdata successful? we only consider our filesystem
// checked if we weren't mutated
if (lfsr_t_isckmeta(t->o.o.flags)
&& !lfsr_t_ismtreeonly(t->o.o.flags)
&& !lfsr_t_isdirty(t->o.o.flags)
&& !lfsr_t_ismutated(t->o.o.flags)) {
lfs->flags &= ~LFS_I_CKMETA;
}
if (lfsr_t_isckdata(t->o.o.flags)
&& !lfsr_t_ismtreeonly(t->o.o.flags)
&& !lfsr_t_isdirty(t->o.o.flags)
&& !lfsr_t_ismutated(t->o.o.flags)) {
// note ckdata implies ckmeta
lfs->flags &= ~LFS_I_CKDATA & ~LFS_I_CKMETA;
}
return LFS_ERR_NOENT;
}
/// Block allocator ///
// checkpoint the allocator
//
// operations that need to alloc should call this to indicate all in-use
// blocks are either committed into the filesystem or tracked by an opened
// mdir
static void lfs_alloc_ckpoint(lfs_t *lfs) {
lfs->lookahead.ckpoint = lfs->block_count;
}
// discard any lookahead state, this is necessary if block_count changes
static void lfs_alloc_discard(lfs_t *lfs) {
lfs->lookahead.size = 0;
lfs_memset(lfs->lookahead.buffer, 0, lfs->cfg->lookahead_size);
}
// mark a block as in-use
static void lfs_alloc_markinuse_(lfs_t *lfs, lfs_block_t block) {
// translate to lookahead-relative
lfs_block_t block_ = ((
(lfs_sblock_t)(block
- (lfs->lookahead.window + lfs->lookahead.off))
// we only need this mess because C's mod is actually rem, and
// we want real mod in case block_ goes negative
% (lfs_sblock_t)lfs->block_count)
+ (lfs_sblock_t)lfs->block_count)
% (lfs_sblock_t)lfs->block_count;
if (block_ < 8*lfs->cfg->lookahead_size) {
// mark as in-use
lfs->lookahead.buffer[
((lfs->lookahead.off + block_) / 8)
% lfs->cfg->lookahead_size]
|= 1 << ((lfs->lookahead.off + block_) % 8);
}
}
// mark some filesystem object as in-use
static void lfs_alloc_markinuse(lfs_t *lfs,
lfsr_tag_t tag, const lfsr_bptr_t *bptr) {
if (tag == LFSR_TAG_MDIR) {
lfsr_mdir_t *mdir = (lfsr_mdir_t*)bptr->data.u.buffer;
lfs_alloc_markinuse_(lfs, mdir->rbyd.blocks[0]);
lfs_alloc_markinuse_(lfs, mdir->rbyd.blocks[1]);
} else if (tag == LFSR_TAG_BRANCH) {
lfsr_rbyd_t *rbyd = (lfsr_rbyd_t*)bptr->data.u.buffer;
lfs_alloc_markinuse_(lfs, rbyd->blocks[0]);
} else if (tag == LFSR_TAG_BLOCK) {
lfs_alloc_markinuse_(lfs, bptr->data.u.disk.block);
} else {
LFS_UNREACHABLE();
}
}
// needed in lfs_alloc_markfree
static lfs_sblock_t lfs_alloc_findfree(lfs_t *lfs);
// mark any not-in-use blocks as free
static void lfs_alloc_markfree(lfs_t *lfs) {
// make lookahead buffer usable
lfs->lookahead.size = lfs_min(
8*lfs->cfg->lookahead_size,
lfs->lookahead.ckpoint);
// signal that lookahead is full, this may be cleared by
// lfs_alloc_findfree
lfs->flags &= ~LFS_I_LOOKAHEAD;
// eagerly find the next free block so lookahead scans can make
// the most progress
lfs_alloc_findfree(lfs);
}
// increment lookahead buffer
static void lfs_alloc_inc(lfs_t *lfs) {
LFS_ASSERT(lfs->lookahead.size > 0);
// clear lookahead as we increment
lfs->lookahead.buffer[lfs->lookahead.off / 8]
&= ~(1 << (lfs->lookahead.off % 8));
// signal that lookahead is no longer full
lfs->flags |= LFS_I_LOOKAHEAD;
// increment next/off
lfs->lookahead.off += 1;
if (lfs->lookahead.off == 8*lfs->cfg->lookahead_size) {
lfs->lookahead.off = 0;
lfs->lookahead.window = (lfs->lookahead.window
+ 8*lfs->cfg->lookahead_size)
% lfs->block_count;
}
// decrement size/ckpoint
lfs->lookahead.size -= 1;
lfs->lookahead.ckpoint -= 1;
}
// find next free block in lookahead buffer, if there is one
static lfs_sblock_t lfs_alloc_findfree(lfs_t *lfs) {
while (lfs->lookahead.size > 0) {
if (!(lfs->lookahead.buffer[lfs->lookahead.off / 8]
& (1 << (lfs->lookahead.off % 8)))) {
// found a free block
return (lfs->lookahead.window + lfs->lookahead.off)
% lfs->block_count;
}
lfs_alloc_inc(lfs);
}
return LFS_ERR_NOSPC;
}
static lfs_sblock_t lfs_alloc(lfs_t *lfs, bool erase) {
while (true) {
// scan our lookahead buffer for free blocks
lfs_sblock_t block = lfs_alloc_findfree(lfs);
if (block < 0 && block != LFS_ERR_NOSPC) {
return block;
}
if (block != LFS_ERR_NOSPC) {
// we should never alloc blocks {0,1}
LFS_ASSERT(block != 0 && block != 1);
// erase requested?
if (erase) {
int err = lfsr_bd_erase(lfs, block);
if (err) {
// bad erase? try another block
if (err == LFS_ERR_CORRUPT) {
lfs_alloc_inc(lfs);
continue;
}
return err;
}
}
// eagerly find the next free block to maximize how many blocks
// lfs_alloc_ckpoint makes available for scanning
lfs_alloc_inc(lfs);
lfs_alloc_findfree(lfs);
return block;
}
// in order to keep our block allocator from spinning forever when our
// filesystem is full, we mark points where there are no in-flight
// allocations with a checkpoint before starting a set of allocations
//
// if we've looked at all blocks since the last checkpoint, we report
// the filesystem as out of storage
//
if (lfs->lookahead.ckpoint <= 0) {
LFS_ERROR("No more free space (0x%"PRIx32")",
(lfs->lookahead.window + lfs->lookahead.off)
% lfs->block_count);
return LFS_ERR_NOSPC;
}
// no blocks in our lookahead buffer?
//
// traverse the filesystem, building up knowledge of what blocks are
// in-use in the next lookahead window
//
lfsr_traversal_t t;
lfsr_traversal_init(&t, LFS_T_LOOKAHEAD);
while (true) {
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_mtree_traverse(lfs, &t,
&tag, &bptr);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// track in-use blocks
lfs_alloc_markinuse(lfs, tag, &bptr);
}
// mark anything not seen as free
lfs_alloc_markfree(lfs);
}
}
/// Directory operations ///
int lfsr_mkdir(lfs_t *lfs, const char *path) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
// lookup our parent
lfsr_mdir_t mdir;
lfsr_tag_t tag;
lfsr_did_t did;
err = lfsr_mtree_pathlookup(lfs, &path,
&mdir, &tag, &did);
if (err && !(err == LFS_ERR_NOENT && lfsr_path_islast(path))) {
return err;
}
// already exists? stickynotes don't really exist
bool exists = (err != LFS_ERR_NOENT);
if (exists && tag != LFSR_TAG_STICKYNOTE) {
return LFS_ERR_EXIST;
}
// check that name fits
lfs_size_t name_len = lfsr_path_namelen(path);
if (name_len > lfs->name_limit) {
return LFS_ERR_NAMETOOLONG;
}
// find an arbitrary directory-id (did)
//
// This could be anything, but we want to have few collisions while
// also being deterministic. Here we use the checksum of the
// filename xored with the parent's did.
//
// did = parent_did xor crc32c(name)
//
// We use crc32c here not because it is a good hash function, but
// because it is convenient. The did doesn't need to be reproducible
// so this isn't a compatibility concern.
//
// We also truncate to make better use of our leb128 encoding. This is
// somewhat arbitrary, but if we truncate too much we risk increasing
// the number of collisions, so we want to aim for ~2x the number dids
// in the system:
//
// dmask = 2*dids
//
// But we don't actually know how many dids are in the system.
// Fortunately, we can guess an upper bound based on the number of
// mdirs in the mtree:
//
// mdirs
// dmask = 2 * -----
// d
//
// Worst case (or best case?) each directory needs 1 name tag, 1 did
// tag, and 1 bookmark. With our current compaction strategy, each tag
// needs 3t+4 bytes for tag+alts (see our rat_estimate). And, if
// we assume ~1/2 block utilization due to our mdir split threshold, we
// can multiply everything by 2:
//
// d = 3 * (3t+4) * 2 = 18t + 24
//
// Assuming t=4 bytes, the minimum tag encoding:
//
// d = 18*4 + 24 = 96 bytes
//
// Rounding down to a power-of-two (again this is all arbitrary), gives
// us ~64 bytes per directory:
//
// mdirs mdirs
// dmask = 2 * ----- = -----
// 64 32
//
// This is a nice number because for common NOR flash geometry,
// 4096/32 = 128, so a filesystem with a single mdir encodes dids in a
// single byte.
//
// Note we also need to be careful to catch integer overflow.
//
lfsr_did_t dmask
= (1 << lfs_min(
lfs_nlog2(lfsr_mtree_weight(lfs) >> lfs->mdir_bits)
+ lfs_nlog2(lfs->cfg->block_size/32),
31)
) - 1;
lfsr_did_t did_ = (did ^ lfs_crc32c(0, path, name_len)) & dmask;
// check if we have a collision, if we do, search for the next
// available did
while (true) {
err = lfsr_mtree_namelookup(lfs, did_, NULL, 0,
&mdir, NULL, NULL);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// try the next did
did_ = (did_ + 1) & dmask;
}
// found a good did, now to commit to the mtree
//
// A problem: we need to create both:
// 1. the metadata entry
// 2. the bookmark entry
//
// To do this atomically, we first create the bookmark entry with a grm
// to delete-self in case of powerloss, then create the metadata entry
// while atomically cancelling the grm.
//
// This is done automatically by lfsr_mdir_commit to avoid issues with
// mid updates, since the mid technically doesn't exist yet...
// commit our bookmark and a grm to self-remove in case of powerloss
lfs_alloc_ckpoint(lfs);
uint8_t did_buf[LFSR_LEB128_DSIZE];
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
LFSR_RAT(LFSR_TAG_BOOKMARK, +1, LFSR_DATA_LEB128(did_, did_buf))));
if (err) {
return err;
}
LFS_ASSERT(lfs->grm.mids[0] == mdir.mid);
// committing our bookmark may have changed the mid of our metadata entry,
// we need to look it up again, we can at least avoid the full path walk
err = lfsr_mtree_namelookup(lfs, did, path, name_len,
&mdir, NULL, NULL);
if (err && err != LFS_ERR_NOENT) {
return err;
}
LFS_ASSERT((exists) ? !err : err == LFS_ERR_NOENT);
// commit our new directory into our parent, zeroing the grm in the
// process
lfsr_grm_pop(lfs);
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
LFSR_RAT_NAME(
LFSR_TAG_SUP | LFSR_TAG_DIR, (!exists) ? +1 : 0,
did, path, name_len),
LFSR_RAT(LFSR_TAG_DID, 0, LFSR_DATA_LEB128(did_, did_buf))));
if (err) {
return err;
}
// update in-device state
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// mark any clobbered uncreats as zombied
if (exists
&& lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == mdir.mid) {
o->flags = (o->flags & ~LFS_o_UNCREAT)
| LFS_o_ZOMBIE
| LFS_o_UNSYNC
| LFS_O_DESYNC;
// update dir positions
} else if (!exists
&& lfsr_o_type(o->flags) == LFS_TYPE_DIR
&& ((lfsr_dir_t*)o)->did == did
&& o->mdir.mid >= mdir.mid) {
((lfsr_dir_t*)o)->pos += 1;
}
}
return 0;
}
// push a did to grm, but only if the directory is empty
static int lfsr_grm_pushdid(lfs_t *lfs, lfsr_did_t did) {
// first lookup the bookmark entry
lfsr_mdir_t bookmark_mdir;
int err = lfsr_mtree_namelookup(lfs, did, NULL, 0,
&bookmark_mdir, NULL, NULL);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
lfsr_mid_t bookmark_mid = bookmark_mdir.mid;
// check that the directory is empty
bookmark_mdir.mid += 1;
if (lfsr_mid_rid(lfs, bookmark_mdir.mid)
>= (lfsr_srid_t)bookmark_mdir.rbyd.weight) {
err = lfsr_mtree_lookup(lfs,
lfsr_mid_bid(lfs, bookmark_mdir.mid-1) + 1,
&bookmark_mdir);
if (err) {
if (err == LFS_ERR_NOENT) {
goto empty;
}
return err;
}
}
lfsr_data_t data;
err = lfsr_mdir_sublookup(lfs, &bookmark_mdir, LFSR_TAG_NAME,
NULL, &data);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
lfsr_did_t did_;
err = lfsr_data_readleb128(lfs, &data, &did_);
if (err) {
return err;
}
if (did_ == did) {
return LFS_ERR_NOTEMPTY;
}
empty:;
lfsr_grm_push(lfs, bookmark_mid);
return 0;
}
// needed in lfsr_remove
static int lfsr_fs_fixgrm(lfs_t *lfs);
int lfsr_remove(lfs_t *lfs, const char *path) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
// lookup our entry
lfsr_mdir_t mdir;
lfsr_tag_t tag;
lfsr_did_t did;
err = lfsr_mtree_pathlookup(lfs, &path,
&mdir, &tag, &did);
if (err) {
return err;
}
// stickynotes don't really exist
if (tag == LFSR_TAG_STICKYNOTE) {
return LFS_ERR_NOENT;
}
// we can't remove unknown types or else we may leak resources
if (tag != LFSR_TAG_REG && tag != LFSR_TAG_DIR) {
return LFS_ERR_NOTSUP;
}
// trying to remove the root dir?
if (mdir.mid == -1) {
return LFS_ERR_INVAL;
}
// if we're removing a directory, we need to also remove the
// bookmark entry
lfsr_did_t did_ = 0;
if (tag == LFSR_TAG_DIR) {
// first lets figure out the did
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, &mdir, LFSR_TAG_DID,
&data);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, &data, &did_);
if (err) {
return err;
}
// mark bookmark for removal with grm
err = lfsr_grm_pushdid(lfs, did_);
if (err) {
return err;
}
}
// are we removing an opened file?
bool zombie = lfsr_omdir_ismidopen(lfs, mdir.mid, -1);
// remove the metadata entry
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
// create a stickynote if zombied
//
// we use a create+delete here to also clear any rats
// and trim the entry size
(zombie)
? LFSR_RAT_NAME(
LFSR_TAG_SUP | LFSR_TAG_STICKYNOTE, 0,
did, path, lfsr_path_namelen(path))
: LFSR_RAT(
LFSR_TAG_RM, -1, LFSR_DATA_NULL())));
if (err) {
return err;
}
// update in-device state
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// mark any clobbered uncreats as zombied
if (zombie
&& lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == mdir.mid) {
o->flags |= LFS_o_UNCREAT
| LFS_o_ZOMBIE
| LFS_o_UNSYNC
| LFS_O_DESYNC;
// mark any removed dirs as zombied
} else if (did_
&& lfsr_o_type(o->flags) == LFS_TYPE_DIR
&& ((lfsr_dir_t*)o)->did == did_) {
o->flags |= LFS_o_ZOMBIE;
// update dir positions
} else if (lfsr_o_type(o->flags) == LFS_TYPE_DIR
&& ((lfsr_dir_t*)o)->did == did
&& o->mdir.mid >= mdir.mid) {
if (lfsr_o_iszombie(o->flags)) {
o->flags &= ~LFS_o_ZOMBIE;
} else {
((lfsr_dir_t*)o)->pos -= 1;
}
// clobber entangled traversals
} else if (lfsr_o_type(o->flags) == LFS_TYPE_TRAVERSAL) {
if (lfsr_o_iszombie(o->flags)) {
o->flags &= ~LFS_o_ZOMBIE;
o->mdir.mid -= 1;
lfsr_traversal_clobber(lfs, (lfsr_traversal_t*)o);
}
}
}
// if we were a directory, we need to clean up, fortunately we can leave
// this up to lfsr_fs_fixgrm
err = lfsr_fs_fixgrm(lfs);
if (err) {
// we did complete the remove, so we shouldn't error here, best
// we can do is log this
LFS_WARN("Failed to clean up grm (%d)", err);
}
return 0;
}
int lfsr_rename(lfs_t *lfs, const char *old_path, const char *new_path) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
// lookup old entry
lfsr_mdir_t old_mdir;
lfsr_tag_t old_tag;
lfsr_did_t old_did;
err = lfsr_mtree_pathlookup(lfs, &old_path,
&old_mdir, &old_tag, &old_did);
if (err) {
return err;
}
// stickynotes don't really exist
if (old_tag == LFSR_TAG_STICKYNOTE) {
return LFS_ERR_NOENT;
}
// we can't rename unknown types or else we may leak resources
if (old_tag != LFSR_TAG_REG && old_tag != LFSR_TAG_DIR) {
return LFS_ERR_NOTSUP;
}
// trying to rename the root?
if (old_mdir.mid == -1) {
return LFS_ERR_INVAL;
}
// lookup new entry
lfsr_mdir_t new_mdir;
lfsr_tag_t new_tag;
lfsr_did_t new_did;
err = lfsr_mtree_pathlookup(lfs, &new_path,
&new_mdir, &new_tag, &new_did);
if (err && !(err == LFS_ERR_NOENT && lfsr_path_islast(new_path))) {
return err;
}
bool exists = (err != LFS_ERR_NOENT);
// there are a few cases we need to watch out for
lfs_size_t new_name_len = lfsr_path_namelen(new_path);
lfsr_did_t new_did_ = 0;
if (!exists) {
// if we're a file, don't allow trailing slashes
if (old_tag != LFSR_TAG_DIR && lfsr_path_isdir(new_path)) {
return LFS_ERR_NOTDIR;
}
// check that name fits
if (new_name_len > lfs->name_limit) {
return LFS_ERR_NAMETOOLONG;
}
} else {
// trying to rename the root?
if (new_mdir.mid == -1) {
return LFS_ERR_INVAL;
}
// renaming different types is an error
//
// unless we found a stickynote, these don't really exist
if (old_tag != new_tag && new_tag != LFSR_TAG_STICKYNOTE) {
return (new_tag == LFSR_TAG_DIR)
? LFS_ERR_ISDIR
: (new_tag == LFSR_TAG_REG)
? LFS_ERR_NOTDIR
: LFS_ERR_NOTSUP;
}
// renaming to ourself is a noop
if (old_mdir.mid == new_mdir.mid) {
return 0;
}
// if our destination is a directory, we will be implicitly removing
// the directory, we need to create a grm for this
if (new_tag == LFSR_TAG_DIR) {
// TODO deduplicate the isempty check with lfsr_remove?
// first lets figure out the did
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, &new_mdir, LFSR_TAG_DID,
&data);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, &data, &new_did_);
if (err) {
return err;
}
// mark bookmark for removal with grm
err = lfsr_grm_pushdid(lfs, new_did_);
if (err) {
return err;
}
}
}
// mark old entry for removal with a grm
lfsr_grm_push(lfs, old_mdir.mid);
// rename our entry, copying all tags associated with the old rid to the
// new rid, while also marking the old rid for removal
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &new_mdir, LFSR_RATS(
LFSR_RAT_NAME(
LFSR_TAG_SUP | old_tag, (!exists) ? +1 : 0,
new_did, new_path, new_name_len),
LFSR_RAT_MOVE(LFSR_TAG_MOVE, 0, &old_mdir)));
if (err) {
return err;
}
// update in-device state
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
// mark any clobbered uncreats as zombied
if (exists
&& lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == new_mdir.mid) {
o->flags = (o->flags & ~LFS_o_UNCREAT)
| LFS_o_ZOMBIE
| LFS_o_UNSYNC
| LFS_O_DESYNC;
// update moved files with the new mdir
} else if (lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == lfs->grm.mids[0]) {
o->mdir = new_mdir;
// mark any removed dirs as zombied
} else if (new_did_
&& lfsr_o_type(o->flags) == LFS_TYPE_DIR
&& ((lfsr_dir_t*)o)->did == new_did_) {
o->flags |= LFS_o_ZOMBIE;
// update dir positions
} else if (lfsr_o_type(o->flags) == LFS_TYPE_DIR) {
if (!exists
&& ((lfsr_dir_t*)o)->did == new_did
&& o->mdir.mid >= new_mdir.mid) {
((lfsr_dir_t*)o)->pos += 1;
}
if (((lfsr_dir_t*)o)->did == old_did
&& o->mdir.mid >= lfs->grm.mids[0]) {
if (o->mdir.mid == lfs->grm.mids[0]) {
o->mdir.mid += 1;
} else {
((lfsr_dir_t*)o)->pos -= 1;
}
}
// clobber entangled traversals
} else if (lfsr_o_type(o->flags) == LFS_TYPE_TRAVERSAL
&& ((exists && o->mdir.mid == new_mdir.mid)
|| o->mdir.mid == lfs->grm.mids[0])) {
lfsr_traversal_clobber(lfs, (lfsr_traversal_t*)o);
}
}
// we need to clean up any pending grms, fortunately we can leave
// this up to lfsr_fs_fixgrm
err = lfsr_fs_fixgrm(lfs);
if (err) {
// we did complete the remove, so we shouldn't error here, best
// we can do is log this
LFS_WARN("Failed to clean up grm (%d)", err);
}
return 0;
}
// this just populates the info struct based on what we found
static int lfsr_stat_(lfs_t *lfs, const lfsr_mdir_t *mdir,
lfsr_tag_t tag, lfsr_data_t name,
struct lfs_info *info) {
// get file type from the tag
info->type = lfsr_tag_subtype(tag);
// read the file name
LFS_ASSERT(lfsr_data_size(name) <= LFS_NAME_MAX);
lfs_ssize_t name_len = lfsr_data_read(lfs, &name,
info->name, LFS_NAME_MAX);
if (name_len < 0) {
return name_len;
}
info->name[name_len] = '\0';
// get file size if we're a regular file, this gets a bit messy
// because of the different file representations
info->size = 0;
if (tag == LFSR_TAG_REG) {
// inlined?
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_mdir_lookupnext(lfs, mdir, LFSR_TAG_DATA,
&tag, &data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// may be a moss (simple inlined data)
if (err != LFS_ERR_NOENT && tag == LFSR_TAG_DATA) {
info->size = lfsr_data_size(data);
// or a block/bshrub/btree, size is always first field here
} else if (err != LFS_ERR_NOENT
&& (tag == LFSR_TAG_BLOCK
|| tag == LFSR_TAG_BSHRUB
|| tag == LFSR_TAG_BTREE)) {
err = lfsr_data_readleb128(lfs, &data, &info->size);
if (err) {
return err;
}
}
}
return 0;
}
int lfsr_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
// lookup our entry
lfsr_mdir_t mdir;
lfsr_tag_t tag;
int err = lfsr_mtree_pathlookup(lfs, &path,
&mdir, &tag, NULL);
if (err) {
return err;
}
// stickynotes don't really exist
if (tag == LFSR_TAG_STICKYNOTE) {
return LFS_ERR_NOENT;
}
// special case for root
if (mdir.mid == -1) {
lfs_strcpy(info->name, "/");
info->type = LFS_TYPE_DIR;
info->size = 0;
return 0;
}
// fill out our info struct
return lfsr_stat_(lfs, &mdir,
tag, LFSR_DATA_BUF(path, lfsr_path_namelen(path)),
info);
}
// needed in lfsr_dir_open
static int lfsr_dir_rewind_(lfs_t *lfs, lfsr_dir_t *dir);
int lfsr_dir_open(lfs_t *lfs, lfsr_dir_t *dir, const char *path) {
// already open?
LFS_ASSERT(!lfsr_omdir_isopen(lfs, &dir->o));
// setup dir state
dir->o.flags = lfsr_o_settype(0, LFS_TYPE_DIR);
// lookup our directory
lfsr_mdir_t mdir;
lfsr_tag_t tag;
int err = lfsr_mtree_pathlookup(lfs, &path,
&mdir, &tag, NULL);
if (err) {
return err;
}
// stickynotes don't really exist
if (tag == LFSR_TAG_STICKYNOTE) {
return LFS_ERR_NOENT;
}
// read our did from the mdir, unless we're root
if (mdir.mid == -1) {
dir->did = 0;
} else {
// not a directory?
if (tag != LFSR_TAG_DIR) {
return LFS_ERR_NOTDIR;
}
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, &mdir, LFSR_TAG_DID,
&data);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, &data, &dir->did);
if (err) {
return err;
}
}
// let rewind initialize the pos state
err = lfsr_dir_rewind_(lfs, dir);
if (err) {
return err;
}
// add to tracked mdirs
lfsr_omdir_open(lfs, &dir->o);
return 0;
}
int lfsr_dir_close(lfs_t *lfs, lfsr_dir_t *dir) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &dir->o));
// remove from tracked mdirs
lfsr_omdir_close(lfs, &dir->o);
return 0;
}
int lfsr_dir_read(lfs_t *lfs, lfsr_dir_t *dir, struct lfs_info *info) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &dir->o));
// was our dir removed?
if (lfsr_o_iszombie(dir->o.flags)) {
return LFS_ERR_NOENT;
}
// handle dots specially
if (dir->pos == 0) {
lfs_strcpy(info->name, ".");
info->type = LFS_TYPE_DIR;
info->size = 0;
dir->pos += 1;
return 0;
} else if (dir->pos == 1) {
lfs_strcpy(info->name, "..");
info->type = LFS_TYPE_DIR;
info->size = 0;
dir->pos += 1;
return 0;
}
while (true) {
// next mdir?
if (lfsr_mid_rid(lfs, dir->o.mdir.mid)
>= (lfsr_srid_t)dir->o.mdir.rbyd.weight) {
int err = lfsr_mtree_lookup(lfs,
lfsr_mid_bid(lfs, dir->o.mdir.mid-1) + 1,
&dir->o.mdir);
if (err) {
return err;
}
}
// lookup the next name tag
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_mdir_sublookup(lfs, &dir->o.mdir, LFSR_TAG_NAME,
&tag, &data);
if (err) {
return err;
}
// get the did
lfsr_did_t did;
err = lfsr_data_readleb128(lfs, &data, &did);
if (err) {
return err;
}
// did mismatch? this terminates the dir read
if (did != dir->did) {
return LFS_ERR_NOENT;
}
// skip stickynotes, we pretend these don't exist
if (tag == LFSR_TAG_STICKYNOTE) {
dir->o.mdir.mid += 1;
dir->pos += 1;
continue;
}
// fill out our info struct
err = lfsr_stat_(lfs, &dir->o.mdir, tag, data,
info);
if (err) {
return err;
}
// eagerly set to next entry
dir->o.mdir.mid += 1;
dir->pos += 1;
return 0;
}
}
int lfsr_dir_seek(lfs_t *lfs, lfsr_dir_t *dir, lfs_soff_t off) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &dir->o));
// do nothing if removed
if (lfsr_o_iszombie(dir->o.flags)) {
return 0;
}
// first rewind
int err = lfsr_dir_rewind_(lfs, dir);
if (err) {
return err;
}
// then seek to the requested offset
//
// note the -2 to adjust for dot entries
lfs_off_t off_ = off - 2;
while (off_ > 0) {
// next mdir?
if (lfsr_mid_rid(lfs, dir->o.mdir.mid)
>= (lfsr_srid_t)dir->o.mdir.rbyd.weight) {
int err = lfsr_mtree_lookup(lfs,
lfsr_mid_bid(lfs, dir->o.mdir.mid-1) + 1,
&dir->o.mdir);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
}
lfs_off_t d = lfs_min(
off_,
dir->o.mdir.rbyd.weight
- lfsr_mid_rid(lfs, dir->o.mdir.mid));
dir->o.mdir.mid += d;
off_ -= d;
}
dir->pos = off;
return 0;
}
lfs_soff_t lfsr_dir_tell(lfs_t *lfs, lfsr_dir_t *dir) {
(void)lfs;
LFS_ASSERT(lfsr_omdir_isopen(lfs, &dir->o));
return dir->pos;
}
static int lfsr_dir_rewind_(lfs_t *lfs, lfsr_dir_t *dir) {
// do nothing if removed
if (lfsr_o_iszombie(dir->o.flags)) {
return 0;
}
// lookup our bookmark in the mtree
int err = lfsr_mtree_namelookup(lfs, dir->did, NULL, 0,
&dir->o.mdir, NULL, NULL);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// eagerly set to next entry
dir->o.mdir.mid += 1;
// reset pos
dir->pos = 0;
return 0;
}
int lfsr_dir_rewind(lfs_t *lfs, lfsr_dir_t *dir) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &dir->o));
return lfsr_dir_rewind_(lfs, dir);
}
/// Custom attribute stuff ///
static int lfsr_lookupattr(lfs_t *lfs, const char *path, uint8_t type,
lfsr_mdir_t *mdir_, lfsr_data_t *data_) {
// lookup our entry
lfsr_tag_t tag;
int err = lfsr_mtree_pathlookup(lfs, &path,
mdir_, &tag, NULL);
if (err) {
return err;
}
// stickynotes don't really exist
if (tag == LFSR_TAG_STICKYNOTE) {
return LFS_ERR_NOENT;
}
// lookup our attr
err = lfsr_mdir_lookup(lfs, mdir_, LFSR_TAG_ATTR(type),
data_);
if (err) {
if (err == LFS_ERR_NOENT) {
return LFS_ERR_NOATTR;
}
return err;
}
return 0;
}
lfs_ssize_t lfsr_getattr(lfs_t *lfs, const char *path, uint8_t type,
void *buffer, lfs_size_t size) {
// lookup our attr
lfsr_mdir_t mdir;
lfsr_data_t data;
int err = lfsr_lookupattr(lfs, path, type,
&mdir, &data);
if (err) {
return err;
}
// read the attr
return lfsr_data_read(lfs, &data, buffer, size);
}
lfs_ssize_t lfsr_sizeattr(lfs_t *lfs, const char *path, uint8_t type) {
// lookup our attr
lfsr_mdir_t mdir;
lfsr_data_t data;
int err = lfsr_lookupattr(lfs, path, type,
&mdir, &data);
if (err) {
return err;
}
// return the attr size
return lfsr_data_size(data);
}
int lfsr_setattr(lfs_t *lfs, const char *path, uint8_t type,
const void *buffer, lfs_size_t size) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
// lookup our attr
lfsr_mdir_t mdir;
lfsr_data_t data;
err = lfsr_lookupattr(lfs, path, type,
&mdir, &data);
if (err && err != LFS_ERR_NOATTR) {
return err;
}
// commit our attr
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_ATTR(type), 0,
LFSR_DATA_BUF(buffer, size))));
if (err) {
return err;
}
// update any opened files tracking custom attrs
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (!(lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == mdir.mid
&& !lfsr_o_isdesync(o->flags))) {
continue;
}
lfsr_file_t *file = (lfsr_file_t*)o;
for (lfs_size_t i = 0; i < file->cfg->attr_count; i++) {
if (!(file->cfg->attrs[i].type == type
&& !lfsr_o_iswronly(file->cfg->attrs[i].flags))) {
continue;
}
lfs_size_t d = lfs_min(size, file->cfg->attrs[i].buffer_size);
memcpy(file->cfg->attrs[i].buffer, buffer, d);
if (file->cfg->attrs[i].size) {
*file->cfg->attrs[i].size = d;
}
}
}
return 0;
}
int lfsr_removeattr(lfs_t *lfs, const char *path, uint8_t type) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
// lookup our attr
lfsr_mdir_t mdir;
err = lfsr_lookupattr(lfs, path, type,
&mdir, NULL);
if (err) {
return err;
}
// commit our removal
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_RM | LFSR_TAG_ATTR(type), 0,
LFSR_DATA_NULL())));
if (err) {
return err;
}
// update any opened files tracking custom attrs
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (!(lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == mdir.mid
&& !lfsr_o_isdesync(o->flags))) {
continue;
}
lfsr_file_t *file = (lfsr_file_t*)o;
for (lfs_size_t i = 0; i < file->cfg->attr_count; i++) {
if (!(file->cfg->attrs[i].type == type
&& !lfsr_o_iswronly(file->cfg->attrs[i].flags))) {
continue;
}
if (file->cfg->attrs[i].size) {
*file->cfg->attrs[i].size = LFS_ERR_NOATTR;
}
}
}
return 0;
}
/// File operations ///
// file helpers
static inline lfs_size_t lfsr_file_buffersize(lfs_t *lfs,
const lfsr_file_t *file) {
return (file->cfg->buffer_size)
? file->cfg->buffer_size
: lfs->cfg->file_buffer_size;
}
static inline lfs_size_t lfsr_file_inlinesize(lfs_t *lfs,
const lfsr_file_t *file) {
return lfs_min(
lfsr_file_buffersize(lfs, file),
lfs_min(
lfs->cfg->inline_size,
lfs->cfg->fragment_size));
}
static inline lfs_off_t lfsr_file_size_(const lfsr_file_t *file) {
return lfs_max(
file->buffer.pos + file->buffer.size,
lfsr_bshrub_size(&file->o.bshrub));
}
// file operations
// needed in lfsr_file_fetch
static lfs_ssize_t lfsr_file_read_(lfs_t *lfs, const lfsr_file_t *file,
lfs_off_t pos, uint8_t *buffer, lfs_size_t size);
static int lfsr_file_fetch(lfs_t *lfs, lfsr_file_t *file, bool trunc) {
// default data state
lfsr_bshrub_init(&file->o.bshrub);
// discard the current buffer
file->buffer.pos = 0;
file->buffer.size = 0;
// mark as flushed
file->o.o.flags &= ~LFS_o_UNFLUSH;
// don't bother reading disk if we're not created or truncating
if (!lfsr_o_isuncreat(file->o.o.flags) && !trunc) {
// lookup the file struct, if there is one
lfsr_tag_t tag;
lfsr_data_t data;
int err = lfsr_mdir_lookupnext(lfs, &file->o.o.mdir, LFSR_TAG_DATA,
&tag, &data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// note many of these functions leave bshrub undefined if
// there is an error, so we first read into the staging
// bshrub
file->o.bshrub_ = file->o.bshrub;
// may be a bmoss (inlined data)
if (err != LFS_ERR_NOENT && tag == LFSR_TAG_DATA) {
file->o.bshrub_.u.bmoss = data;
// or a bsprout (direct block)
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BLOCK) {
err = lfsr_data_readbptr(lfs, &data,
&file->o.bshrub_.u.bsprout);
if (err) {
return err;
}
// or a bshrub (inlined btree)
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BSHRUB) {
err = lfsr_data_readshrub(lfs, &data, &file->o.o.mdir,
&file->o.bshrub_.u.bshrub);
if (err) {
return err;
}
// or a btree
} else if (err != LFS_ERR_NOENT && tag == LFSR_TAG_BTREE) {
err = lfsr_data_fetchbtree(lfs, &data,
&file->o.bshrub_.u.btree);
if (err) {
return err;
}
}
// update the bshrub
file->o.bshrub = file->o.bshrub_;
// mark as synced
file->o.o.flags &= ~LFS_o_UNSYNC;
}
// if our file is small, try to keep the whole thing in our buffer
//
// if this fails we may end up with corrupt data, but that's ok, we
// just can't end up with corrupt metadata
lfs_size_t size = lfsr_bshrub_size(&file->o.bshrub);
if (size <= lfsr_file_inlinesize(lfs, file)) {
lfs_ssize_t d = lfsr_file_read_(lfs, file,
0, file->buffer.buffer, size);
if (d < 0) {
return d;
}
// small files remain perpetually unflushed
file->o.o.flags |= LFS_o_UNFLUSH;
lfsr_bshrub_init(&file->o.bshrub);
file->buffer.pos = 0;
file->buffer.size = size;
}
// try to fetch any custom attributes
for (lfs_size_t i = 0; i < file->cfg->attr_count; i++) {
// skip writeonly attrs
if (lfsr_o_iswronly(file->cfg->attrs[i].flags)) {
continue;
}
// don't bother reading disk if we're not created yet
if (lfsr_o_isuncreat(file->o.o.flags)) {
if (file->cfg->attrs[i].size) {
*file->cfg->attrs[i].size = LFS_ERR_NOATTR;
}
continue;
}
// lookup the attr
lfsr_data_t data;
int err = lfsr_mdir_lookup(lfs, &file->o.o.mdir,
LFSR_TAG_ATTR(file->cfg->attrs[i].type),
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// read the attr, if it exists
if (err == LFS_ERR_NOENT
// awkward case here if buffer_size is LFS_ERR_NOATTR
|| file->cfg->attrs[i].buffer_size == LFS_ERR_NOATTR) {
if (file->cfg->attrs[i].size) {
*file->cfg->attrs[i].size = LFS_ERR_NOATTR;
}
} else {
lfs_ssize_t d = lfsr_data_read(lfs, &data,
file->cfg->attrs[i].buffer,
file->cfg->attrs[i].buffer_size);
if (d < 0) {
return d;
}
if (file->cfg->attrs[i].size) {
*file->cfg->attrs[i].size = d;
}
}
}
return 0;
}
// needed in lfsr_file_opencfg
static void lfsr_file_close_(lfs_t *lfs, const lfsr_file_t *file);
static int lfsr_file_ck(lfs_t *lfs, const lfsr_file_t *file,
uint32_t flags);
int lfsr_file_opencfg(lfs_t *lfs, lfsr_file_t *file,
const char *path, uint32_t flags,
const struct lfs_file_config *cfg) {
// already open?
LFS_ASSERT(!lfsr_omdir_isopen(lfs, &file->o.o));
// don't allow the forbidden mode!
LFS_ASSERT((flags & 3) != 3);
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_O_RDONLY
| LFS_O_WRONLY
| LFS_O_RDWR
| LFS_O_CREAT
| LFS_O_EXCL
| LFS_O_TRUNC
| LFS_O_APPEND
| LFS_O_FLUSH
| LFS_O_SYNC
| LFS_O_DESYNC)) == 0);
// writeable files require a writeable filesystem
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || lfsr_o_isrdonly(flags));
// these flags require a writable file
LFS_ASSERT(!lfsr_o_isrdonly(flags) || !lfsr_o_iscreat(flags));
LFS_ASSERT(!lfsr_o_isrdonly(flags) || !lfsr_o_isexcl(flags));
LFS_ASSERT(!lfsr_o_isrdonly(flags) || !lfsr_o_istrunc(flags));
for (lfs_size_t i = 0; i < cfg->attr_count; i++) {
// these flags require a writable attr
LFS_ASSERT(!lfsr_o_isrdonly(cfg->attrs[i].flags)
|| !lfsr_o_iscreat(cfg->attrs[i].flags));
LFS_ASSERT(!lfsr_o_isrdonly(cfg->attrs[i].flags)
|| !lfsr_o_isexcl(cfg->attrs[i].flags));
}
if (!lfsr_o_isrdonly(flags)) {
// prepare our filesystem for writing
int err = lfsr_fs_mkconsistent(lfs);
if (err) {
return err;
}
}
// setup file state
file->cfg = cfg;
file->o.o.flags = lfsr_o_settype(flags, LFS_TYPE_REG)
// mounted with LFS_M_FLUSH/SYNC? implies LFS_O_FLUSH/SYNC
| (lfs->flags & (LFS_M_FLUSH | LFS_M_SYNC))
// default to unflushed for orphans/truncated files
| LFS_o_UNFLUSH;
file->pos = 0;
file->eblock = 0;
file->eoff = -1;
// lookup our parent
lfsr_tag_t tag;
lfsr_did_t did;
int err = lfsr_mtree_pathlookup(lfs, &path,
&file->o.o.mdir, &tag, &did);
if (err && !(err == LFS_ERR_NOENT && lfsr_path_islast(path))) {
return err;
}
bool exists = err != LFS_ERR_NOENT;
// creating a new entry?
if (!exists || tag == LFSR_TAG_STICKYNOTE) {
if (!lfsr_o_iscreat(flags)) {
return LFS_ERR_NOENT;
}
LFS_ASSERT(!lfsr_o_isrdonly(flags));
// we're a file, don't allow trailing slashes
if (lfsr_path_isdir(path)) {
return LFS_ERR_NOTDIR;
}
// if we're EXCL and we found a stickynote, check if the file
// is open and not zombied/desynced
//
// we error here even though the file isn't created yet so
// EXCL only lets one create through (ignoring desync+sync
// shenanigans)
if (exists
&& lfsr_o_isexcl(flags)
&& lfsr_omdir_ismidopen(lfs, file->o.o.mdir.mid,
~(LFS_o_ZOMBIE | LFS_O_DESYNC))) {
return LFS_ERR_EXIST;
}
// create a stickynote entry if we don't have one, this reserves the
// mid until first sync
if (!exists) {
// check that name fits
lfs_size_t name_len = lfsr_path_namelen(path);
if (name_len > lfs->name_limit) {
return LFS_ERR_NAMETOOLONG;
}
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, &file->o.o.mdir, LFSR_RATS(
LFSR_RAT_NAME(
LFSR_TAG_STICKYNOTE, +1,
did, path, name_len)));
if (err) {
return err;
}
// update dir positions
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_type(o->flags) == LFS_TYPE_DIR
&& ((lfsr_dir_t*)o)->did == did
&& o->mdir.mid >= file->o.o.mdir.mid) {
((lfsr_dir_t*)o)->pos += 1;
}
}
}
// mark as uncreated and unsynced, we need to convert to reg file
// on first sync
file->o.o.flags |= LFS_o_UNCREAT | LFS_o_UNSYNC;
} else {
// wanted to create a new entry?
if (lfsr_o_isexcl(flags)) {
return LFS_ERR_EXIST;
}
// wrong type?
if (tag != LFSR_TAG_REG) {
return (tag == LFSR_TAG_DIR)
? LFS_ERR_ISDIR
: LFS_ERR_NOTSUP;
}
}
// allocate buffer if necessary
if (file->cfg->buffer) {
file->buffer.buffer = file->cfg->buffer;
} else {
file->buffer.buffer = lfs_malloc(lfsr_file_buffersize(lfs, file));
if (!file->buffer.buffer) {
return LFS_ERR_NOMEM;
}
}
file->buffer.pos = 0;
file->buffer.size = 0;
// fetch the file struct and custom attrs
err = lfsr_file_fetch(lfs, file,
lfsr_o_istrunc(file->o.o.flags));
if (err) {
goto failed;
}
// check metadata/data for errors?
if (lfsr_t_isckmeta(flags) || lfsr_t_isckdata(flags)) {
err = lfsr_file_ck(lfs, file, flags);
if (err) {
goto failed;
}
}
// add to tracked mdirs
lfsr_omdir_open(lfs, &file->o.o);
return 0;
failed:;
// clean up resources
lfsr_file_close_(lfs, file);
return err;
}
// default file config
static const struct lfs_file_config lfsr_file_defaults = {0};
int lfsr_file_open(lfs_t *lfs, lfsr_file_t *file,
const char *path, uint32_t flags) {
return lfsr_file_opencfg(lfs, file, path, flags, &lfsr_file_defaults);
}
// clean up resources
static void lfsr_file_close_(lfs_t *lfs, const lfsr_file_t *file) {
// clean up memory
if (!file->cfg->buffer) {
lfs_free(file->buffer.buffer);
}
// are we orphaning a file?
//
// make sure we check _after_ removing ourselves
if (lfsr_o_isuncreat(file->o.o.flags)
&& !lfsr_omdir_ismidopen(lfs, file->o.o.mdir.mid, -1)) {
// this gets a bit messy, since we're not able to write to the
// filesystem if we're rdonly or desynced, fortunately we have
// a few tricks
// first try to push onto our grm queue
if (lfsr_grm_count(lfs) < 2) {
lfsr_grm_push(lfs, file->o.o.mdir.mid);
// fallback to just marking the filesystem as untidy
} else {
lfs->flags |= LFS_i_UNTIDY;
}
}
}
// needed in lfsr_file_close
int lfsr_file_sync(lfs_t *lfs, lfsr_file_t *file);
int lfsr_file_close(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// don't call lfsr_file_sync if we're readonly or desynced
int err = 0;
if (!lfsr_o_isrdonly(file->o.o.flags)
&& !lfsr_o_isdesync(file->o.o.flags)) {
err = lfsr_file_sync(lfs, file);
}
// remove from tracked mdirs
lfsr_omdir_close(lfs, &file->o.o);
// clean up resources
lfsr_file_close_(lfs, file);
return err;
}
// low-level file reading
static int lfsr_file_lookupnext(lfs_t *lfs, const lfsr_file_t *file,
lfs_off_t pos,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_bid_t *weight_,
lfsr_bptr_t *bptr_) {
return lfsr_bshrub_lookupnext(lfs,
&file->o.o.mdir, &file->o.bshrub, pos,
bid_, tag_, weight_, bptr_);
}
static lfs_ssize_t lfsr_file_readnext(lfs_t *lfs, const lfsr_file_t *file,
lfs_off_t pos, uint8_t *buffer, lfs_size_t size) {
lfs_off_t pos_ = pos;
// read one btree entry
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
lfsr_bptr_t bptr;
int err = lfsr_file_lookupnext(lfs, file, pos_,
&bid, &tag, &weight, &bptr);
if (err) {
return err;
}
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)
&& tag == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr);
if (err) {
return err;
}
}
#endif
// any data on disk?
if (pos_ < bid-(weight-1) + lfsr_data_size(bptr.data)) {
// note one important side-effect here is a strict
// data hint
lfs_ssize_t d = lfs_min(
size,
lfsr_data_size(bptr.data)
- (pos_ - (bid-(weight-1))));
lfsr_data_t slice = LFSR_DATA_SLICE(bptr.data,
pos_ - (bid-(weight-1)),
d);
d = lfsr_data_read(lfs, &slice,
buffer, d);
if (d < 0) {
return d;
}
pos_ += d;
buffer += d;
size -= d;
}
// found a hole? fill with zeros
lfs_ssize_t d = lfs_min(size, bid+1 - pos_);
lfs_memset(buffer, 0, d);
pos_ += d;
buffer += d;
size -= d;
return pos_ - pos;
}
static lfs_ssize_t lfsr_file_read_(lfs_t *lfs, const lfsr_file_t *file,
lfs_off_t pos, uint8_t *buffer, lfs_size_t size) {
lfs_off_t pos_ = pos;
while (size > 0 && pos_ < lfsr_bshrub_size(&file->o.bshrub)) {
lfs_ssize_t d = lfsr_file_readnext(lfs, file,
pos_, buffer, size);
if (d < 0) {
LFS_ASSERT(d != LFS_ERR_NOENT);
return d;
}
pos_ += d;
buffer += d;
size -= d;
}
return pos_ - pos;
}
// high-level file reading
lfs_ssize_t lfsr_file_read(lfs_t *lfs, lfsr_file_t *file,
void *buffer, lfs_size_t size) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't read from writeonly files
LFS_ASSERT(!lfsr_o_iswronly(file->o.o.flags));
LFS_ASSERT(file->pos + size <= 0x7fffffff);
lfs_off_t pos_ = file->pos;
uint8_t *buffer_ = buffer;
while (size > 0 && pos_ < lfsr_file_size_(file)) {
// keep track of the next highest priority data offset
lfs_ssize_t d = lfs_min(size, lfsr_file_size_(file) - pos_);
// any data in our buffer?
if (pos_ < file->buffer.pos + file->buffer.size
&& file->buffer.size != 0) {
if (pos_ >= file->buffer.pos) {
lfs_ssize_t d_ = lfs_min(
d,
file->buffer.size - (pos_ - file->buffer.pos));
lfs_memcpy(buffer_,
&file->buffer.buffer[pos_ - file->buffer.pos],
d_);
pos_ += d_;
buffer_ += d_;
size -= d_;
d -= d_;
continue;
}
// buffered data takes priority
d = lfs_min(d, file->buffer.pos - pos_);
}
// any data in our btree?
if (pos_ < lfsr_bshrub_size(&file->o.bshrub)) {
// bypass buffer?
if ((lfs_size_t)d >= lfsr_file_buffersize(lfs, file)) {
lfs_ssize_t d_ = lfsr_file_readnext(lfs, file,
pos_, buffer_, d);
if (d_ < 0) {
LFS_ASSERT(d_ != LFS_ERR_NOENT);
return d_;
}
pos_ += d_;
buffer_ += d_;
size -= d_;
continue;
}
// buffer in use? we need to flush it
//
// note that flush does not change the actual file data, so if
// a read fails it's ok to fall back to our flushed state
//
if (lfsr_o_isunflush(file->o.o.flags)) {
int err = lfsr_file_flush(lfs, file);
if (err) {
return err;
}
file->buffer.pos = 0;
file->buffer.size = 0;
}
// try to fill our buffer with some data
lfs_ssize_t d_ = lfsr_file_readnext(lfs, file,
pos_, file->buffer.buffer, d);
if (d_ < 0) {
LFS_ASSERT(d != LFS_ERR_NOENT);
return d_;
}
file->buffer.pos = pos_;
file->buffer.size = d_;
continue;
}
// found a hole? fill with zeros
lfs_memset(buffer_, 0, d);
pos_ += d;
buffer_ += d;
size -= d;
}
// update file and return amount read
lfs_size_t read = pos_ - file->pos;
file->pos = pos_;
return read;
}
// low-level file writing
static int lfsr_file_commit(lfs_t *lfs, lfsr_file_t *file,
lfs_off_t pos, const lfsr_rat_t *rats, lfs_size_t rat_count) {
// file must be a bshrub/btree here
LFS_ASSERT(lfsr_bshrub_isbshruborbtree(&file->o.bshrub));
return lfsr_bshrub_commit(lfs,
&file->o.o.mdir, &file->o.bshrub,
pos, rats, rat_count);
}
static int lfsr_file_carve(lfs_t *lfs, lfsr_file_t *file,
lfs_off_t pos, lfs_off_t weight, lfsr_rat_t rat) {
// Note! This function has some rather special constraints:
//
// 1. We must never allow our btree size to overflow, even temporarily.
//
// 2. We must not lose track of bptrs until we no longer need them, to
// prevent incorrect allocation from the block allocator.
//
// 3. We should avoid copying data fragments as much as possible.
//
// These requirements end up conflicting a bit...
//
// The second requirement isn't strictly necessary if we track temporary
// copies during file writes, but it is nice to prove this constraint is
// possible in case we ever don't track temporary copies.
// try to merge commits where possible
lfsr_bid_t bid = lfsr_bshrub_size(&file->o.bshrub);
lfsr_rat_t rats[5];
lfs_size_t rat_count = 0;
union {
lfsr_data_t data;
uint8_t buf[LFSR_BPTR_DSIZE];
} left;
union {
lfsr_data_t data;
uint8_t buf[LFSR_BPTR_DSIZE];
} right;
// always convert to bshrub/btree when this function is called
if (!lfsr_bshrub_isbshruborbtree(&file->o.bshrub)) {
// this does risk losing our moss/sprout if there is an error,
// but note that's already a risk with how file carve deletes
// data before insertion
if (lfsr_bshrub_isbmoss(&file->o.o.mdir, &file->o.bshrub)) {
rats[rat_count++] = LFSR_RAT_CAT_(
LFSR_TAG_DATA, +lfsr_bshrub_size(&file->o.bshrub),
&file->o.bshrub.u.bmoss, 1);
} else if (lfsr_bshrub_isbptr(&file->o.o.mdir, &file->o.bshrub)) {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_BLOCK, +lfsr_bshrub_size(&file->o.bshrub),
LFSR_DATA_BPTR(&file->o.bshrub.u.bsprout, left.buf));
}
lfsr_shrub_init(&file->o.bshrub.u.bshrub,
file->o.o.mdir.rbyd.blocks[0]);
if (rat_count > 0) {
LFS_ASSERT(rat_count <= sizeof(rats)/sizeof(lfsr_rat_t));
int err = lfsr_file_commit(lfs, file, 0,
rats, rat_count);
if (err) {
return err;
}
}
rat_count = 0;
}
// need a hole?
if (pos > lfsr_bshrub_size(&file->o.bshrub)) {
// can we coalesce?
if (lfsr_bshrub_size(&file->o.bshrub) > 0) {
bid = lfs_min(bid, lfsr_bshrub_size(&file->o.bshrub)-1);
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_GROW, +(pos - lfsr_bshrub_size(&file->o.bshrub)),
LFSR_DATA_NULL());
// new hole
} else {
bid = lfs_min(bid, lfsr_bshrub_size(&file->o.bshrub));
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_DATA, +(pos - lfsr_bshrub_size(&file->o.bshrub)),
LFSR_DATA_NULL());
}
}
// try to carve any existing data
lfsr_rat_t right_rat_ = {.tag=0};
while (pos < lfsr_bshrub_size(&file->o.bshrub)) {
lfsr_tag_t tag_;
lfsr_bid_t weight_;
lfsr_bptr_t bptr_;
int err = lfsr_file_lookupnext(lfs, file, pos,
&bid, &tag_, &weight_, &bptr_);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)
&& tag_ == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr_);
if (err) {
return err;
}
}
#endif
// note, an entry can be both a left and right sibling
lfsr_data_t left_slice_ = LFSR_DATA_SLICE(bptr_.data,
-1,
pos - (bid-(weight_-1)));
lfsr_data_t right_slice_ = LFSR_DATA_SLICE(bptr_.data,
pos+weight - (bid-(weight_-1)),
-1);
// left sibling needs carving but falls underneath our
// crystallization threshold? break into fragments
while (tag_ == LFSR_TAG_BLOCK
&& lfsr_data_size(left_slice_) > lfs->cfg->fragment_size
&& lfsr_data_size(left_slice_) < lfs->cfg->crystal_thresh) {
bptr_.data = LFSR_DATA_SLICE(bptr_.data,
lfs->cfg->fragment_size,
-1);
err = lfsr_file_commit(lfs, file, bid, LFSR_RATS(
LFSR_RAT_CAT(
LFSR_TAG_GROW | LFSR_TAG_SUB | LFSR_TAG_DATA,
-(weight_ - lfs->cfg->fragment_size),
LFSR_DATA_TRUNCATE(left_slice_,
lfs->cfg->fragment_size)),
LFSR_RAT(
LFSR_TAG_BLOCK,
+(weight_ - lfs->cfg->fragment_size),
LFSR_DATA_BPTR(&bptr_, left.buf))));
if (err) {
return err;
}
weight_ -= lfs->cfg->fragment_size;
left_slice_ = LFSR_DATA_SLICE(bptr_.data,
-1,
pos - (bid-(weight_-1)));
}
// right sibling needs carving but falls underneath our
// crystallization threshold? break into fragments
while (tag_ == LFSR_TAG_BLOCK
&& lfsr_data_size(right_slice_) > lfs->cfg->fragment_size
&& lfsr_data_size(right_slice_) < lfs->cfg->crystal_thresh) {
bptr_.data = LFSR_DATA_SLICE(bptr_.data,
-1,
lfsr_data_size(bptr_.data) - lfs->cfg->fragment_size);
err = lfsr_file_commit(lfs, file, bid, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_GROW | LFSR_TAG_SUB | LFSR_TAG_BLOCK,
-(weight_ - lfsr_data_size(bptr_.data)),
LFSR_DATA_BPTR(&bptr_, right.buf)),
LFSR_RAT_CAT(
LFSR_TAG_DATA,
+(weight_ - lfsr_data_size(bptr_.data)),
LFSR_DATA_FRUNCATE(right_slice_,
lfs->cfg->fragment_size))));
if (err) {
return err;
}
bid -= (weight_-lfsr_data_size(bptr_.data));
weight_ -= (weight_-lfsr_data_size(bptr_.data));
right_slice_ = LFSR_DATA_SLICE(bptr_.data,
pos+weight - (bid-(weight_-1)),
-1);
}
// found left sibling?
if (bid-(weight_-1) < pos) {
// can we get away with a grow attribute?
if (lfsr_data_size(bptr_.data) == lfsr_data_size(left_slice_)) {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_GROW, -(bid+1 - pos), LFSR_DATA_NULL());
// carve fragment?
} else if (tag_ == LFSR_TAG_DATA) {
left.data = left_slice_;
rats[rat_count++] = LFSR_RAT_CAT_(
LFSR_TAG_GROW | LFSR_TAG_SUB | LFSR_TAG_DATA,
-(bid+1 - pos),
&left.data, 1);
// carve bptr?
} else if (tag_ == LFSR_TAG_BLOCK) {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_GROW | LFSR_TAG_SUB | LFSR_TAG_BLOCK,
-(bid+1 - pos),
LFSR_DATA_BPTR(
LFS_IFDEF_CKDATACKSUMS(
(&(lfsr_bptr_t){
.data=left_slice_}),
(&(lfsr_bptr_t){
.data=left_slice_,
.cksize=bptr_.cksize,
.cksum=bptr_.cksum})),
left.buf));
} else {
LFS_UNREACHABLE();
}
// completely overwriting this entry?
} else {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_RM, -weight_, LFSR_DATA_NULL());
}
// spans more than one entry? we can't do everything in one commit,
// so commit what we have and move on to next entry
if (pos+weight > bid+1) {
LFS_ASSERT(lfsr_data_size(right_slice_) == 0);
LFS_ASSERT(rat_count <= sizeof(rats)/sizeof(lfsr_rat_t));
err = lfsr_file_commit(lfs, file, bid,
rats, rat_count);
if (err) {
return err;
}
rat.weight += lfs_min(weight, bid+1 - pos);
weight -= lfs_min(weight, bid+1 - pos);
rat_count = 0;
continue;
}
// found right sibling?
if (pos+weight < bid+1) {
// can we coalesce a hole?
if (lfsr_data_size(right_slice_) == 0) {
rat.weight += bid+1 - (pos+weight);
// carve fragment?
} else if (tag_ == LFSR_TAG_DATA) {
right.data = right_slice_;
right_rat_ = LFSR_RAT_CAT_(
tag_,
bid+1 - (pos+weight),
&right.data, 1);
// carve bptr?
} else if (tag_ == LFSR_TAG_BLOCK) {
right_rat_ = LFSR_RAT(
tag_,
bid+1 - (pos+weight),
LFSR_DATA_BPTR(
LFS_IFDEF_CKDATACKSUMS(
(&(lfsr_bptr_t){
.data=right_slice_}),
(&(lfsr_bptr_t){
.data=right_slice_,
.cksize=bptr_.cksize,
.cksum=bptr_.cksum})),
right.buf));
} else {
LFS_UNREACHABLE();
}
}
rat.weight += lfs_min(weight, bid+1 - pos);
weight -= lfs_min(weight, bid+1 - pos);
break;
}
// append our data
if (weight + rat.weight > 0) {
// can we coalesce a hole?
if (lfsr_rat_size(rat) == 0 && pos > 0) {
bid = lfs_min(bid, lfsr_bshrub_size(&file->o.bshrub)-1);
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_GROW, +(weight + rat.weight),
LFSR_DATA_NULL());
// need a new hole?
} else if (lfsr_rat_size(rat) == 0) {
bid = lfs_min(bid, lfsr_bshrub_size(&file->o.bshrub));
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_DATA, +(weight + rat.weight),
LFSR_DATA_NULL());
// append new fragment/bptr?
} else {
bid = lfs_min(bid, lfsr_bshrub_size(&file->o.bshrub));
rats[rat_count++] = LFSR_RAT_(
rat.tag, +(weight + rat.weight),
rat.cat, rat.count);
}
}
// and don't forget the right sibling
if (right_rat_.tag) {
rats[rat_count++] = right_rat_;
}
// commit pending rats
if (rat_count > 0) {
LFS_ASSERT(rat_count <= sizeof(rats)/sizeof(lfsr_rat_t));
int err = lfsr_file_commit(lfs, file, bid,
rats, rat_count);
if (err) {
return err;
}
}
return 0;
}
static int lfsr_file_flush_(lfs_t *lfs, lfsr_file_t *file,
lfs_off_t pos, const uint8_t *buffer, lfs_size_t size) {
// we can skip some btree lookups if we know we are aligned from a
// previous iteration, we already do way too many btree lookups
bool aligned = false;
// iteratively write blocks
while (size > 0) {
// first we need to figure out our current crystal, we do this
// heuristically.
//
// note that we may end up including holes in our crystal, but this
// is fine. we don't want small holes breaking up blocks anyways
// default to arbitrary alignment
lfs_off_t crystal_start = pos;
lfs_off_t crystal_end = pos + size;
lfs_off_t block_start;
lfsr_bptr_t bptr;
// within our tree? find left crystal neighbor
if (pos > 0
&& lfs->cfg->crystal_thresh > 0
&& (lfs_soff_t)(pos - (lfs->cfg->crystal_thresh-1))
< (lfs_soff_t)lfsr_bshrub_size(&file->o.bshrub)
&& lfsr_bshrub_size(&file->o.bshrub) > 0
// don't bother to lookup left after the first block
&& !aligned) {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
int err = lfsr_file_lookupnext(lfs, file,
lfs_smax(pos - (lfs->cfg->crystal_thresh-1), 0),
&bid, &tag, &weight, &bptr);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// if left crystal neighbor is a fragment and there is no
// obvious hole between our own crystal and our neighbor,
// include as a part of our crystal
if (tag == LFSR_TAG_DATA
// hole? holes can be quite large and shouldn't trigger
// crystallization
&& (lfs_soff_t)(bid-(weight-1)+lfsr_data_size(bptr.data))
>= (lfs_soff_t)(pos - (lfs->cfg->crystal_thresh-1))) {
crystal_start = bid-(weight-1);
// otherwise our neighbor determines our crystal boundary
} else {
crystal_start = lfs_min(bid+1, pos);
// wait, found erased-state?
if (tag == LFSR_TAG_BLOCK
&& bptr.data.u.disk.block == file->eblock
&& bptr.data.u.disk.off + lfsr_data_size(bptr.data)
== file->eoff
// not clobbering data?
&& crystal_start - (bid-(weight-1))
>= lfsr_data_size(bptr.data)
// enough for prog alignment?
&& crystal_end - crystal_start
>= lfs->cfg->prog_size) {
// mark as unerased in case of failure
file->eblock = 0;
file->eoff = -1;
// try to use erased-state
block_start = bid-(weight-1);
goto compact;
}
}
}
// if we haven't already exceeded our crystallization threshold,
// find right crystal neighbor
if (crystal_end - crystal_start < lfs->cfg->crystal_thresh
&& lfsr_bshrub_size(&file->o.bshrub) > 0) {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
int err = lfsr_file_lookupnext(lfs, file,
lfs_min(
crystal_start + (lfs->cfg->crystal_thresh-1),
lfsr_bshrub_size(&file->o.bshrub)-1),
&bid, &tag, &weight, &bptr);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// if right crystal neighbor is a fragment, include as a part
// of our crystal
if (tag == LFSR_TAG_DATA) {
crystal_end = lfs_max(
bid-(weight-1)+lfsr_data_size(bptr.data),
pos + size);
// otherwise treat as crystal boundary
} else {
crystal_end = lfs_max(
bid-(weight-1),
pos + size);
}
}
// below our crystallization threshold? fallback to writing fragments
if (crystal_end - crystal_start < lfs->cfg->crystal_thresh
// enough for prog alignment?
|| crystal_end - crystal_start < lfs->cfg->prog_size) {
goto fragment;
}
// exceeded our crystallization threshold? compact into a new block
// before we can compact we need to figure out the best block
// alignment, we use the entry immediately to the left of our
// crystal for this
block_start = crystal_start;
if (crystal_start > 0
&& lfsr_bshrub_size(&file->o.bshrub) > 0
// don't bother to lookup left after the first block
&& !aligned) {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
int err = lfsr_file_lookupnext(lfs, file,
lfs_min(
crystal_start-1,
lfsr_bshrub_size(&file->o.bshrub)-1),
&bid, &tag, &weight, &bptr);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// is our left neighbor in the same block?
if (crystal_start - (bid-(weight-1))
< lfs->cfg->block_size
&& lfsr_data_size(bptr.data) > 0) {
block_start = bid-(weight-1);
// wait, found erased-state?
if (tag == LFSR_TAG_BLOCK
&& bptr.data.u.disk.block == file->eblock
&& bptr.data.u.disk.off + lfsr_data_size(bptr.data)
== file->eoff
// not clobbering data?
&& crystal_start - (bid-(weight-1))
>= lfsr_data_size(bptr.data)) {
// mark as unerased in case of failure
file->eblock = 0;
file->eoff = -1;
// try to use erased-state
goto compact;
}
// no? is our left neighbor at least our left block neighbor?
// align to block alignment
} else if (crystal_start - (bid-(weight-1))
< 2*lfs->cfg->block_size
&& lfsr_data_size(bptr.data) > 0) {
block_start = bid-(weight-1) + lfs->cfg->block_size;
}
}
relocate:;
// allocate a new block
//
// note if we relocate, we rewrite the entire block from block_start
// using what we can find in our tree
lfs_sblock_t block = lfs_alloc(lfs, true);
if (block < 0) {
return block;
}
bptr.data = LFSR_DATA_DISKCKSUM(block, 0, 0, 0, 0);
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksize,
bptr.cksize) = 0;
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksum,
bptr.cksum) = 0;
compact:;
// compact data into our block
//
// eagerly merge any right neighbors we see unless that would
// put us over our block size
lfs_off_t pos_ = block_start + lfsr_data_size(bptr.data);
while (pos_ < lfs_min(
block_start
+ (lfs->cfg->block_size - bptr.data.u.disk.off),
lfs_max(
pos + size,
lfsr_bshrub_size(&file->o.bshrub)))) {
// keep track of the next highest priority data offset
lfs_ssize_t d = lfs_min(
block_start
+ (lfs->cfg->block_size - bptr.data.u.disk.off),
lfs_max(
pos + size,
lfsr_bshrub_size(&file->o.bshrub))) - pos_;
// any data in our buffer?
if (pos_ < pos + size && size > 0) {
if (pos_ >= pos) {
lfs_ssize_t d_ = lfs_min(
d,
size - (pos_ - pos));
int err = lfsr_bd_prog(lfs, bptr.data.u.disk.block,
lfsr_bptr_cksize(&bptr),
&buffer[pos_ - pos], d_,
LFS_IFDEF_CKDATACKSUMS(
&bptr.data.u.disk.cksum,
&bptr.cksum), true);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
pos_ += d_;
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksize,
bptr.cksize) += d_;
d -= d_;
}
// buffered data takes priority
d = lfs_min(d, pos - pos_);
}
// any data on disk?
if (pos_ < lfsr_bshrub_size(&file->o.bshrub)) {
lfsr_bid_t bid_;
lfsr_tag_t tag_;
lfsr_bid_t weight_;
lfsr_bptr_t bptr_;
int err = lfsr_file_lookupnext(lfs, file, pos_,
&bid_, &tag_, &weight_, &bptr_);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)
&& tag_ == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr_);
if (err) {
return err;
}
}
#endif
// make sure to include all of our crystal, or else this
// loop may never terminate
if (bid_-(weight_-1) >= crystal_end
// is this data a pure hole? stop early to better
// leverage erased-state in sparse files
&& (pos_ >= bid_-(weight_-1)
+ lfsr_data_size(bptr_.data)
// does this data exceed our block_size?
// stop early to try to avoid messing up
// block alignment
|| bid_-(weight_-1) + lfsr_data_size(bptr_.data)
- block_start
> lfs->cfg->block_size)) {
break;
}
if (pos_ < bid_-(weight_-1) + lfsr_data_size(bptr_.data)) {
// note one important side-effect here is a strict
// data hint
lfs_ssize_t d_ = lfs_min(
d,
lfsr_data_size(bptr_.data)
- (pos_ - (bid_-(weight_-1))));
err = lfsr_bd_progdata(lfs, bptr.data.u.disk.block,
lfsr_bptr_cksize(&bptr),
LFSR_DATA_SLICE(bptr_.data,
pos_ - (bid_-(weight_-1)),
d_),
LFS_IFDEF_CKDATACKSUMS(
&bptr.data.u.disk.cksum,
&bptr.cksum), true);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
pos_ += d_;
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksize,
bptr.cksize) += d_;
d -= d_;
}
// found a hole? just make sure next leaf takes priority
d = lfs_min(d, bid_+1 - pos_);
}
// found a hole? fill with zeros
int err = lfsr_bd_set(lfs,
bptr.data.u.disk.block, lfsr_bptr_cksize(&bptr),
0, d,
LFS_IFDEF_CKDATACKSUMS(
&bptr.data.u.disk.cksum,
&bptr.cksum), true);
if (err) {
LFS_ASSERT(err != LFS_ERR_RANGE);
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
pos_ += d;
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksize,
bptr.cksize) += d;
}
// A bit of a hack here, we need to truncate our block to prog_size
// alignment to avoid padding issues. Doing this retroactively to
// the pcache greatly simplifies the above loop, though we may end
// up reading more than is strictly necessary.
lfs_ssize_t d = lfsr_bptr_cksize(&bptr) % lfs->cfg->prog_size;
lfs->pcache.size -= d;
LFS_IFDEF_CKDATACKSUMS(
bptr.data.u.disk.cksize,
bptr.cksize) -= d;
// finalize our write
int err = lfsr_bd_flush(lfs,
LFS_IFDEF_CKDATACKSUMS(
&bptr.data.u.disk.cksum,
&bptr.cksum), true);
if (err) {
// bad prog? try another block
if (err == LFS_ERR_CORRUPT) {
goto relocate;
}
return err;
}
// prepare our block pointer
LFS_ASSERT(lfsr_bptr_cksize(&bptr) > 0);
LFS_ASSERT(lfsr_bptr_cksize(&bptr) <= lfs->cfg->block_size);
bptr.data = LFSR_DATA_DISKCKSUM(
bptr.data.u.disk.block,
bptr.data.u.disk.off,
lfsr_bptr_cksize(&bptr) - bptr.data.u.disk.off,
lfsr_bptr_cksize(&bptr),
lfsr_bptr_cksum(&bptr));
lfs_off_t block_end = block_start + lfsr_data_size(bptr.data);
// and write it into our tree
uint8_t bptr_buf[LFSR_BPTR_DSIZE];
err = lfsr_file_carve(lfs, file,
block_start, block_end - block_start,
LFSR_RAT(
LFSR_TAG_BLOCK, 0,
LFSR_DATA_BPTR(&bptr, bptr_buf)));
if (err) {
return err;
}
// keep track of any remaining erased-state
if (lfsr_bptr_cksize(&bptr) < lfs->cfg->block_size) {
file->eblock = bptr.data.u.disk.block;
file->eoff = lfsr_bptr_cksize(&bptr);
}
// note compacting fragments -> blocks may not actually make any
// progress on flushing the buffer on the first pass
d = lfs_max(pos, block_end) - pos;
pos += d;
buffer += lfs_min(d, size);
size -= lfs_min(d, size);
aligned = true;
}
fragment:;
// iteratively write fragments (inlined leaves)
while (size > 0) {
// truncate to our fragment size
lfs_off_t fragment_start = pos;
lfs_off_t fragment_end = fragment_start + lfs_min(
size,
lfs->cfg->fragment_size);
lfsr_data_t datas[3];
lfs_size_t data_count = 0;
// do we have a left sibling?
if (fragment_start > 0
&& lfsr_bshrub_size(&file->o.bshrub) >= fragment_start
// don't bother to lookup left after first fragment
&& !aligned) {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
lfsr_bptr_t bptr;
int err = lfsr_file_lookupnext(lfs, file,
fragment_start-1,
&bid, &tag, &weight, &bptr);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)
&& tag == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr);
if (err) {
return err;
}
}
#endif
// can we coalesce?
if (bid-(weight-1) + lfsr_data_size(bptr.data) >= fragment_start
&& fragment_end - (bid-(weight-1))
<= lfs->cfg->fragment_size) {
datas[data_count++] = LFSR_DATA_TRUNCATE(bptr.data,
fragment_start - (bid-(weight-1)));
fragment_start = bid-(weight-1);
fragment_end = fragment_start + lfs_min(
fragment_end - (bid-(weight-1)),
lfs->cfg->fragment_size);
}
}
// append our new data
datas[data_count++] = LFSR_DATA_BUF(
buffer,
fragment_end - pos);
// do we have a right sibling?
//
// note this may the same as our left sibling
if (fragment_end < lfsr_bshrub_size(&file->o.bshrub)
// don't bother to lookup right if fragment is already full
&& fragment_end - fragment_start < lfs->cfg->fragment_size) {
lfsr_bid_t bid;
lfsr_tag_t tag;
lfsr_bid_t weight;
lfsr_bptr_t bptr;
int err = lfsr_file_lookupnext(lfs, file,
fragment_end,
&bid, &tag, &weight, &bptr);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
#ifdef LFS_CKFETCHES
// checking fetches?
if (lfsr_m_isckfetches(lfs->flags)
&& tag == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr);
if (err) {
return err;
}
}
#endif
// can we coalesce?
if (fragment_end < bid-(weight-1) + lfsr_data_size(bptr.data)
&& bid-(weight-1) + lfsr_data_size(bptr.data)
- fragment_start
<= lfs->cfg->fragment_size) {
datas[data_count++] = LFSR_DATA_FRUNCATE(bptr.data,
bid-(weight-1) + lfsr_data_size(bptr.data)
- fragment_end);
fragment_end = fragment_start + lfs_min(
bid-(weight-1) + lfsr_data_size(bptr.data)
- fragment_start,
lfs->cfg->fragment_size);
}
}
// make sure we didn't overflow our data buffer
LFS_ASSERT(data_count <= 3);
// once we've figured out what fragment to write, carve it into
// our tree
int err = lfsr_file_carve(lfs, file,
fragment_start, fragment_end - fragment_start,
LFSR_RAT_CAT_(
LFSR_TAG_DATA, 0,
datas, data_count));
if (err && err != LFS_ERR_RANGE) {
return err;
}
// to next fragment
lfs_ssize_t d = fragment_end - pos;
pos += d;
buffer += lfs_min(d, size);
size -= lfs_min(d, size);
aligned = true;
}
return 0;
}
// high-level file writing
lfs_ssize_t lfsr_file_write(lfs_t *lfs, lfsr_file_t *file,
const void *buffer, lfs_size_t size) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't write to readonly files
LFS_ASSERT(!lfsr_o_isrdonly(file->o.o.flags));
// size=0 is a bit special and is guaranteed to have no effects on the
// underlying file, this means no updating file pos or file size
//
// since we need to test for this, just return early
if (size == 0) {
return 0;
}
// would this write make our file larger than our file limit?
int err;
if (size > lfs->file_limit - file->pos) {
err = LFS_ERR_FBIG;
goto failed;
}
// clobber entangled traversals
lfsr_omdir_mkdirty(lfs, &file->o.o);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// mark as unsynced in case we fail
file->o.o.flags |= LFS_o_UNSYNC;
// update pos if we are appending
lfs_off_t pos = file->pos;
if (lfsr_o_isappend(file->o.o.flags)) {
pos = lfsr_file_size_(file);
}
// if we're a small file, we may need to append zeros
if (pos > lfsr_file_size_(file)
&& pos <= lfsr_file_inlinesize(lfs, file)) {
LFS_ASSERT(lfsr_o_isunflush(file->o.o.flags));
LFS_ASSERT(lfsr_file_size_(file) == file->buffer.size);
lfs_memset(&file->buffer.buffer[file->buffer.size],
0,
pos - file->buffer.size);
file->buffer.size = pos;
}
const uint8_t *buffer_ = buffer;
lfs_size_t written = 0;
while (size > 0) {
// bypass buffer?
//
// note we flush our buffer before bypassing writes, this isn't
// strictly necessary, but enforces a more intuitive write order
// and avoids weird cases with low-level write heuristics
//
if ((!lfsr_o_isunflush(file->o.o.flags)
|| file->buffer.size == 0)
&& size >= lfsr_file_buffersize(lfs, file)) {
err = lfsr_file_flush_(lfs, file,
pos, buffer_, size);
if (err) {
goto failed;
}
// after success, fill our buffer with the tail of our write
//
// note we need to clear the buffer anyways to avoid any
// out-of-date data
file->buffer.pos = pos + size - lfsr_file_buffersize(lfs, file);
lfs_memcpy(file->buffer.buffer,
&buffer_[size - lfsr_file_buffersize(lfs, file)],
lfsr_file_buffersize(lfs, file));
file->buffer.size = lfsr_file_buffersize(lfs, file);
file->o.o.flags &= ~LFS_o_UNFLUSH;
written += size;
pos += size;
buffer_ += size;
size -= size;
continue;
}
// try to fill our buffer
//
// This is a bit delicate, since our buffer contains both old and
// new data, but note:
//
// 1. We only write to yet unused buffer memory.
//
// 2. Bypassing the buffer above means we only write to the
// buffer once, and flush at most twice.
//
if ((!lfsr_o_isunflush(file->o.o.flags)
|| file->buffer.size == 0)
|| (pos >= file->buffer.pos
&& pos <= file->buffer.pos + file->buffer.size
&& pos
< file->buffer.pos
+ lfsr_file_buffersize(lfs, file))) {
// unused buffer? we can move it where we need it
if ((!lfsr_o_isunflush(file->o.o.flags)
|| file->buffer.size == 0)) {
file->buffer.pos = pos;
file->buffer.size = 0;
}
lfs_size_t d = lfs_min(
size,
lfsr_file_buffersize(lfs, file)
- (pos - file->buffer.pos));
lfs_memcpy(&file->buffer.buffer[pos - file->buffer.pos],
buffer_,
d);
file->buffer.size = lfs_max(
file->buffer.size,
pos+d - file->buffer.pos);
file->o.o.flags |= LFS_o_UNFLUSH;
written += d;
pos += d;
buffer_ += d;
size -= d;
continue;
}
// flush our buffer so the above can't fail
err = lfsr_file_flush_(lfs, file,
file->buffer.pos, file->buffer.buffer, file->buffer.size);
if (err) {
goto failed;
}
file->o.o.flags &= ~LFS_o_UNFLUSH;
}
// update our pos
file->pos = pos;
// flush if requested
//
// this seems unreachable, but it's possible if we transition from
// a small file to a non-small file
if (lfsr_o_isflush(file->o.o.flags)) {
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
}
// sync if requested
if (lfsr_o_issync(file->o.o.flags)) {
err = lfsr_file_sync(lfs, file);
if (err) {
goto failed;
}
}
return written;
failed:;
// mark as desync so lfsr_file_close doesn't write to disk
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
int lfsr_file_flush(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't write to readonly files
LFS_ASSERT(!lfsr_o_isrdonly(file->o.o.flags));
// do nothing if our file is already flushed
if (!lfsr_o_isunflush(file->o.o.flags)) {
return 0;
}
// do nothing if our file is small
//
// note this means small files remain perpetually unflushed
if (lfsr_file_size_(file) <= lfsr_file_inlinesize(lfs, file)) {
// our file must reside entirely in our buffer
LFS_ASSERT(file->buffer.pos == 0);
return 0;
}
// clobber entangled traversals
lfsr_omdir_mkdirty(lfs, &file->o.o);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// flush our buffer if it contains any unwritten data
int err;
if (lfsr_o_isunflush(file->o.o.flags)
&& file->buffer.size != 0) {
// flush
err = lfsr_file_flush_(lfs, file,
file->buffer.pos, file->buffer.buffer, file->buffer.size);
if (err) {
goto failed;
}
}
// mark as flushed
file->o.o.flags &= ~LFS_o_UNFLUSH;
return 0;
failed:;
// mark as desync so lfsr_file_close doesn't write to disk
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
int lfsr_file_sync(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't write to readonly files, if you want to resync call
// lfsr_file_resync
LFS_ASSERT(!lfsr_o_isrdonly(file->o.o.flags));
// removed? we can't sync
int err;
if (lfsr_o_iszombie(file->o.o.flags)) {
err = LFS_ERR_NOENT;
goto failed;
}
// first flush any data in our buffer, this is a noop if already
// flushed
//
// note that flush does not change the actual file data, so if
// flush succeeds but mdir commit fails it's ok to fall back to
// our flushed state
//
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
// note because of small-file caching and our current write
// strategy, we never actually end up with only a direct data
// or bptr
//
// this is convenient because bptrs are a bit annoying to commit
LFS_ASSERT(!lfsr_bshrub_isbmoss(&file->o.o.mdir, &file->o.bshrub));
LFS_ASSERT(!lfsr_bshrub_isbptr(&file->o.o.mdir, &file->o.bshrub));
// small files should start as zero, const prop should optimize this out
LFS_ASSERT(!lfsr_o_isunflush(file->o.o.flags)
|| file->buffer.pos == 0);
// small files/btree should be exclusive here
LFS_ASSERT(!lfsr_o_isunflush(file->o.o.flags)
|| lfsr_bshrub_size(&file->o.bshrub) == 0);
// small files must be inlined entirely in our buffer
LFS_ASSERT(!lfsr_o_isunflush(file->o.o.flags)
|| file->buffer.size <= lfsr_file_inlinesize(lfs, file));
// uncreated files must be unsynced
LFS_ASSERT(!lfsr_o_isuncreat(file->o.o.flags)
|| lfsr_o_isunsync(file->o.o.flags));
// build a commit of any pending file metadata
lfsr_rat_t rats[3];
lfs_size_t rat_count = 0;
lfsr_data_t name_data;
uint8_t buf[LFSR_BTREE_DSIZE];
// not created yet? need to convert to normal file
if (lfsr_o_isuncreat(file->o.o.flags)) {
err = lfsr_mdir_lookup(lfs, &file->o.o.mdir, LFSR_TAG_STICKYNOTE,
&name_data);
if (err) {
// orphan flag but no stickynote tag?
LFS_ASSERT(err != LFS_ERR_NOENT);
goto failed;
}
rats[rat_count++] = LFSR_RAT_CAT_(
LFSR_TAG_SUB | LFSR_TAG_REG, 0,
&name_data, 1);
}
// pending file changes?
if (lfsr_o_isunsync(file->o.o.flags)) {
// make sure data is on-disk before committing metadata
err = lfsr_bd_sync(lfs);
if (err) {
goto failed;
}
// null? no rat?
if (lfsr_o_isunflush(file->o.o.flags) && file->buffer.size == 0) {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_RM | LFSR_TAG_SUB | LFSR_TAG_STRUCT, 0,
LFSR_DATA_NULL());
// small file inlined in mdir?
} else if (lfsr_o_isunflush(file->o.o.flags)) {
rats[rat_count++] = LFSR_RAT_CAT_(
LFSR_TAG_SUB | LFSR_TAG_DATA, 0,
(const lfsr_data_t*)&file->buffer, 1);
// bshrub?
} else if (lfsr_bshrub_isbshrub(&file->o.o.mdir, &file->o.bshrub)) {
rats[rat_count++] = LFSR_RAT_SHRUBTRUNK(
LFSR_TAG_SUB | LFSR_TAG_SHRUBTRUNK, 0,
&file->o.bshrub.u.bshrub);
// btree?
} else if (lfsr_bshrub_isbtree(&file->o.o.mdir, &file->o.bshrub)) {
rats[rat_count++] = LFSR_RAT(
LFSR_TAG_SUB | LFSR_TAG_BTREE, 0,
LFSR_DATA_BTREE(&file->o.bshrub.u.btree, buf));
} else {
LFS_UNREACHABLE();
}
}
// pending custom attributes?
//
// this gets real messy, since users can change custom attributes
// whenever they want without informing littlefs, the best we can do
// is read from disk to manually check if any attributes changed
bool attrs = lfsr_o_isunsync(file->o.o.flags);
if (!attrs) {
for (lfs_size_t i = 0; i < file->cfg->attr_count; i++) {
// skip readonly attrs and lazy attrs
if (lfsr_o_isrdonly(file->cfg->attrs[i].flags)
|| lfsr_a_islazy(file->cfg->attrs[i].flags)) {
continue;
}
// lookup the attr
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, &file->o.o.mdir,
LFSR_TAG_ATTR(file->cfg->attrs[i].type),
&data);
if (err && err != LFS_ERR_NOENT) {
goto failed;
}
// does disk match our attr?
lfs_scmp_t cmp = lfsr_attr_cmp(lfs, &file->cfg->attrs[i],
(err != LFS_ERR_NOENT) ? &data : NULL);
if (cmp < 0) {
err = cmp;
goto failed;
}
if (cmp != LFS_CMP_EQ) {
attrs = true;
break;
}
}
}
if (attrs) {
// need to append custom attributes
rats[rat_count++] = LFSR_RAT_ATTRS(
LFSR_TAG_ATTRS, 0,
file->cfg->attrs, file->cfg->attr_count);
}
// pending metadata? looks like we need to write to disk
if (rat_count > 0) {
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// commit!
LFS_ASSERT(rat_count <= sizeof(rats)/sizeof(lfsr_rat_t));
err = lfsr_mdir_commit(lfs, &file->o.o.mdir,
rats, rat_count);
if (err) {
goto failed;
}
}
// update in-device state
for (lfsr_omdir_t *o = lfs->omdirs; o; o = o->next) {
if (lfsr_o_type(o->flags) == LFS_TYPE_REG
&& o->mdir.mid == file->o.o.mdir.mid
// don't double update
&& o != &file->o.o) {
lfsr_file_t *file_ = (lfsr_file_t*)o;
// notify all files of creation
file_->o.o.flags &= ~LFS_o_UNCREAT;
// mark desynced files an unsynced
if (lfsr_o_isdesync(file_->o.o.flags)) {
file_->o.o.flags |= LFS_o_UNSYNC;
// update synced files
} else {
file_->o.o.flags &= ~LFS_o_UNSYNC;
if (lfsr_o_isunflush(file->o.o.flags)) {
file_->o.o.flags |= LFS_o_UNFLUSH;
} else {
file_->o.o.flags &= ~LFS_o_UNFLUSH;
}
file_->o.bshrub = file->o.bshrub;
file_->buffer.pos = file->buffer.pos;
LFS_ASSERT(file->buffer.size
<= lfsr_file_buffersize(lfs, file));
lfs_memcpy(file_->buffer.buffer,
file->buffer.buffer,
file->buffer.size);
file_->buffer.size = file->buffer.size;
// update any custom attrs
for (lfs_size_t i = 0; i < file->cfg->attr_count; i++) {
if (lfsr_o_isrdonly(file->cfg->attrs[i].flags)) {
continue;
}
for (lfs_size_t j = 0; j < file_->cfg->attr_count; j++) {
if (!(file_->cfg->attrs[j].type
== file->cfg->attrs[i].type
&& !lfsr_o_iswronly(
file_->cfg->attrs[j].flags))) {
continue;
}
if (lfsr_attr_isnoattr(&file->cfg->attrs[i])) {
if (file_->cfg->attrs[j].size) {
*file_->cfg->attrs[j].size = LFS_ERR_NOATTR;
}
} else {
lfs_size_t d = lfs_min(
lfsr_attr_size(&file->cfg->attrs[i]),
file_->cfg->attrs[j].buffer_size);
memcpy(file_->cfg->attrs[j].buffer,
file->cfg->attrs[i].buffer,
d);
if (file_->cfg->attrs[j].size) {
*file_->cfg->attrs[j].size = d;
}
}
}
}
}
// clobber entangled traversals
} else if (lfsr_o_type(o->flags) == LFS_TYPE_TRAVERSAL
&& o->mdir.mid == file->o.o.mdir.mid) {
lfsr_traversal_clobber(lfs, (lfsr_traversal_t*)o);
}
}
// mark as synced
file->o.o.flags &= ~(LFS_o_UNSYNC | LFS_o_UNCREAT | LFS_O_DESYNC);
return 0;
failed:;
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
int lfsr_file_desync(lfs_t *lfs, lfsr_file_t *file) {
(void)lfs;
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// mark as desynced
file->o.o.flags |= LFS_O_DESYNC;
return 0;
}
int lfsr_file_resync(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// removed? we can't resync
int err;
if (lfsr_o_iszombie(file->o.o.flags)) {
err = LFS_ERR_NOENT;
goto failed;
}
// do nothing if already in-sync
if (lfsr_o_isunsync(file->o.o.flags)) {
// refetch the file struct from disk
err = lfsr_file_fetch(lfs, file, false);
if (err) {
goto failed;
}
}
// mark as resynced
file->o.o.flags &= ~LFS_O_DESYNC;
return 0;
failed:;
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
// other file operations
lfs_soff_t lfsr_file_seek(lfs_t *lfs, lfsr_file_t *file,
lfs_soff_t off, uint8_t whence) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// TODO check for out-of-range?
// figure out our new file position
lfs_off_t pos_;
if (whence == LFS_SEEK_SET) {
pos_ = off;
} else if (whence == LFS_SEEK_CUR) {
pos_ = file->pos + off;
} else if (whence == LFS_SEEK_END) {
pos_ = lfsr_file_size_(file) + off;
} else {
LFS_UNREACHABLE();
}
// out of range?
if (pos_ > lfs->file_limit) {
return LFS_ERR_INVAL;
}
// update file position
file->pos = pos_;
return pos_;
}
lfs_soff_t lfsr_file_tell(lfs_t *lfs, lfsr_file_t *file) {
(void)lfs;
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
return file->pos;
}
lfs_soff_t lfsr_file_rewind(lfs_t *lfs, lfsr_file_t *file) {
(void)lfs;
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
file->pos = 0;
return 0;
}
lfs_soff_t lfsr_file_size(lfs_t *lfs, lfsr_file_t *file) {
(void)lfs;
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
return lfsr_file_size_(file);
}
int lfsr_file_truncate(lfs_t *lfs, lfsr_file_t *file, lfs_off_t size_) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't write to readonly files
LFS_ASSERT(!lfsr_o_isrdonly(file->o.o.flags));
// do nothing if our size does not change
lfs_off_t size = lfsr_file_size_(file);
if (lfsr_file_size_(file) == size_) {
return 0;
}
// exceeds our file limit?
int err;
if (size_ > lfs->file_limit) {
err = LFS_ERR_FBIG;
goto failed;
}
// clobber entangled traversals
lfsr_omdir_mkdirty(lfs, &file->o.o);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// mark as unsynced in case we fail
file->o.o.flags |= LFS_o_UNSYNC;
// does our file become small?
if (size_ <= lfsr_file_inlinesize(lfs, file)) {
// if our data is not already in our buffer we unfortunately
// need to flush so our buffer is available to hold everything
if (file->buffer.pos > 0
|| file->buffer.size < lfs_min(
size_,
lfsr_bshrub_size(&file->o.bshrub))) {
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
file->buffer.pos = 0;
file->buffer.size = 0;
lfs_ssize_t d = lfsr_file_read_(lfs, file,
0, file->buffer.buffer, size_);
if (d < 0) {
err = d;
goto failed;
}
file->buffer.pos = 0;
file->buffer.size = size_;
}
// we may need to zero some of our buffer
if (size_ > file->buffer.size) {
lfs_memset(&file->buffer.buffer[file->buffer.size],
0,
size_ - file->buffer.size);
}
// small files remain perpetually unflushed
file->o.o.flags |= LFS_o_UNFLUSH;
lfsr_bshrub_init(&file->o.bshrub);
file->buffer.pos = 0;
file->buffer.size = size_;
// truncate our file normally
} else {
// truncate our btree
err = lfsr_file_carve(lfs, file,
lfs_min(size, size_), size - lfs_min(size, size_),
LFSR_RAT(
LFSR_TAG_DATA, +size_ - size,
LFSR_DATA_NULL()));
if (err) {
goto failed;
}
// truncate our buffer
file->buffer.pos = lfs_min(file->buffer.pos, size_);
file->buffer.size = lfs_min(
file->buffer.size,
size_ - lfs_min(file->buffer.pos, size_));
}
// flush if requested
//
// this seems unreachable, but it's possible if we transition from
// a small file to a non-small file
if (lfsr_o_isflush(file->o.o.flags)) {
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
}
// sync if requested
if (lfsr_o_issync(file->o.o.flags)) {
err = lfsr_file_sync(lfs, file);
if (err) {
goto failed;
}
}
return 0;
failed:;
// mark as desync so lfsr_file_close doesn't write to disk
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
int lfsr_file_fruncate(lfs_t *lfs, lfsr_file_t *file, lfs_off_t size_) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't write to readonly files
LFS_ASSERT(!lfsr_o_isrdonly(file->o.o.flags));
// do nothing if our size does not change
lfs_off_t size = lfsr_file_size_(file);
if (size == size_) {
return 0;
}
// exceeds our file limit?
int err;
if (size_ > lfs->file_limit) {
err = LFS_ERR_FBIG;
goto failed;
}
// clobber entangled traversals
lfsr_omdir_mkdirty(lfs, &file->o.o);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// mark as unsynced in case we fail
file->o.o.flags |= LFS_o_UNSYNC;
// does our file become small?
if (size_ <= lfsr_file_inlinesize(lfs, file)) {
// if our data is not already in our buffer we unfortunately
// need to flush so our buffer is available to hold everything
if (file->buffer.pos + file->buffer.size
< lfsr_bshrub_size(&file->o.bshrub)
|| file->buffer.size < lfs_min(
size_,
lfsr_bshrub_size(&file->o.bshrub))) {
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
file->buffer.pos = 0;
file->buffer.size = 0;
lfs_ssize_t d = lfsr_file_read_(lfs, file,
lfsr_bshrub_size(&file->o.bshrub) - lfs_min(
size_,
lfsr_bshrub_size(&file->o.bshrub)),
file->buffer.buffer, size_);
if (d < 0) {
err = d;
goto failed;
}
file->buffer.pos = 0;
file->buffer.size = size_;
}
// we may need to move the data in our buffer
if (file->buffer.size > size_) {
lfs_memmove(file->buffer.buffer,
&file->buffer.buffer[file->buffer.size - size_],
file->buffer.size);
}
// we may need to zero some of our buffer
if (size_ > file->buffer.size) {
lfs_memmove(&file->buffer.buffer[size_ - file->buffer.size],
file->buffer.buffer,
file->buffer.size);
lfs_memset(file->buffer.buffer,
0,
size_ - file->buffer.size);
}
// small files remain perpetually unflushed
file->o.o.flags |= LFS_o_UNFLUSH;
lfsr_bshrub_init(&file->o.bshrub);
file->buffer.pos = 0;
file->buffer.size = size_;
// fruncate our file normally
} else {
// fruncate our btree
err = lfsr_file_carve(lfs, file,
0, lfs_smax(size - size_, 0),
LFSR_RAT(
LFSR_TAG_DATA, +size_ - size,
LFSR_DATA_NULL()));
if (err) {
goto failed;
}
// fruncate our buffer
lfs_memmove(file->buffer.buffer,
&file->buffer.buffer[lfs_min(
lfs_smax(
size - size_ - file->buffer.pos,
0),
file->buffer.size)],
file->buffer.size - lfs_min(
lfs_smax(
size - size_ - file->buffer.pos,
0),
file->buffer.size));
file->buffer.size -= lfs_min(
lfs_smax(
size - size_ - file->buffer.pos,
0),
file->buffer.size);
file->buffer.pos -= lfs_smin(
size - size_,
file->buffer.pos);
}
// flush if requested
//
// this seems unreachable, but it's possible if we transition from
// a small file to a non-small file
if (lfsr_o_isflush(file->o.o.flags)) {
err = lfsr_file_flush(lfs, file);
if (err) {
goto failed;
}
}
// sync if requested
if (lfsr_o_issync(file->o.o.flags)) {
err = lfsr_file_sync(lfs, file);
if (err) {
goto failed;
}
}
return 0;
failed:;
// mark as desync so lfsr_file_close doesn't write to disk
file->o.o.flags |= LFS_O_DESYNC;
return err;
}
// file check functions
static int lfsr_file_traverse(lfs_t *lfs, const lfsr_file_t *file,
lfsr_btraversal_t *bt,
lfsr_bid_t *bid_, lfsr_tag_t *tag_, lfsr_bptr_t *bptr_) {
return lfsr_bshrub_traverse(lfs,
&file->o.o.mdir, &file->o.bshrub, bt,
bid_, tag_, bptr_);
}
static int lfsr_file_ck(lfs_t *lfs, const lfsr_file_t *file,
uint32_t flags) {
// traverse the file's btree
lfsr_btraversal_t bt;
lfsr_btraversal_init(&bt);
while (true) {
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_file_traverse(lfs, file, &bt,
NULL, &tag, &bptr);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// validate btree nodes?
if ((lfsr_t_isckmeta(flags)
|| lfsr_t_isckdata(flags))
// note ckfetches already validates btree nodes
&& LFS_IFDEF_CKFETCHES(
!lfsr_m_isckfetches(lfs->flags),
true)
&& tag == LFSR_TAG_BRANCH) {
lfsr_rbyd_t *rbyd = (lfsr_rbyd_t*)bptr.data.u.buffer;
err = lfsr_rbyd_fetchck(lfs, rbyd,
rbyd->blocks[0], rbyd->trunk,
rbyd->cksum);
if (err) {
return err;
}
}
// validate data blocks?
if (lfsr_t_isckdata(flags)
&& tag == LFSR_TAG_BLOCK) {
err = lfsr_bptr_ck(lfs, &bptr);
if (err) {
return err;
}
}
}
return 0;
}
int lfsr_file_ckmeta(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't read from writeonly files
LFS_ASSERT(!lfsr_o_iswronly(file->o.o.flags));
return lfsr_file_ck(lfs, file, LFS_T_CKMETA);
}
int lfsr_file_ckdata(lfs_t *lfs, lfsr_file_t *file) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &file->o.o));
// can't read from writeonly files
LFS_ASSERT(!lfsr_o_iswronly(file->o.o.flags));
return lfsr_file_ck(lfs, file, LFS_T_CKMETA | LFS_T_CKDATA);
}
/// High-level filesystem operations ///
// needed in lfs_init
static int lfs_deinit(lfs_t *lfs);
// initialize littlefs state, assert on bad configuration
static int lfs_init(lfs_t *lfs, uint32_t flags,
const struct lfs_config *cfg) {
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_M_RDWR
| LFS_M_RDONLY
| LFS_M_FLUSH
| LFS_M_SYNC
| LFS_IFDEF_CKPROGS(LFS_M_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_M_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_M_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_M_CKDATACKSUMS, 0))) == 0);
// TODO this all needs to be cleaned up
lfs->cfg = cfg;
int err = 0;
// validate that the lfs-cfg sizes were initiated properly before
// performing any arithmetic logics with them
LFS_ASSERT(lfs->cfg->read_size != 0);
LFS_ASSERT(lfs->cfg->prog_size != 0);
LFS_ASSERT(lfs->cfg->rcache_size != 0);
LFS_ASSERT(lfs->cfg->pcache_size != 0);
// cache sizes must be a multiple of their operation sizes
LFS_ASSERT(lfs->cfg->rcache_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->pcache_size % lfs->cfg->prog_size == 0);
// block_size must be a multiple of both prog/read size
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->read_size == 0);
LFS_ASSERT(lfs->cfg->block_size % lfs->cfg->prog_size == 0);
// block_size is currently limited to 28-bits
LFS_ASSERT(lfs->cfg->block_size <= 0x0fffffff);
// // check that the block size is large enough to fit ctz pointers
// LFS_ASSERT(4*lfs_npw2(0xffffffff / (lfs->cfg->block_size-2*4))
// <= lfs->cfg->block_size);
//
// // block_cycles = 0 is no longer supported.
// //
// // block_cycles is the number of erase cycles before littlefs evicts
// // metadata logs as a part of wear leveling. Suggested values are in the
// // range of 100-1000, or set block_cycles to -1 to disable block-level
// // wear-leveling.
// LFS_ASSERT(lfs->cfg->block_cycles != 0);
#ifdef LFS_GC
// unknown gc flags?
LFS_ASSERT((lfs->cfg->gc_flags & ~(
LFS_GC_MKCONSISTENT
| LFS_GC_LOOKAHEAD
| LFS_GC_COMPACT
| LFS_GC_CKMETA
| LFS_GC_CKDATA)) == 0);
#endif
// check that gc_compact_thresh makes sense
//
// metadata can't be compacted below block_size/2, and metadata can't
// exceed a block
LFS_ASSERT(lfs->cfg->gc_compact_thresh == 0
|| lfs->cfg->gc_compact_thresh >= lfs->cfg->block_size/2);
LFS_ASSERT(lfs->cfg->gc_compact_thresh == (lfs_size_t)-1
|| lfs->cfg->gc_compact_thresh <= lfs->cfg->block_size);
// inline_size must be <= block_size/4
LFS_ASSERT(lfs->cfg->inline_size <= lfs->cfg->block_size/4);
// shrub_size must be <= block_size/4
LFS_ASSERT(lfs->cfg->shrub_size <= lfs->cfg->block_size/4);
// fragment_size must be <= block_size/4
LFS_ASSERT(lfs->cfg->fragment_size <= lfs->cfg->block_size/4);
// setup flags
lfs->flags = flags
// assume we contain orphans until proven otherwise
| LFS_i_UNTIDY
// default to an empty lookahead
| LFS_I_LOOKAHEAD
// default to assuming we need compaction somewhere, worst case
// this just makes lfsr_gc read more than is strictly needed
| LFS_I_COMPACT
// default to needing a ckmeta/ckdata scan
| LFS_I_CKMETA
| LFS_I_CKDATA;
// copy block_count so we can mutate it
lfs->block_count = lfs->cfg->block_count;
// setup read cache
lfs->rcache.block = 0;
lfs->rcache.off = 0;
lfs->rcache.size = 0;
if (lfs->cfg->rcache_buffer) {
lfs->rcache.buffer = lfs->cfg->rcache_buffer;
} else {
lfs->rcache.buffer = lfs_malloc(lfs->cfg->rcache_size);
if (!lfs->rcache.buffer) {
err = LFS_ERR_NOMEM;
goto failed;
}
}
// setup program cache
lfs->pcache.block = 0;
lfs->pcache.off = 0;
lfs->pcache.size = 0;
if (lfs->cfg->pcache_buffer) {
lfs->pcache.buffer = lfs->cfg->pcache_buffer;
} else {
lfs->pcache.buffer = lfs_malloc(lfs->cfg->pcache_size);
if (!lfs->pcache.buffer) {
err = LFS_ERR_NOMEM;
goto failed;
}
}
#ifdef LFS_CKPARITY
// setup tailp, nothing should actually check off=0
lfs->tailp.block = 0;
lfs->tailp.off = 0;
#endif
// setup lookahead buffer, note mount finishes initializing this after
// we establish a decent pseudo-random seed
LFS_ASSERT(lfs->cfg->lookahead_size > 0);
if (lfs->cfg->lookahead_buffer) {
lfs->lookahead.buffer = lfs->cfg->lookahead_buffer;
} else {
lfs->lookahead.buffer = lfs_malloc(lfs->cfg->lookahead_size);
if (!lfs->lookahead.buffer) {
err = LFS_ERR_NOMEM;
goto failed;
}
}
lfs->lookahead.window = 0;
lfs->lookahead.off = 0;
lfs->lookahead.size = 0;
lfs->lookahead.ckpoint = 0;
lfs_alloc_discard(lfs);
// check that the size limits are sane
LFS_ASSERT(lfs->cfg->name_limit <= LFS_NAME_MAX);
lfs->name_limit = lfs->cfg->name_limit;
if (!lfs->name_limit) {
lfs->name_limit = LFS_NAME_MAX;
}
LFS_ASSERT(lfs->cfg->file_limit <= LFS_FILE_MAX);
lfs->file_limit = lfs->cfg->file_limit;
if (!lfs->file_limit) {
lfs->file_limit = LFS_FILE_MAX;
}
// setup default state
lfs->seed = 0;
// lfs->root[0] = LFS_BLOCK_NULL;
// lfs->root[1] = LFS_BLOCK_NULL;
// lfs->mlist = NULL;
// lfs->gdisk = (lfs_gstate_t){0};
// lfs->gstate = (lfs_gstate_t){0};
// lfs->gdelta = (lfs_gstate_t){0};
//#ifdef LFS_MIGRATE
// lfs->lfs1 = NULL;
//#endif
// TODO do we need to recalculate these after mount?
// find the number of bits to use for recycle counters
//
// Add 1, to include the initial erase, multiply by 2, since we
// alternate which metadata block we erase each compaction, and limit
// to 28-bits so we always have some bits to determine the most recent
// revision.
if (lfs->cfg->block_recycles != -1) {
lfs->recycle_bits = lfs_min(
lfs_nlog2(2*(lfs->cfg->block_recycles+1)+1)-1,
28);
} else {
lfs->recycle_bits = -1;
}
// calculate the upper-bound cost of a single rbyd attr after compaction
//
// Note that with rebalancing during compaction, we know the number
// of inner nodes is roughly the same as the number of tags. Unfortunately,
// our inner node encoding is rather poor, requiring 2 alts and terminating
// with a 4-byte null tag:
//
// a_0 = 3t + 4
//
// If we could build each trunk perfectly, we could get this down to only
// 1 alt per tag. But this would require unbounded RAM:
//
// a_inf = 2t
//
// Or, if you build a bounded number of layers perfectly:
//
// 2t 3t + 4
// a_1 = -- + ------
// 2 2
//
// a_n = 2t*(1-2^-n) + (3t + 4)*2^-n
//
// But this would be a tradeoff in code complexity.
//
// The worst-case tag encoding, t, depends on our size-limit and
// block-size. The weight can never exceed size-limit, and the size/jump
// field can never exceed a single block:
//
// t = 2 + log128(file_limit+1) + log128(block_size)
//
// Note this is different from LFSR_TAG_DSIZE, which is the worst case
// tag encoding at compile-time.
//
uint8_t tag_estimate
= 2
+ (lfs_nlog2(lfs->file_limit+1)+7-1)/7
+ (lfs_nlog2(lfs->cfg->block_size)+7-1)/7;
LFS_ASSERT(tag_estimate <= LFSR_TAG_DSIZE);
lfs->rat_estimate = 3*tag_estimate + 4;
// calculate the number of bits we need to reserve for mdir rids
//
// Worst case (or best case?) each metadata entry is a single tag. In
// theory each entry also needs a name, but with power-of-two rounding,
// this is negligible
//
// Assuming a _perfect_ compaction algorithm (requires unbounded RAM),
// each tag also needs ~1 alt, this gives us:
//
// block_size block_size
// m = ---------- = ----------
// a_inf 2t
//
// Assuming t=4 bytes, the minimum tag encoding:
//
// block_size block_size
// m = ---------- = ----------
// 2*4 8
//
// Note we can't assume ~1/2 block utilization here, as an mdir may
// temporarily fill with more mids before compaction occurs.
//
// Note note our actual compaction algorithm is not perfect, and
// requires 3t+4 bytes per tag, or with t=4 bytes => ~block_size/12
// metadata entries per block. But we intentionally don't leverage this
// to maintain compatibility with a theoretical perfect implementation.
//
lfs->mdir_bits = lfs_nlog2(lfs->cfg->block_size/8);
// zero linked-list of opened mdirs
lfs->omdirs = NULL;
// zero gstate
lfs_memset(lfs->grm_p, 0, LFSR_GRM_DSIZE);
lfs_memset(lfs->grm_d, 0, LFSR_GRM_DSIZE);
return 0;
failed:;
lfs_deinit(lfs);
return err;
}
static int lfs_deinit(lfs_t *lfs) {
// free allocated memory
if (!lfs->cfg->rcache_buffer) {
lfs_free(lfs->rcache.buffer);
}
if (!lfs->cfg->pcache_buffer) {
lfs_free(lfs->pcache.buffer);
}
if (!lfs->cfg->lookahead_buffer) {
lfs_free(lfs->lookahead.buffer);
}
return 0;
}
/// Mount/unmount ///
// compatibility flags
//
// - RCOMPAT => Must understand to read the filesystem
// - WCOMPAT => Must understand to write to the filesystem
// - OCOMPAT => Don't need to understand, we don't really use these
//
// note, "understanding" does not necessarily mean support
//
enum lfsr_rcompat {
LFSR_RCOMPAT_NONSTANDARD = 0x0001, // Non-standard filesystem format
LFSR_RCOMPAT_WRONLY = 0x0002, // Reading is disallowed
LFSR_RCOMPAT_GRM = 0x0004, // May use a global-remove
LFSR_RCOMPAT_MMOSS = 0x0010, // May use an inlined mdir
LFSR_RCOMPAT_MSPROUT = 0x0020, // May use a single mdir pointer
LFSR_RCOMPAT_MSHRUB = 0x0040, // May use an inlined mtree
LFSR_RCOMPAT_MTREE = 0x0080, // May use an mtree
LFSR_RCOMPAT_BMOSS = 0x0100, // Files may use inlined data
LFSR_RCOMPAT_BSPROUT = 0x0200, // Files may use single block pointers
LFSR_RCOMPAT_BSHRUB = 0x0400, // Files may use inlined btrees
LFSR_RCOMPAT_BTREE = 0x0800, // Files may use btrees
// internal
LFSR_rcompat_OVERFLOW = 0x8000, // Can't represent all flags
};
#define LFSR_RCOMPAT_COMPAT \
(LFSR_RCOMPAT_GRM \
| LFSR_RCOMPAT_MMOSS \
| LFSR_RCOMPAT_MSPROUT \
| LFSR_RCOMPAT_MTREE \
| LFSR_RCOMPAT_BMOSS \
| LFSR_RCOMPAT_BSPROUT \
| LFSR_RCOMPAT_BSHRUB \
| LFSR_RCOMPAT_BTREE)
enum lfsr_wcompat {
LFSR_WCOMPAT_NONSTANDARD = 0x0001, // Non-standard filesystem format
LFSR_WCOMPAT_RDONLY = 0x0002, // Writing is disallowed
// internal
LFSR_wcompat_OVERFLOW = 0x8000, // Can't represent all flags
};
#define LFSR_WCOMPAT_COMPAT 0
enum lfsr_ocompat {
LFSR_OCOMPAT_NONSTANDARD = 0x0001, // Non-standard filesystem format
// internal
LFSR_ocompat_OVERFLOW = 0x8000, // Can't represent all flags
};
#define LFSR_OCOMPAT_COMPAT 0
typedef uint16_t lfsr_rcompat_t;
typedef uint16_t lfsr_wcompat_t;
typedef uint16_t lfsr_ocompat_t;
static inline bool lfsr_rcompat_isincompat(lfsr_rcompat_t rcompat) {
return rcompat != LFSR_RCOMPAT_COMPAT;
}
static inline bool lfsr_wcompat_isincompat(lfsr_wcompat_t wcompat) {
return wcompat != LFSR_WCOMPAT_COMPAT;
}
static inline bool lfsr_ocompat_isincompat(lfsr_ocompat_t ocompat) {
return ocompat != LFSR_OCOMPAT_COMPAT;
}
// compat flags on-disk encoding
//
// little-endian, truncated bits must be assumed zero
#define LFSR_COMPAT_DSIZE 2
#define LFSR_DATA_COMPAT(_compat, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromcompat(_compat, _buffer)}.d)
static inline lfsr_data_t lfsr_data_fromcompat(uint16_t compat,
uint8_t buffer[static LFSR_COMPAT_DSIZE]) {
lfs_tole16_(compat, buffer);
return LFSR_DATA_BUF(buffer, LFSR_COMPAT_DSIZE);
}
static int lfsr_data_readcompat(lfs_t *lfs, lfsr_data_t *data,
uint16_t *compat) {
// allow truncated compat flags
uint8_t buf[2] = {0};
lfs_ssize_t d = lfsr_data_read(lfs, data, buf, 2);
if (d < 0) {
return d;
}
*compat = lfs_fromle16_(buf);
// if any out-of-range flags are set, set the internal overflow bit,
// this is a compromise in correctness and and compat-flag complexity
//
// we don't really care about performance here
while (lfsr_data_size(*data) > 0) {
uint8_t b;
lfs_ssize_t d = lfsr_data_read(lfs, data, &b, 1);
if (d < 0) {
return d;
}
if (b != 0x00) {
*compat |= 0x8000;
break;
}
}
return 0;
}
// all the compat parsing is basically the same, so try to reuse code
#define LFSR_RCOMPAT_DSIZE LFSR_COMPAT_DSIZE
#define LFSR_DATA_RCOMPAT(_rcompat, _buffer) \
LFSR_DATA_COMPAT(_rcompat, _buffer)
static inline int lfsr_data_readrcompat(lfs_t *lfs, lfsr_data_t *data,
lfsr_rcompat_t *rcompat) {
return lfsr_data_readcompat(lfs, data, rcompat);
}
#define LFSR_WCOMPAT_DSIZE LFSR_COMPAT_DSIZE
#define LFSR_DATA_WCOMPAT(_wcompat, _buffer) \
LFSR_DATA_COMPAT(_wcompat, _buffer)
static inline int lfsr_data_readwcompat(lfs_t *lfs, lfsr_data_t *data,
lfsr_wcompat_t *wcompat) {
return lfsr_data_readcompat(lfs, data, wcompat);
}
#define LFSR_OCOMPAT_DSIZE LFSR_COMPAT_DSIZE
#define LFSR_DATA_OCOMPAT(_ocompat, _buffer) \
LFSR_DATA_COMPAT(_ocompat, _buffer)
static inline int lfsr_data_readocompat(lfs_t *lfs, lfsr_data_t *data,
lfsr_ocompat_t *ocompat) {
return lfsr_data_readcompat(lfs, data, ocompat);
}
// disk geometry
//
// note these are stored minus 1 to avoid overflow issues
typedef struct lfsr_geometry {
lfs_off_t block_size;
lfs_off_t block_count;
} lfsr_geometry_t;
// geometry encoding
// .---+- -+- -+- -. block_size: 1 leb128 <=4 bytes
// | block_size | block_count: 1 leb128 <=5 bytes
// +---+- -+- -+- -+- -. total: <=9 bytes
// | block_count |
// '---+- -+- -+- -+- -'
#define LFSR_GEOMETRY_DSIZE (4+5)
#define LFSR_DATA_GEOMETRY(_geometry, _buffer) \
((struct {lfsr_data_t d;}){lfsr_data_fromgeometry(_geometry, _buffer)}.d)
static lfsr_data_t lfsr_data_fromgeometry(const lfsr_geometry_t *geometry,
uint8_t buffer[static LFSR_GEOMETRY_DSIZE]) {
lfs_ssize_t d = 0;
lfs_ssize_t d_ = lfs_toleb128(geometry->block_size-1, &buffer[d], 4);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
d_ = lfs_toleb128(geometry->block_count-1, &buffer[d], 5);
if (d_ < 0) {
LFS_UNREACHABLE();
}
d += d_;
return LFSR_DATA_BUF(buffer, d);
}
static int lfsr_data_readgeometry(lfs_t *lfs, lfsr_data_t *data,
lfsr_geometry_t *geometry) {
int err = lfsr_data_readlleb128(lfs, data, &geometry->block_size);
if (err) {
return err;
}
err = lfsr_data_readleb128(lfs, data, &geometry->block_count);
if (err) {
return err;
}
geometry->block_size += 1;
geometry->block_count += 1;
return 0;
}
static int lfsr_mountmroot(lfs_t *lfs, const lfsr_mdir_t *mroot) {
// check the disk version
uint8_t version[2] = {0, 0};
lfsr_data_t data;
int err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_VERSION,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
lfs_ssize_t d = lfsr_data_read(lfs, &data, version, 2);
if (d < 0) {
return err;
}
}
if (version[0] != LFS_DISK_VERSION_MAJOR
|| version[1] > LFS_DISK_VERSION_MINOR) {
LFS_ERROR("Incompatible version v%"PRId32".%"PRId32
" (!= v%"PRId32".%"PRId32")",
version[0],
version[1],
LFS_DISK_VERSION_MAJOR,
LFS_DISK_VERSION_MINOR);
return LFS_ERR_NOTSUP;
}
// check for any rcompatflags, we must understand these to read
// the filesystem
lfsr_rcompat_t rcompat = 0;
err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_RCOMPAT,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
err = lfsr_data_readrcompat(lfs, &data, &rcompat);
if (err) {
return err;
}
}
if (lfsr_rcompat_isincompat(rcompat)) {
LFS_ERROR("Incompatible rcompat flags 0x%0"PRIx16
" (!= 0x%0"PRIx16")",
rcompat,
LFSR_RCOMPAT_COMPAT);
return LFS_ERR_NOTSUP;
}
// check for any wcompatflags, we must understand these to write
// the filesystem
lfsr_wcompat_t wcompat = 0;
err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_WCOMPAT,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
err = lfsr_data_readwcompat(lfs, &data, &wcompat);
if (err) {
return err;
}
}
if (lfsr_wcompat_isincompat(wcompat)) {
LFS_WARN("Incompatible wcompat flags 0x%0"PRIx16
" (!= 0x%0"PRIx16")",
wcompat,
LFSR_WCOMPAT_COMPAT);
// we can continue if rdonly
if (!lfsr_m_isrdonly(lfs->flags)) {
return LFS_ERR_NOTSUP;
}
}
// we don't bother to check for any ocompatflags, we would just
// ignore these anyways
// check the on-disk geometry
lfsr_geometry_t geometry;
err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_GEOMETRY,
&data);
if (err) {
if (err == LFS_ERR_NOENT) {
LFS_ERROR("No geometry found");
return LFS_ERR_INVAL;
}
return err;
}
err = lfsr_data_readgeometry(lfs, &data, &geometry);
if (err) {
return err;
}
// either block_size matches or it doesn't, we don't support variable
// block_sizes
if (geometry.block_size != lfs->cfg->block_size) {
LFS_ERROR("Incompatible block size %"PRId32" (!= %"PRId32")",
geometry.block_size,
lfs->cfg->block_size);
return LFS_ERR_NOTSUP;
}
// on-disk block_count must be <= configured block_count
if (geometry.block_count > lfs->cfg->block_count) {
LFS_ERROR("Incompatible block count %"PRId32" (> %"PRId32")",
geometry.block_count,
lfs->cfg->block_count);
return LFS_ERR_NOTSUP;
}
lfs->block_count = geometry.block_count;
// read the name limit
lfs_size_t name_limit = 0xff;
err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_NAMELIMIT,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
err = lfsr_data_readleb128(lfs, &data, &name_limit);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err == LFS_ERR_CORRUPT) {
name_limit = -1;
}
}
if (name_limit > lfs->name_limit) {
LFS_ERROR("Incompatible name limit (%"PRId32" > %"PRId32")",
name_limit,
lfs->name_limit);
return LFS_ERR_NOTSUP;
}
lfs->name_limit = name_limit;
// read the file limit
lfs_off_t file_limit = 0x7fffffff;
err = lfsr_mdir_lookup(lfs, mroot, LFSR_TAG_FILELIMIT,
&data);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT) {
err = lfsr_data_readleb128(lfs, &data, &file_limit);
if (err && err != LFS_ERR_CORRUPT) {
return err;
}
if (err == LFS_ERR_CORRUPT) {
file_limit = -1;
}
}
if (file_limit > lfs->file_limit) {
LFS_ERROR("Incompatible file limit (%"PRId32" > %"PRId32")",
file_limit,
lfs->file_limit);
return LFS_ERR_NOTSUP;
}
lfs->file_limit = file_limit;
// check for unknown configs
lfsr_tag_t tag;
err = lfsr_mdir_lookupnext(lfs, mroot, LFSR_TAG_FILELIMIT+1,
&tag, NULL);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err != LFS_ERR_NOENT
&& lfsr_tag_suptype(tag) == LFSR_TAG_CONFIG) {
LFS_ERROR("Unknown config 0x%04"PRIx16,
tag);
return LFS_ERR_NOTSUP;
}
return 0;
}
static int lfsr_mountinited(lfs_t *lfs) {
// zero gdeltas, we'll read these from our mdirs
lfsr_fs_flushgdelta(lfs);
// default to no mtree, this is allowed and implies all files are inlined
// in the mroot
lfsr_mtree_init(&lfs->mtree);
// traverse the mtree rooted at mroot 0x{1,0}
//
// we do validate btree inner nodes here, how can we trust our
// mdirs are valid if we haven't checked the btree inner nodes at
// least once?
lfsr_traversal_t t;
lfsr_traversal_init(&t, LFS_T_MTREEONLY | LFS_T_CKMETA);
while (true) {
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_mtree_traverse(lfs, &t,
&tag, &bptr);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// found an mdir?
if (tag == LFSR_TAG_MDIR) {
lfsr_mdir_t *mdir = (lfsr_mdir_t*)bptr.data.u.buffer;
// found an mroot?
if (mdir->mid == -1) {
// check for the magic string, all mroot should have this
lfsr_data_t data;
err = lfsr_mdir_lookup(lfs, mdir, LFSR_TAG_MAGIC,
&data);
if (err) {
if (err == LFS_ERR_NOENT) {
LFS_ERROR("No littlefs magic found");
return LFS_ERR_CORRUPT;
}
return err;
}
// treat corrupted magic as no magic
lfs_scmp_t cmp = lfsr_data_cmp(lfs, data, "littlefs", 8);
if (cmp < 0) {
return cmp;
}
if (cmp != LFS_CMP_EQ) {
LFS_ERROR("No littlefs magic found");
return LFS_ERR_CORRUPT;
}
// are we the last mroot?
err = lfsr_mdir_lookup(lfs, mdir, LFSR_TAG_MROOT,
NULL);
if (err && err != LFS_ERR_NOENT) {
return err;
}
if (err == LFS_ERR_NOENT) {
// track active mroot
lfs->mroot = *mdir;
// mount/validate config in active mroot
err = lfsr_mountmroot(lfs, &lfs->mroot);
if (err) {
return err;
}
}
} else {
// found a direct mdir? keep track of this
if (lfsr_mtree_isnull(&lfs->mtree)) {
lfsr_mtree_frommptr(&lfs->mtree,
mdir->rbyd.blocks,
1 << lfs->mdir_bits);
}
}
// toss our cksum into the filesystem seed for pseudorandom
// numbers
lfs->seed ^= mdir->rbyd.cksum;
// collect any gdeltas from this mdir
err = lfsr_fs_consumegdelta(lfs, mdir);
if (err) {
return err;
}
// found an mtree inner-node?
} else if (tag == LFSR_TAG_BRANCH) {
lfsr_rbyd_t *rbyd = (lfsr_rbyd_t*)bptr.data.u.buffer;
// found the root of the mtree? keep track of this
if (lfsr_mtree_isnull(&lfs->mtree)) {
lfs->mtree.u.btree = *rbyd;
}
} else {
LFS_UNREACHABLE();
}
}
// once we've mounted and derived a pseudo-random seed, initialize our
// block allocator
//
// the purpose of this is to avoid bad wear patterns such as always
// allocating blocks near the beginning of disk after a power-loss
//
lfs->lookahead.window = lfs->seed % lfs->block_count;
// TODO should the consumegdelta above take gstate/gdelta as a parameter?
// keep track of the current gstate on disk
lfs_memcpy(lfs->grm_p, lfs->grm_d, LFSR_GRM_DSIZE);
// decode grm so we can report any removed files as missing
int err = lfsr_data_readgrm(lfs,
&LFSR_DATA_BUF(lfs->grm_p, LFSR_GRM_DSIZE),
&lfs->grm);
if (err) {
// TODO switch to read-only?
return err;
}
// found pending grms? this should only happen if we lost power
if (lfsr_grm_count(lfs) == 2) {
LFS_DEBUG("Found pending grm %"PRId32".%"PRId32" %"PRId32".%"PRId32,
lfsr_mid_bid(lfs, lfs->grm.mids[0]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[0]),
lfsr_mid_bid(lfs, lfs->grm.mids[1]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[1]));
} else if (lfsr_grm_count(lfs) == 1) {
LFS_DEBUG("Found pending grm %"PRId32".%"PRId32,
lfsr_mid_bid(lfs, lfs->grm.mids[0]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[0]));
}
return 0;
}
// needed in lfsr_mount
static int lfsr_fs_gc_(lfs_t *lfs, lfsr_traversal_t *t,
uint32_t flags, lfs_soff_t steps);
int lfsr_mount(lfs_t *lfs, uint32_t flags,
const struct lfs_config *cfg) {
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_M_RDWR
| LFS_M_RDONLY
| LFS_M_FLUSH
| LFS_M_SYNC
| LFS_IFDEF_CKPROGS(LFS_M_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_M_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_M_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_M_CKDATACKSUMS, 0)
| LFS_M_MKCONSISTENT
| LFS_M_LOOKAHEAD
| LFS_M_COMPACT
| LFS_M_CKMETA
| LFS_M_CKDATA)) == 0);
// these flags require a writable filesystem
LFS_ASSERT(!lfsr_m_isrdonly(flags) || !lfsr_t_ismkconsistent(flags));
LFS_ASSERT(!lfsr_m_isrdonly(flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_m_isrdonly(flags) || !lfsr_t_iscompact(flags));
// some flags don't make sense when only traversing the mtree
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_isckdata(flags));
int err = lfs_init(lfs,
flags & (
LFS_M_RDWR
| LFS_M_RDONLY
| LFS_M_FLUSH
| LFS_M_SYNC
| LFS_IFDEF_CKPROGS(LFS_M_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_M_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_M_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_M_CKDATACKSUMS, 0)),
cfg);
if (err) {
return err;
}
err = lfsr_mountinited(lfs);
if (err) {
goto failed;
}
// run gc if requested
if (flags & (
LFS_M_MKCONSISTENT
| LFS_M_LOOKAHEAD
| LFS_M_COMPACT
| LFS_M_CKMETA
| LFS_M_CKDATA)) {
lfsr_traversal_t t;
err = lfsr_fs_gc_(lfs, &t,
flags & (
LFS_M_MKCONSISTENT
| LFS_M_LOOKAHEAD
| LFS_M_COMPACT
| LFS_M_CKMETA
| LFS_M_CKDATA),
-1);
if (err) {
goto failed;
}
}
// TODO this should use any configured values
LFS_DEBUG("Mounted littlefs v%"PRId32".%"PRId32" "
"%"PRId32"x%"PRId32" "
"0x{%"PRIx32",%"PRIx32"}.%"PRIx32" "
"w%"PRId32".%"PRId32,
LFS_DISK_VERSION_MAJOR,
LFS_DISK_VERSION_MINOR,
lfs->cfg->block_size,
lfs->block_count,
lfs->mroot.rbyd.blocks[0],
lfs->mroot.rbyd.blocks[1],
lfsr_rbyd_trunk(&lfs->mroot.rbyd),
lfsr_mtree_weight_(&lfs->mtree) >> lfs->mdir_bits,
1 << lfs->mdir_bits);
return 0;
failed:;
// make sure we clean up on error
lfs_deinit(lfs);
return err;
}
int lfsr_unmount(lfs_t *lfs) {
// all files/dirs should be closed before lfsr_unmount
LFS_ASSERT(lfs->omdirs == NULL
// special case for our gc traversal handle
|| LFS_IFDEF_GC(
(lfs->omdirs == &lfs->gc.t.o.o
&& lfs->gc.t.o.o.next == NULL),
false));
return lfs_deinit(lfs);
}
/// Format ///
static int lfsr_formatinited(lfs_t *lfs) {
for (int i = 0; i < 2; i++) {
// write superblock to both rbyds in the root mroot to hopefully
// avoid mounting an older filesystem on disk
lfsr_rbyd_t rbyd = {.blocks[0]=i, .eoff=0, .trunk=0};
int err = lfsr_bd_erase(lfs, rbyd.blocks[0]);
if (err) {
return err;
}
// the initial revision count is arbitrary, but it's nice to have
// something here to tell the initial mroot apart from btree nodes
// (rev=0), it's also useful for start with -1 and 0 in the upper
// bits to help test overflow/sequence comparison
uint32_t rev = (((uint32_t)i-1) << 28)
| (((1 << (28-lfs_smax(lfs->recycle_bits, 0)))-1)
& 0x00216968);
err = lfsr_rbyd_appendrev(lfs, &rbyd, rev);
if (err) {
return err;
}
// our initial superblock contains a couple things:
// - our magic string, "littlefs"
// - any format-time configuration
// - the root's bookmark tag, which reserves did = 0 for the root
uint8_t rcompat_buf[LFSR_RCOMPAT_DSIZE];
uint8_t geometry_buf[LFSR_GEOMETRY_DSIZE];
uint8_t name_limit_buf[LFSR_LLEB128_DSIZE];
uint8_t file_limit_buf[LFSR_LEB128_DSIZE];
uint8_t bookmark_buf[LFSR_LEB128_DSIZE];
err = lfsr_rbyd_commit(lfs, &rbyd, -1, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_MAGIC, 0,
LFSR_DATA_BUF("littlefs", 8)),
LFSR_RAT(
LFSR_TAG_VERSION, 0,
LFSR_DATA_BUF(((const uint8_t[2]){
LFS_DISK_VERSION_MAJOR,
LFS_DISK_VERSION_MINOR}), 2)),
LFSR_RAT(
LFSR_TAG_RCOMPAT, 0,
LFSR_DATA_RCOMPAT(LFSR_RCOMPAT_COMPAT, rcompat_buf)),
LFSR_RAT(
LFSR_TAG_GEOMETRY, 0,
LFSR_DATA_GEOMETRY(
(&(lfsr_geometry_t){
lfs->cfg->block_size,
lfs->cfg->block_count}),
geometry_buf)),
LFSR_RAT(
LFSR_TAG_NAMELIMIT, 0,
LFSR_DATA_LLEB128(lfs->name_limit, name_limit_buf)),
LFSR_RAT(
LFSR_TAG_FILELIMIT, 0,
LFSR_DATA_LEB128(lfs->file_limit, file_limit_buf)),
LFSR_RAT(
LFSR_TAG_BOOKMARK, +1,
LFSR_DATA_LEB128(0, bookmark_buf))));
if (err) {
return err;
}
}
// sync on-disk state
int err = lfsr_bd_sync(lfs);
if (err) {
return err;
}
return 0;
}
int lfsr_format(lfs_t *lfs, uint32_t flags,
const struct lfs_config *cfg) {
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_F_RDWR
| LFS_IFDEF_CKPROGS(LFS_F_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_F_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_F_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_F_CKDATACKSUMS, 0)
| LFS_F_CKMETA
| LFS_F_CKDATA)) == 0);
// some flags don't make sense when only traversing the mtree
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_isckdata(flags));
int err = lfs_init(lfs,
flags & (
LFS_F_RDWR
| LFS_IFDEF_CKPROGS(LFS_F_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_F_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_F_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_F_CKDATACKSUMS, 0)),
cfg);
if (err) {
return err;
}
LFS_DEBUG("Formatting littlefs v%"PRId32".%"PRId32" "
"%"PRId32"x%"PRId32,
LFS_DISK_VERSION_MAJOR,
LFS_DISK_VERSION_MINOR,
lfs->cfg->block_size,
lfs->block_count);
err = lfsr_formatinited(lfs);
if (err) {
goto failed;
}
// test that mount works with our formatted disk
err = lfsr_mountinited(lfs);
if (err) {
goto failed;
}
// run gc if requested
if (flags & (
LFS_F_CKMETA
| LFS_F_CKDATA)) {
lfsr_traversal_t t;
err = lfsr_fs_gc_(lfs, &t,
flags & (
LFS_F_CKMETA
| LFS_F_CKDATA),
-1);
if (err) {
goto failed;
}
}
return lfs_deinit(lfs);
failed:;
// make sure we clean up on error
lfs_deinit(lfs);
return err;
}
/// Other filesystem things ///
int lfsr_fs_stat(lfs_t *lfs, struct lfs_fsinfo *fsinfo) {
// return various filesystem flags
fsinfo->flags = lfs->flags & (
LFS_I_RDONLY
| LFS_I_FLUSH
| LFS_I_SYNC
| LFS_IFDEF_CKPROGS(LFS_I_CKPROGS, 0)
| LFS_IFDEF_CKFETCHES(LFS_I_CKFETCHES, 0)
| LFS_IFDEF_CKPARITY(LFS_I_CKPARITY, 0)
| LFS_IFDEF_CKDATACKSUMS(LFS_I_CKDATACKSUMS, 0)
| LFS_I_MKCONSISTENT // synonym for LFS_i_UNTIDY
| LFS_I_LOOKAHEAD
| LFS_I_COMPACT
| LFS_I_CKMETA
| LFS_I_CKDATA);
// some flags we calculate on demand
fsinfo->flags |= (lfsr_grm_count(lfs) > 0) ? LFS_I_MKCONSISTENT : 0;
// return filesystem config, this may come from disk
fsinfo->block_size = lfs->cfg->block_size;
fsinfo->block_count = lfs->block_count;
fsinfo->name_limit = lfs->name_limit;
fsinfo->file_limit = lfs->file_limit;
return 0;
}
lfs_ssize_t lfsr_fs_size(lfs_t *lfs) {
lfs_size_t count = 0;
lfsr_traversal_t t;
lfsr_traversal_init(&t, 0);
while (true) {
lfsr_tag_t tag;
int err = lfsr_mtree_traverse(lfs, &t,
&tag, NULL);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
// count the number of blocks we see, yes this may result in duplicates
if (tag == LFSR_TAG_MDIR) {
count += 2;
} else if (tag == LFSR_TAG_BRANCH) {
count += 1;
} else if (tag == LFSR_TAG_BLOCK) {
count += 1;
} else {
LFS_UNREACHABLE();
}
}
return count;
}
// consistency stuff
static int lfsr_fs_fixgrm(lfs_t *lfs) {
if (lfsr_grm_count(lfs) == 2) {
LFS_DEBUG("Fixing grm %"PRId32".%"PRId32" %"PRId32".%"PRId32,
lfsr_mid_bid(lfs, lfs->grm.mids[0]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[0]),
lfsr_mid_bid(lfs, lfs->grm.mids[1]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[1]));
} else if (lfsr_grm_count(lfs) == 1) {
LFS_DEBUG("Fixing grm %"PRId32".%"PRId32,
lfsr_mid_bid(lfs, lfs->grm.mids[0]) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, lfs->grm.mids[0]));
}
while (lfsr_grm_count(lfs) > 0) {
LFS_ASSERT(lfs->grm.mids[0] != -1);
// find our mdir
lfsr_mdir_t mdir;
int err = lfsr_mtree_lookup(lfs, lfs->grm.mids[0],
&mdir);
if (err) {
LFS_ASSERT(err != LFS_ERR_NOENT);
return err;
}
// we also use grm to track orphans that need to be cleaned up,
// which means it may not match the on-disk state, which means
// we need to revert manually on error
lfsr_grm_t grm_p = lfs->grm;
// mark grm as taken care of
lfsr_grm_pop(lfs);
// checkpoint the allocator
lfs_alloc_ckpoint(lfs);
// remove the rid while atomically updating our grm
err = lfsr_mdir_commit(lfs, &mdir, LFSR_RATS(
LFSR_RAT(LFSR_TAG_RM, -1, LFSR_DATA_NULL())));
if (err) {
// revert grm manually
lfs->grm = grm_p;
return err;
}
}
return 0;
}
static int lfsr_fs_mktidy_(lfs_t *lfs, lfsr_mdir_t *mdir) {
// save the current mid
lfsr_mid_t mid = mdir->mid;
// iterate through mids looking for orphans
mdir->mid = LFSR_MID(lfs, mdir->mid, 0);
int err;
while (lfsr_mid_rid(lfs, mdir->mid) < (lfsr_srid_t)mdir->rbyd.weight) {
// is this mid open? well we're not an orphan then, skip
if (lfsr_omdir_ismidopen(lfs, mdir->mid, -1)) {
mdir->mid += 1;
continue;
}
// is this mid marked as a stickynote?
err = lfsr_mdir_lookup(lfs, mdir, LFSR_TAG_STICKYNOTE,
NULL);
if (err) {
if (err == LFS_ERR_NOENT) {
mdir->mid += 1;
continue;
}
goto failed;
}
// we found an orphaned stickynote, remove
LFS_DEBUG("Fixing orphaned stickynote %"PRId32".%"PRId32,
lfsr_mid_bid(lfs, mdir->mid) >> lfs->mdir_bits,
lfsr_mid_rid(lfs, mdir->mid));
lfs_alloc_ckpoint(lfs);
err = lfsr_mdir_commit(lfs, mdir, LFSR_RATS(
LFSR_RAT(LFSR_TAG_RM, -1, LFSR_DATA_NULL())));
if (err) {
goto failed;
}
}
// restore the current mid
mdir->mid = mid;
return 0;
failed:;
// restore the current mid
mdir->mid = mid;
return err;
}
static int lfsr_fs_mktidy(lfs_t *lfs) {
// LFS_T_MKCONSISTENT really just removes orphans
lfsr_traversal_t t;
lfsr_traversal_init(&t, LFS_T_MTREEONLY | LFS_T_MKCONSISTENT);
while (true) {
int err = lfsr_mtree_gc(lfs, &t,
NULL, NULL);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
}
return 0;
}
// prepare the filesystem for mutation
int lfsr_fs_mkconsistent(lfs_t *lfs) {
// filesystem must be writeable
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags));
// fix pending grms
if (lfsr_grm_count(lfs) > 0) {
int err = lfsr_fs_fixgrm(lfs);
if (err) {
return err;
}
}
// fix orphaned stickynotes
//
// this must happen after fixgrm, since removing orphaned
// stickynotes risks outdating the grm
//
if (lfsr_i_isuntidy(lfs->flags)) {
int err = lfsr_fs_mktidy(lfs);
if (err) {
return err;
}
}
return 0;
}
// filesystem check functions
static int lfsr_fs_ck(lfs_t *lfs, uint32_t flags) {
// we leave this up to lfsr_mtree_traverse
lfsr_traversal_t t;
lfsr_traversal_init(&t, flags);;
while (true) {
int err = lfsr_mtree_traverse(lfs, &t,
NULL, NULL);
if (err) {
if (err == LFS_ERR_NOENT) {
break;
}
return err;
}
}
// clear relevant ck flags
lfs->flags &= ~flags;
return 0;
}
int lfsr_fs_ckmeta(lfs_t *lfs) {
return lfsr_fs_ck(lfs, LFS_T_CKMETA);
}
int lfsr_fs_ckdata(lfs_t *lfs) {
return lfsr_fs_ck(lfs, LFS_T_CKMETA | LFS_T_CKDATA);
}
// low-level filesystem gc
//
// runs the traversal until all work is completed, which may take
// multiple passes
static int lfsr_fs_gc_(lfs_t *lfs, lfsr_traversal_t *t,
uint32_t flags, lfs_soff_t steps) {
// unknown gc flags?
//
// we should have check these earlier, but it doesn't hurt to
// double check
LFS_ASSERT((flags & ~(
LFS_GC_MKCONSISTENT
| LFS_GC_LOOKAHEAD
| LFS_GC_COMPACT
| LFS_GC_CKMETA
| LFS_GC_CKDATA)) == 0);
// these flags require a writable filesystem
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_ismkconsistent(flags));
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_iscompact(flags));
// some flags don't make sense when only traversing the mtree
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_isckdata(flags));
// fix pending grms if requested
if (lfsr_t_ismkconsistent(flags)
&& lfsr_grm_count(lfs) > 0) {
int err = lfsr_fs_fixgrm(lfs);
if (err) {
return err;
}
}
// do we have any pending work?
uint32_t pending = flags & (
(lfs->flags & (
LFS_i_UNTIDY
| LFS_I_LOOKAHEAD
| LFS_I_COMPACT
| LFS_I_CKMETA
| LFS_I_CKDATA)));
while (pending && (lfs_off_t)steps > 0) {
// checkpoint the allocator to maximize any lookahead scans
lfs_alloc_ckpoint(lfs);
// start a new traversal?
if (!lfsr_omdir_isopen(lfs, &t->o.o)) {
lfsr_traversal_init(t, pending);
lfsr_omdir_open(lfs, &t->o.o);
}
// don't bother with lookahead if we've mutated
if (lfsr_t_isdirty(t->o.o.flags)
|| lfsr_t_ismutated(t->o.o.flags)) {
t->o.o.flags &= ~LFS_GC_LOOKAHEAD;
}
// will this traversal still make progress? no? start over
if (!(t->o.o.flags & (
LFS_GC_MKCONSISTENT
| LFS_GC_LOOKAHEAD
| LFS_GC_COMPACT
| LFS_GC_CKMETA
| LFS_GC_CKDATA))) {
lfsr_omdir_close(lfs, &t->o.o);
continue;
}
// do we really need a full traversal?
if (!(t->o.o.flags & (
LFS_GC_LOOKAHEAD
| LFS_GC_CKMETA
| LFS_GC_CKDATA))) {
t->o.o.flags |= LFS_T_MTREEONLY;
}
// progress gc
int err = lfsr_mtree_gc(lfs, t,
NULL, NULL);
if (err && err != LFS_ERR_NOENT) {
return err;
}
// end of traversal?
if (err == LFS_ERR_NOENT) {
lfsr_omdir_close(lfs, &t->o.o);
// clear any pending flags we make progress on
pending &= lfs->flags & (
LFS_i_UNTIDY
| LFS_I_LOOKAHEAD
| LFS_I_COMPACT
| LFS_I_CKMETA
| LFS_I_CKDATA);
}
// decrement steps
if (steps > 0) {
steps -= 1;
}
}
return 0;
}
#ifdef LFS_GC
// incremental filesystem gc
//
// perform any pending janitorial work
int lfsr_fs_gc(lfs_t *lfs) {
return lfsr_fs_gc_(lfs, &lfs->gc.t,
lfs->cfg->gc_flags,
(lfs->cfg->gc_steps)
? lfs->cfg->gc_steps
: 1);
}
#endif
// unperform janitorial work
int lfsr_fs_unck(lfs_t *lfs, uint32_t flags) {
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_I_MKCONSISTENT
| LFS_I_LOOKAHEAD
| LFS_I_COMPACT
| LFS_I_CKMETA
| LFS_I_CKDATA)) == 0);
// reset the requested flags
lfs->flags |= flags;
#ifdef LFS_GC
// and clear from any ongoing traversals
//
// lfsr_fs_gc will terminate early if it discovers it can no longer
// make progress
lfs->gc.t.o.o.flags &= ~flags;
#endif
return 0;
}
// attempt to grow the filesystem
int lfsr_fs_grow(lfs_t *lfs, lfs_size_t block_count_) {
// filesystem must be writeable
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags));
// shrinking the filesystem is not supported
LFS_ASSERT(block_count_ >= lfs->block_count);
// do nothing if block_count doesn't change
if (block_count_ == lfs->block_count) {
return 0;
}
// Note we do _not_ call lfsr_fs_mkconsistent here. This is a bit scary,
// but we should be ok as long as we patch grms in lfsr_mdir_commit and
// only commit to the mroot.
//
// Calling lfsr_fs_mkconsistent risks locking our filesystem up trying
// to fix grms/orphans before we can commit the new filesystem size. If
// we don't, we should always be able to recover a stuck filesystem with
// lfsr_fs_grow.
LFS_DEBUG("Growing littlefs %"PRId32"x%"PRId32" -> %"PRId32"x%"PRId32,
lfs->cfg->block_size, lfs->block_count,
lfs->cfg->block_size, block_count_);
// keep track of our current block_count in case we fail
lfs_size_t block_count = lfs->block_count;
// we can use the new blocks immediately as long as the commit
// with the new block_count is atomic
lfs->block_count = block_count_;
// discard stale lookahead buffer
lfs_alloc_discard(lfs);
// update our on-disk config
lfs_alloc_ckpoint(lfs);
uint8_t geometry_buf[LFSR_GEOMETRY_DSIZE];
int err = lfsr_mdir_commit(lfs, &lfs->mroot, LFSR_RATS(
LFSR_RAT(
LFSR_TAG_GEOMETRY, 0,
LFSR_DATA_GEOMETRY(
(&(lfsr_geometry_t){
lfs->cfg->block_size,
block_count_}),
geometry_buf))));
if (err) {
goto failed;
}
return 0;
failed:;
// restore block_count
lfs->block_count = block_count;
// discard clobbered lookahead buffer
lfs_alloc_discard(lfs);
return err;
}
/// High-level filesystem traversal ///
// needed in lfsr_traversal_open
static int lfsr_traversal_rewind_(lfs_t *lfs, lfsr_traversal_t *t);
int lfsr_traversal_open(lfs_t *lfs, lfsr_traversal_t *t, uint32_t flags) {
// already open?
LFS_ASSERT(!lfsr_omdir_isopen(lfs, &t->o.o));
// unknown flags?
LFS_ASSERT((flags & ~(
LFS_T_MTREEONLY
| LFS_T_MKCONSISTENT
| LFS_T_LOOKAHEAD
| LFS_T_COMPACT
| LFS_T_CKMETA
| LFS_T_CKDATA)) == 0);
// these flags require a writable filesystem
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_ismkconsistent(flags));
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_m_isrdonly(lfs->flags) || !lfsr_t_iscompact(flags));
// some flags don't make sense when only traversing the mtree
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_islookahead(flags));
LFS_ASSERT(!lfsr_t_ismtreeonly(flags) || !lfsr_t_isckdata(flags));
// setup traversal state
t->o.o.flags = lfsr_o_settype(flags, LFS_TYPE_TRAVERSAL);
// let rewind initialize/reset things
int err = lfsr_traversal_rewind_(lfs, t);
if (err) {
return err;
}
// add to tracked mdirs
lfsr_omdir_open(lfs, &t->o.o);
return 0;
}
int lfsr_traversal_close(lfs_t *lfs, lfsr_traversal_t *t) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &t->o.o));
// remove from tracked mdirs
lfsr_omdir_close(lfs, &t->o.o);
return 0;
}
int lfsr_traversal_read(lfs_t *lfs, lfsr_traversal_t *t,
struct lfs_tinfo *tinfo) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &t->o.o));
// check for pending grms every step, just in case some other
// operation introduced new grms
if (lfsr_t_ismkconsistent(t->o.o.flags)
&& lfsr_grm_count(lfs) > 0) {
// swap dirty/mutated flags while mutating
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
int err = lfsr_fs_fixgrm(lfs);
if (err) {
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
return err;
}
t->o.o.flags = lfsr_t_swapdirty(t->o.o.flags);
}
// checkpoint the allocator to maximize any lookahead scans
lfs_alloc_ckpoint(lfs);
while (true) {
// some redund blocks left over?
if (t->blocks[0] != -1) {
// write our traversal info
tinfo->btype = lfsr_t_btype(t->o.o.flags);
tinfo->block = t->blocks[0];
t->blocks[0] = t->blocks[1];
t->blocks[1] = -1;
return 0;
}
// find next block
lfsr_tag_t tag;
lfsr_bptr_t bptr;
int err = lfsr_mtree_gc(lfs, t,
&tag, &bptr);
if (err) {
return err;
}
// figure out type/blocks
if (tag == LFSR_TAG_MDIR) {
lfsr_mdir_t *mdir = (lfsr_mdir_t*)bptr.data.u.buffer;
t->o.o.flags = lfsr_t_setbtype(t->o.o.flags, LFS_BTYPE_MDIR);
t->blocks[0] = mdir->rbyd.blocks[0];
t->blocks[1] = mdir->rbyd.blocks[1];
} else if (tag == LFSR_TAG_BRANCH) {
t->o.o.flags = lfsr_t_setbtype(t->o.o.flags, LFS_BTYPE_BTREE);
lfsr_rbyd_t *rbyd = (lfsr_rbyd_t*)bptr.data.u.buffer;
t->blocks[0] = rbyd->blocks[0];
t->blocks[1] = -1;
} else if (tag == LFSR_TAG_BLOCK) {
t->o.o.flags = lfsr_t_setbtype(t->o.o.flags, LFS_BTYPE_DATA);
t->blocks[0] = bptr.data.u.disk.block;
t->blocks[1] = -1;
} else {
LFS_UNREACHABLE();
}
}
}
static void lfsr_traversal_clobber(lfs_t *lfs, lfsr_traversal_t *t) {
(void)lfs;
// mroot/mtree? transition to mdir iteration
if (lfsr_t_tstate(t->o.o.flags) < LFSR_TSTATE_MDIRS) {
t->o.o.flags = lfsr_t_settstate(t->o.o.flags, LFSR_TSTATE_MDIRS);
t->o.o.mdir.mid = 0;
t->o.bshrub.u.bshrub.weight = 0;
t->o.bshrub.u.bshrub.blocks[0] = -1;
t->ot = NULL;
// in-mtree mdir? increment the mid (to make progress) and reset to
// mdir iteration
} else if (lfsr_t_tstate(t->o.o.flags) < LFSR_TSTATE_OMDIRS) {
t->o.o.flags = lfsr_t_settstate(t->o.o.flags, LFSR_TSTATE_MDIR);
t->o.o.mdir.mid += 1;
t->o.bshrub.u.bshrub.weight = 0;
t->o.bshrub.u.bshrub.blocks[0] = -1;
t->ot = NULL;
// opened mdir? skip to next omdir
} else if (lfsr_t_tstate(t->o.o.flags) < LFSR_TSTATE_DONE) {
t->o.o.flags = lfsr_t_settstate(t->o.o.flags, LFSR_TSTATE_OMDIRS);
t->o.bshrub.u.bshrub.weight = 0;
t->o.bshrub.u.bshrub.blocks[0] = -1;
t->ot = (t->ot) ? t->ot->next : NULL;
// done traversals should never need clobbering
} else {
LFS_UNREACHABLE();
}
// and clear any pending blocks
t->blocks[0] = -1;
t->blocks[1] = -1;
}
static int lfsr_traversal_rewind_(lfs_t *lfs, lfsr_traversal_t *t) {
(void)lfs;
// reset traversal
lfsr_traversal_init(t,
t->o.o.flags & ~(LFS_t_DIRTY | LFS_t_MUTATED | LFS_t_TSTATE));
// and clear any pending blocks
t->blocks[0] = -1;
t->blocks[1] = -1;
return 0;
}
int lfsr_traversal_rewind(lfs_t *lfs, lfsr_traversal_t *t) {
LFS_ASSERT(lfsr_omdir_isopen(lfs, &t->o.o));
return lfsr_traversal_rewind_(lfs, t);
}
///// Metadata pair and directory operations ///
//static lfs_stag_t lfs_dir_getslice(lfs_t *lfs, const lfs_mdir_t *dir,
// lfs_tag_t gmask, lfs_tag_t gtag,
// lfs_off_t goff, void *gbuffer, lfs_size_t gsize) {
// lfs_off_t off = dir->off;
// lfs_tag_t ntag = dir->etag;
// lfs_stag_t gdiff = 0;
//
// if (lfs_gstate_hasmovehere(&lfs->gdisk, dir->pair) &&
// lfs_tag_id(gmask) != 0 &&
// lfs_tag_id(lfs->gdisk.tag) <= lfs_tag_id(gtag)) {
// // synthetic moves
// gdiff -= LFS_MKTAG(0, 1, 0);
// }
//
// // iterate over dir block backwards (for faster lookups)
// while (off >= sizeof(lfs_tag_t) + lfs_tag_dsize(ntag)) {
// off -= lfs_tag_dsize(ntag);
// lfs_tag_t tag = ntag;
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, sizeof(ntag),
// dir->pair[0], off, &ntag, sizeof(ntag));
// if (err) {
// return err;
// }
//
// ntag = (lfs_frombe32(ntag) ^ tag) & 0x7fffffff;
//
// if (lfs_tag_id(gmask) != 0 &&
// lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
// lfs_tag_id(tag) <= lfs_tag_id(gtag - gdiff)) {
// if (tag == (LFS_MKTAG(LFS_TYPE_CREATE, 0, 0) |
// (LFS_MKTAG(0, 0x3ff, 0) & (gtag - gdiff)))) {
// // found where we were created
// return LFS_ERR_NOENT;
// }
//
// // move around splices
// gdiff += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
// }
//
// if ((gmask & tag) == (gmask & (gtag - gdiff))) {
// if (lfs_tag_isdelete(tag)) {
// return LFS_ERR_NOENT;
// }
//
// lfs_size_t diff = lfs_min(lfs_tag_size(tag), gsize);
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, diff,
// dir->pair[0], off+sizeof(tag)+goff, gbuffer, diff);
// if (err) {
// return err;
// }
//
// memset((uint8_t*)gbuffer + diff, 0, gsize - diff);
//
// return tag + gdiff;
// }
// }
//
// return LFS_ERR_NOENT;
//}
//
//static lfs_stag_t lfs_dir_get(lfs_t *lfs, const lfs_mdir_t *dir,
// lfs_tag_t gmask, lfs_tag_t gtag, void *buffer) {
// return lfs_dir_getslice(lfs, dir,
// gmask, gtag,
// 0, buffer, lfs_tag_size(gtag));
//}
//
//static int lfs_dir_getread(lfs_t *lfs, const lfs_mdir_t *dir,
// const lfs_cache_t *pcache, lfs_cache_t *rcache, lfs_size_t hint,
// lfs_tag_t gmask, lfs_tag_t gtag,
// lfs_off_t off, void *buffer, lfs_size_t size) {
// uint8_t *data = buffer;
// if (off+size > lfs->cfg->block_size) {
// return LFS_ERR_CORRUPT;
// }
//
// while (size > 0) {
// lfs_size_t diff = size;
//
// if (pcache && pcache->block == LFS_BLOCK_INLINE &&
// off < pcache->off + pcache->size) {
// if (off >= pcache->off) {
// // is already in pcache?
// diff = lfs_min(diff, pcache->size - (off-pcache->off));
// memcpy(data, &pcache->buffer[off-pcache->off], diff);
//
// data += diff;
// off += diff;
// size -= diff;
// continue;
// }
//
// // pcache takes priority
// diff = lfs_min(diff, pcache->off-off);
// }
//
// if (rcache->block == LFS_BLOCK_INLINE &&
// off < rcache->off + rcache->size) {
// if (off >= rcache->off) {
// // is already in rcache?
// diff = lfs_min(diff, rcache->size - (off-rcache->off));
// memcpy(data, &rcache->buffer[off-rcache->off], diff);
//
// data += diff;
// off += diff;
// size -= diff;
// continue;
// }
//
// // rcache takes priority
// diff = lfs_min(diff, rcache->off-off);
// }
//
// // load to cache, first condition can no longer fail
// rcache->block = LFS_BLOCK_INLINE;
// rcache->off = lfs_aligndown(off, lfs->cfg->read_size);
// rcache->size = lfs_min(lfs_alignup(off+hint, lfs->cfg->read_size),
// lfs->cfg->cache_size);
// int err = lfs_dir_getslice(lfs, dir, gmask, gtag,
// rcache->off, rcache->buffer, rcache->size);
// if (err < 0) {
// return err;
// }
// }
//
// return 0;
//}
//
//#ifndef LFS_READONLY
//static int lfs_dir_traverse_filter(void *p,
// lfs_tag_t tag, const void *buffer) {
// lfs_tag_t *filtertag = p;
// (void)buffer;
//
// // which mask depends on unique bit in tag structure
// uint32_t mask = (tag & LFS_MKTAG(0x100, 0, 0))
// ? LFS_MKTAG(0x7ff, 0x3ff, 0)
// : LFS_MKTAG(0x700, 0x3ff, 0);
//
// // check for redundancy
// if ((mask & tag) == (mask & *filtertag) ||
// lfs_tag_isdelete(*filtertag) ||
// (LFS_MKTAG(0x7ff, 0x3ff, 0) & tag) == (
// LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
// (LFS_MKTAG(0, 0x3ff, 0) & *filtertag))) {
// *filtertag = LFS_MKTAG(LFS_FROM_NOOP, 0, 0);
// return true;
// }
//
// // check if we need to adjust for created/deleted tags
// if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE &&
// lfs_tag_id(tag) <= lfs_tag_id(*filtertag)) {
// *filtertag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
// }
//
// return false;
//}
//#endif
//
//#ifndef LFS_READONLY
//// maximum recursive depth of lfs_dir_traverse, the deepest call:
////
//// traverse with commit
//// '-> traverse with move
//// '-> traverse with filter
////
//#define LFS_DIR_TRAVERSE_DEPTH 3
//
//struct lfs_dir_traverse {
// const lfs_mdir_t *dir;
// lfs_off_t off;
// lfs_tag_t ptag;
// const struct lfs_mattr *attrs;
// int attrcount;
//
// lfs_tag_t tmask;
// lfs_tag_t ttag;
// uint16_t begin;
// uint16_t end;
// int16_t diff;
//
// int (*cb)(void *data, lfs_tag_t tag, const void *buffer);
// void *data;
//
// lfs_tag_t tag;
// const void *buffer;
// struct lfs_diskoff disk;
//};
//
//static int lfs_dir_traverse(lfs_t *lfs,
// const lfs_mdir_t *dir, lfs_off_t off, lfs_tag_t ptag,
// const struct lfs_mattr *attrs, int attrcount,
// lfs_tag_t tmask, lfs_tag_t ttag,
// uint16_t begin, uint16_t end, int16_t diff,
// int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// // This function in inherently recursive, but bounded. To allow tool-based
// // analysis without unnecessary code-cost we use an explicit stack
// struct lfs_dir_traverse stack[LFS_DIR_TRAVERSE_DEPTH-1];
// unsigned sp = 0;
// int res;
//
// // iterate over directory and attrs
// lfs_tag_t tag;
// const void *buffer;
// struct lfs_diskoff disk;
// while (true) {
// {
// if (off+lfs_tag_dsize(ptag) < dir->off) {
// off += lfs_tag_dsize(ptag);
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, sizeof(tag),
// dir->pair[0], off, &tag, sizeof(tag));
// if (err) {
// return err;
// }
//
// tag = (lfs_frombe32(tag) ^ ptag) | 0x80000000;
// disk.block = dir->pair[0];
// disk.off = off+sizeof(lfs_tag_t);
// buffer = &disk;
// ptag = tag;
// } else if (attrcount > 0) {
// tag = attrs[0].tag;
// buffer = attrs[0].buffer;
// attrs += 1;
// attrcount -= 1;
// } else {
// // finished traversal, pop from stack?
// res = 0;
// break;
// }
//
// // do we need to filter?
// lfs_tag_t mask = LFS_MKTAG(0x7ff, 0, 0);
// if ((mask & tmask & tag) != (mask & tmask & ttag)) {
// continue;
// }
//
// if (lfs_tag_id(tmask) != 0) {
// LFS_ASSERT(sp < LFS_DIR_TRAVERSE_DEPTH);
// // recurse, scan for duplicates, and update tag based on
// // creates/deletes
// stack[sp] = (struct lfs_dir_traverse){
// .dir = dir,
// .off = off,
// .ptag = ptag,
// .attrs = attrs,
// .attrcount = attrcount,
// .tmask = tmask,
// .ttag = ttag,
// .begin = begin,
// .end = end,
// .diff = diff,
// .cb = cb,
// .data = data,
// .tag = tag,
// .buffer = buffer,
// .disk = disk,
// };
// sp += 1;
//
// tmask = 0;
// ttag = 0;
// begin = 0;
// end = 0;
// diff = 0;
// cb = lfs_dir_traverse_filter;
// data = &stack[sp-1].tag;
// continue;
// }
// }
//
//popped:
// // in filter range?
// if (lfs_tag_id(tmask) != 0 &&
// !(lfs_tag_id(tag) >= begin && lfs_tag_id(tag) < end)) {
// continue;
// }
//
// // handle special cases for mcu-side operations
// if (lfs_tag_type3(tag) == LFS_FROM_NOOP) {
// // do nothing
// } else if (lfs_tag_type3(tag) == LFS_FROM_MOVE) {
// // Without this condition, lfs_dir_traverse can exhibit an
// // extremely expensive O(n^3) of nested loops when renaming.
// // This happens because lfs_dir_traverse tries to filter tags by
// // the tags in the source directory, triggering a second
// // lfs_dir_traverse with its own filter operation.
// //
// // traverse with commit
// // '-> traverse with filter
// // '-> traverse with move
// // '-> traverse with filter
// //
// // However we don't actually care about filtering the second set of
// // tags, since duplicate tags have no effect when filtering.
// //
// // This check skips this unnecessary recursive filtering explicitly,
// // reducing this runtime from O(n^3) to O(n^2).
// if (cb == lfs_dir_traverse_filter) {
// continue;
// }
//
// // recurse into move
// stack[sp] = (struct lfs_dir_traverse){
// .dir = dir,
// .off = off,
// .ptag = ptag,
// .attrs = attrs,
// .attrcount = attrcount,
// .tmask = tmask,
// .ttag = ttag,
// .begin = begin,
// .end = end,
// .diff = diff,
// .cb = cb,
// .data = data,
// .tag = LFS_MKTAG(LFS_FROM_NOOP, 0, 0),
// };
// sp += 1;
//
// uint16_t fromid = lfs_tag_size(tag);
// uint16_t toid = lfs_tag_id(tag);
// dir = buffer;
// off = 0;
// ptag = 0xffffffff;
// attrs = NULL;
// attrcount = 0;
// tmask = LFS_MKTAG(0x600, 0x3ff, 0);
// ttag = LFS_MKTAG(LFS_TYPE_STRUCT, 0, 0);
// begin = fromid;
// end = fromid+1;
// diff = toid-fromid+diff;
// } else if (lfs_tag_type3(tag) == LFS_FROM_USERATTRS) {
// for (unsigned i = 0; i < lfs_tag_size(tag); i++) {
// const struct lfs_attr *a = buffer;
// res = cb(data, LFS_MKTAG(LFS_TYPE_USERATTR + a[i].type,
// lfs_tag_id(tag) + diff, a[i].size), a[i].buffer);
// if (res < 0) {
// return res;
// }
//
// if (res) {
// break;
// }
// }
// } else {
// res = cb(data, tag + LFS_MKTAG(0, diff, 0), buffer);
// if (res < 0) {
// return res;
// }
//
// if (res) {
// break;
// }
// }
// }
//
// if (sp > 0) {
// // pop from the stack and return, fortunately all pops share
// // a destination
// dir = stack[sp-1].dir;
// off = stack[sp-1].off;
// ptag = stack[sp-1].ptag;
// attrs = stack[sp-1].attrs;
// attrcount = stack[sp-1].attrcount;
// tmask = stack[sp-1].tmask;
// ttag = stack[sp-1].ttag;
// begin = stack[sp-1].begin;
// end = stack[sp-1].end;
// diff = stack[sp-1].diff;
// cb = stack[sp-1].cb;
// data = stack[sp-1].data;
// tag = stack[sp-1].tag;
// buffer = stack[sp-1].buffer;
// disk = stack[sp-1].disk;
// sp -= 1;
// goto popped;
// } else {
// return res;
// }
//}
//#endif
//
//static lfs_stag_t lfs_dir_fetchmatch(lfs_t *lfs,
// lfs_mdir_t *dir, const lfs_block_t pair[2],
// lfs_tag_t fmask, lfs_tag_t ftag, uint16_t *id,
// int (*cb)(void *data, lfs_tag_t tag, const void *buffer), void *data) {
// // we can find tag very efficiently during a fetch, since we're already
// // scanning the entire directory
// lfs_stag_t besttag = -1;
//
// // if either block address is invalid we return LFS_ERR_CORRUPT here,
// // otherwise later writes to the pair could fail
// if (pair[0] >= lfs->cfg->block_count || pair[1] >= lfs->cfg->block_count) {
// return LFS_ERR_CORRUPT;
// }
//
// // find the block with the most recent revision
// uint32_t revs[2] = {0, 0};
// int r = 0;
// for (int i = 0; i < 2; i++) {
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, sizeof(revs[i]),
// pair[i], 0, &revs[i], sizeof(revs[i]));
// revs[i] = lfs_fromle32(revs[i]);
// if (err && err != LFS_ERR_CORRUPT) {
// return err;
// }
//
// if (err != LFS_ERR_CORRUPT &&
// lfs_scmp(revs[i], revs[(i+1)%2]) > 0) {
// r = i;
// }
// }
//
// dir->pair[0] = pair[(r+0)%2];
// dir->pair[1] = pair[(r+1)%2];
// dir->rev = revs[(r+0)%2];
// dir->off = 0; // nonzero = found some commits
//
// // now scan tags to fetch the actual dir and find possible match
// for (int i = 0; i < 2; i++) {
// lfs_off_t off = 0;
// lfs_tag_t ptag = 0xffffffff;
//
// uint16_t tempcount = 0;
// lfs_block_t temptail[2] = {LFS_BLOCK_NULL, LFS_BLOCK_NULL};
// bool tempsplit = false;
// lfs_stag_t tempbesttag = besttag;
//
// // assume not erased until proven otherwise
// bool maybeerased = false;
// bool hasfcrc = false;
// struct lfs_fcrc fcrc;
//
// dir->rev = lfs_tole32(dir->rev);
// uint32_t crc = lfs_crc(0xffffffff, &dir->rev, sizeof(dir->rev));
// dir->rev = lfs_fromle32(dir->rev);
//
// while (true) {
// // extract next tag
// lfs_tag_t tag;
// off += lfs_tag_dsize(ptag);
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], off, &tag, sizeof(tag));
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// // can't continue?
// break;
// }
// return err;
// }
//
// crc = lfs_crc(crc, &tag, sizeof(tag));
// tag = lfs_frombe32(tag) ^ ptag;
//
// // next commit not yet programmed?
// if (!lfs_tag_isvalid(tag)) {
// maybeerased = true;
// break;
// // out of range?
// } else if (off + lfs_tag_dsize(tag) > lfs->cfg->block_size) {
// break;
// }
//
// ptag = tag;
//
// if (lfs_tag_type2(tag) == LFS_TYPE_CCRC) {
// // check the crc attr
// uint32_t dcrc;
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], off+sizeof(tag), &dcrc, sizeof(dcrc));
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// break;
// }
// return err;
// }
// dcrc = lfs_fromle32(dcrc);
//
// if (crc != dcrc) {
// break;
// }
//
// // reset the next bit if we need to
// ptag ^= (lfs_tag_t)(lfs_tag_chunk(tag) & 1U) << 31;
//
// // toss our crc into the filesystem seed for
// // pseudorandom numbers, note we use another crc here
// // as a collection function because it is sufficiently
// // random and convenient
// lfs->seed = lfs_crc(lfs->seed, &crc, sizeof(crc));
//
// // update with what's found so far
// besttag = tempbesttag;
// dir->off = off + lfs_tag_dsize(tag);
// dir->etag = ptag;
// dir->count = tempcount;
// dir->tail[0] = temptail[0];
// dir->tail[1] = temptail[1];
// dir->split = tempsplit;
//
// // reset crc
// crc = 0xffffffff;
// continue;
// }
//
// // fcrc is only valid when last tag was a crc
// hasfcrc = false;
//
// // crc the entry first, hopefully leaving it in the cache
// err = lfs_bd_crc(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], off+sizeof(tag),
// lfs_tag_dsize(tag)-sizeof(tag), &crc);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// break;
// }
// return err;
// }
//
// // directory modification tags?
// if (lfs_tag_type1(tag) == LFS_TYPE_NAME) {
// // increase count of files if necessary
// if (lfs_tag_id(tag) >= tempcount) {
// tempcount = lfs_tag_id(tag) + 1;
// }
// } else if (lfs_tag_type1(tag) == LFS_TYPE_SPLICE) {
// tempcount += lfs_tag_splice(tag);
//
// if (tag == (LFS_MKTAG(LFS_TYPE_DELETE, 0, 0) |
// (LFS_MKTAG(0, 0x3ff, 0) & tempbesttag))) {
// tempbesttag |= 0x80000000;
// } else if (tempbesttag != -1 &&
// lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
// tempbesttag += LFS_MKTAG(0, lfs_tag_splice(tag), 0);
// }
// } else if (lfs_tag_type1(tag) == LFS_TYPE_TAIL) {
// tempsplit = (lfs_tag_chunk(tag) & 1);
//
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], off+sizeof(tag), &temptail, 8);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// break;
// }
// return err;
// }
// lfs_pair_fromle32(temptail);
// } else if (lfs_tag_type3(tag) == LFS_TYPE_FCRC) {
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], off+sizeof(tag),
// &fcrc, sizeof(fcrc));
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// break;
// }
// }
//
// lfs_fcrc_fromle32(&fcrc);
// hasfcrc = true;
// }
//
// // found a match for our fetcher?
// if ((fmask & tag) == (fmask & ftag)) {
// int res = cb(data, tag, &(struct lfs_diskoff){
// dir->pair[0], off+sizeof(tag)});
// if (res < 0) {
// if (res == LFS_ERR_CORRUPT) {
// break;
// }
// return res;
// }
//
// if (res == LFS_CMP_EQ) {
// // found a match
// tempbesttag = tag;
// } else if ((LFS_MKTAG(0x7ff, 0x3ff, 0) & tag) ==
// (LFS_MKTAG(0x7ff, 0x3ff, 0) & tempbesttag)) {
// // found an identical tag, but contents didn't match
// // this must mean that our besttag has been overwritten
// tempbesttag = -1;
// } else if (res == LFS_CMP_GT &&
// lfs_tag_id(tag) <= lfs_tag_id(tempbesttag)) {
// // found a greater match, keep track to keep things sorted
// tempbesttag = tag | 0x80000000;
// }
// }
// }
//
// // found no valid commits?
// if (dir->off == 0) {
// // try the other block?
// lfs_pair_swap(dir->pair);
// dir->rev = revs[(r+1)%2];
// continue;
// }
//
// // did we end on a valid commit? we may have an erased block
// dir->erased = false;
// if (maybeerased && hasfcrc && dir->off % lfs->cfg->prog_size == 0) {
// // check for an fcrc matching the next prog's erased state, if
// // this failed most likely a previous prog was interrupted, we
// // need a new erase
// uint32_t fcrc_ = 0xffffffff;
// int err = lfs_bd_crc(lfs,
// NULL, &lfs->rcache, lfs->cfg->block_size,
// dir->pair[0], dir->off, fcrc.size, &fcrc_);
// if (err && err != LFS_ERR_CORRUPT) {
// return err;
// }
//
// // found beginning of erased part?
// dir->erased = (fcrc_ == fcrc.crc);
// }
//
// // synthetic move
// if (lfs_gstate_hasmovehere(&lfs->gdisk, dir->pair)) {
// if (lfs_tag_id(lfs->gdisk.tag) == lfs_tag_id(besttag)) {
// besttag |= 0x80000000;
// } else if (besttag != -1 &&
// lfs_tag_id(lfs->gdisk.tag) < lfs_tag_id(besttag)) {
// besttag -= LFS_MKTAG(0, 1, 0);
// }
// }
//
// // found tag? or found best id?
// if (id) {
// *id = lfs_min(lfs_tag_id(besttag), dir->count);
// }
//
// if (lfs_tag_isvalid(besttag)) {
// return besttag;
// } else if (lfs_tag_id(besttag) < dir->count) {
// return LFS_ERR_NOENT;
// } else {
// return 0;
// }
// }
//
// LFS_ERROR("Corrupted dir pair at {0x%"PRIx32", 0x%"PRIx32"}",
// dir->pair[0], dir->pair[1]);
// return LFS_ERR_CORRUPT;
//}
//
//static int lfs_dir_fetch(lfs_t *lfs,
// lfs_mdir_t *dir, const lfs_block_t pair[2]) {
// // note, mask=-1, tag=-1 can never match a tag since this
// // pattern has the invalid bit set
// return (int)lfs_dir_fetchmatch(lfs, dir, pair,
// (lfs_tag_t)-1, (lfs_tag_t)-1, NULL, NULL, NULL);
//}
//
//static int lfs_dir_getgstate(lfs_t *lfs, const lfs_mdir_t *dir,
// lfs_gstate_t *gstate) {
// lfs_gstate_t temp;
// lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x7ff, 0, 0),
// LFS_MKTAG(LFS_TYPE_MOVESTATE, 0, sizeof(temp)), &temp);
// if (res < 0 && res != LFS_ERR_NOENT) {
// return res;
// }
//
// if (res != LFS_ERR_NOENT) {
// // xor together to find resulting gstate
// lfs_gstate_fromle32(&temp);
// lfs_gstate_xor(gstate, &temp);
// }
//
// return 0;
//}
//
//static int lfs_dir_getinfo(lfs_t *lfs, lfs_mdir_t *dir,
// uint16_t id, struct lfs_info *info) {
// if (id == 0x3ff) {
// // special case for root
// strcpy(info->name, "/");
// info->type = LFS_TYPE_DIR;
// return 0;
// }
//
// lfs_stag_t tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x780, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_NAME, id, lfs->name_max+1), info->name);
// if (tag < 0) {
// return (int)tag;
// }
//
// info->type = lfs_tag_type3(tag);
//
// struct lfs_ctz ctz;
// tag = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
// if (tag < 0) {
// return (int)tag;
// }
// lfs_ctz_fromle32(&ctz);
//
// if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
// info->size = ctz.size;
// } else if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
// info->size = lfs_tag_size(tag);
// }
//
// return 0;
//}
//
//struct lfs_dir_find_match {
// lfs_t *lfs;
// const void *name;
// lfs_size_t size;
//};
//
//static int lfs_dir_find_match(void *data,
// lfs_tag_t tag, const void *buffer) {
// struct lfs_dir_find_match *name = data;
// lfs_t *lfs = name->lfs;
// const struct lfs_diskoff *disk = buffer;
//
// // compare with disk
// lfs_size_t diff = lfs_min(name->size, lfs_tag_size(tag));
// int res = lfs_bd_cmp(lfs,
// NULL, &lfs->rcache, diff,
// disk->block, disk->off, name->name, diff);
// if (res != LFS_CMP_EQ) {
// return res;
// }
//
// // only equal if our size is still the same
// if (name->size != lfs_tag_size(tag)) {
// return (name->size < lfs_tag_size(tag)) ? LFS_CMP_LT : LFS_CMP_GT;
// }
//
// // found a match!
// return LFS_CMP_EQ;
//}
//
//static lfs_stag_t lfs_dir_find(lfs_t *lfs, lfs_mdir_t *dir,
// const char **path, uint16_t *id) {
// // we reduce path to a single name if we can find it
// const char *name = *path;
// if (id) {
// *id = 0x3ff;
// }
//
// // default to root dir
// lfs_stag_t tag = LFS_MKTAG(LFS_TYPE_DIR, 0x3ff, 0);
// dir->tail[0] = lfs->root[0];
// dir->tail[1] = lfs->root[1];
//
// while (true) {
//nextname:
// // skip slashes
// name += strspn(name, "/");
// lfs_size_t namelen = strcspn(name, "/");
//
// // skip '.' and root '..'
// if ((namelen == 1 && memcmp(name, ".", 1) == 0) ||
// (namelen == 2 && memcmp(name, "..", 2) == 0)) {
// name += namelen;
// goto nextname;
// }
//
// // skip if matched by '..' in name
// const char *suffix = name + namelen;
// lfs_size_t sufflen;
// int depth = 1;
// while (true) {
// suffix += strspn(suffix, "/");
// sufflen = strcspn(suffix, "/");
// if (sufflen == 0) {
// break;
// }
//
// if (sufflen == 2 && memcmp(suffix, "..", 2) == 0) {
// depth -= 1;
// if (depth == 0) {
// name = suffix + sufflen;
// goto nextname;
// }
// } else {
// depth += 1;
// }
//
// suffix += sufflen;
// }
//
// // found path
// if (name[0] == '\0') {
// return tag;
// }
//
// // update what we've found so far
// *path = name;
//
// // only continue if we hit a directory
// if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
// return LFS_ERR_NOTDIR;
// }
//
// // grab the entry data
// if (lfs_tag_id(tag) != 0x3ff) {
// lfs_stag_t res = lfs_dir_get(lfs, dir, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), dir->tail);
// if (res < 0) {
// return res;
// }
// lfs_pair_fromle32(dir->tail);
// }
//
// // find entry matching name
// while (true) {
// tag = lfs_dir_fetchmatch(lfs, dir, dir->tail,
// LFS_MKTAG(0x780, 0, 0),
// LFS_MKTAG(LFS_TYPE_NAME, 0, namelen),
// // are we last name?
// (strchr(name, '/') == NULL) ? id : NULL,
// lfs_dir_find_match, &(struct lfs_dir_find_match){
// lfs, name, namelen});
// if (tag < 0) {
// return tag;
// }
//
// if (tag) {
// break;
// }
//
// if (!dir->split) {
// return LFS_ERR_NOENT;
// }
// }
//
// // to next name
// name += namelen;
// }
//}
//
//// commit logic
//struct lfs_commit {
// lfs_block_t block;
// lfs_off_t off;
// lfs_tag_t ptag;
// uint32_t crc;
//
// lfs_off_t begin;
// lfs_off_t end;
//};
//
//#ifndef LFS_READONLY
//static int lfs_dir_commitprog(lfs_t *lfs, struct lfs_commit *commit,
// const void *buffer, lfs_size_t size) {
// int err = lfs_bd_prog(lfs,
// &lfs->pcache, &lfs->rcache, false,
// commit->block, commit->off ,
// (const uint8_t*)buffer, size);
// if (err) {
// return err;
// }
//
// commit->crc = lfs_crc(commit->crc, buffer, size);
// commit->off += size;
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_commitattr(lfs_t *lfs, struct lfs_commit *commit,
// lfs_tag_t tag, const void *buffer) {
// // check if we fit
// lfs_size_t dsize = lfs_tag_dsize(tag);
// if (commit->off + dsize > commit->end) {
// return LFS_ERR_NOSPC;
// }
//
// // write out tag
// lfs_tag_t ntag = lfs_tobe32((tag & 0x7fffffff) ^ commit->ptag);
// int err = lfs_dir_commitprog(lfs, commit, &ntag, sizeof(ntag));
// if (err) {
// return err;
// }
//
// if (!(tag & 0x80000000)) {
// // from memory
// err = lfs_dir_commitprog(lfs, commit, buffer, dsize-sizeof(tag));
// if (err) {
// return err;
// }
// } else {
// // from disk
// const struct lfs_diskoff *disk = buffer;
// for (lfs_off_t i = 0; i < dsize-sizeof(tag); i++) {
// // rely on caching to make this efficient
// uint8_t dat;
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, dsize-sizeof(tag)-i,
// disk->block, disk->off+i, &dat, 1);
// if (err) {
// return err;
// }
//
// err = lfs_dir_commitprog(lfs, commit, &dat, 1);
// if (err) {
// return err;
// }
// }
// }
//
// commit->ptag = tag & 0x7fffffff;
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//
//static int lfs_dir_commitcrc(lfs_t *lfs, struct lfs_commit *commit) {
// // align to program units
// //
// // this gets a bit complex as we have two types of crcs:
// // - 5-word crc with fcrc to check following prog (middle of block)
// // - 2-word crc with no following prog (end of block)
// const lfs_off_t end = lfs_alignup(
// lfs_min(commit->off + 5*sizeof(uint32_t), lfs->cfg->block_size),
// lfs->cfg->prog_size);
//
// lfs_off_t off1 = 0;
// uint32_t crc1 = 0;
//
// // create crc tags to fill up remainder of commit, note that
// // padding is not crced, which lets fetches skip padding but
// // makes committing a bit more complicated
// while (commit->off < end) {
// lfs_off_t noff = (
// lfs_min(end - (commit->off+sizeof(lfs_tag_t)), 0x3fe)
// + (commit->off+sizeof(lfs_tag_t)));
// // too large for crc tag? need padding commits
// if (noff < end) {
// noff = lfs_min(noff, end - 5*sizeof(uint32_t));
// }
//
// // space for fcrc?
// uint8_t eperturb = -1;
// if (noff >= end && noff <= lfs->cfg->block_size - lfs->cfg->prog_size) {
// // first read the leading byte, this always contains a bit
// // we can perturb to avoid writes that don't change the fcrc
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, lfs->cfg->prog_size,
// commit->block, noff, &eperturb, 1);
// if (err && err != LFS_ERR_CORRUPT) {
// return err;
// }
//
// // find the expected fcrc, don't bother avoiding a reread
// // of the eperturb, it should still be in our cache
// struct lfs_fcrc fcrc = {.size=lfs->cfg->prog_size, .crc=0xffffffff};
// err = lfs_bd_crc(lfs,
// NULL, &lfs->rcache, lfs->cfg->prog_size,
// commit->block, noff, fcrc.size, &fcrc.crc);
// if (err && err != LFS_ERR_CORRUPT) {
// return err;
// }
//
// lfs_fcrc_tole32(&fcrc);
// err = lfs_dir_commitattr(lfs, commit,
// LFS_MKTAG(LFS_TYPE_FCRC, 0x3ff, sizeof(struct lfs_fcrc)),
// &fcrc);
// if (err) {
// return err;
// }
// }
//
// // build commit crc
// struct {
// lfs_tag_t tag;
// uint32_t crc;
// } ccrc;
// lfs_tag_t ntag = LFS_MKTAG(
// LFS_TYPE_CCRC + (((uint8_t)~eperturb) >> 7), 0x3ff,
// noff - (commit->off+sizeof(lfs_tag_t)));
// ccrc.tag = lfs_tobe32(ntag ^ commit->ptag);
// commit->crc = lfs_crc(commit->crc, &ccrc.tag, sizeof(lfs_tag_t));
// ccrc.crc = lfs_tole32(commit->crc);
//
// int err = lfs_bd_prog(lfs,
// &lfs->pcache, &lfs->rcache, false,
// commit->block, commit->off, &ccrc, sizeof(ccrc));
// if (err) {
// return err;
// }
//
// // keep track of non-padding checksum to verify
// if (off1 == 0) {
// off1 = commit->off + sizeof(lfs_tag_t);
// crc1 = commit->crc;
// }
//
// commit->off = noff;
// // perturb valid bit?
// commit->ptag = ntag ^ ((0x80 & ~eperturb) << 24);
// // reset crc for next commit
// commit->crc = 0xffffffff;
//
// // manually flush here since we don't prog the padding, this confuses
// // the caching layer
// if (noff >= end || noff >= lfs->pcache.off + lfs->cfg->cache_size) {
// // flush buffers
// int err = lfs_bd_sync(lfs, &lfs->pcache, &lfs->rcache, false);
// if (err) {
// return err;
// }
// }
// }
//
// // successful commit, check checksums to make sure
// //
// // note that we don't need to check padding commits, worst
// // case if they are corrupted we would have had to compact anyways
// lfs_off_t off = commit->begin;
// uint32_t crc = 0xffffffff;
// int err = lfs_bd_crc(lfs,
// NULL, &lfs->rcache, off1+sizeof(uint32_t),
// commit->block, off, off1-off, &crc);
// if (err) {
// return err;
// }
//
// // check non-padding commits against known crc
// if (crc != crc1) {
// return LFS_ERR_CORRUPT;
// }
//
// // make sure to check crc in case we happen to pick
// // up an unrelated crc (frozen block?)
// err = lfs_bd_crc(lfs,
// NULL, &lfs->rcache, sizeof(uint32_t),
// commit->block, off1, sizeof(uint32_t), &crc);
// if (err) {
// return err;
// }
//
// if (crc != 0) {
// return LFS_ERR_CORRUPT;
// }
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_alloc(lfs_t *lfs, lfs_mdir_t *dir) {
// // allocate pair of dir blocks (backwards, so we write block 1 first)
// for (int i = 0; i < 2; i++) {
// int err = lfs_alloc(lfs, &dir->pair[(i+1)%2]);
// if (err) {
// return err;
// }
// }
//
// // zero for reproducibility in case initial block is unreadable
// dir->rev = 0;
//
// // rather than clobbering one of the blocks we just pretend
// // the revision may be valid
// int err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, sizeof(dir->rev),
// dir->pair[0], 0, &dir->rev, sizeof(dir->rev));
// dir->rev = lfs_fromle32(dir->rev);
// if (err && err != LFS_ERR_CORRUPT) {
// return err;
// }
//
// // to make sure we don't immediately evict, align the new revision count
// // to our block_cycles modulus, see lfs_dir_compact for why our modulus
// // is tweaked this way
// if (lfs->cfg->block_cycles > 0) {
// dir->rev = lfs_alignup(dir->rev, ((lfs->cfg->block_cycles+1)|1));
// }
//
// // set defaults
// dir->off = sizeof(dir->rev);
// dir->etag = 0xffffffff;
// dir->count = 0;
// dir->tail[0] = LFS_BLOCK_NULL;
// dir->tail[1] = LFS_BLOCK_NULL;
// dir->erased = false;
// dir->split = false;
//
// // don't write out yet, let caller take care of that
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_drop(lfs_t *lfs, lfs_mdir_t *dir, lfs_mdir_t *tail) {
// // steal state
// int err = lfs_dir_getgstate(lfs, tail, &lfs->gdelta);
// if (err) {
// return err;
// }
//
// // steal tail
// lfs_pair_tole32(tail->tail);
// err = lfs_dir_commit(lfs, dir, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_TAIL + tail->split, 0x3ff, 8), tail->tail}));
// lfs_pair_fromle32(tail->tail);
// if (err) {
// return err;
// }
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_split(lfs_t *lfs,
// lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
// lfs_mdir_t *source, uint16_t split, uint16_t end) {
// // create tail metadata pair
// lfs_mdir_t tail;
// int err = lfs_dir_alloc(lfs, &tail);
// if (err) {
// return err;
// }
//
// tail.split = dir->split;
// tail.tail[0] = dir->tail[0];
// tail.tail[1] = dir->tail[1];
//
// // note we don't care about LFS_OK_RELOCATED
// int res = lfs_dir_compact(lfs, &tail, attrs, attrcount, source, split, end);
// if (res < 0) {
// return res;
// }
//
// dir->tail[0] = tail.pair[0];
// dir->tail[1] = tail.pair[1];
// dir->split = true;
//
// // update root if needed
// if (lfs_pair_cmp(dir->pair, lfs->root) == 0 && split == 0) {
// lfs->root[0] = tail.pair[0];
// lfs->root[1] = tail.pair[1];
// }
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_commit_size(void *p, lfs_tag_t tag, const void *buffer) {
// lfs_size_t *size = p;
// (void)buffer;
//
// *size += lfs_tag_dsize(tag);
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//struct lfs_dir_commit_commit {
// lfs_t *lfs;
// struct lfs_commit *commit;
//};
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_commit_commit(void *p, lfs_tag_t tag, const void *buffer) {
// struct lfs_dir_commit_commit *commit = p;
// return lfs_dir_commitattr(commit->lfs, commit->commit, tag, buffer);
//}
//#endif
//
//#ifndef LFS_READONLY
//static bool lfs_dir_needsrelocation(lfs_t *lfs, lfs_mdir_t *dir) {
// // If our revision count == n * block_cycles, we should force a relocation,
// // this is how littlefs wear-levels at the metadata-pair level. Note that we
// // actually use (block_cycles+1)|1, this is to avoid two corner cases:
// // 1. block_cycles = 1, which would prevent relocations from terminating
// // 2. block_cycles = 2n, which, due to aliasing, would only ever relocate
// // one metadata block in the pair, effectively making this useless
// return (lfs->cfg->block_cycles > 0
// && ((dir->rev + 1) % ((lfs->cfg->block_cycles+1)|1) == 0));
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_compact(lfs_t *lfs,
// lfs_mdir_t *dir, const struct lfs_mattr *attrs, int attrcount,
// lfs_mdir_t *source, uint16_t begin, uint16_t end) {
// // save some state in case block is bad
// bool relocated = false;
// bool tired = lfs_dir_needsrelocation(lfs, dir);
//
// // increment revision count
// dir->rev += 1;
//
// // do not proactively relocate blocks during migrations, this
// // can cause a number of failure states such: clobbering the
// // v1 superblock if we relocate root, and invalidating directory
// // pointers if we relocate the head of a directory. On top of
// // this, relocations increase the overall complexity of
// // lfs_migration, which is already a delicate operation.
//#ifdef LFS_MIGRATE
// if (lfs->lfs1) {
// tired = false;
// }
//#endif
//
// if (tired && lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) != 0) {
// // we're writing too much, time to relocate
// goto relocate;
// }
//
// // begin loop to commit compaction to blocks until a compact sticks
// while (true) {
// {
// // setup commit state
// struct lfs_commit commit = {
// .block = dir->pair[1],
// .off = 0,
// .ptag = 0xffffffff,
// .crc = 0xffffffff,
//
// .begin = 0,
// .end = (lfs->cfg->metadata_max ?
// lfs->cfg->metadata_max : lfs->cfg->block_size) - 8,
// };
//
// // erase block to write to
// int err = lfs_bd_erase(lfs, dir->pair[1]);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // write out header
// dir->rev = lfs_tole32(dir->rev);
// err = lfs_dir_commitprog(lfs, &commit,
// &dir->rev, sizeof(dir->rev));
// dir->rev = lfs_fromle32(dir->rev);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // traverse the directory, this time writing out all unique tags
// err = lfs_dir_traverse(lfs,
// source, 0, 0xffffffff, attrs, attrcount,
// LFS_MKTAG(0x400, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
// begin, end, -begin,
// lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
// lfs, &commit});
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // commit tail, which may be new after last size check
// if (!lfs_pair_isnull(dir->tail)) {
// lfs_pair_tole32(dir->tail);
// err = lfs_dir_commitattr(lfs, &commit,
// LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, 8),
// dir->tail);
// lfs_pair_fromle32(dir->tail);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
// }
//
// // bring over gstate?
// lfs_gstate_t delta = {0};
// if (!relocated) {
// lfs_gstate_xor(&delta, &lfs->gdisk);
// lfs_gstate_xor(&delta, &lfs->gstate);
// }
// lfs_gstate_xor(&delta, &lfs->gdelta);
// delta.tag &= ~LFS_MKTAG(0, 0, 0x3ff);
//
// err = lfs_dir_getgstate(lfs, dir, &delta);
// if (err) {
// return err;
// }
//
// if (!lfs_gstate_iszero(&delta)) {
// lfs_gstate_tole32(&delta);
// err = lfs_dir_commitattr(lfs, &commit,
// LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
// sizeof(delta)), &delta);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
// }
//
// // complete commit with crc
// err = lfs_dir_commitcrc(lfs, &commit);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // successful compaction, swap dir pair to indicate most recent
// LFS_ASSERT(commit.off % lfs->cfg->prog_size == 0);
// lfs_pair_swap(dir->pair);
// dir->count = end - begin;
// dir->off = commit.off;
// dir->etag = commit.ptag;
// // update gstate
// lfs->gdelta = (lfs_gstate_t){0};
// if (!relocated) {
// lfs->gdisk = lfs->gstate;
// }
// }
// break;
//
//relocate:
// // commit was corrupted, drop caches and prepare to relocate block
// relocated = true;
// lfs_cache_drop(lfs, &lfs->pcache);
// if (!tired) {
// LFS_DEBUG("Bad block at 0x%"PRIx32, dir->pair[1]);
// }
//
// // can't relocate superblock, filesystem is now frozen
// if (lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) {
// LFS_WARN("Superblock 0x%"PRIx32" has become unwritable",
// dir->pair[1]);
// return LFS_ERR_NOSPC;
// }
//
// // relocate half of pair
// int err = lfs_alloc(lfs, &dir->pair[1]);
// if (err && (err != LFS_ERR_NOSPC || !tired)) {
// return err;
// }
//
// tired = false;
// continue;
// }
//
// return relocated ? LFS_OK_RELOCATED : 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_splittingcompact(lfs_t *lfs, lfs_mdir_t *dir,
// const struct lfs_mattr *attrs, int attrcount,
// lfs_mdir_t *source, uint16_t begin, uint16_t end) {
// while (true) {
// // find size of first split, we do this by halving the split until
// // the metadata is guaranteed to fit
// //
// // Note that this isn't a true binary search, we never increase the
// // split size. This may result in poorly distributed metadata but isn't
// // worth the extra code size or performance hit to fix.
// lfs_size_t split = begin;
// while (end - split > 1) {
// lfs_size_t size = 0;
// int err = lfs_dir_traverse(lfs,
// source, 0, 0xffffffff, attrs, attrcount,
// LFS_MKTAG(0x400, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_NAME, 0, 0),
// split, end, -split,
// lfs_dir_commit_size, &size);
// if (err) {
// return err;
// }
//
// // space is complicated, we need room for:
// //
// // - tail: 4+2*4 = 12 bytes
// // - gstate: 4+3*4 = 16 bytes
// // - move delete: 4 = 4 bytes
// // - crc: 4+4 = 8 bytes
// // total = 40 bytes
// //
// // And we cap at half a block to avoid degenerate cases with
// // nearly-full metadata blocks.
// //
// if (end - split < 0xff
// && size <= lfs_min(
// lfs->cfg->block_size - 40,
// lfs_alignup(
// (lfs->cfg->metadata_max
// ? lfs->cfg->metadata_max
// : lfs->cfg->block_size)/2,
// lfs->cfg->prog_size))) {
// break;
// }
//
// split = split + ((end - split) / 2);
// }
//
// if (split == begin) {
// // no split needed
// break;
// }
//
// // split into two metadata pairs and continue
// int err = lfs_dir_split(lfs, dir, attrs, attrcount,
// source, split, end);
// if (err && err != LFS_ERR_NOSPC) {
// return err;
// }
//
// if (err) {
// // we can't allocate a new block, try to compact with degraded
// // performance
// LFS_WARN("Unable to split {0x%"PRIx32", 0x%"PRIx32"}",
// dir->pair[0], dir->pair[1]);
// break;
// } else {
// end = split;
// }
// }
//
// if (lfs_dir_needsrelocation(lfs, dir)
// && lfs_pair_cmp(dir->pair, (const lfs_block_t[2]){0, 1}) == 0) {
// // oh no! we're writing too much to the superblock,
// // should we expand?
// lfs_ssize_t size = lfs_fs_rawsize(lfs);
// if (size < 0) {
// return size;
// }
//
// // do we have extra space? littlefs can't reclaim this space
// // by itself, so expand cautiously
// if ((lfs_size_t)size < lfs->cfg->block_count/2) {
// LFS_DEBUG("Expanding superblock at rev %"PRIu32, dir->rev);
// int err = lfs_dir_split(lfs, dir, attrs, attrcount,
// source, begin, end);
// if (err && err != LFS_ERR_NOSPC) {
// return err;
// }
//
// if (err) {
// // welp, we tried, if we ran out of space there's not much
// // we can do, we'll error later if we've become frozen
// LFS_WARN("Unable to expand superblock");
// } else {
// end = begin;
// }
// }
// }
//
// return lfs_dir_compact(lfs, dir, attrs, attrcount, source, begin, end);
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_relocatingcommit(lfs_t *lfs, lfs_mdir_t *dir,
// const lfs_block_t pair[2],
// const struct lfs_mattr *attrs, int attrcount,
// lfs_mdir_t *pdir) {
// int state = 0;
//
// // calculate changes to the directory
// bool hasdelete = false;
// for (int i = 0; i < attrcount; i++) {
// if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_CREATE) {
// dir->count += 1;
// } else if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_DELETE) {
// LFS_ASSERT(dir->count > 0);
// dir->count -= 1;
// hasdelete = true;
// } else if (lfs_tag_type1(attrs[i].tag) == LFS_TYPE_TAIL) {
// dir->tail[0] = ((lfs_block_t*)attrs[i].buffer)[0];
// dir->tail[1] = ((lfs_block_t*)attrs[i].buffer)[1];
// dir->split = (lfs_tag_chunk(attrs[i].tag) & 1);
// lfs_pair_fromle32(dir->tail);
// }
// }
//
// // should we actually drop the directory block?
// if (hasdelete && dir->count == 0) {
// LFS_ASSERT(pdir);
// int err = lfs_fs_pred(lfs, dir->pair, pdir);
// if (err && err != LFS_ERR_NOENT) {
// return err;
// }
//
// if (err != LFS_ERR_NOENT && pdir->split) {
// state = LFS_OK_DROPPED;
// goto fixmlist;
// }
// }
//
// if (dir->erased) {
// // try to commit
// struct lfs_commit commit = {
// .block = dir->pair[0],
// .off = dir->off,
// .ptag = dir->etag,
// .crc = 0xffffffff,
//
// .begin = dir->off,
// .end = (lfs->cfg->metadata_max ?
// lfs->cfg->metadata_max : lfs->cfg->block_size) - 8,
// };
//
// // traverse attrs that need to be written out
// lfs_pair_tole32(dir->tail);
// int err = lfs_dir_traverse(lfs,
// dir, dir->off, dir->etag, attrs, attrcount,
// 0, 0, 0, 0, 0,
// lfs_dir_commit_commit, &(struct lfs_dir_commit_commit){
// lfs, &commit});
// lfs_pair_fromle32(dir->tail);
// if (err) {
// if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
// goto compact;
// }
// return err;
// }
//
// // commit any global diffs if we have any
// lfs_gstate_t delta = {0};
// lfs_gstate_xor(&delta, &lfs->gstate);
// lfs_gstate_xor(&delta, &lfs->gdisk);
// lfs_gstate_xor(&delta, &lfs->gdelta);
// delta.tag &= ~LFS_MKTAG(0, 0, 0x3ff);
// if (!lfs_gstate_iszero(&delta)) {
// err = lfs_dir_getgstate(lfs, dir, &delta);
// if (err) {
// return err;
// }
//
// lfs_gstate_tole32(&delta);
// err = lfs_dir_commitattr(lfs, &commit,
// LFS_MKTAG(LFS_TYPE_MOVESTATE, 0x3ff,
// sizeof(delta)), &delta);
// if (err) {
// if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
// goto compact;
// }
// return err;
// }
// }
//
// // finalize commit with the crc
// err = lfs_dir_commitcrc(lfs, &commit);
// if (err) {
// if (err == LFS_ERR_NOSPC || err == LFS_ERR_CORRUPT) {
// goto compact;
// }
// return err;
// }
//
// // successful commit, update dir
// LFS_ASSERT(commit.off % lfs->cfg->prog_size == 0);
// dir->off = commit.off;
// dir->etag = commit.ptag;
// // and update gstate
// lfs->gdisk = lfs->gstate;
// lfs->gdelta = (lfs_gstate_t){0};
//
// goto fixmlist;
// }
//
//compact:
// // fall back to compaction
// lfs_cache_drop(lfs, &lfs->pcache);
//
// state = lfs_dir_splittingcompact(lfs, dir, attrs, attrcount,
// dir, 0, dir->count);
// if (state < 0) {
// return state;
// }
//
// goto fixmlist;
//
//fixmlist:;
// // this complicated bit of logic is for fixing up any active
// // metadata-pairs that we may have affected
// //
// // note we have to make two passes since the mdir passed to
// // lfs_dir_commit could also be in this list, and even then
// // we need to copy the pair so they don't get clobbered if we refetch
// // our mdir.
// lfs_block_t oldpair[2] = {pair[0], pair[1]};
// for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
// if (lfs_pair_cmp(d->m.pair, oldpair) == 0) {
// d->m = *dir;
// if (d->m.pair != pair) {
// for (int i = 0; i < attrcount; i++) {
// if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_DELETE &&
// d->id == lfs_tag_id(attrs[i].tag)) {
// d->m.pair[0] = LFS_BLOCK_NULL;
// d->m.pair[1] = LFS_BLOCK_NULL;
// } else if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_DELETE &&
// d->id > lfs_tag_id(attrs[i].tag)) {
// d->id -= 1;
// if (d->type == LFS_TYPE_DIR) {
// ((lfs_dir_t*)d)->pos -= 1;
// }
// } else if (lfs_tag_type3(attrs[i].tag) == LFS_TYPE_CREATE &&
// d->id >= lfs_tag_id(attrs[i].tag)) {
// d->id += 1;
// if (d->type == LFS_TYPE_DIR) {
// ((lfs_dir_t*)d)->pos += 1;
// }
// }
// }
// }
//
// while (d->id >= d->m.count && d->m.split) {
// // we split and id is on tail now
// d->id -= d->m.count;
// int err = lfs_dir_fetch(lfs, &d->m, d->m.tail);
// if (err) {
// return err;
// }
// }
// }
// }
//
// return state;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_orphaningcommit(lfs_t *lfs, lfs_mdir_t *dir,
// const struct lfs_mattr *attrs, int attrcount) {
// // check for any inline files that aren't RAM backed and
// // forcefully evict them, needed for filesystem consistency
// for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
// if (dir != &f->m && lfs_pair_cmp(f->m.pair, dir->pair) == 0 &&
// f->type == LFS_TYPE_REG && (f->flags & LFS_F_INLINE) &&
// f->ctz.size > lfs->cfg->cache_size) {
// int err = lfs_file_outline(lfs, f);
// if (err) {
// return err;
// }
//
// err = lfs_file_flush(lfs, f);
// if (err) {
// return err;
// }
// }
// }
//
// lfs_block_t lpair[2] = {dir->pair[0], dir->pair[1]};
// lfs_mdir_t ldir = *dir;
// lfs_mdir_t pdir;
// int state = lfs_dir_relocatingcommit(lfs, &ldir, dir->pair,
// attrs, attrcount, &pdir);
// if (state < 0) {
// return state;
// }
//
// // update if we're not in mlist, note we may have already been
// // updated if we are in mlist
// if (lfs_pair_cmp(dir->pair, lpair) == 0) {
// *dir = ldir;
// }
//
// // commit was successful, but may require other changes in the
// // filesystem, these would normally be tail recursive, but we have
// // flattened them here avoid unbounded stack usage
//
// // need to drop?
// if (state == LFS_OK_DROPPED) {
// // steal state
// int err = lfs_dir_getgstate(lfs, dir, &lfs->gdelta);
// if (err) {
// return err;
// }
//
// // steal tail, note that this can't create a recursive drop
// lpair[0] = pdir.pair[0];
// lpair[1] = pdir.pair[1];
// lfs_pair_tole32(dir->tail);
// state = lfs_dir_relocatingcommit(lfs, &pdir, lpair, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_TAIL + dir->split, 0x3ff, 8),
// dir->tail}),
// NULL);
// lfs_pair_fromle32(dir->tail);
// if (state < 0) {
// return state;
// }
//
// ldir = pdir;
// }
//
// // need to relocate?
// bool orphans = false;
// while (state == LFS_OK_RELOCATED) {
// LFS_DEBUG("Relocating {0x%"PRIx32", 0x%"PRIx32"} "
// "-> {0x%"PRIx32", 0x%"PRIx32"}",
// lpair[0], lpair[1], ldir.pair[0], ldir.pair[1]);
// state = 0;
//
// // update internal root
// if (lfs_pair_cmp(lpair, lfs->root) == 0) {
// lfs->root[0] = ldir.pair[0];
// lfs->root[1] = ldir.pair[1];
// }
//
// // update internally tracked dirs
// for (struct lfs_mlist *d = lfs->mlist; d; d = d->next) {
// if (lfs_pair_cmp(lpair, d->m.pair) == 0) {
// d->m.pair[0] = ldir.pair[0];
// d->m.pair[1] = ldir.pair[1];
// }
//
// if (d->type == LFS_TYPE_DIR &&
// lfs_pair_cmp(lpair, ((lfs_dir_t*)d)->head) == 0) {
// ((lfs_dir_t*)d)->head[0] = ldir.pair[0];
// ((lfs_dir_t*)d)->head[1] = ldir.pair[1];
// }
// }
//
// // find parent
// lfs_stag_t tag = lfs_fs_parent(lfs, lpair, &pdir);
// if (tag < 0 && tag != LFS_ERR_NOENT) {
// return tag;
// }
//
// bool hasparent = (tag != LFS_ERR_NOENT);
// if (tag != LFS_ERR_NOENT) {
// // note that if we have a parent, we must have a pred, so this will
// // always create an orphan
// int err = lfs_fs_preporphans(lfs, +1);
// if (err) {
// return err;
// }
//
// // fix pending move in this pair? this looks like an optimization but
// // is in fact _required_ since relocating may outdate the move.
// uint16_t moveid = 0x3ff;
// if (lfs_gstate_hasmovehere(&lfs->gstate, pdir.pair)) {
// moveid = lfs_tag_id(lfs->gstate.tag);
// LFS_DEBUG("Fixing move while relocating "
// "{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
// pdir.pair[0], pdir.pair[1], moveid);
// lfs_fs_prepmove(lfs, 0x3ff, NULL);
// if (moveid < lfs_tag_id(tag)) {
// tag -= LFS_MKTAG(0, 1, 0);
// }
// }
//
// lfs_block_t ppair[2] = {pdir.pair[0], pdir.pair[1]};
// lfs_pair_tole32(ldir.pair);
// state = lfs_dir_relocatingcommit(lfs, &pdir, ppair, LFS_MKATTRS(
// {LFS_MKTAG_IF(moveid != 0x3ff,
// LFS_TYPE_DELETE, moveid, 0), NULL},
// {tag, ldir.pair}),
// NULL);
// lfs_pair_fromle32(ldir.pair);
// if (state < 0) {
// return state;
// }
//
// if (state == LFS_OK_RELOCATED) {
// lpair[0] = ppair[0];
// lpair[1] = ppair[1];
// ldir = pdir;
// orphans = true;
// continue;
// }
// }
//
// // find pred
// int err = lfs_fs_pred(lfs, lpair, &pdir);
// if (err && err != LFS_ERR_NOENT) {
// return err;
// }
// LFS_ASSERT(!(hasparent && err == LFS_ERR_NOENT));
//
// // if we can't find dir, it must be new
// if (err != LFS_ERR_NOENT) {
// if (lfs_gstate_hasorphans(&lfs->gstate)) {
// // next step, clean up orphans
// err = lfs_fs_preporphans(lfs, -hasparent);
// if (err) {
// return err;
// }
// }
//
// // fix pending move in this pair? this looks like an optimization
// // but is in fact _required_ since relocating may outdate the move.
// uint16_t moveid = 0x3ff;
// if (lfs_gstate_hasmovehere(&lfs->gstate, pdir.pair)) {
// moveid = lfs_tag_id(lfs->gstate.tag);
// LFS_DEBUG("Fixing move while relocating "
// "{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
// pdir.pair[0], pdir.pair[1], moveid);
// lfs_fs_prepmove(lfs, 0x3ff, NULL);
// }
//
// // replace bad pair, either we clean up desync, or no desync occured
// lpair[0] = pdir.pair[0];
// lpair[1] = pdir.pair[1];
// lfs_pair_tole32(ldir.pair);
// state = lfs_dir_relocatingcommit(lfs, &pdir, lpair, LFS_MKATTRS(
// {LFS_MKTAG_IF(moveid != 0x3ff,
// LFS_TYPE_DELETE, moveid, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_TAIL + pdir.split, 0x3ff, 8),
// ldir.pair}),
// NULL);
// lfs_pair_fromle32(ldir.pair);
// if (state < 0) {
// return state;
// }
//
// ldir = pdir;
// }
// }
//
// return orphans ? LFS_OK_ORPHANED : 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_dir_commit(lfs_t *lfs, lfs_mdir_t *dir,
// const struct lfs_mattr *attrs, int attrcount) {
// int orphans = lfs_dir_orphaningcommit(lfs, dir, attrs, attrcount);
// if (orphans < 0) {
// return orphans;
// }
//
// if (orphans) {
// // make sure we've removed all orphans, this is a noop if there
// // are none, but if we had nested blocks failures we may have
// // created some
// int err = lfs_fs_deorphan(lfs, false);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//#endif
//
//
///// Top level directory operations ///
//#ifndef LFS_READONLY
//static int lfs_rawmkdir(lfs_t *lfs, const char *path) {
// // deorphan if we haven't yet, needed at most once after poweron
// int err = lfs_fs_forceconsistency(lfs);
// if (err) {
// return err;
// }
//
// struct lfs_mlist cwd;
// cwd.next = lfs->mlist;
// uint16_t id;
// err = lfs_dir_find(lfs, &cwd.m, &path, &id);
// if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
// return (err < 0) ? err : LFS_ERR_EXIST;
// }
//
// // check that name fits
// lfs_size_t nlen = strlen(path);
// if (nlen > lfs->name_max) {
// return LFS_ERR_NAMETOOLONG;
// }
//
// // build up new directory
// lfs_alloc_ack(lfs);
// lfs_mdir_t dir;
// err = lfs_dir_alloc(lfs, &dir);
// if (err) {
// return err;
// }
//
// // find end of list
// lfs_mdir_t pred = cwd.m;
// while (pred.split) {
// err = lfs_dir_fetch(lfs, &pred, pred.tail);
// if (err) {
// return err;
// }
// }
//
// // setup dir
// lfs_pair_tole32(pred.tail);
// err = lfs_dir_commit(lfs, &dir, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), pred.tail}));
// lfs_pair_fromle32(pred.tail);
// if (err) {
// return err;
// }
//
// // current block not end of list?
// if (cwd.m.split) {
// // update tails, this creates a desync
// err = lfs_fs_preporphans(lfs, +1);
// if (err) {
// return err;
// }
//
// // it's possible our predecessor has to be relocated, and if
// // our parent is our predecessor's predecessor, this could have
// // caused our parent to go out of date, fortunately we can hook
// // ourselves into littlefs to catch this
// cwd.type = 0;
// cwd.id = 0;
// lfs->mlist = &cwd;
//
// lfs_pair_tole32(dir.pair);
// err = lfs_dir_commit(lfs, &pred, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
// lfs_pair_fromle32(dir.pair);
// if (err) {
// lfs->mlist = cwd.next;
// return err;
// }
//
// lfs->mlist = cwd.next;
// err = lfs_fs_preporphans(lfs, -1);
// if (err) {
// return err;
// }
// }
//
// // now insert into our parent block
// lfs_pair_tole32(dir.pair);
// err = lfs_dir_commit(lfs, &cwd.m, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_DIR, id, nlen), path},
// {LFS_MKTAG(LFS_TYPE_DIRSTRUCT, id, 8), dir.pair},
// {LFS_MKTAG_IF(!cwd.m.split,
// LFS_TYPE_SOFTTAIL, 0x3ff, 8), dir.pair}));
// lfs_pair_fromle32(dir.pair);
// if (err) {
// return err;
// }
//
// return 0;
//}
//#endif
//
//static int lfs_dir_rawopen(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
// lfs_stag_t tag = lfs_dir_find(lfs, &dir->m, &path, NULL);
// if (tag < 0) {
// return tag;
// }
//
// if (lfs_tag_type3(tag) != LFS_TYPE_DIR) {
// return LFS_ERR_NOTDIR;
// }
//
// lfs_block_t pair[2];
// if (lfs_tag_id(tag) == 0x3ff) {
// // handle root dir separately
// pair[0] = lfs->root[0];
// pair[1] = lfs->root[1];
// } else {
// // get dir pair from parent
// lfs_stag_t res = lfs_dir_get(lfs, &dir->m, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
// if (res < 0) {
// return res;
// }
// lfs_pair_fromle32(pair);
// }
//
// // fetch first pair
// int err = lfs_dir_fetch(lfs, &dir->m, pair);
// if (err) {
// return err;
// }
//
// // setup entry
// dir->head[0] = dir->m.pair[0];
// dir->head[1] = dir->m.pair[1];
// dir->id = 0;
// dir->pos = 0;
//
// // add to list of mdirs
// dir->type = LFS_TYPE_DIR;
// lfs_mlist_append(lfs, (struct lfs_mlist *)dir);
//
// return 0;
//}
//
//static int lfs_dir_rawclose(lfs_t *lfs, lfs_dir_t *dir) {
// // remove from list of mdirs
// lfs_mlist_remove(lfs, (struct lfs_mlist *)dir);
//
// return 0;
//}
//
//static int lfs_dir_rawread(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
// memset(info, 0, sizeof(*info));
//
// // special offset for '.' and '..'
// if (dir->pos == 0) {
// info->type = LFS_TYPE_DIR;
// strcpy(info->name, ".");
// dir->pos += 1;
// return true;
// } else if (dir->pos == 1) {
// info->type = LFS_TYPE_DIR;
// strcpy(info->name, "..");
// dir->pos += 1;
// return true;
// }
//
// while (true) {
// if (dir->id == dir->m.count) {
// if (!dir->m.split) {
// return false;
// }
//
// int err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
// if (err) {
// return err;
// }
//
// dir->id = 0;
// }
//
// int err = lfs_dir_getinfo(lfs, &dir->m, dir->id, info);
// if (err && err != LFS_ERR_NOENT) {
// return err;
// }
//
// dir->id += 1;
// if (err != LFS_ERR_NOENT) {
// break;
// }
// }
//
// dir->pos += 1;
// return true;
//}
//
//static int lfs_dir_rawseek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// // simply walk from head dir
// int err = lfs_dir_rawrewind(lfs, dir);
// if (err) {
// return err;
// }
//
// // first two for ./..
// dir->pos = lfs_min(2, off);
// off -= dir->pos;
//
// // skip superblock entry
// dir->id = (off > 0 && lfs_pair_cmp(dir->head, lfs->root) == 0);
//
// while (off > 0) {
// int diff = lfs_min(dir->m.count - dir->id, off);
// dir->id += diff;
// dir->pos += diff;
// off -= diff;
//
// if (dir->id == dir->m.count) {
// if (!dir->m.split) {
// return LFS_ERR_INVAL;
// }
//
// err = lfs_dir_fetch(lfs, &dir->m, dir->m.tail);
// if (err) {
// return err;
// }
//
// dir->id = 0;
// }
// }
//
// return 0;
//}
//
//static lfs_soff_t lfs_dir_rawtell(lfs_t *lfs, lfs_dir_t *dir) {
// (void)lfs;
// return dir->pos;
//}
//
//static int lfs_dir_rawrewind(lfs_t *lfs, lfs_dir_t *dir) {
// // reload the head dir
// int err = lfs_dir_fetch(lfs, &dir->m, dir->head);
// if (err) {
// return err;
// }
//
// dir->id = 0;
// dir->pos = 0;
// return 0;
//}
//
//
///// File index list operations ///
//static int lfs_ctz_index(lfs_t *lfs, lfs_off_t *off) {
// lfs_off_t size = *off;
// lfs_off_t b = lfs->cfg->block_size - 2*4;
// lfs_off_t i = size / b;
// if (i == 0) {
// return 0;
// }
//
// i = (size - 4*(lfs_popc(i-1)+2)) / b;
// *off = size - b*i - 4*lfs_popc(i);
// return i;
//}
//
//static int lfs_ctz_find(lfs_t *lfs,
// const lfs_cache_t *pcache, lfs_cache_t *rcache,
// lfs_block_t head, lfs_size_t size,
// lfs_size_t pos, lfs_block_t *block, lfs_off_t *off) {
// if (size == 0) {
// *block = LFS_BLOCK_NULL;
// *off = 0;
// return 0;
// }
//
// lfs_off_t current = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
// lfs_off_t target = lfs_ctz_index(lfs, &pos);
//
// while (current > target) {
// lfs_size_t skip = lfs_min(
// lfs_npw2(current-target+1) - 1,
// lfs_ctz(current));
//
// int err = lfs_bd_read(lfs,
// pcache, rcache, sizeof(head),
// head, 4*skip, &head, sizeof(head));
// head = lfs_fromle32(head);
// if (err) {
// return err;
// }
//
// current -= 1 << skip;
// }
//
// *block = head;
// *off = pos;
// return 0;
//}
//
//#ifndef LFS_READONLY
//static int lfs_ctz_extend(lfs_t *lfs,
// lfs_cache_t *pcache, lfs_cache_t *rcache,
// lfs_block_t head, lfs_size_t size,
// lfs_block_t *block, lfs_off_t *off) {
// while (true) {
// // go ahead and grab a block
// lfs_block_t nblock;
// int err = lfs_alloc(lfs, &nblock);
// if (err) {
// return err;
// }
//
// {
// err = lfs_bd_erase(lfs, nblock);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// if (size == 0) {
// *block = nblock;
// *off = 0;
// return 0;
// }
//
// lfs_size_t noff = size - 1;
// lfs_off_t index = lfs_ctz_index(lfs, &noff);
// noff = noff + 1;
//
// // just copy out the last block if it is incomplete
// if (noff != lfs->cfg->block_size) {
// for (lfs_off_t i = 0; i < noff; i++) {
// uint8_t data;
// err = lfs_bd_read(lfs,
// NULL, rcache, noff-i,
// head, i, &data, 1);
// if (err) {
// return err;
// }
//
// err = lfs_bd_prog(lfs,
// pcache, rcache, true,
// nblock, i, &data, 1);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
// }
//
// *block = nblock;
// *off = noff;
// return 0;
// }
//
// // append block
// index += 1;
// lfs_size_t skips = lfs_ctz(index) + 1;
// lfs_block_t nhead = head;
// for (lfs_off_t i = 0; i < skips; i++) {
// nhead = lfs_tole32(nhead);
// err = lfs_bd_prog(lfs, pcache, rcache, true,
// nblock, 4*i, &nhead, 4);
// nhead = lfs_fromle32(nhead);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// if (i != skips-1) {
// err = lfs_bd_read(lfs,
// NULL, rcache, sizeof(nhead),
// nhead, 4*i, &nhead, sizeof(nhead));
// nhead = lfs_fromle32(nhead);
// if (err) {
// return err;
// }
// }
// }
//
// *block = nblock;
// *off = 4*skips;
// return 0;
// }
//
//relocate:
// LFS_DEBUG("Bad block at 0x%"PRIx32, nblock);
//
// // just clear cache and try a new block
// lfs_cache_drop(lfs, pcache);
// }
//}
//#endif
//
//static int lfs_ctz_traverse(lfs_t *lfs,
// const lfs_cache_t *pcache, lfs_cache_t *rcache,
// lfs_block_t head, lfs_size_t size,
// int (*cb)(void*, lfs_block_t), void *data) {
// if (size == 0) {
// return 0;
// }
//
// lfs_off_t index = lfs_ctz_index(lfs, &(lfs_off_t){size-1});
//
// while (true) {
// int err = cb(data, head);
// if (err) {
// return err;
// }
//
// if (index == 0) {
// return 0;
// }
//
// lfs_block_t heads[2];
// int count = 2 - (index & 1);
// err = lfs_bd_read(lfs,
// pcache, rcache, count*sizeof(head),
// head, 0, &heads, count*sizeof(head));
// heads[0] = lfs_fromle32(heads[0]);
// heads[1] = lfs_fromle32(heads[1]);
// if (err) {
// return err;
// }
//
// for (int i = 0; i < count-1; i++) {
// err = cb(data, heads[i]);
// if (err) {
// return err;
// }
// }
//
// head = heads[count-1];
// index -= count;
// }
//}
//
//
///// Top level file operations ///
//static int lfs_file_rawopencfg(lfs_t *lfs, lfs_file_t *file,
// const char *path, int flags,
// const struct lfs_file_config *cfg) {
//#ifndef LFS_READONLY
// // deorphan if we haven't yet, needed at most once after poweron
// if ((flags & LFS_O_WRONLY) == LFS_O_WRONLY) {
// int err = lfs_fs_forceconsistency(lfs);
// if (err) {
// return err;
// }
// }
//#else
// LFS_ASSERT((flags & LFS_O_RDONLY) == LFS_O_RDONLY);
//#endif
//
// // setup simple file details
// int err;
// file->cfg = cfg;
// file->flags = flags;
// file->pos = 0;
// file->off = 0;
// file->cache.buffer = NULL;
//
// // allocate entry for file if it doesn't exist
// lfs_stag_t tag = lfs_dir_find(lfs, &file->m, &path, &file->id);
// if (tag < 0 && !(tag == LFS_ERR_NOENT && file->id != 0x3ff)) {
// err = tag;
// goto cleanup;
// }
//
// // get id, add to list of mdirs to catch update changes
// file->m.type = LFS_TYPE_REG;
// lfs_mlist_append(lfs, (struct lfs_mlist *)file);
//
//#ifdef LFS_READONLY
// if (tag == LFS_ERR_NOENT) {
// err = LFS_ERR_NOENT;
// goto cleanup;
//#else
// if (tag == LFS_ERR_NOENT) {
// if (!(flags & LFS_O_CREAT)) {
// err = LFS_ERR_NOENT;
// goto cleanup;
// }
//
// // check that name fits
// lfs_size_t nlen = strlen(path);
// if (nlen > lfs->name_max) {
// err = LFS_ERR_NAMETOOLONG;
// goto cleanup;
// }
//
// // get next slot and create entry to remember name
// err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_CREATE, file->id, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_REG, file->id, nlen), path},
// {LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0), NULL}));
//
// // it may happen that the file name doesn't fit in the metadata blocks, e.g., a 256 byte file name will
// // not fit in a 128 byte block.
// err = (err == LFS_ERR_NOSPC) ? LFS_ERR_NAMETOOLONG : err;
// if (err) {
// goto cleanup;
// }
//
// tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, 0);
// } else if (flags & LFS_O_EXCL) {
// err = LFS_ERR_EXIST;
// goto cleanup;
//#endif
// } else if (lfs_tag_type3(tag) != LFS_TYPE_REG) {
// err = LFS_ERR_ISDIR;
// goto cleanup;
//#ifndef LFS_READONLY
// } else if (flags & LFS_O_TRUNC) {
// // truncate if requested
// tag = LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0);
// file->flags |= LFS_F_DIRTY;
//#endif
// } else {
// // try to load what's on disk, if it's inlined we'll fix it later
// tag = lfs_dir_get(lfs, &file->m, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, file->id, 8), &file->ctz);
// if (tag < 0) {
// err = tag;
// goto cleanup;
// }
// lfs_ctz_fromle32(&file->ctz);
// }
//
// // fetch attrs
// for (unsigned i = 0; i < file->cfg->attr_count; i++) {
// // if opened for read / read-write operations
// if ((file->flags & LFS_O_RDONLY) == LFS_O_RDONLY) {
// lfs_stag_t res = lfs_dir_get(lfs, &file->m,
// LFS_MKTAG(0x7ff, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_USERATTR + file->cfg->attrs[i].type,
// file->id, file->cfg->attrs[i].size),
// file->cfg->attrs[i].buffer);
// if (res < 0 && res != LFS_ERR_NOENT) {
// err = res;
// goto cleanup;
// }
// }
//
//#ifndef LFS_READONLY
// // if opened for write / read-write operations
// if ((file->flags & LFS_O_WRONLY) == LFS_O_WRONLY) {
// if (file->cfg->attrs[i].size > lfs->attr_max) {
// err = LFS_ERR_NOSPC;
// goto cleanup;
// }
//
// file->flags |= LFS_F_DIRTY;
// }
//#endif
// }
//
// // allocate buffer if needed
// if (file->cfg->buffer) {
// file->cache.buffer = file->cfg->buffer;
// } else {
// file->cache.buffer = lfs_malloc(lfs->cfg->cache_size);
// if (!file->cache.buffer) {
// err = LFS_ERR_NOMEM;
// goto cleanup;
// }
// }
//
// // zero to avoid information leak
// lfs_cache_zero(lfs, &file->cache);
//
// if (lfs_tag_type3(tag) == LFS_TYPE_INLINESTRUCT) {
// // load inline files
// file->ctz.head = LFS_BLOCK_INLINE;
// file->ctz.size = lfs_tag_size(tag);
// file->flags |= LFS_F_INLINE;
// file->cache.block = file->ctz.head;
// file->cache.off = 0;
// file->cache.size = lfs->cfg->cache_size;
//
// // don't always read (may be new/trunc file)
// if (file->ctz.size > 0) {
// lfs_stag_t res = lfs_dir_get(lfs, &file->m,
// LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, file->id,
// lfs_min(file->cache.size, 0x3fe)),
// file->cache.buffer);
// if (res < 0) {
// err = res;
// goto cleanup;
// }
// }
// }
//
// return 0;
//
//cleanup:
// // clean up lingering resources
//#ifndef LFS_READONLY
// file->flags |= LFS_F_ERRED;
//#endif
// lfs_file_rawclose(lfs, file);
// return err;
//}
//
//#ifndef LFS_NO_MALLOC
//static int lfs_file_rawopen(lfs_t *lfs, lfs_file_t *file,
// const char *path, int flags) {
// static const struct lfs_file_config defaults = {0};
// int err = lfs_file_rawopencfg(lfs, file, path, flags, &defaults);
// return err;
//}
//#endif
//
//static int lfs_file_rawclose(lfs_t *lfs, lfs_file_t *file) {
//#ifndef LFS_READONLY
// int err = lfs_file_rawsync(lfs, file);
//#else
// int err = 0;
//#endif
//
// // remove from list of mdirs
// lfs_mlist_remove(lfs, (struct lfs_mlist*)file);
//
// // clean up memory
// if (!file->cfg->buffer) {
// lfs_free(file->cache.buffer);
// }
//
// return err;
//}
//
//
//#ifndef LFS_READONLY
//static int lfs_file_relocate(lfs_t *lfs, lfs_file_t *file) {
// while (true) {
// // just relocate what exists into new block
// lfs_block_t nblock;
// int err = lfs_alloc(lfs, &nblock);
// if (err) {
// return err;
// }
//
// err = lfs_bd_erase(lfs, nblock);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// // either read from dirty cache or disk
// for (lfs_off_t i = 0; i < file->off; i++) {
// uint8_t data;
// if (file->flags & LFS_F_INLINE) {
// err = lfs_dir_getread(lfs, &file->m,
// // note we evict inline files before they can be dirty
// NULL, &file->cache, file->off-i,
// LFS_MKTAG(0xfff, 0x1ff, 0),
// LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
// i, &data, 1);
// if (err) {
// return err;
// }
// } else {
// err = lfs_bd_read(lfs,
// &file->cache, &lfs->rcache, file->off-i,
// file->block, i, &data, 1);
// if (err) {
// return err;
// }
// }
//
// err = lfs_bd_prog(lfs,
// &lfs->pcache, &lfs->rcache, true,
// nblock, i, &data, 1);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
// }
//
// // copy over new state of file
// memcpy(file->cache.buffer, lfs->pcache.buffer, lfs->cfg->cache_size);
// file->cache.block = lfs->pcache.block;
// file->cache.off = lfs->pcache.off;
// file->cache.size = lfs->pcache.size;
// lfs_cache_zero(lfs, &lfs->pcache);
//
// file->block = nblock;
// file->flags |= LFS_F_WRITING;
// return 0;
//
//relocate:
// LFS_DEBUG("Bad block at 0x%"PRIx32, nblock);
//
// // just clear cache and try a new block
// lfs_cache_drop(lfs, &lfs->pcache);
// }
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_file_outline(lfs_t *lfs, lfs_file_t *file) {
// file->off = file->pos;
// lfs_alloc_ack(lfs);
// int err = lfs_file_relocate(lfs, file);
// if (err) {
// return err;
// }
//
// file->flags &= ~LFS_F_INLINE;
// return 0;
//}
//#endif
//
//static int lfs_file_flush(lfs_t *lfs, lfs_file_t *file) {
// if (file->flags & LFS_F_READING) {
// if (!(file->flags & LFS_F_INLINE)) {
// lfs_cache_drop(lfs, &file->cache);
// }
// file->flags &= ~LFS_F_READING;
// }
//
//#ifndef LFS_READONLY
// if (file->flags & LFS_F_WRITING) {
// lfs_off_t pos = file->pos;
//
// if (!(file->flags & LFS_F_INLINE)) {
// // copy over anything after current branch
// lfs_file_t orig = {
// .ctz.head = file->ctz.head,
// .ctz.size = file->ctz.size,
// .flags = LFS_O_RDONLY,
// .pos = file->pos,
// .cache = lfs->rcache,
// };
// lfs_cache_drop(lfs, &lfs->rcache);
//
// while (file->pos < file->ctz.size) {
// // copy over a byte at a time, leave it up to caching
// // to make this efficient
// uint8_t data;
// lfs_ssize_t res = lfs_file_flushedread(lfs, &orig, &data, 1);
// if (res < 0) {
// return res;
// }
//
// res = lfs_file_flushedwrite(lfs, file, &data, 1);
// if (res < 0) {
// return res;
// }
//
// // keep our reference to the rcache in sync
// if (lfs->rcache.block != LFS_BLOCK_NULL) {
// lfs_cache_drop(lfs, &orig.cache);
// lfs_cache_drop(lfs, &lfs->rcache);
// }
// }
//
// // write out what we have
// while (true) {
// int err = lfs_bd_flush(lfs, &file->cache, &lfs->rcache, true);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// return err;
// }
//
// break;
//
//relocate:
// LFS_DEBUG("Bad block at 0x%"PRIx32, file->block);
// err = lfs_file_relocate(lfs, file);
// if (err) {
// return err;
// }
// }
// } else {
// file->pos = lfs_max(file->pos, file->ctz.size);
// }
//
// // actual file updates
// file->ctz.head = file->block;
// file->ctz.size = file->pos;
// file->flags &= ~LFS_F_WRITING;
// file->flags |= LFS_F_DIRTY;
//
// file->pos = pos;
// }
//#endif
//
// return 0;
//}
//
//#ifndef LFS_READONLY
//static int lfs_file_rawsync(lfs_t *lfs, lfs_file_t *file) {
// if (file->flags & LFS_F_ERRED) {
// // it's not safe to do anything if our file errored
// return 0;
// }
//
// int err = lfs_file_flush(lfs, file);
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
//
//
// if ((file->flags & LFS_F_DIRTY) &&
// !lfs_pair_isnull(file->m.pair)) {
// // update dir entry
// uint16_t type;
// const void *buffer;
// lfs_size_t size;
// struct lfs_ctz ctz;
// if (file->flags & LFS_F_INLINE) {
// // inline the whole file
// type = LFS_TYPE_INLINESTRUCT;
// buffer = file->cache.buffer;
// size = file->ctz.size;
// } else {
// // update the ctz reference
// type = LFS_TYPE_CTZSTRUCT;
// // copy ctz so alloc will work during a relocate
// ctz = file->ctz;
// lfs_ctz_tole32(&ctz);
// buffer = &ctz;
// size = sizeof(ctz);
// }
//
// // commit file data and attributes
// err = lfs_dir_commit(lfs, &file->m, LFS_MKATTRS(
// {LFS_MKTAG(type, file->id, size), buffer},
// {LFS_MKTAG(LFS_FROM_USERATTRS, file->id,
// file->cfg->attr_count), file->cfg->attrs}));
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
//
// file->flags &= ~LFS_F_DIRTY;
// }
//
// return 0;
//}
//#endif
//
//static lfs_ssize_t lfs_file_flushedread(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size) {
// uint8_t *data = buffer;
// lfs_size_t nsize = size;
//
// if (file->pos >= file->ctz.size) {
// // eof if past end
// return 0;
// }
//
// size = lfs_min(size, file->ctz.size - file->pos);
// nsize = size;
//
// while (nsize > 0) {
// // check if we need a new block
// if (!(file->flags & LFS_F_READING) ||
// file->off == lfs->cfg->block_size) {
// if (!(file->flags & LFS_F_INLINE)) {
// int err = lfs_ctz_find(lfs, NULL, &file->cache,
// file->ctz.head, file->ctz.size,
// file->pos, &file->block, &file->off);
// if (err) {
// return err;
// }
// } else {
// file->block = LFS_BLOCK_INLINE;
// file->off = file->pos;
// }
//
// file->flags |= LFS_F_READING;
// }
//
// // read as much as we can in current block
// lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
// if (file->flags & LFS_F_INLINE) {
// int err = lfs_dir_getread(lfs, &file->m,
// NULL, &file->cache, lfs->cfg->block_size,
// LFS_MKTAG(0xfff, 0x1ff, 0),
// LFS_MKTAG(LFS_TYPE_INLINESTRUCT, file->id, 0),
// file->off, data, diff);
// if (err) {
// return err;
// }
// } else {
// int err = lfs_bd_read(lfs,
// NULL, &file->cache, lfs->cfg->block_size,
// file->block, file->off, data, diff);
// if (err) {
// return err;
// }
// }
//
// file->pos += diff;
// file->off += diff;
// data += diff;
// nsize -= diff;
// }
//
// return size;
//}
//
//static lfs_ssize_t lfs_file_rawread(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size) {
// LFS_ASSERT((file->flags & LFS_O_RDONLY) == LFS_O_RDONLY);
//
//#ifndef LFS_READONLY
// if (file->flags & LFS_F_WRITING) {
// // flush out any writes
// int err = lfs_file_flush(lfs, file);
// if (err) {
// return err;
// }
// }
//#endif
//
// return lfs_file_flushedread(lfs, file, buffer, size);
//}
//
//
//#ifndef LFS_READONLY
//static lfs_ssize_t lfs_file_flushedwrite(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size) {
// const uint8_t *data = buffer;
// lfs_size_t nsize = size;
//
// if ((file->flags & LFS_F_INLINE) &&
// lfs_max(file->pos+nsize, file->ctz.size) >
// lfs_min(0x3fe, lfs_min(
// lfs->cfg->cache_size,
// (lfs->cfg->metadata_max ?
// lfs->cfg->metadata_max : lfs->cfg->block_size) / 8))) {
// // inline file doesn't fit anymore
// int err = lfs_file_outline(lfs, file);
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
// }
//
// while (nsize > 0) {
// // check if we need a new block
// if (!(file->flags & LFS_F_WRITING) ||
// file->off == lfs->cfg->block_size) {
// if (!(file->flags & LFS_F_INLINE)) {
// if (!(file->flags & LFS_F_WRITING) && file->pos > 0) {
// // find out which block we're extending from
// int err = lfs_ctz_find(lfs, NULL, &file->cache,
// file->ctz.head, file->ctz.size,
// file->pos-1, &file->block, &file->off);
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
//
// // mark cache as dirty since we may have read data into it
// lfs_cache_zero(lfs, &file->cache);
// }
//
// // extend file with new blocks
// lfs_alloc_ack(lfs);
// int err = lfs_ctz_extend(lfs, &file->cache, &lfs->rcache,
// file->block, file->pos,
// &file->block, &file->off);
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
// } else {
// file->block = LFS_BLOCK_INLINE;
// file->off = file->pos;
// }
//
// file->flags |= LFS_F_WRITING;
// }
//
// // program as much as we can in current block
// lfs_size_t diff = lfs_min(nsize, lfs->cfg->block_size - file->off);
// while (true) {
// int err = lfs_bd_prog(lfs, &file->cache, &lfs->rcache, true,
// file->block, file->off, data, diff);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// goto relocate;
// }
// file->flags |= LFS_F_ERRED;
// return err;
// }
//
// break;
//relocate:
// err = lfs_file_relocate(lfs, file);
// if (err) {
// file->flags |= LFS_F_ERRED;
// return err;
// }
// }
//
// file->pos += diff;
// file->off += diff;
// data += diff;
// nsize -= diff;
//
// lfs_alloc_ack(lfs);
// }
//
// return size;
//}
//
//static lfs_ssize_t lfs_file_rawwrite(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size) {
// LFS_ASSERT((file->flags & LFS_O_WRONLY) == LFS_O_WRONLY);
//
// if (file->flags & LFS_F_READING) {
// // drop any reads
// int err = lfs_file_flush(lfs, file);
// if (err) {
// return err;
// }
// }
//
// if ((file->flags & LFS_O_APPEND) && file->pos < file->ctz.size) {
// file->pos = file->ctz.size;
// }
//
// if (file->pos + size > lfs->file_max) {
// // Larger than file limit?
// return LFS_ERR_FBIG;
// }
//
// if (!(file->flags & LFS_F_WRITING) && file->pos > file->ctz.size) {
// // fill with zeros
// lfs_off_t pos = file->pos;
// file->pos = file->ctz.size;
//
// while (file->pos < pos) {
// lfs_ssize_t res = lfs_file_flushedwrite(lfs, file, &(uint8_t){0}, 1);
// if (res < 0) {
// return res;
// }
// }
// }
//
// lfs_ssize_t nsize = lfs_file_flushedwrite(lfs, file, buffer, size);
// if (nsize < 0) {
// return nsize;
// }
//
// file->flags &= ~LFS_F_ERRED;
// return nsize;
//}
//#endif
//
//static lfs_soff_t lfs_file_rawseek(lfs_t *lfs, lfs_file_t *file,
// lfs_soff_t off, int whence) {
// // find new pos
// lfs_off_t npos = file->pos;
// if (whence == LFS_SEEK_SET) {
// npos = off;
// } else if (whence == LFS_SEEK_CUR) {
// if ((lfs_soff_t)file->pos + off < 0) {
// return LFS_ERR_INVAL;
// } else {
// npos = file->pos + off;
// }
// } else if (whence == LFS_SEEK_END) {
// lfs_soff_t res = lfs_file_rawsize(lfs, file) + off;
// if (res < 0) {
// return LFS_ERR_INVAL;
// } else {
// npos = res;
// }
// }
//
// if (npos > lfs->file_max) {
// // file position out of range
// return LFS_ERR_INVAL;
// }
//
// if (file->pos == npos) {
// // noop - position has not changed
// return npos;
// }
//
// // if we're only reading and our new offset is still in the file's cache
// // we can avoid flushing and needing to reread the data
// if (
//#ifndef LFS_READONLY
// !(file->flags & LFS_F_WRITING)
//#else
// true
//#endif
// ) {
// int oindex = lfs_ctz_index(lfs, &(lfs_off_t){file->pos});
// lfs_off_t noff = npos;
// int nindex = lfs_ctz_index(lfs, &noff);
// if (oindex == nindex
// && noff >= file->cache.off
// && noff < file->cache.off + file->cache.size) {
// file->pos = npos;
// file->off = noff;
// return npos;
// }
// }
//
// // write out everything beforehand, may be noop if rdonly
// int err = lfs_file_flush(lfs, file);
// if (err) {
// return err;
// }
//
// // update pos
// file->pos = npos;
// return npos;
//}
//
//#ifndef LFS_READONLY
//static int lfs_file_rawtruncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
// LFS_ASSERT((file->flags & LFS_O_WRONLY) == LFS_O_WRONLY);
//
// if (size > LFS_FILE_MAX) {
// return LFS_ERR_INVAL;
// }
//
// lfs_off_t pos = file->pos;
// lfs_off_t oldsize = lfs_file_rawsize(lfs, file);
// if (size < oldsize) {
// // need to flush since directly changing metadata
// int err = lfs_file_flush(lfs, file);
// if (err) {
// return err;
// }
//
// // lookup new head in ctz skip list
// err = lfs_ctz_find(lfs, NULL, &file->cache,
// file->ctz.head, file->ctz.size,
// size, &file->block, &file->off);
// if (err) {
// return err;
// }
//
// // need to set pos/block/off consistently so seeking back to
// // the old position does not get confused
// file->pos = size;
// file->ctz.head = file->block;
// file->ctz.size = size;
// file->flags |= LFS_F_DIRTY | LFS_F_READING;
// } else if (size > oldsize) {
// // flush+seek if not already at end
// lfs_soff_t res = lfs_file_rawseek(lfs, file, 0, LFS_SEEK_END);
// if (res < 0) {
// return (int)res;
// }
//
// // fill with zeros
// while (file->pos < size) {
// res = lfs_file_rawwrite(lfs, file, &(uint8_t){0}, 1);
// if (res < 0) {
// return (int)res;
// }
// }
// }
//
// // restore pos
// lfs_soff_t res = lfs_file_rawseek(lfs, file, pos, LFS_SEEK_SET);
// if (res < 0) {
// return (int)res;
// }
//
// return 0;
//}
//#endif
//
//static lfs_soff_t lfs_file_rawtell(lfs_t *lfs, lfs_file_t *file) {
// (void)lfs;
// return file->pos;
//}
//
//static int lfs_file_rawrewind(lfs_t *lfs, lfs_file_t *file) {
// lfs_soff_t res = lfs_file_rawseek(lfs, file, 0, LFS_SEEK_SET);
// if (res < 0) {
// return (int)res;
// }
//
// return 0;
//}
//
//static lfs_soff_t lfs_file_rawsize(lfs_t *lfs, lfs_file_t *file) {
// (void)lfs;
//
//#ifndef LFS_READONLY
// if (file->flags & LFS_F_WRITING) {
// return lfs_max(file->pos, file->ctz.size);
// }
//#endif
//
// return file->ctz.size;
//}
//
//
///// General fs operations ///
//static int lfs_rawstat(lfs_t *lfs, const char *path, struct lfs_info *info) {
// lfs_mdir_t cwd;
// lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
// if (tag < 0) {
// return (int)tag;
// }
//
// return lfs_dir_getinfo(lfs, &cwd, lfs_tag_id(tag), info);
//}
//
//#ifndef LFS_READONLY
//static int lfs_rawremove(lfs_t *lfs, const char *path) {
// // deorphan if we haven't yet, needed at most once after poweron
// int err = lfs_fs_forceconsistency(lfs);
// if (err) {
// return err;
// }
//
// lfs_mdir_t cwd;
// lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
// if (tag < 0 || lfs_tag_id(tag) == 0x3ff) {
// return (tag < 0) ? (int)tag : LFS_ERR_INVAL;
// }
//
// struct lfs_mlist dir;
// dir.next = lfs->mlist;
// if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// // must be empty before removal
// lfs_block_t pair[2];
// lfs_stag_t res = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, lfs_tag_id(tag), 8), pair);
// if (res < 0) {
// return (int)res;
// }
// lfs_pair_fromle32(pair);
//
// err = lfs_dir_fetch(lfs, &dir.m, pair);
// if (err) {
// return err;
// }
//
// if (dir.m.count > 0 || dir.m.split) {
// return LFS_ERR_NOTEMPTY;
// }
//
// // mark fs as orphaned
// err = lfs_fs_preporphans(lfs, +1);
// if (err) {
// return err;
// }
//
// // I know it's crazy but yes, dir can be changed by our parent's
// // commit (if predecessor is child)
// dir.type = 0;
// dir.id = 0;
// lfs->mlist = &dir;
// }
//
// // delete the entry
// err = lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_DELETE, lfs_tag_id(tag), 0), NULL}));
// if (err) {
// lfs->mlist = dir.next;
// return err;
// }
//
// lfs->mlist = dir.next;
// if (lfs_tag_type3(tag) == LFS_TYPE_DIR) {
// // fix orphan
// err = lfs_fs_preporphans(lfs, -1);
// if (err) {
// return err;
// }
//
// err = lfs_fs_pred(lfs, dir.m.pair, &cwd);
// if (err) {
// return err;
// }
//
// err = lfs_dir_drop(lfs, &cwd, &dir.m);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_rawrename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// // deorphan if we haven't yet, needed at most once after poweron
// int err = lfs_fs_forceconsistency(lfs);
// if (err) {
// return err;
// }
//
// // find old entry
// lfs_mdir_t oldcwd;
// lfs_stag_t oldtag = lfs_dir_find(lfs, &oldcwd, &oldpath, NULL);
// if (oldtag < 0 || lfs_tag_id(oldtag) == 0x3ff) {
// return (oldtag < 0) ? (int)oldtag : LFS_ERR_INVAL;
// }
//
// // find new entry
// lfs_mdir_t newcwd;
// uint16_t newid;
// lfs_stag_t prevtag = lfs_dir_find(lfs, &newcwd, &newpath, &newid);
// if ((prevtag < 0 || lfs_tag_id(prevtag) == 0x3ff) &&
// !(prevtag == LFS_ERR_NOENT && newid != 0x3ff)) {
// return (prevtag < 0) ? (int)prevtag : LFS_ERR_INVAL;
// }
//
// // if we're in the same pair there's a few special cases...
// bool samepair = (lfs_pair_cmp(oldcwd.pair, newcwd.pair) == 0);
// uint16_t newoldid = lfs_tag_id(oldtag);
//
// struct lfs_mlist prevdir;
// prevdir.next = lfs->mlist;
// if (prevtag == LFS_ERR_NOENT) {
// // check that name fits
// lfs_size_t nlen = strlen(newpath);
// if (nlen > lfs->name_max) {
// return LFS_ERR_NAMETOOLONG;
// }
//
// // there is a small chance we are being renamed in the same
// // directory/ to an id less than our old id, the global update
// // to handle this is a bit messy
// if (samepair && newid <= newoldid) {
// newoldid += 1;
// }
// } else if (lfs_tag_type3(prevtag) != lfs_tag_type3(oldtag)) {
// return LFS_ERR_ISDIR;
// } else if (samepair && newid == newoldid) {
// // we're renaming to ourselves??
// return 0;
// } else if (lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// // must be empty before removal
// lfs_block_t prevpair[2];
// lfs_stag_t res = lfs_dir_get(lfs, &newcwd, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, newid, 8), prevpair);
// if (res < 0) {
// return (int)res;
// }
// lfs_pair_fromle32(prevpair);
//
// // must be empty before removal
// err = lfs_dir_fetch(lfs, &prevdir.m, prevpair);
// if (err) {
// return err;
// }
//
// if (prevdir.m.count > 0 || prevdir.m.split) {
// return LFS_ERR_NOTEMPTY;
// }
//
// // mark fs as orphaned
// err = lfs_fs_preporphans(lfs, +1);
// if (err) {
// return err;
// }
//
// // I know it's crazy but yes, dir can be changed by our parent's
// // commit (if predecessor is child)
// prevdir.type = 0;
// prevdir.id = 0;
// lfs->mlist = &prevdir;
// }
//
// if (!samepair) {
// lfs_fs_prepmove(lfs, newoldid, oldcwd.pair);
// }
//
// // move over all attributes
// err = lfs_dir_commit(lfs, &newcwd, LFS_MKATTRS(
// {LFS_MKTAG_IF(prevtag != LFS_ERR_NOENT,
// LFS_TYPE_DELETE, newid, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_CREATE, newid, 0), NULL},
// {LFS_MKTAG(lfs_tag_type3(oldtag), newid, strlen(newpath)), newpath},
// {LFS_MKTAG(LFS_FROM_MOVE, newid, lfs_tag_id(oldtag)), &oldcwd},
// {LFS_MKTAG_IF(samepair,
// LFS_TYPE_DELETE, newoldid, 0), NULL}));
// if (err) {
// lfs->mlist = prevdir.next;
// return err;
// }
//
// // let commit clean up after move (if we're different! otherwise move
// // logic already fixed it for us)
// if (!samepair && lfs_gstate_hasmove(&lfs->gstate)) {
// // prep gstate and delete move id
// lfs_fs_prepmove(lfs, 0x3ff, NULL);
// err = lfs_dir_commit(lfs, &oldcwd, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_DELETE, lfs_tag_id(oldtag), 0), NULL}));
// if (err) {
// lfs->mlist = prevdir.next;
// return err;
// }
// }
//
// lfs->mlist = prevdir.next;
// if (prevtag != LFS_ERR_NOENT
// && lfs_tag_type3(prevtag) == LFS_TYPE_DIR) {
// // fix orphan
// err = lfs_fs_preporphans(lfs, -1);
// if (err) {
// return err;
// }
//
// err = lfs_fs_pred(lfs, prevdir.m.pair, &newcwd);
// if (err) {
// return err;
// }
//
// err = lfs_dir_drop(lfs, &newcwd, &prevdir.m);
// if (err) {
// return err;
// }
// }
//
// return 0;
//}
//#endif
//
//static lfs_ssize_t lfs_rawgetattr(lfs_t *lfs, const char *path,
// uint8_t type, void *buffer, lfs_size_t size) {
// lfs_mdir_t cwd;
// lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
// if (tag < 0) {
// return tag;
// }
//
// uint16_t id = lfs_tag_id(tag);
// if (id == 0x3ff) {
// // special case for root
// id = 0;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
// }
//
// tag = lfs_dir_get(lfs, &cwd, LFS_MKTAG(0x7ff, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_USERATTR + type,
// id, lfs_min(size, lfs->attr_max)),
// buffer);
// if (tag < 0) {
// if (tag == LFS_ERR_NOENT) {
// return LFS_ERR_NOATTR;
// }
//
// return tag;
// }
//
// return lfs_tag_size(tag);
//}
//
//#ifndef LFS_READONLY
//static int lfs_commitattr(lfs_t *lfs, const char *path,
// uint8_t type, const void *buffer, lfs_size_t size) {
// lfs_mdir_t cwd;
// lfs_stag_t tag = lfs_dir_find(lfs, &cwd, &path, NULL);
// if (tag < 0) {
// return tag;
// }
//
// uint16_t id = lfs_tag_id(tag);
// if (id == 0x3ff) {
// // special case for root
// id = 0;
// int err = lfs_dir_fetch(lfs, &cwd, lfs->root);
// if (err) {
// return err;
// }
// }
//
// return lfs_dir_commit(lfs, &cwd, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_USERATTR + type, id, size), buffer}));
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_rawsetattr(lfs_t *lfs, const char *path,
// uint8_t type, const void *buffer, lfs_size_t size) {
// if (size > lfs->attr_max) {
// return LFS_ERR_NOSPC;
// }
//
// return lfs_commitattr(lfs, path, type, buffer, size);
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_rawremoveattr(lfs_t *lfs, const char *path, uint8_t type) {
// return lfs_commitattr(lfs, path, type, NULL, 0x3ff);
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_rawformat(lfs_t *lfs, const struct lfs_config *cfg) {
// int err = 0;
// {
// err = lfs_init(lfs, cfg);
// if (err) {
// return err;
// }
//
// // create free lookahead
// memset(lfs->free.buffer, 0, lfs->cfg->lookahead_size);
// lfs->free.off = 0;
// lfs->free.size = lfs_min(8*lfs->cfg->lookahead_size,
// lfs->cfg->block_count);
// lfs->free.i = 0;
// lfs_alloc_ack(lfs);
//
// // create root dir
// lfs_mdir_t root;
// err = lfs_dir_alloc(lfs, &root);
// if (err) {
// goto cleanup;
// }
//
// // write one superblock
// lfs_superblock_t superblock = {
// .version = LFS_DISK_VERSION,
// .block_size = lfs->cfg->block_size,
// .block_count = lfs->cfg->block_count,
// .name_max = lfs->name_max,
// .file_max = lfs->file_max,
// .attr_max = lfs->attr_max,
// };
//
// lfs_superblock_tole32(&superblock);
// err = lfs_dir_commit(lfs, &root, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
// {LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
// &superblock}));
// if (err) {
// goto cleanup;
// }
//
// // force compaction to prevent accidentally mounting any
// // older version of littlefs that may live on disk
// root.erased = false;
// err = lfs_dir_commit(lfs, &root, NULL, 0);
// if (err) {
// goto cleanup;
// }
//
// // sanity check that fetch works
// err = lfs_dir_fetch(lfs, &root, (const lfs_block_t[2]){0, 1});
// if (err) {
// goto cleanup;
// }
// }
//
//cleanup:
// lfs_deinit(lfs);
// return err;
//
//}
//#endif
//
//static int lfs_rawmount(lfs_t *lfs, const struct lfs_config *cfg) {
// int err = lfs_init(lfs, cfg);
// if (err) {
// return err;
// }
//
// // scan directory blocks for superblock and any global updates
// lfs_mdir_t dir = {.tail = {0, 1}};
// lfs_block_t tortoise[2] = {LFS_BLOCK_NULL, LFS_BLOCK_NULL};
// lfs_size_t tortoise_i = 1;
// lfs_size_t tortoise_period = 1;
// while (!lfs_pair_isnull(dir.tail)) {
// // detect cycles with Brent's algorithm
// if (lfs_pair_issync(dir.tail, tortoise)) {
// LFS_ERROR("Cycle detected in tail list");
// err = LFS_ERR_CORRUPT;
// goto cleanup;
// }
// if (tortoise_i == tortoise_period) {
// tortoise[0] = dir.tail[0];
// tortoise[1] = dir.tail[1];
// tortoise_i = 0;
// tortoise_period *= 2;
// }
// tortoise_i += 1;
//
// // fetch next block in tail list
// lfs_stag_t tag = lfs_dir_fetchmatch(lfs, &dir, dir.tail,
// LFS_MKTAG(0x7ff, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8),
// NULL,
// lfs_dir_find_match, &(struct lfs_dir_find_match){
// lfs, "littlefs", 8});
// if (tag < 0) {
// err = tag;
// goto cleanup;
// }
//
// // has superblock?
// if (tag && !lfs_tag_isdelete(tag)) {
// // update root
// lfs->root[0] = dir.pair[0];
// lfs->root[1] = dir.pair[1];
//
// // grab superblock
// lfs_superblock_t superblock;
// tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x7ff, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
// &superblock);
// if (tag < 0) {
// err = tag;
// goto cleanup;
// }
// lfs_superblock_fromle32(&superblock);
//
// // check version
// uint16_t major_version = (0xffff & (superblock.version >> 16));
// uint16_t minor_version = (0xffff & (superblock.version >> 0));
// if ((major_version != LFS_DISK_VERSION_MAJOR ||
// minor_version > LFS_DISK_VERSION_MINOR)) {
// LFS_ERROR("Invalid version v%"PRIu16".%"PRIu16,
// major_version, minor_version);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// // check superblock configuration
// if (superblock.name_max) {
// if (superblock.name_max > lfs->name_max) {
// LFS_ERROR("Unsupported name_max (%"PRIu32" > %"PRIu32")",
// superblock.name_max, lfs->name_max);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// lfs->name_max = superblock.name_max;
// }
//
// if (superblock.file_max) {
// if (superblock.file_max > lfs->file_max) {
// LFS_ERROR("Unsupported file_max (%"PRIu32" > %"PRIu32")",
// superblock.file_max, lfs->file_max);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// lfs->file_max = superblock.file_max;
// }
//
// if (superblock.attr_max) {
// if (superblock.attr_max > lfs->attr_max) {
// LFS_ERROR("Unsupported attr_max (%"PRIu32" > %"PRIu32")",
// superblock.attr_max, lfs->attr_max);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// lfs->attr_max = superblock.attr_max;
// }
//
// if (superblock.block_count != lfs->cfg->block_count) {
// LFS_ERROR("Invalid block count (%"PRIu32" != %"PRIu32")",
// superblock.block_count, lfs->cfg->block_count);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// if (superblock.block_size != lfs->cfg->block_size) {
// LFS_ERROR("Invalid block size (%"PRIu32" != %"PRIu32")",
// superblock.block_size, lfs->cfg->block_size);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
// }
//
// // has gstate?
// err = lfs_dir_getgstate(lfs, &dir, &lfs->gstate);
// if (err) {
// goto cleanup;
// }
// }
//
// // found superblock?
// if (lfs_pair_isnull(lfs->root)) {
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// // update littlefs with gstate
// if (!lfs_gstate_iszero(&lfs->gstate)) {
// LFS_DEBUG("Found pending gstate 0x%08"PRIx32"%08"PRIx32"%08"PRIx32,
// lfs->gstate.tag,
// lfs->gstate.pair[0],
// lfs->gstate.pair[1]);
// }
// lfs->gstate.tag += !lfs_tag_isvalid(lfs->gstate.tag);
// lfs->gdisk = lfs->gstate;
//
// // setup free lookahead, to distribute allocations uniformly across
// // boots, we start the allocator at a random location
// lfs->free.off = lfs->seed % lfs->cfg->block_count;
// lfs_alloc_drop(lfs);
//
// return 0;
//
//cleanup:
// lfs_rawunmount(lfs);
// return err;
//}
//
//static int lfs_rawunmount(lfs_t *lfs) {
// return lfs_deinit(lfs);
//}
//
//
///// Filesystem filesystem operations ///
//int lfs_fs_rawtraverse(lfs_t *lfs,
// int (*cb)(void *data, lfs_block_t block), void *data,
// bool includeorphans) {
// // iterate over metadata pairs
// lfs_mdir_t dir = {.tail = {0, 1}};
//
//#ifdef LFS_MIGRATE
// // also consider v1 blocks during migration
// if (lfs->lfs1) {
// int err = lfs1_traverse(lfs, cb, data);
// if (err) {
// return err;
// }
//
// dir.tail[0] = lfs->root[0];
// dir.tail[1] = lfs->root[1];
// }
//#endif
//
// lfs_block_t tortoise[2] = {LFS_BLOCK_NULL, LFS_BLOCK_NULL};
// lfs_size_t tortoise_i = 1;
// lfs_size_t tortoise_period = 1;
// while (!lfs_pair_isnull(dir.tail)) {
// // detect cycles with Brent's algorithm
// if (lfs_pair_issync(dir.tail, tortoise)) {
// LFS_WARN("Cycle detected in tail list");
// return LFS_ERR_CORRUPT;
// }
// if (tortoise_i == tortoise_period) {
// tortoise[0] = dir.tail[0];
// tortoise[1] = dir.tail[1];
// tortoise_i = 0;
// tortoise_period *= 2;
// }
// tortoise_i += 1;
//
// for (int i = 0; i < 2; i++) {
// int err = cb(data, dir.tail[i]);
// if (err) {
// return err;
// }
// }
//
// // iterate through ids in directory
// int err = lfs_dir_fetch(lfs, &dir, dir.tail);
// if (err) {
// return err;
// }
//
// for (uint16_t id = 0; id < dir.count; id++) {
// struct lfs_ctz ctz;
// lfs_stag_t tag = lfs_dir_get(lfs, &dir, LFS_MKTAG(0x700, 0x3ff, 0),
// LFS_MKTAG(LFS_TYPE_STRUCT, id, sizeof(ctz)), &ctz);
// if (tag < 0) {
// if (tag == LFS_ERR_NOENT) {
// continue;
// }
// return tag;
// }
// lfs_ctz_fromle32(&ctz);
//
// if (lfs_tag_type3(tag) == LFS_TYPE_CTZSTRUCT) {
// err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
// ctz.head, ctz.size, cb, data);
// if (err) {
// return err;
// }
// } else if (includeorphans &&
// lfs_tag_type3(tag) == LFS_TYPE_DIRSTRUCT) {
// for (int i = 0; i < 2; i++) {
// err = cb(data, (&ctz.head)[i]);
// if (err) {
// return err;
// }
// }
// }
// }
// }
//
//#ifndef LFS_READONLY
// // iterate over any open files
// for (lfs_file_t *f = (lfs_file_t*)lfs->mlist; f; f = f->next) {
// if (f->type != LFS_TYPE_REG) {
// continue;
// }
//
// if ((f->flags & LFS_F_DIRTY) && !(f->flags & LFS_F_INLINE)) {
// int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
// f->ctz.head, f->ctz.size, cb, data);
// if (err) {
// return err;
// }
// }
//
// if ((f->flags & LFS_F_WRITING) && !(f->flags & LFS_F_INLINE)) {
// int err = lfs_ctz_traverse(lfs, &f->cache, &lfs->rcache,
// f->block, f->pos, cb, data);
// if (err) {
// return err;
// }
// }
// }
//#endif
//
// return 0;
//}
//
//#ifndef LFS_READONLY
//static int lfs_fs_pred(lfs_t *lfs,
// const lfs_block_t pair[2], lfs_mdir_t *pdir) {
// // iterate over all directory directory entries
// pdir->tail[0] = 0;
// pdir->tail[1] = 1;
// lfs_block_t tortoise[2] = {LFS_BLOCK_NULL, LFS_BLOCK_NULL};
// lfs_size_t tortoise_i = 1;
// lfs_size_t tortoise_period = 1;
// while (!lfs_pair_isnull(pdir->tail)) {
// // detect cycles with Brent's algorithm
// if (lfs_pair_issync(pdir->tail, tortoise)) {
// LFS_WARN("Cycle detected in tail list");
// return LFS_ERR_CORRUPT;
// }
// if (tortoise_i == tortoise_period) {
// tortoise[0] = pdir->tail[0];
// tortoise[1] = pdir->tail[1];
// tortoise_i = 0;
// tortoise_period *= 2;
// }
// tortoise_i += 1;
//
// if (lfs_pair_cmp(pdir->tail, pair) == 0) {
// return 0;
// }
//
// int err = lfs_dir_fetch(lfs, pdir, pdir->tail);
// if (err) {
// return err;
// }
// }
//
// return LFS_ERR_NOENT;
//}
//#endif
//
//#ifndef LFS_READONLY
//struct lfs_fs_parent_match {
// lfs_t *lfs;
// const lfs_block_t pair[2];
//};
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_fs_parent_match(void *data,
// lfs_tag_t tag, const void *buffer) {
// struct lfs_fs_parent_match *find = data;
// lfs_t *lfs = find->lfs;
// const struct lfs_diskoff *disk = buffer;
// (void)tag;
//
// lfs_block_t child[2];
// int err = lfs_bd_read(lfs,
// &lfs->pcache, &lfs->rcache, lfs->cfg->block_size,
// disk->block, disk->off, &child, sizeof(child));
// if (err) {
// return err;
// }
//
// lfs_pair_fromle32(child);
// return (lfs_pair_cmp(child, find->pair) == 0) ? LFS_CMP_EQ : LFS_CMP_LT;
//}
//#endif
//
//#ifndef LFS_READONLY
//static lfs_stag_t lfs_fs_parent(lfs_t *lfs, const lfs_block_t pair[2],
// lfs_mdir_t *parent) {
// // use fetchmatch with callback to find pairs
// parent->tail[0] = 0;
// parent->tail[1] = 1;
// lfs_block_t tortoise[2] = {LFS_BLOCK_NULL, LFS_BLOCK_NULL};
// lfs_size_t tortoise_i = 1;
// lfs_size_t tortoise_period = 1;
// while (!lfs_pair_isnull(parent->tail)) {
// // detect cycles with Brent's algorithm
// if (lfs_pair_issync(parent->tail, tortoise)) {
// LFS_WARN("Cycle detected in tail list");
// return LFS_ERR_CORRUPT;
// }
// if (tortoise_i == tortoise_period) {
// tortoise[0] = parent->tail[0];
// tortoise[1] = parent->tail[1];
// tortoise_i = 0;
// tortoise_period *= 2;
// }
// tortoise_i += 1;
//
// lfs_stag_t tag = lfs_dir_fetchmatch(lfs, parent, parent->tail,
// LFS_MKTAG(0x7ff, 0, 0x3ff),
// LFS_MKTAG(LFS_TYPE_DIRSTRUCT, 0, 8),
// NULL,
// lfs_fs_parent_match, &(struct lfs_fs_parent_match){
// lfs, {pair[0], pair[1]}});
// if (tag && tag != LFS_ERR_NOENT) {
// return tag;
// }
// }
//
// return LFS_ERR_NOENT;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_fs_preporphans(lfs_t *lfs, int8_t orphans) {
// LFS_ASSERT(lfs_tag_size(lfs->gstate.tag) > 0x000 || orphans >= 0);
// LFS_ASSERT(lfs_tag_size(lfs->gstate.tag) < 0x3ff || orphans <= 0);
// lfs->gstate.tag += orphans;
// lfs->gstate.tag = ((lfs->gstate.tag & ~LFS_MKTAG(0x800, 0, 0)) |
// ((uint32_t)lfs_gstate_hasorphans(&lfs->gstate) << 31));
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static void lfs_fs_prepmove(lfs_t *lfs,
// uint16_t id, const lfs_block_t pair[2]) {
// lfs->gstate.tag = ((lfs->gstate.tag & ~LFS_MKTAG(0x7ff, 0x3ff, 0)) |
// ((id != 0x3ff) ? LFS_MKTAG(LFS_TYPE_DELETE, id, 0) : 0));
// lfs->gstate.pair[0] = (id != 0x3ff) ? pair[0] : 0;
// lfs->gstate.pair[1] = (id != 0x3ff) ? pair[1] : 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_fs_demove(lfs_t *lfs) {
// if (!lfs_gstate_hasmove(&lfs->gdisk)) {
// return 0;
// }
//
// // Fix bad moves
// LFS_DEBUG("Fixing move {0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16,
// lfs->gdisk.pair[0],
// lfs->gdisk.pair[1],
// lfs_tag_id(lfs->gdisk.tag));
//
// // no other gstate is supported at this time, so if we found something else
// // something most likely went wrong in gstate calculation
// LFS_ASSERT(lfs_tag_type3(lfs->gdisk.tag) == LFS_TYPE_DELETE);
//
// // fetch and delete the moved entry
// lfs_mdir_t movedir;
// int err = lfs_dir_fetch(lfs, &movedir, lfs->gdisk.pair);
// if (err) {
// return err;
// }
//
// // prep gstate and delete move id
// uint16_t moveid = lfs_tag_id(lfs->gdisk.tag);
// lfs_fs_prepmove(lfs, 0x3ff, NULL);
// err = lfs_dir_commit(lfs, &movedir, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_DELETE, moveid, 0), NULL}));
// if (err) {
// return err;
// }
//
// return 0;
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_fs_deorphan(lfs_t *lfs, bool powerloss) {
// if (!lfs_gstate_hasorphans(&lfs->gstate)) {
// return 0;
// }
//
// int8_t found = 0;
//
// // Check for orphans in two separate passes:
// // - 1 for half-orphans (relocations)
// // - 2 for full-orphans (removes/renames)
// //
// // Two separate passes are needed as half-orphans can contain outdated
// // references to full-orphans, effectively hiding them from the deorphan
// // search.
// //
// int pass = 0;
// while (pass < 2) {
// // Fix any orphans
// lfs_mdir_t pdir = {.split = true, .tail = {0, 1}};
// lfs_mdir_t dir;
// bool moreorphans = false;
//
// // iterate over all directory directory entries
// while (!lfs_pair_isnull(pdir.tail)) {
// int err = lfs_dir_fetch(lfs, &dir, pdir.tail);
// if (err) {
// return err;
// }
//
// // check head blocks for orphans
// if (!pdir.split) {
// // check if we have a parent
// lfs_mdir_t parent;
// lfs_stag_t tag = lfs_fs_parent(lfs, pdir.tail, &parent);
// if (tag < 0 && tag != LFS_ERR_NOENT) {
// return tag;
// }
//
// if (pass == 0 && tag != LFS_ERR_NOENT) {
// lfs_block_t pair[2];
// lfs_stag_t state = lfs_dir_get(lfs, &parent,
// LFS_MKTAG(0x7ff, 0x3ff, 0), tag, pair);
// if (state < 0) {
// return state;
// }
// lfs_pair_fromle32(pair);
//
// if (!lfs_pair_issync(pair, pdir.tail)) {
// // we have desynced
// LFS_DEBUG("Fixing half-orphan "
// "{0x%"PRIx32", 0x%"PRIx32"} "
// "-> {0x%"PRIx32", 0x%"PRIx32"}",
// pdir.tail[0], pdir.tail[1], pair[0], pair[1]);
//
// // fix pending move in this pair? this looks like an
// // optimization but is in fact _required_ since
// // relocating may outdate the move.
// uint16_t moveid = 0x3ff;
// if (lfs_gstate_hasmovehere(&lfs->gstate, pdir.pair)) {
// moveid = lfs_tag_id(lfs->gstate.tag);
// LFS_DEBUG("Fixing move while fixing orphans "
// "{0x%"PRIx32", 0x%"PRIx32"} 0x%"PRIx16"\n",
// pdir.pair[0], pdir.pair[1], moveid);
// lfs_fs_prepmove(lfs, 0x3ff, NULL);
// }
//
// lfs_pair_tole32(pair);
// state = lfs_dir_orphaningcommit(lfs, &pdir, LFS_MKATTRS(
// {LFS_MKTAG_IF(moveid != 0x3ff,
// LFS_TYPE_DELETE, moveid, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8),
// pair}));
// lfs_pair_fromle32(pair);
// if (state < 0) {
// return state;
// }
//
// found += 1;
//
// // did our commit create more orphans?
// if (state == LFS_OK_ORPHANED) {
// moreorphans = true;
// }
//
// // refetch tail
// continue;
// }
// }
//
// // note we only check for full orphans if we may have had a
// // power-loss, otherwise orphans are created intentionally
// // during operations such as lfs_mkdir
// if (pass == 1 && tag == LFS_ERR_NOENT && powerloss) {
// // we are an orphan
// LFS_DEBUG("Fixing orphan {0x%"PRIx32", 0x%"PRIx32"}",
// pdir.tail[0], pdir.tail[1]);
//
// // steal state
// err = lfs_dir_getgstate(lfs, &dir, &lfs->gdelta);
// if (err) {
// return err;
// }
//
// // steal tail
// lfs_pair_tole32(dir.tail);
// int state = lfs_dir_orphaningcommit(lfs, &pdir, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_TAIL + dir.split, 0x3ff, 8),
// dir.tail}));
// lfs_pair_fromle32(dir.tail);
// if (state < 0) {
// return state;
// }
//
// found += 1;
//
// // did our commit create more orphans?
// if (state == LFS_OK_ORPHANED) {
// moreorphans = true;
// }
//
// // refetch tail
// continue;
// }
// }
//
// pdir = dir;
// }
//
// pass = moreorphans ? 0 : pass+1;
// }
//
// // mark orphans as fixed
// return lfs_fs_preporphans(lfs, -lfs_min(
// lfs_gstate_getorphans(&lfs->gstate),
// found));
//}
//#endif
//
//#ifndef LFS_READONLY
//static int lfs_fs_forceconsistency(lfs_t *lfs) {
// int err = lfs_fs_demove(lfs);
// if (err) {
// return err;
// }
//
// err = lfs_fs_deorphan(lfs, true);
// if (err) {
// return err;
// }
//
// return 0;
//}
//#endif
//
//static int lfs_fs_size_count(void *p, lfs_block_t block) {
// (void)block;
// lfs_size_t *size = p;
// *size += 1;
// return 0;
//}
//
//static lfs_ssize_t lfs_fs_rawsize(lfs_t *lfs) {
// lfs_size_t size = 0;
// int err = lfs_fs_rawtraverse(lfs, lfs_fs_size_count, &size, false);
// if (err) {
// return err;
// }
//
// return size;
//}
//
//#ifdef LFS_MIGRATE
//////// Migration from littelfs v1 below this //////
//
///// Version info ///
//
//// Software library version
//// Major (top-nibble), incremented on backwards incompatible changes
//// Minor (bottom-nibble), incremented on feature additions
//#define LFS1_VERSION 0x00010007
//#define LFS1_VERSION_MAJOR (0xffff & (LFS1_VERSION >> 16))
//#define LFS1_VERSION_MINOR (0xffff & (LFS1_VERSION >> 0))
//
//// Version of On-disk data structures
//// Major (top-nibble), incremented on backwards incompatible changes
//// Minor (bottom-nibble), incremented on feature additions
//#define LFS1_DISK_VERSION 0x00010001
//#define LFS1_DISK_VERSION_MAJOR (0xffff & (LFS1_DISK_VERSION >> 16))
//#define LFS1_DISK_VERSION_MINOR (0xffff & (LFS1_DISK_VERSION >> 0))
//
//
///// v1 Definitions ///
//
//// File types
//enum lfs1_type {
// LFS1_TYPE_REG = 0x11,
// LFS1_TYPE_DIR = 0x22,
// LFS1_TYPE_SUPERBLOCK = 0x2e,
//};
//
//typedef struct lfs1 {
// lfs_block_t root[2];
//} lfs1_t;
//
//typedef struct lfs1_entry {
// lfs_off_t off;
//
// struct lfs1_disk_entry {
// uint8_t type;
// uint8_t elen;
// uint8_t alen;
// uint8_t nlen;
// union {
// struct {
// lfs_block_t head;
// lfs_size_t size;
// } file;
// lfs_block_t dir[2];
// } u;
// } d;
//} lfs1_entry_t;
//
//typedef struct lfs1_dir {
// struct lfs1_dir *next;
// lfs_block_t pair[2];
// lfs_off_t off;
//
// lfs_block_t head[2];
// lfs_off_t pos;
//
// struct lfs1_disk_dir {
// uint32_t rev;
// lfs_size_t size;
// lfs_block_t tail[2];
// } d;
//} lfs1_dir_t;
//
//typedef struct lfs1_superblock {
// lfs_off_t off;
//
// struct lfs1_disk_superblock {
// uint8_t type;
// uint8_t elen;
// uint8_t alen;
// uint8_t nlen;
// lfs_block_t root[2];
// uint32_t block_size;
// uint32_t block_count;
// uint32_t version;
// char magic[8];
// } d;
//} lfs1_superblock_t;
//
//
///// Low-level wrappers v1->v2 ///
//static void lfs1_crc(uint32_t *crc, const void *buffer, size_t size) {
// *crc = lfs_crc(*crc, buffer, size);
//}
//
//static int lfs1_bd_read(lfs_t *lfs, lfs_block_t block,
// lfs_off_t off, void *buffer, lfs_size_t size) {
// // if we ever do more than writes to alternating pairs,
// // this may need to consider pcache
// return lfs_bd_read(lfs, &lfs->pcache, &lfs->rcache, size,
// block, off, buffer, size);
//}
//
//static int lfs1_bd_crc(lfs_t *lfs, lfs_block_t block,
// lfs_off_t off, lfs_size_t size, uint32_t *crc) {
// for (lfs_off_t i = 0; i < size; i++) {
// uint8_t c;
// int err = lfs1_bd_read(lfs, block, off+i, &c, 1);
// if (err) {
// return err;
// }
//
// lfs1_crc(crc, &c, 1);
// }
//
// return 0;
//}
//
//
///// Endian swapping functions ///
//static void lfs1_dir_fromle32(struct lfs1_disk_dir *d) {
// d->rev = lfs_fromle32(d->rev);
// d->size = lfs_fromle32(d->size);
// d->tail[0] = lfs_fromle32(d->tail[0]);
// d->tail[1] = lfs_fromle32(d->tail[1]);
//}
//
//static void lfs1_dir_tole32(struct lfs1_disk_dir *d) {
// d->rev = lfs_tole32(d->rev);
// d->size = lfs_tole32(d->size);
// d->tail[0] = lfs_tole32(d->tail[0]);
// d->tail[1] = lfs_tole32(d->tail[1]);
//}
//
//static void lfs1_entry_fromle32(struct lfs1_disk_entry *d) {
// d->u.dir[0] = lfs_fromle32(d->u.dir[0]);
// d->u.dir[1] = lfs_fromle32(d->u.dir[1]);
//}
//
//static void lfs1_entry_tole32(struct lfs1_disk_entry *d) {
// d->u.dir[0] = lfs_tole32(d->u.dir[0]);
// d->u.dir[1] = lfs_tole32(d->u.dir[1]);
//}
//
//static void lfs1_superblock_fromle32(struct lfs1_disk_superblock *d) {
// d->root[0] = lfs_fromle32(d->root[0]);
// d->root[1] = lfs_fromle32(d->root[1]);
// d->block_size = lfs_fromle32(d->block_size);
// d->block_count = lfs_fromle32(d->block_count);
// d->version = lfs_fromle32(d->version);
//}
//
//
/////// Metadata pair and directory operations ///
//static inline lfs_size_t lfs1_entry_size(const lfs1_entry_t *entry) {
// return 4 + entry->d.elen + entry->d.alen + entry->d.nlen;
//}
//
//static int lfs1_dir_fetch(lfs_t *lfs,
// lfs1_dir_t *dir, const lfs_block_t pair[2]) {
// // copy out pair, otherwise may be aliasing dir
// const lfs_block_t tpair[2] = {pair[0], pair[1]};
// bool valid = false;
//
// // check both blocks for the most recent revision
// for (int i = 0; i < 2; i++) {
// struct lfs1_disk_dir test;
// int err = lfs1_bd_read(lfs, tpair[i], 0, &test, sizeof(test));
// lfs1_dir_fromle32(&test);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// continue;
// }
// return err;
// }
//
// if (valid && lfs_scmp(test.rev, dir->d.rev) < 0) {
// continue;
// }
//
// if ((0x7fffffff & test.size) < sizeof(test)+4 ||
// (0x7fffffff & test.size) > lfs->cfg->block_size) {
// continue;
// }
//
// uint32_t crc = 0xffffffff;
// lfs1_dir_tole32(&test);
// lfs1_crc(&crc, &test, sizeof(test));
// lfs1_dir_fromle32(&test);
// err = lfs1_bd_crc(lfs, tpair[i], sizeof(test),
// (0x7fffffff & test.size) - sizeof(test), &crc);
// if (err) {
// if (err == LFS_ERR_CORRUPT) {
// continue;
// }
// return err;
// }
//
// if (crc != 0) {
// continue;
// }
//
// valid = true;
//
// // setup dir in case it's valid
// dir->pair[0] = tpair[(i+0) % 2];
// dir->pair[1] = tpair[(i+1) % 2];
// dir->off = sizeof(dir->d);
// dir->d = test;
// }
//
// if (!valid) {
// LFS_ERROR("Corrupted dir pair at {0x%"PRIx32", 0x%"PRIx32"}",
// tpair[0], tpair[1]);
// return LFS_ERR_CORRUPT;
// }
//
// return 0;
//}
//
//static int lfs1_dir_next(lfs_t *lfs, lfs1_dir_t *dir, lfs1_entry_t *entry) {
// while (dir->off + sizeof(entry->d) > (0x7fffffff & dir->d.size)-4) {
// if (!(0x80000000 & dir->d.size)) {
// entry->off = dir->off;
// return LFS_ERR_NOENT;
// }
//
// int err = lfs1_dir_fetch(lfs, dir, dir->d.tail);
// if (err) {
// return err;
// }
//
// dir->off = sizeof(dir->d);
// dir->pos += sizeof(dir->d) + 4;
// }
//
// int err = lfs1_bd_read(lfs, dir->pair[0], dir->off,
// &entry->d, sizeof(entry->d));
// lfs1_entry_fromle32(&entry->d);
// if (err) {
// return err;
// }
//
// entry->off = dir->off;
// dir->off += lfs1_entry_size(entry);
// dir->pos += lfs1_entry_size(entry);
// return 0;
//}
//
///// littlefs v1 specific operations ///
//int lfs1_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data) {
// if (lfs_pair_isnull(lfs->lfs1->root)) {
// return 0;
// }
//
// // iterate over metadata pairs
// lfs1_dir_t dir;
// lfs1_entry_t entry;
// lfs_block_t cwd[2] = {0, 1};
//
// while (true) {
// for (int i = 0; i < 2; i++) {
// int err = cb(data, cwd[i]);
// if (err) {
// return err;
// }
// }
//
// int err = lfs1_dir_fetch(lfs, &dir, cwd);
// if (err) {
// return err;
// }
//
// // iterate over contents
// while (dir.off + sizeof(entry.d) <= (0x7fffffff & dir.d.size)-4) {
// err = lfs1_bd_read(lfs, dir.pair[0], dir.off,
// &entry.d, sizeof(entry.d));
// lfs1_entry_fromle32(&entry.d);
// if (err) {
// return err;
// }
//
// dir.off += lfs1_entry_size(&entry);
// if ((0x70 & entry.d.type) == (0x70 & LFS1_TYPE_REG)) {
// err = lfs_ctz_traverse(lfs, NULL, &lfs->rcache,
// entry.d.u.file.head, entry.d.u.file.size, cb, data);
// if (err) {
// return err;
// }
// }
// }
//
// // we also need to check if we contain a threaded v2 directory
// lfs_mdir_t dir2 = {.split=true, .tail={cwd[0], cwd[1]}};
// while (dir2.split) {
// err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
// if (err) {
// break;
// }
//
// for (int i = 0; i < 2; i++) {
// err = cb(data, dir2.pair[i]);
// if (err) {
// return err;
// }
// }
// }
//
// cwd[0] = dir.d.tail[0];
// cwd[1] = dir.d.tail[1];
//
// if (lfs_pair_isnull(cwd)) {
// break;
// }
// }
//
// return 0;
//}
//
//static int lfs1_moved(lfs_t *lfs, const void *e) {
// if (lfs_pair_isnull(lfs->lfs1->root)) {
// return 0;
// }
//
// // skip superblock
// lfs1_dir_t cwd;
// int err = lfs1_dir_fetch(lfs, &cwd, (const lfs_block_t[2]){0, 1});
// if (err) {
// return err;
// }
//
// // iterate over all directory directory entries
// lfs1_entry_t entry;
// while (!lfs_pair_isnull(cwd.d.tail)) {
// err = lfs1_dir_fetch(lfs, &cwd, cwd.d.tail);
// if (err) {
// return err;
// }
//
// while (true) {
// err = lfs1_dir_next(lfs, &cwd, &entry);
// if (err && err != LFS_ERR_NOENT) {
// return err;
// }
//
// if (err == LFS_ERR_NOENT) {
// break;
// }
//
// if (!(0x80 & entry.d.type) &&
// memcmp(&entry.d.u, e, sizeof(entry.d.u)) == 0) {
// return true;
// }
// }
// }
//
// return false;
//}
//
///// Filesystem operations ///
//static int lfs1_mount(lfs_t *lfs, struct lfs1 *lfs1,
// const struct lfs_config *cfg) {
// int err = 0;
// {
// err = lfs_init(lfs, cfg);
// if (err) {
// return err;
// }
//
// lfs->lfs1 = lfs1;
// lfs->lfs1->root[0] = LFS_BLOCK_NULL;
// lfs->lfs1->root[1] = LFS_BLOCK_NULL;
//
// // setup free lookahead
// lfs->free.off = 0;
// lfs->free.size = 0;
// lfs->free.i = 0;
// lfs_alloc_ack(lfs);
//
// // load superblock
// lfs1_dir_t dir;
// lfs1_superblock_t superblock;
// err = lfs1_dir_fetch(lfs, &dir, (const lfs_block_t[2]){0, 1});
// if (err && err != LFS_ERR_CORRUPT) {
// goto cleanup;
// }
//
// if (!err) {
// err = lfs1_bd_read(lfs, dir.pair[0], sizeof(dir.d),
// &superblock.d, sizeof(superblock.d));
// lfs1_superblock_fromle32(&superblock.d);
// if (err) {
// goto cleanup;
// }
//
// lfs->lfs1->root[0] = superblock.d.root[0];
// lfs->lfs1->root[1] = superblock.d.root[1];
// }
//
// if (err || memcmp(superblock.d.magic, "littlefs", 8) != 0) {
// LFS_ERROR("Invalid superblock at {0x%"PRIx32", 0x%"PRIx32"}",
// 0, 1);
// err = LFS_ERR_CORRUPT;
// goto cleanup;
// }
//
// uint16_t major_version = (0xffff & (superblock.d.version >> 16));
// uint16_t minor_version = (0xffff & (superblock.d.version >> 0));
// if ((major_version != LFS1_DISK_VERSION_MAJOR ||
// minor_version > LFS1_DISK_VERSION_MINOR)) {
// LFS_ERROR("Invalid version v%d.%d", major_version, minor_version);
// err = LFS_ERR_INVAL;
// goto cleanup;
// }
//
// return 0;
// }
//
//cleanup:
// lfs_deinit(lfs);
// return err;
//}
//
//static int lfs1_unmount(lfs_t *lfs) {
// return lfs_deinit(lfs);
//}
//
///// v1 migration ///
//static int lfs_rawmigrate(lfs_t *lfs, const struct lfs_config *cfg) {
// struct lfs1 lfs1;
// int err = lfs1_mount(lfs, &lfs1, cfg);
// if (err) {
// return err;
// }
//
// {
// // iterate through each directory, copying over entries
// // into new directory
// lfs1_dir_t dir1;
// lfs_mdir_t dir2;
// dir1.d.tail[0] = lfs->lfs1->root[0];
// dir1.d.tail[1] = lfs->lfs1->root[1];
// while (!lfs_pair_isnull(dir1.d.tail)) {
// // iterate old dir
// err = lfs1_dir_fetch(lfs, &dir1, dir1.d.tail);
// if (err) {
// goto cleanup;
// }
//
// // create new dir and bind as temporary pretend root
// err = lfs_dir_alloc(lfs, &dir2);
// if (err) {
// goto cleanup;
// }
//
// dir2.rev = dir1.d.rev;
// dir1.head[0] = dir1.pair[0];
// dir1.head[1] = dir1.pair[1];
// lfs->root[0] = dir2.pair[0];
// lfs->root[1] = dir2.pair[1];
//
// err = lfs_dir_commit(lfs, &dir2, NULL, 0);
// if (err) {
// goto cleanup;
// }
//
// while (true) {
// lfs1_entry_t entry1;
// err = lfs1_dir_next(lfs, &dir1, &entry1);
// if (err && err != LFS_ERR_NOENT) {
// goto cleanup;
// }
//
// if (err == LFS_ERR_NOENT) {
// break;
// }
//
// // check that entry has not been moved
// if (entry1.d.type & 0x80) {
// int moved = lfs1_moved(lfs, &entry1.d.u);
// if (moved < 0) {
// err = moved;
// goto cleanup;
// }
//
// if (moved) {
// continue;
// }
//
// entry1.d.type &= ~0x80;
// }
//
// // also fetch name
// char name[LFS_NAME_MAX+1];
// memset(name, 0, sizeof(name));
// err = lfs1_bd_read(lfs, dir1.pair[0],
// entry1.off + 4+entry1.d.elen+entry1.d.alen,
// name, entry1.d.nlen);
// if (err) {
// goto cleanup;
// }
//
// bool isdir = (entry1.d.type == LFS1_TYPE_DIR);
//
// // create entry in new dir
// err = lfs_dir_fetch(lfs, &dir2, lfs->root);
// if (err) {
// goto cleanup;
// }
//
// uint16_t id;
// err = lfs_dir_find(lfs, &dir2, &(const char*){name}, &id);
// if (!(err == LFS_ERR_NOENT && id != 0x3ff)) {
// err = (err < 0) ? err : LFS_ERR_EXIST;
// goto cleanup;
// }
//
// lfs1_entry_tole32(&entry1.d);
// err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_CREATE, id, 0), NULL},
// {LFS_MKTAG_IF_ELSE(isdir,
// LFS_TYPE_DIR, id, entry1.d.nlen,
// LFS_TYPE_REG, id, entry1.d.nlen),
// name},
// {LFS_MKTAG_IF_ELSE(isdir,
// LFS_TYPE_DIRSTRUCT, id, sizeof(entry1.d.u),
// LFS_TYPE_CTZSTRUCT, id, sizeof(entry1.d.u)),
// &entry1.d.u}));
// lfs1_entry_fromle32(&entry1.d);
// if (err) {
// goto cleanup;
// }
// }
//
// if (!lfs_pair_isnull(dir1.d.tail)) {
// // find last block and update tail to thread into fs
// err = lfs_dir_fetch(lfs, &dir2, lfs->root);
// if (err) {
// goto cleanup;
// }
//
// while (dir2.split) {
// err = lfs_dir_fetch(lfs, &dir2, dir2.tail);
// if (err) {
// goto cleanup;
// }
// }
//
// lfs_pair_tole32(dir2.pair);
// err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), dir1.d.tail}));
// lfs_pair_fromle32(dir2.pair);
// if (err) {
// goto cleanup;
// }
// }
//
// // Copy over first block to thread into fs. Unfortunately
// // if this fails there is not much we can do.
// LFS_DEBUG("Migrating {0x%"PRIx32", 0x%"PRIx32"} "
// "-> {0x%"PRIx32", 0x%"PRIx32"}",
// lfs->root[0], lfs->root[1], dir1.head[0], dir1.head[1]);
//
// err = lfs_bd_erase(lfs, dir1.head[1]);
// if (err) {
// goto cleanup;
// }
//
// err = lfs_dir_fetch(lfs, &dir2, lfs->root);
// if (err) {
// goto cleanup;
// }
//
// for (lfs_off_t i = 0; i < dir2.off; i++) {
// uint8_t dat;
// err = lfs_bd_read(lfs,
// NULL, &lfs->rcache, dir2.off,
// dir2.pair[0], i, &dat, 1);
// if (err) {
// goto cleanup;
// }
//
// err = lfs_bd_prog(lfs,
// &lfs->pcache, &lfs->rcache, true,
// dir1.head[1], i, &dat, 1);
// if (err) {
// goto cleanup;
// }
// }
//
// err = lfs_bd_flush(lfs, &lfs->pcache, &lfs->rcache, true);
// if (err) {
// goto cleanup;
// }
// }
//
// // Create new superblock. This marks a successful migration!
// err = lfs1_dir_fetch(lfs, &dir1, (const lfs_block_t[2]){0, 1});
// if (err) {
// goto cleanup;
// }
//
// dir2.pair[0] = dir1.pair[0];
// dir2.pair[1] = dir1.pair[1];
// dir2.rev = dir1.d.rev;
// dir2.off = sizeof(dir2.rev);
// dir2.etag = 0xffffffff;
// dir2.count = 0;
// dir2.tail[0] = lfs->lfs1->root[0];
// dir2.tail[1] = lfs->lfs1->root[1];
// dir2.erased = false;
// dir2.split = true;
//
// lfs_superblock_t superblock = {
// .version = LFS_DISK_VERSION,
// .block_size = lfs->cfg->block_size,
// .block_count = lfs->cfg->block_count,
// .name_max = lfs->name_max,
// .file_max = lfs->file_max,
// .attr_max = lfs->attr_max,
// };
//
// lfs_superblock_tole32(&superblock);
// err = lfs_dir_commit(lfs, &dir2, LFS_MKATTRS(
// {LFS_MKTAG(LFS_TYPE_CREATE, 0, 0), NULL},
// {LFS_MKTAG(LFS_TYPE_SUPERBLOCK, 0, 8), "littlefs"},
// {LFS_MKTAG(LFS_TYPE_INLINESTRUCT, 0, sizeof(superblock)),
// &superblock}));
// if (err) {
// goto cleanup;
// }
//
// // sanity check that fetch works
// err = lfs_dir_fetch(lfs, &dir2, (const lfs_block_t[2]){0, 1});
// if (err) {
// goto cleanup;
// }
//
// // force compaction to prevent accidentally mounting v1
// dir2.erased = false;
// err = lfs_dir_commit(lfs, &dir2, NULL, 0);
// if (err) {
// goto cleanup;
// }
// }
//
//cleanup:
// lfs1_unmount(lfs);
// return err;
//}
//
//#endif
//
//
///// Public API wrappers ///
//
//// Here we can add tracing/thread safety easily
//
//// Thread-safe wrappers if enabled
//#ifdef LFS_THREADSAFE
//#define LFS_LOCK(cfg) cfg->lock(cfg)
//#define LFS_UNLOCK(cfg) cfg->unlock(cfg)
//#else
//#define LFS_LOCK(cfg) ((void)cfg, 0)
//#define LFS_UNLOCK(cfg) ((void)cfg)
//#endif
//
//// Public API
//#ifndef LFS_READONLY
//int lfs_format(lfs_t *lfs, const struct lfs_config *cfg) {
// int err = LFS_LOCK(cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_format(%p, %p {.context=%p, "
// ".read=%p, .prog=%p, .erase=%p, .sync=%p, "
// ".read_size=%"PRIu32", .prog_size=%"PRIu32", "
// ".block_size=%"PRIu32", .block_count=%"PRIu32", "
// ".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
// ".lookahead_size=%"PRIu32", .read_buffer=%p, "
// ".prog_buffer=%p, .lookahead_buffer=%p, "
// ".name_max=%"PRIu32", .file_max=%"PRIu32", "
// ".attr_max=%"PRIu32"})",
// (void*)lfs, (void*)cfg, cfg->context,
// (void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
// (void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
// cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
// cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
// cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
// cfg->name_max, cfg->file_max, cfg->attr_max);
//
// err = lfs_rawformat(lfs, cfg);
//
// LFS_TRACE("lfs_format -> %d", err);
// LFS_UNLOCK(cfg);
// return err;
//}
//#endif
//
//int lfs_mount(lfs_t *lfs, const struct lfs_config *cfg) {
// int err = LFS_LOCK(cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_mount(%p, %p {.context=%p, "
// ".read=%p, .prog=%p, .erase=%p, .sync=%p, "
// ".read_size=%"PRIu32", .prog_size=%"PRIu32", "
// ".block_size=%"PRIu32", .block_count=%"PRIu32", "
// ".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
// ".lookahead_size=%"PRIu32", .read_buffer=%p, "
// ".prog_buffer=%p, .lookahead_buffer=%p, "
// ".name_max=%"PRIu32", .file_max=%"PRIu32", "
// ".attr_max=%"PRIu32"})",
// (void*)lfs, (void*)cfg, cfg->context,
// (void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
// (void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
// cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
// cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
// cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
// cfg->name_max, cfg->file_max, cfg->attr_max);
//
// err = lfs_rawmount(lfs, cfg);
//
// LFS_TRACE("lfs_mount -> %d", err);
// LFS_UNLOCK(cfg);
// return err;
//}
//
//int lfs_unmount(lfs_t *lfs) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_unmount(%p)", (void*)lfs);
//
// err = lfs_rawunmount(lfs);
//
// LFS_TRACE("lfs_unmount -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//#ifndef LFS_READONLY
//int lfs_remove(lfs_t *lfs, const char *path) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_remove(%p, \"%s\")", (void*)lfs, path);
//
// err = lfs_rawremove(lfs, path);
//
// LFS_TRACE("lfs_remove -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//#ifndef LFS_READONLY
//int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_rename(%p, \"%s\", \"%s\")", (void*)lfs, oldpath, newpath);
//
// err = lfs_rawrename(lfs, oldpath, newpath);
//
// LFS_TRACE("lfs_rename -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_stat(%p, \"%s\", %p)", (void*)lfs, path, (void*)info);
//
// err = lfs_rawstat(lfs, path, info);
//
// LFS_TRACE("lfs_stat -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
// uint8_t type, void *buffer, lfs_size_t size) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_getattr(%p, \"%s\", %"PRIu8", %p, %"PRIu32")",
// (void*)lfs, path, type, buffer, size);
//
// lfs_ssize_t res = lfs_rawgetattr(lfs, path, type, buffer, size);
//
// LFS_TRACE("lfs_getattr -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//#ifndef LFS_READONLY
//int lfs_setattr(lfs_t *lfs, const char *path,
// uint8_t type, const void *buffer, lfs_size_t size) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_setattr(%p, \"%s\", %"PRIu8", %p, %"PRIu32")",
// (void*)lfs, path, type, buffer, size);
//
// err = lfs_rawsetattr(lfs, path, type, buffer, size);
//
// LFS_TRACE("lfs_setattr -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//#ifndef LFS_READONLY
//int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_removeattr(%p, \"%s\", %"PRIu8")", (void*)lfs, path, type);
//
// err = lfs_rawremoveattr(lfs, path, type);
//
// LFS_TRACE("lfs_removeattr -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//#ifndef LFS_NO_MALLOC
//int lfs_file_open(lfs_t *lfs, lfs_file_t *file, const char *path, int flags) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_open(%p, %p, \"%s\", %x)",
// (void*)lfs, (void*)file, path, flags);
// LFS_ASSERT(!lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// err = lfs_file_rawopen(lfs, file, path, flags);
//
// LFS_TRACE("lfs_file_open -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
// const char *path, int flags,
// const struct lfs_file_config *cfg) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_opencfg(%p, %p, \"%s\", %x, %p {"
// ".buffer=%p, .attrs=%p, .attr_count=%"PRIu32"})",
// (void*)lfs, (void*)file, path, flags,
// (void*)cfg, cfg->buffer, (void*)cfg->attrs, cfg->attr_count);
// LFS_ASSERT(!lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// err = lfs_file_rawopencfg(lfs, file, path, flags, cfg);
//
// LFS_TRACE("lfs_file_opencfg -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//int lfs_file_close(lfs_t *lfs, lfs_file_t *file) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_close(%p, %p)", (void*)lfs, (void*)file);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// err = lfs_file_rawclose(lfs, file);
//
// LFS_TRACE("lfs_file_close -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//#ifndef LFS_READONLY
//int lfs_file_sync(lfs_t *lfs, lfs_file_t *file) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_sync(%p, %p)", (void*)lfs, (void*)file);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// err = lfs_file_rawsync(lfs, file);
//
// LFS_TRACE("lfs_file_sync -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_read(%p, %p, %p, %"PRIu32")",
// (void*)lfs, (void*)file, buffer, size);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// lfs_ssize_t res = lfs_file_rawread(lfs, file, buffer, size);
//
// LFS_TRACE("lfs_file_read -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//#ifndef LFS_READONLY
//lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_write(%p, %p, %p, %"PRIu32")",
// (void*)lfs, (void*)file, buffer, size);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// lfs_ssize_t res = lfs_file_rawwrite(lfs, file, buffer, size);
//
// LFS_TRACE("lfs_file_write -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//#endif
//
//lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
// lfs_soff_t off, int whence) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_seek(%p, %p, %"PRId32", %d)",
// (void*)lfs, (void*)file, off, whence);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// lfs_soff_t res = lfs_file_rawseek(lfs, file, off, whence);
//
// LFS_TRACE("lfs_file_seek -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//#ifndef LFS_READONLY
//int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_truncate(%p, %p, %"PRIu32")",
// (void*)lfs, (void*)file, size);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// err = lfs_file_rawtruncate(lfs, file, size);
//
// LFS_TRACE("lfs_file_truncate -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_tell(%p, %p)", (void*)lfs, (void*)file);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// lfs_soff_t res = lfs_file_rawtell(lfs, file);
//
// LFS_TRACE("lfs_file_tell -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_rewind(%p, %p)", (void*)lfs, (void*)file);
//
// err = lfs_file_rawrewind(lfs, file);
//
// LFS_TRACE("lfs_file_rewind -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_file_size(%p, %p)", (void*)lfs, (void*)file);
// LFS_ASSERT(lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)file));
//
// lfs_soff_t res = lfs_file_rawsize(lfs, file);
//
// LFS_TRACE("lfs_file_size -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//#ifndef LFS_READONLY
//int lfs_mkdir(lfs_t *lfs, const char *path) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_mkdir(%p, \"%s\")", (void*)lfs, path);
//
// err = lfs_rawmkdir(lfs, path);
//
// LFS_TRACE("lfs_mkdir -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//#endif
//
//int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_open(%p, %p, \"%s\")", (void*)lfs, (void*)dir, path);
// LFS_ASSERT(!lfs_mlist_isopen(lfs->mlist, (struct lfs_mlist*)dir));
//
// err = lfs_dir_rawopen(lfs, dir, path);
//
// LFS_TRACE("lfs_dir_open -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_close(%p, %p)", (void*)lfs, (void*)dir);
//
// err = lfs_dir_rawclose(lfs, dir);
//
// LFS_TRACE("lfs_dir_close -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_read(%p, %p, %p)",
// (void*)lfs, (void*)dir, (void*)info);
//
// err = lfs_dir_rawread(lfs, dir, info);
//
// LFS_TRACE("lfs_dir_read -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_seek(%p, %p, %"PRIu32")",
// (void*)lfs, (void*)dir, off);
//
// err = lfs_dir_rawseek(lfs, dir, off);
//
// LFS_TRACE("lfs_dir_seek -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_tell(%p, %p)", (void*)lfs, (void*)dir);
//
// lfs_soff_t res = lfs_dir_rawtell(lfs, dir);
//
// LFS_TRACE("lfs_dir_tell -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_dir_rewind(%p, %p)", (void*)lfs, (void*)dir);
//
// err = lfs_dir_rawrewind(lfs, dir);
//
// LFS_TRACE("lfs_dir_rewind -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//lfs_ssize_t lfs_fs_size(lfs_t *lfs) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_fs_size(%p)", (void*)lfs);
//
// lfs_ssize_t res = lfs_fs_rawsize(lfs);
//
// LFS_TRACE("lfs_fs_size -> %"PRId32, res);
// LFS_UNLOCK(lfs->cfg);
// return res;
//}
//
//int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void *, lfs_block_t), void *data) {
// int err = LFS_LOCK(lfs->cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_fs_traverse(%p, %p, %p)",
// (void*)lfs, (void*)(uintptr_t)cb, data);
//
// err = lfs_fs_rawtraverse(lfs, cb, data, true);
//
// LFS_TRACE("lfs_fs_traverse -> %d", err);
// LFS_UNLOCK(lfs->cfg);
// return err;
//}
//
//#ifdef LFS_MIGRATE
//int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg) {
// int err = LFS_LOCK(cfg);
// if (err) {
// return err;
// }
// LFS_TRACE("lfs_migrate(%p, %p {.context=%p, "
// ".read=%p, .prog=%p, .erase=%p, .sync=%p, "
// ".read_size=%"PRIu32", .prog_size=%"PRIu32", "
// ".block_size=%"PRIu32", .block_count=%"PRIu32", "
// ".block_cycles=%"PRIu32", .cache_size=%"PRIu32", "
// ".lookahead_size=%"PRIu32", .read_buffer=%p, "
// ".prog_buffer=%p, .lookahead_buffer=%p, "
// ".name_max=%"PRIu32", .file_max=%"PRIu32", "
// ".attr_max=%"PRIu32"})",
// (void*)lfs, (void*)cfg, cfg->context,
// (void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
// (void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
// cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
// cfg->block_cycles, cfg->cache_size, cfg->lookahead_size,
// cfg->read_buffer, cfg->prog_buffer, cfg->lookahead_buffer,
// cfg->name_max, cfg->file_max, cfg->attr_max);
//
// err = lfs_rawmigrate(lfs, cfg);
//
// LFS_TRACE("lfs_migrate -> %d", err);
// LFS_UNLOCK(cfg);
// return err;
//}
//#endif