Files
littlefs/lfs.h
Christopher Haster 2b3fdffe4c Renamed tailp -> ptail
This is mainly just to match pcache.

Which is where I would put ptail if these two didn't have annoyingly
different flush semantics.
2025-02-13 16:07:02 -06:00

1359 lines
44 KiB
C

/*
* The little filesystem
*
* Copyright (c) 2022, The littlefs authors.
* Copyright (c) 2017, Arm Limited. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef LFS_H
#define LFS_H
#include "lfs_util.h"
#ifdef __cplusplus
extern "C"
{
#endif
/// Version info ///
// Software library version
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_VERSION 0x00020005
#define LFS_VERSION_MAJOR (0xffff & (LFS_VERSION >> 16))
#define LFS_VERSION_MINOR (0xffff & (LFS_VERSION >> 0))
// Version of On-disk data structures
// Major (top-nibble), incremented on backwards incompatible changes
// Minor (bottom-nibble), incremented on feature additions
#define LFS_DISK_VERSION 0x00000000
#define LFS_DISK_VERSION_MAJOR (0xffff & (LFS_DISK_VERSION >> 16))
#define LFS_DISK_VERSION_MINOR (0xffff & (LFS_DISK_VERSION >> 0))
/// Definitions ///
// Type definitions
typedef uint32_t lfs_size_t;
typedef int32_t lfs_ssize_t;
typedef uint32_t lfs_off_t;
typedef int32_t lfs_soff_t;
typedef uint32_t lfs_block_t;
typedef int32_t lfs_sblock_t;
typedef uint32_t lfsr_rid_t;
typedef int32_t lfsr_srid_t;
typedef uint16_t lfsr_tag_t;
typedef int16_t lfsr_stag_t;
typedef uint32_t lfsr_bid_t;
typedef int32_t lfsr_sbid_t;
typedef uint32_t lfsr_mid_t;
typedef int32_t lfsr_smid_t;
typedef uint32_t lfsr_did_t;
typedef int32_t lfsr_sdid_t;
// Maximum name size in bytes, may be redefined to reduce the size of the
// info struct. Limited to <= 1022. Stored in superblock and must be
// respected by other littlefs drivers.
#ifndef LFS_NAME_MAX
#define LFS_NAME_MAX 255
#endif
// Maximum size of a file in bytes, may be redefined to limit to support other
// drivers. Limited on disk to <= 2147483647. Stored in superblock and must be
// respected by other littlefs drivers.
#ifndef LFS_FILE_MAX
#define LFS_FILE_MAX 2147483647
#endif
// TODO rm me
//// Maximum size of custom attributes in bytes, may be redefined, but there is
//// no real benefit to using a smaller LFS_ATTR_MAX. Limited to <= 1022.
//#ifndef LFS_ATTR_MAX
//#define LFS_ATTR_MAX 1022
//#endif
//
//// TODO document
//#ifndef LFS_UATTR_MAX
//#define LFS_UATTR_MAX 255
//#endif
//
//#ifndef LFS_SATTR_MAX
//#define LFS_SATTR_MAX 255
//#endif
// Possible error codes, these are negative to allow
// valid positive return values
enum lfs_error {
LFS_ERR_OK = 0, // No error
LFS_ERR_UNKNOWN = -1, // Unknown error
LFS_ERR_INVAL = -22, // Invalid parameter
LFS_ERR_NOTSUP = -95, // Operation not supported
LFS_ERR_IO = -5, // Error during device operation
LFS_ERR_CORRUPT = -84, // Corrupted
LFS_ERR_NOENT = -2, // No directory entry
LFS_ERR_EXIST = -17, // Entry already exists
LFS_ERR_NOTDIR = -20, // Entry is not a dir
LFS_ERR_ISDIR = -21, // Entry is a dir
LFS_ERR_NOTEMPTY = -39, // Dir is not empty
LFS_ERR_FBIG = -27, // File too large
LFS_ERR_NOSPC = -28, // No space left on device
LFS_ERR_NOMEM = -12, // No more memory available
LFS_ERR_NOATTR = -61, // No data/attr available
LFS_ERR_NAMETOOLONG = -36, // File name too long
LFS_ERR_RANGE = -34, // Result out of range
};
// File types
enum lfs_type {
// file types
LFS_TYPE_REG = 1,
LFS_TYPE_DIR = 2,
// internally used types, don't use these
LFS_TYPE_BOOKMARK = 4,
LFS_TYPE_STICKYNOTE = 5,
LFS_TYPE_TRAVERSAL = 9,
};
// File open flags
#define LFS_O_MODE 3 // The file's access mode
#define LFS_O_RDONLY 0 // Open a file as read only
#define LFS_O_WRONLY 1 // Open a file as write only
#define LFS_O_RDWR 2 // Open a file as read and write
#define LFS_O_CREAT 0x00000004 // Create a file if it does not exist
#define LFS_O_EXCL 0x00000008 // Fail if a file already exists
#define LFS_O_TRUNC 0x00000010 // Truncate the existing file to zero size
#define LFS_O_APPEND 0x00000020 // Move to end of file on every write
#define LFS_O_FLUSH 0x00000040 // Flush data on every write
#define LFS_O_SYNC 0x00000080 // Sync metadata on every write
#define LFS_O_DESYNC 0x00000100 // Do not sync or recieve file updates
#define LFS_O_CKMETA 0x00100000 // Check metadata checksums
#define LFS_O_CKDATA 0x00200000 // Check metadata + data checksums
// internally used flags, don't use these
#define LFS_o_TYPE 0xf0000000 // The file's type
#define LFS_o_UNFLUSH 0x01000000 // File's data does not match disk
#define LFS_o_UNSYNC 0x02000000 // File's metadata does not match disk
#define LFS_o_UNCREAT 0x04000000 // File does not exist yet
#define LFS_o_ZOMBIE 0x08000000 // File has been removed
// File seek flags
#define LFS_SEEK_SET 0 // Seek relative to an absolute position
#define LFS_SEEK_CUR 1 // Seek relative to the current file position
#define LFS_SEEK_END 2 // Seek relative to the end of the file
// Custom attribute flags
#define LFS_A_MODE 3 // The attr's access mode
#define LFS_A_RDONLY 0 // Open an attr as read only
#define LFS_A_WRONLY 1 // Open an attr as write only
#define LFS_A_RDWR 2 // Open an attr as read and write
#define LFS_A_LAZY 0x04 // Only write attr if file changed
// Filesystem format flags
#define LFS_F_MODE 1 // Format's access mode
#define LFS_F_RDWR 0 // Format the filesystem as read and write
#ifdef LFS_NOISY
#define LFS_F_NOISY 0x00000010 // Add noise to revision counts
#endif
#ifdef LFS_CKPROGS
#define LFS_F_CKPROGS 0x00000800 // Check progs by reading back progged data
#endif
#ifdef LFS_CKFETCHES
#define LFS_F_CKFETCHES 0x00001000 // Check block checksums before first use
#endif
#ifdef LFS_CKPARITY
#define LFS_F_CKPARITY 0x00002000 // Check metadata tag parity bits
#endif
#ifdef LFS_CKDATACKSUMS
#define LFS_F_CKDATACKSUMS \
0x00008000 // Check data checksums on reads
#endif
#define LFS_F_CKMETA 0x00100000 // Check metadata checksums
#define LFS_F_CKDATA 0x00200000 // Check metadata + data checksums
// Filesystem mount flags
#define LFS_M_MODE 1 // Mount's access mode
#define LFS_M_RDWR 0 // Mount the filesystem as read and write
#define LFS_M_RDONLY 1 // Mount the filesystem as read only
#define LFS_M_FLUSH 0x00000040 // Open all files with LFS_O_FLUSH
#define LFS_M_SYNC 0x00000080 // Open all files with LFS_O_SYNC
#ifdef LFS_NOISY
#define LFS_M_NOISY 0x00000010 // Add noise to revision counts
#endif
#ifdef LFS_CKPROGS
#define LFS_M_CKPROGS 0x00000800 // Check progs by reading back progged data
#endif
#ifdef LFS_CKFETCHES
#define LFS_M_CKFETCHES 0x00001000 // Check block checksums before first use
#endif
#ifdef LFS_CKPARITY
#define LFS_M_CKPARITY 0x00002000 // Check metadata tag parity bits
#endif
#ifdef LFS_CKDATACKSUMS
#define LFS_M_CKDATACKSUMS \
0x00008000 // Check data checksums on reads
#endif
#define LFS_M_MKCONSISTENT \
0x00010000 // Make the filesystem consistent
#define LFS_M_LOOKAHEAD 0x00020000 // Populate lookahead buffer
#define LFS_M_COMPACT 0x00080000 // Compact metadata logs
#define LFS_M_CKMETA 0x00100000 // Check metadata checksums
#define LFS_M_CKDATA 0x00200000 // Check metadata + data checksums
// Filesystem info flags
#define LFS_I_RDONLY 0x00000001 // Mounted read only
#define LFS_I_FLUSH 0x00000040 // Mounted with LFS_M_FLUSH
#define LFS_I_SYNC 0x00000080 // Mounted with LFS_M_SYNC
#ifdef LFS_NOISY
#define LFS_I_NOISY 0x00000010 // Mounted with LFS_M_NOISY
#endif
#ifdef LFS_CKPROGS
#define LFS_I_CKPROGS 0x00000800 // Mounted with LFS_M_CKPROGS
#endif
#ifdef LFS_CKFETCHES
#define LFS_I_CKFETCHES 0x00001000 // Mounted with LFS_M_CKFETCHES
#endif
#ifdef LFS_CKPARITY
#define LFS_I_CKPARITY 0x00002000 // Mounted with LFS_M_CKPARITY
#endif
#ifdef LFS_CKDATACKSUMS
#define LFS_I_CKDATACKSUMS \
0x00008000 // Mounted with LFS_M_CKDATACKSUMS
#endif
#define LFS_I_MKCONSISTENT \
0x00010000 // Filesystem needs mkconsistent to write
#define LFS_I_LOOKAHEAD 0x00020000 // Lookahead buffer is not full
#define LFS_I_COMPACT 0x00080000 // Filesystem may have uncompacted metadata
#define LFS_I_CKMETA 0x00100000 // Metadata checksums not checked recently
#define LFS_I_CKDATA 0x00200000 // Data checksums not checked recently
// Block types
enum lfs_btype {
LFS_BTYPE_MDIR = 1,
LFS_BTYPE_BTREE = 2,
LFS_BTYPE_DATA = 3,
};
// Traversal flags
#define LFS_T_MTREEONLY 0x00000010 // Only traverse the mtree
#define LFS_T_MKCONSISTENT \
0x00010000 // Make the filesystem consistent
#define LFS_T_LOOKAHEAD 0x00020000 // Populate lookahead buffer
#define LFS_T_COMPACT 0x00080000 // Compact metadata logs
#define LFS_T_CKMETA 0x00100000 // Check metadata checksums
#define LFS_T_CKDATA 0x00200000 // Check metadata + data checksums
// internally used flags, don't use these
#define LFS_t_TSTATE 0x0000000f // The traversal's current tstate
#define LFS_t_BTYPE 0x00000f00 // The traversal's current btype
#define LFS_t_DIRTY 0x01000000 // Filesystem modified during traversal
#define LFS_t_MUTATED 0x02000000 // Filesystem modified by traversal
#define LFS_t_ZOMBIE 0x08000000 // File has been removed
// GC flags
#define LFS_GC_MKCONSISTENT \
0x00010000 // Make the filesystem consistent
#define LFS_GC_LOOKAHEAD \
0x00020000 // Populate lookahead buffer
#define LFS_GC_COMPACT 0x00080000 // Compact metadata logs
#define LFS_GC_CKMETA 0x00100000 // Check metadata checksums
#define LFS_GC_CKDATA 0x00200000 // Check metadata + data checksums
// Configuration provided during initialization of the littlefs
struct lfs_config {
// Opaque user provided context that can be used to pass
// information to the block device operations
void *context;
// Read a region in a block. Negative error codes are propagated
// to the user.
int (*read)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size);
// Program a region in a block. The block must have previously
// been erased. Negative error codes are propagated to the user.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*prog)(const struct lfs_config *c, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size);
// Erase a block. A block must be erased before being programmed.
// The state of an erased block is undefined. Negative error codes
// are propagated to the user.
// May return LFS_ERR_CORRUPT if the block should be considered bad.
int (*erase)(const struct lfs_config *c, lfs_block_t block);
// Sync the state of the underlying block device. Negative error codes
// are propagated to the user.
int (*sync)(const struct lfs_config *c);
#ifdef LFS_THREADSAFE
// Lock the underlying block device. Negative error codes
// are propagated to the user.
int (*lock)(const struct lfs_config *c);
// Unlock the underlying block device. Negative error codes
// are propagated to the user.
int (*unlock)(const struct lfs_config *c);
#endif
// Minimum size of a read in bytes. All read operations will be a
// multiple of this value.
lfs_size_t read_size;
// Minimum size of a program in bytes. All program operations will be a
// multiple of this value.
lfs_size_t prog_size;
// Size of an erasable block in bytes. This does not impact ram consumption
// and may be larger than the physical erase size. Must be a multiple of
// the read and program sizes.
lfs_size_t block_size;
// Number of erasable blocks on the device.
lfs_size_t block_count;
// Number of erase cycles before metadata blocks are relocated for
// wear-leveling. Suggested values are in the range 16-1024. Larger values
// relocate less frequently, improving average performance, at the cost
// of worse wear distribution. Note this ends up rounded down to a
// power-of-2.
//
// 0 results in pure copy-on-write, which may be counter-productive. Set
// to -1 to disable block-level wear-leveling.
int32_t block_recycles;
// Size of the read cache in bytes. Larger caches can improve
// performance by storing more data and reducing the number of disk
// accesses. Must be a multiple of the read size.
lfs_size_t rcache_size;
// Size of the program cache in bytes. Larger caches can improve
// performance by storing more data and reducing the number of disk
// accesses. Must be a multiple of the program size.
lfs_size_t pcache_size;
// Size of file caches in bytes. In addition to filesystem-wide
// read/prog caches, each file gets its own cache to reduce disk
// accesses.
lfs_size_t file_cache_size;
// Size of the lookahead buffer in bytes. A larger lookahead buffer
// increases the number of blocks found during an allocation pass. The
// lookahead buffer is stored as a compact bitmap, so each byte of RAM
// can track 8 blocks.
lfs_size_t lookahead_size;
#ifdef LFS_GC
// Flags indicating what gc work to do during lfsr_gc calls.
uint32_t gc_flags;
#endif
#ifdef LFS_GC
// Number of gc steps to perform in each call to lfsr_gc, with each
// step being ~1 block of work.
//
// More steps per call will make more progress if interleaved with
// other filesystem operations, but may also introduce more latency.
// steps=1 will do the minimum amount of work to make progress, and
// steps=-1 will not return until all pending janitorial work has
// been completed.
//
// Defaults to steps=1 when zero.
lfs_soff_t gc_steps;
#endif
// Threshold for metadata compaction during gc in bytes. Metadata logs
// that exceed this threshold will be compacted during gc operations.
// Defaults to ~88% block_size when zero, though this default may change
// in the future.
//
// Note this only affects explicit gc operations. Otherwise metadata is
// only compacted when full.
//
// Set to -1 to disable metadata compaction during gc.
lfs_size_t gc_compact_thresh;
// Optional statically allocated rcache buffer. Must be rcache_size. By
// default lfs_malloc is used to allocate this buffer.
void *rcache_buffer;
// Optional statically allocated pcache buffer. Must be pcache_size. By
// default lfs_malloc is used to allocate this buffer.
void *pcache_buffer;
// Optional statically allocated lookahead buffer. Must be lookahead_size.
// By default lfs_malloc is used to allocate this buffer.
void *lookahead_buffer;
// Optional upper limit on length of file names in bytes. No downside for
// larger names except the size of the info struct which is controlled by
// the LFS_NAME_MAX define. Defaults to LFS_NAME_MAX when zero. Stored in
// superblock and must be respected by other littlefs drivers.
lfs_size_t name_limit;
// Optional upper limit on files in bytes. No downside for larger files
// but must be <= LFS_FILE_MAX. Defaults to LFS_FILE_MAX when zero. Stored
// in superblock and must be respected by other littlefs drivers.
lfs_size_t file_limit;
// TODO rm me
// // Optional upper limit on custom attributes in bytes. No downside for
// // larger attributes size but must be <= LFS_ATTR_MAX. Defaults to
// // LFS_ATTR_MAX when zero.
// lfs_size_t attr_max;
//
// // Optional upper limit on total space given to metadata pairs in bytes. On
// // devices with large blocks (e.g. 128kB) setting this to a low size (2-8kB)
// // can help bound the metadata compaction time. Must be <= block_size.
// // Defaults to block_size when zero.
// lfs_size_t metadata_max;
//
// // Maximum size of inlined files in bytes. Inlined files decrease storage
// // requirements, but may impact metadata-related performance. Must be <=
// // block_size/4.
// //
// // 0 disables inline files.
// lfs_size_t inline_size;
// TODO these are pretty low-level details, should we have reasonable
// defaults? need to benchmark.
// Maximum size of inlined trees (shrubs) in bytes. Shrubs reduce B-tree
// root overhead, but may impact metadata-related performance. Must be <=
// blocksize/4.
//
// 0 disables shrubs.
lfs_size_t inline_size;
// Maximum size of a non-block B-tree leaf in bytes. Smaller values may
// make small random-writes cheaper, but increase metadata overhead. Must
// be <= block_size/4.
lfs_size_t fragment_size;
// Threshold for compacting multiple fragments into a block. Smaller
// values will compact more frequently, reducing disk usage, but
// increasing the cost of random-writes.
//
// 0 only writes blocks, minimizing disk usage, while -1 or any value >=
// block_size only writes fragments, minimizing random-write cost.
lfs_size_t crystal_thresh;
};
// File info structure
struct lfs_info {
// Type of the file, either LFS_TYPE_REG or LFS_TYPE_DIR
uint8_t type;
// Size of the file, only valid for REG files. Limited to 32-bits.
lfs_size_t size;
// Name of the file stored as a null-terminated string. Limited to
// LFS_NAME_MAX+1, which can be changed by redefining LFS_NAME_MAX to
// reduce RAM. LFS_NAME_MAX is stored in superblock and must be
// respected by other littlefs drivers.
char name[LFS_NAME_MAX+1];
};
// Filesystem info structure
struct lfs_fsinfo {
// Filesystem flags
uint32_t flags;
// Size of a logical block in bytes.
lfs_size_t block_size;
// Number of logical blocks in the filesystem.
lfs_size_t block_count;
// Upper limit on the length of file names in bytes.
lfs_size_t name_limit;
// Upper limit on the size of files in bytes.
lfs_size_t file_limit;
};
// Traversal info structure
struct lfs_tinfo {
// Type of the block
uint8_t btype;
// Block address
lfs_block_t block;
};
//// Custom attribute structure, used to describe custom attributes
//// committed atomically during file writes.
//struct lfs_attr {
// // 8-bit type of attribute, provided by user and used to
// // identify the attribute
// uint8_t type;
//
// // Pointer to buffer containing the attribute
// void *buffer;
//
// // Size of attribute in bytes, limited to LFS_ATTR_MAX
// lfs_size_t size;
//};
// Custom attribute structure, used to describe custom attributes
// committed atomically during file writes.
struct lfs_attr {
// Type of attribute
//
// Note some of this range is reserved:
// 0x00-0x7f - Free for custom attributes
// 0x80-0xff - May be assigned a standard attribute
uint8_t type;
// Flags that control how attr is read/written/removed
uint8_t flags;
// Pointer the buffer where the attr will be read/written
void *buffer;
// Size of the attr buffer in bytes, this can be set to
// LFS_ERR_NOATTR to remove the attr
lfs_ssize_t buffer_size;
// Optional pointer to a mutable attr size, updated on read/write,
// set to LFS_ERR_NOATTR if attr does not exist
//
// Defaults to buffer_size if NULL
lfs_ssize_t *size;
};
// Optional configuration provided during lfs_file_opencfg
struct lfs_file_config {
// Optional statically allocated file cache buffer. Must be cache_size.
// By default lfs_malloc is used to allocate this buffer.
void *cache_buffer;
// Size of the file cache in bytes. In addition to filesystem-wide
// read/prog caches, each file gets its own cache to reduce disk
// accesses. Defaults to file_cache_size.
lfs_size_t cache_size;
// // Optional list of custom attributes related to the file. If the file
// // is opened with read access, these attributes will be read from disk
// // during the open call. If the file is opened with write access, the
// // attributes will be written to disk every file sync or close. This
// // write occurs atomically with update to the file's contents.
// //
// // Custom attributes are uniquely identified by an 8-bit type and limited
// // to LFS_ATTR_MAX bytes. When read, if the stored attribute is smaller
// // than the buffer, it will be padded with zeros. If the stored attribute
// // is larger, then it will be silently truncated. If the attribute is not
// // found, it will be created implicitly.
// struct lfs_attr *attrs;
//
// // Number of custom attributes in the list
// lfs_size_t attr_count;
// Optional list of custom attributes attached to the file. If readable,
// these attributes will be kept up to date with the attributes on-disk.
// If writeable, these attributes will be written to disk atomically on
// every file sync or close.
struct lfs_attr *attrs;
// Number of custom attributes in the list
lfs_size_t attr_count;
};
/// internal littlefs data structures ///
//typedef struct lfs_cache {
// lfs_block_t block;
// lfs_size_t off;
// lfs_size_t size;
// uint8_t *buffer;
//} lfs_cache_t;
//typedef struct lfs_mdir {
// lfs_block_t pair[2];
// uint32_t rev;
// lfs_off_t off;
// uint32_t etag;
// uint16_t count;
// bool erased;
// bool split;
// lfs_block_t tail[2];
//} lfs_mdir_t;
// either an on-disk or in-RAM data pointer
//
// note, it's tempting to make this fancier, but we benefit quite a lot
// from the compiler being able to aggresively optimize this struct
//
typedef struct lfsr_data {
// sign2(size)=0b00 => in-RAM buffer
// sign2(size)=0b10 => on-disk data
// sign2(size)=0b11 => on-disk data + cksum
lfs_size_t size;
union {
const uint8_t *buffer;
struct {
lfs_block_t block;
lfs_size_t off;
// optional context for validating data
#ifdef LFS_CKDATACKSUMS
lfs_size_t cksize;
uint32_t cksum;
#endif
} disk;
} u;
} lfsr_data_t;
// a possible block pointer
typedef struct lfsr_bptr {
// sign2(size)=0b00 => in-RAM buffer
// sign2(size)=0b10 => on-disk data
// sign2(size)=0b11 => block pointer
lfsr_data_t data;
#ifndef LFS_CKDATACKSUMS
lfs_size_t cksize;
uint32_t cksum;
#endif
} lfsr_bptr_t;
// littlefs's core metadata log type
typedef struct lfsr_rbyd {
lfsr_rid_t weight;
lfs_block_t blocks[2];
// sign(trunk)=0 => normal rbyd
// sign(trunk)=1 => shrub rbyd
lfs_size_t trunk;
// sign(eoff) => perturb bit
// eoff=0, trunk=0 => not yet committed
// eoff=0, trunk>0 => not yet fetched
// eoff>=block_size => rbyd not erased/needs compaction
lfs_size_t eoff;
uint32_t cksum;
} lfsr_rbyd_t;
// a btree is represented by the root rbyd
typedef lfsr_rbyd_t lfsr_btree_t;
// littlefs's atomic metadata log type
typedef struct lfsr_mdir {
lfsr_smid_t mid;
lfsr_rbyd_t rbyd;
uint32_t gcksumdelta;
} lfsr_mdir_t;
typedef struct lfsr_omdir {
struct lfsr_omdir *next;
uint32_t flags;
lfsr_mdir_t mdir;
} lfsr_omdir_t;
// a shrub is a secondary trunk in an mdir
typedef lfsr_rbyd_t lfsr_shrub_t;
// a bshrub is like a btree but with a shrub as a root
typedef struct lfsr_bshrub {
// bshrubs need to be tracked for commits to work
lfsr_omdir_t o;
// files contain both an active bshrub and staging bshrub, to allow
// staging during mdir compacts
// trunk=0 => no bshrub/btree
// sign(trunk)=1 => bshrub
// sign(trunk)=0 => btree
lfsr_shrub_t shrub;
lfsr_shrub_t shrub_;
} lfsr_bshrub_t;
// littlefs file type
//typedef struct lfs_file {
// struct lfs_file *next;
// uint16_t id;
// uint8_t type;
// lfs_mdir_t m;
//
// struct lfs_ctz {
// lfs_block_t head;
// lfs_size_t size;
// } ctz;
//
// uint32_t flags;
// lfs_off_t pos;
// lfs_block_t block;
// lfs_off_t off;
// lfs_cache_t cache;
//
// const struct lfs_file_config *cfg;
//} lfs_file_t;
typedef struct lfsr_file {
lfsr_bshrub_t b;
const struct lfs_file_config *cfg;
lfs_off_t pos;
// note this lines up with lfsr_data_t's buffer representation
struct {
lfs_off_t size;
uint8_t *buffer;
lfs_off_t pos;
} cache;
lfs_block_t eblock;
lfs_size_t eoff;
} lfsr_file_t;
// littlefs directory type
//typedef struct lfs_dir {
// struct lfs_dir *next;
// uint16_t id;
// uint8_t type;
// lfs_mdir_t m;
//
// lfs_off_t pos;
// lfs_block_t head[2];
//} lfs_dir_t;
typedef struct lfsr_dir {
lfsr_omdir_t o;
lfsr_did_t did;
lfs_off_t pos;
} lfsr_dir_t;
// littlefs traversal type
typedef struct lfsr_btraversal {
lfsr_bid_t bid;
const lfsr_rbyd_t *branch;
lfsr_srid_t rid;
lfsr_rbyd_t rbyd;
} lfsr_btraversal_t;
typedef struct lfsr_traversal {
// mdir/bshrub/btree state, this also includes our traversal
// state machine
lfsr_bshrub_t b;
// opened file state
lfsr_omdir_t *ot;
union {
// cycle detection state, only valid when traversing the mroot chain
struct {
lfs_block_t blocks[2];
lfs_block_t step;
uint8_t power;
} mtortoise;
// btree traversal state
lfsr_btraversal_t bt;
} u;
// recalculate gcksum when traversing with ckmeta
uint32_t gcksum;
// pending blocks, only used in lfsr_traversal_read
lfs_sblock_t blocks[2];
} lfsr_traversal_t;
//typedef struct lfs_superblock {
// uint32_t version;
// lfs_size_t block_size;
// lfs_size_t block_count;
// lfs_size_t name_max;
// lfs_size_t file_max;
// lfs_size_t attr_max;
//} lfs_superblock_t;
//
//typedef struct lfs_gstate {
// uint32_t tag;
// lfs_block_t pair[2];
//} lfs_gstate_t;
// grm encoding:
// .---. mode: 1 leb128 1 byte
// |mod| mids: 2 leb128s <=2x5 bytes
// +- -+- -+- -+- -+- -. total: <=11 bytes
// ' mid x mod '
// + +
// ' '
// '- -+- -+- -+- -+- -'
//
#define LFSR_GRM_DSIZE (1+5+5)
typedef struct lfsr_grm {
lfsr_smid_t mids[2];
} lfsr_grm_t;
#ifdef LFS_CKPARITY
typedef struct lfsr_ptail {
lfs_block_t block;
// sign(off) => tail parity
lfs_size_t off;
} lfsr_ptail_t;
#endif
// The littlefs filesystem type
typedef struct lfs {
const struct lfs_config *cfg;
uint32_t flags;
lfs_size_t block_count;
lfs_size_t name_limit;
lfs_off_t file_limit;
int8_t recycle_bits;
uint8_t rattr_estimate;
uint8_t mdir_bits;
// linked-list of opened mdirs
lfsr_omdir_t *omdirs;
lfsr_mdir_t mroot;
lfsr_btree_t mtree;
struct {
lfs_block_t block;
lfs_size_t off;
lfs_size_t size;
uint8_t *buffer;
} rcache;
struct {
lfs_block_t block;
lfs_size_t off;
lfs_size_t size;
uint8_t *buffer;
} pcache;
#ifdef LFS_CKPARITY
lfsr_ptail_t ptail;
#endif
struct lfs_lookahead {
lfs_block_t window;
lfs_block_t off;
lfs_block_t size;
lfs_block_t ckpoint;
uint8_t *buffer;
} lookahead;
uint32_t gcksum;
uint32_t gcksum_p;
uint32_t gcksum_d;
lfsr_grm_t grm;
uint8_t grm_p[LFSR_GRM_DSIZE];
uint8_t grm_d[LFSR_GRM_DSIZE];
#ifdef LFS_GC
struct {
lfsr_traversal_t t;
} gc;
#endif
} lfs_t;
/// Filesystem functions ///
#ifndef LFS_READONLY
// Format a block device with the littlefs
//
// Requires a littlefs object and config struct. This clobbers the littlefs
// object, and does not leave the filesystem mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
//int lfs_format(lfs_t *lfs, const struct lfs_config *config);
int lfsr_format(lfs_t *lfs, uint32_t flags,
const struct lfs_config *cfg);
#endif
// Mounts a littlefs
//
// Requires a littlefs object and config struct. Multiple filesystems
// may be mounted simultaneously with multiple littlefs objects. Both
// lfs and config must be allocated while mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
//int lfs_mount(lfs_t *lfs, const struct lfs_config *config);
int lfsr_mount(lfs_t *lfs, uint32_t flags,
const struct lfs_config *cfg);
// Unmounts a littlefs
//
// Does nothing besides releasing any allocated resources.
// Returns a negative error code on failure.
//int lfs_unmount(lfs_t *lfs);
int lfsr_unmount(lfs_t *lfs);
/// General operations ///
#ifndef LFS_READONLY
// Removes a file or directory
//
// If removing a directory, the directory must be empty.
// Returns a negative error code on failure.
//int lfs_remove(lfs_t *lfs, const char *path);
int lfsr_remove(lfs_t *lfs, const char *path);
#endif
#ifndef LFS_READONLY
// Rename or move a file or directory
//
// If the destination exists, it must match the source in type.
// If the destination is a directory, the directory must be empty.
//
// Returns a negative error code on failure.
//int lfs_rename(lfs_t *lfs, const char *oldpath, const char *newpath);
int lfsr_rename(lfs_t *lfs, const char *old_path, const char *new_path);
#endif
// Find info about a file or directory
//
// Fills out the info structure, based on the specified file or directory.
// Returns a negative error code on failure.
//int lfs_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
int lfsr_stat(lfs_t *lfs, const char *path, struct lfs_info *info);
// Get a custom attribute
//
// Returns the number of bytes read, or a negative error code on failure.
// Note this may be less than the on-disk attr size if the buffer is not
// large enough.
//lfs_ssize_t lfs_getattr(lfs_t *lfs, const char *path,
// uint8_t type, void *buffer, lfs_size_t size);
lfs_ssize_t lfsr_getattr(lfs_t *lfs, const char *path, uint8_t type,
void *buffer, lfs_size_t size);
// Get a custom attribute's size
//
// Returns the size of the attribute, or a negative error code on failure.
lfs_ssize_t lfsr_sizeattr(lfs_t *lfs, const char *path, uint8_t type);
#ifndef LFS_READONLY
// Set a custom attributes
//
// Returns a negative error code on failure.
//int lfs_setattr(lfs_t *lfs, const char *path,
// uint8_t type, const void *buffer, lfs_size_t size);
int lfsr_setattr(lfs_t *lfs, const char *path, uint8_t type,
const void *buffer, lfs_size_t size);
#endif
#ifndef LFS_READONLY
// Removes a custom attribute
//
// Returns a negative error code on failure.
//int lfs_removeattr(lfs_t *lfs, const char *path, uint8_t type);
int lfsr_removeattr(lfs_t *lfs, const char *path, uint8_t type);
#endif
/// File operations ///
#ifndef LFS_NO_MALLOC
// Open a file
//
// The mode that the file is opened in is determined by the flags, which
// are values from the enum lfs_open_flags that are bitwise-ored together.
//
// Returns a negative error code on failure.
//int lfs_file_open(lfs_t *lfs, lfs_file_t *file,
// const char *path, int flags);
int lfsr_file_open(lfs_t *lfs, lfsr_file_t *file,
const char *path, uint32_t flags);
// if LFS_NO_MALLOC is defined, lfs_file_open() will fail with LFS_ERR_NOMEM
// thus use lfs_file_opencfg() with config.buffer set.
#endif
// Open a file with extra configuration
//
// The mode that the file is opened in is determined by the flags, which
// are values from the enum lfs_open_flags that are bitwise-ored together.
//
// The config struct provides additional config options per file as described
// above. The config struct must remain allocated while the file is open, and
// the config struct must be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
//int lfs_file_opencfg(lfs_t *lfs, lfs_file_t *file,
// const char *path, int flags,
// const struct lfs_file_config *config);
int lfsr_file_opencfg(lfs_t *lfs, lfsr_file_t *file,
const char *path, uint32_t flags,
const struct lfs_file_config *cfg);
// Close a file
//
// If the file is not desynchronized, any pending writes are written out
// to storage as though sync had been called.
//
// Releases any allocated resources, even if there is an error.
//
// Readonly and desynchronized files do not touch disk and will always
// return 0.
//
// Returns a negative error code on failure.
//int lfs_file_close(lfs_t *lfs, lfs_file_t *file);
int lfsr_file_close(lfs_t *lfs, lfsr_file_t *file);
// Synchronize a file on storage
//
// Any pending writes are written out to storage and other open files.
//
// If the file was desynchronized, it is now marked as synchronized. It will
// now recieve file updates and syncs on close.
//
// Returns a negative error code on failure.
//int lfs_file_sync(lfs_t *lfs, lfs_file_t *file);
int lfsr_file_sync(lfs_t *lfs, lfsr_file_t *file);
// Flush any buffered data
//
// This does not update metadata and is called implicitly by lfsr_file_sync.
// Calling this explicitly may be useful for preventing write errors in
// read operations.
//
// Returns a negative error code on failure.
int lfsr_file_flush(lfs_t *lfs, lfsr_file_t *file);
// Mark a file as desynchronized
//
// Desynchronized files do not recieve file updates and do not sync on close.
// They effectively act as snapshots of the underlying file at that point
// in time.
//
// If an error occurs during a write operation, the file is implicitly marked
// as desynchronized.
//
// An explicit and successful call to either lfsr_file_sync or
// lfsr_file_resync reverses this, marking the file as synchronized again.
//
// Returns a negative error code on failure.
int lfsr_file_desync(lfs_t *lfs, lfsr_file_t *file);
// Discard unsynchronized changes and mark a file as synchronized
//
// This is effectively the same as closing and reopening the file, and
// may read from disk to figure out file state.
//
// Returns a negative error code on failure.
int lfsr_file_resync(lfs_t *lfs, lfsr_file_t *file);
// Read data from file
//
// Takes a buffer and size indicating where to store the read data.
// Returns the number of bytes read, or a negative error code on failure.
//lfs_ssize_t lfs_file_read(lfs_t *lfs, lfs_file_t *file,
// void *buffer, lfs_size_t size);
lfs_ssize_t lfsr_file_read(lfs_t *lfs, lfsr_file_t *file,
void *buffer, lfs_size_t size);
#ifndef LFS_READONLY
// Write data to file
//
// Takes a buffer and size indicating the data to write. The file will not
// actually be updated on the storage until either sync or close is called.
//
// Returns the number of bytes written, or a negative error code on failure.
//lfs_ssize_t lfs_file_write(lfs_t *lfs, lfs_file_t *file,
// const void *buffer, lfs_size_t size);
lfs_ssize_t lfsr_file_write(lfs_t *lfs, lfsr_file_t *file,
const void *buffer, lfs_size_t size);
#endif
// Change the position of the file
//
// The change in position is determined by the offset and whence flag.
// Returns the new position of the file, or a negative error code on failure.
//lfs_soff_t lfs_file_seek(lfs_t *lfs, lfs_file_t *file,
// lfs_soff_t off, int whence);
lfs_soff_t lfsr_file_seek(lfs_t *lfs, lfsr_file_t *file,
lfs_soff_t off, uint8_t whence);
#ifndef LFS_READONLY
// Truncate/grow the size of the file to the specified size
//
// If size is larger than the current file size, a hole is created, appearing
// as if the file was filled with zeros.
//
// Returns a negative error code on failure.
//int lfs_file_truncate(lfs_t *lfs, lfs_file_t *file, lfs_off_t size);
int lfsr_file_truncate(lfs_t *lfs, lfsr_file_t *file, lfs_off_t size);
#endif
#ifndef LFS_READONLY
// Truncate/grow the file, but from the front
//
// If size is larger than the current file size, a hole is created, appearing
// as if the file was filled with zeros.
//
// Returns a negative error code on failure.
int lfsr_file_fruncate(lfs_t *lfs, lfsr_file_t *file, lfs_off_t size);
#endif
// Return the position of the file
//
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_CUR)
// Returns the position of the file, or a negative error code on failure.
//lfs_soff_t lfs_file_tell(lfs_t *lfs, lfs_file_t *file);
lfs_soff_t lfsr_file_tell(lfs_t *lfs, lfsr_file_t *file);
// Change the position of the file to the beginning of the file
//
// Equivalent to lfs_file_seek(lfs, file, 0, LFS_SEEK_SET)
// Returns a negative error code on failure.
//int lfs_file_rewind(lfs_t *lfs, lfs_file_t *file);
int lfsr_file_rewind(lfs_t *lfs, lfsr_file_t *file);
// Return the size of the file
//
// Similar to lfs_file_seek(lfs, file, 0, LFS_SEEK_END)
// Returns the size of the file, or a negative error code on failure.
//lfs_soff_t lfs_file_size(lfs_t *lfs, lfs_file_t *file);
lfs_soff_t lfsr_file_size(lfs_t *lfs, lfsr_file_t *file);
// Check a file for metadata errors
//
// Returns LFS_ERR_CORRUPT if a checksum mismatch is found, or a negative
// error code on failure.
int lfsr_file_ckmeta(lfs_t *lfs, lfsr_file_t *file);
// Check a file for metadata + data errors
//
// Returns LFS_ERR_CORRUPT if a checksum mismatch is found, or a negative
// error code on failure.
int lfsr_file_ckdata(lfs_t *lfs, lfsr_file_t *file);
/// Directory operations ///
#ifndef LFS_READONLY
// Create a directory
//
// Returns a negative error code on failure.
//int lfs_mkdir(lfs_t *lfs, const char *path);
int lfsr_mkdir(lfs_t *lfs, const char *path);
#endif
// Open a directory
//
// Once open a directory can be used with read to iterate over files.
// Returns a negative error code on failure.
//int lfs_dir_open(lfs_t *lfs, lfs_dir_t *dir, const char *path);
int lfsr_dir_open(lfs_t *lfs, lfsr_dir_t *dir, const char *path);
// Close a directory
//
// Releases any allocated resources.
// Returns a negative error code on failure.
//int lfs_dir_close(lfs_t *lfs, lfs_dir_t *dir);
int lfsr_dir_close(lfs_t *lfs, lfsr_dir_t *dir);
// Read an entry in the directory
//
// Fills out the info structure, based on the specified file or directory.
// Returns 0 on success, LFS_ERR_NOENT at the end of directory, or a
// negative error code on failure.
//int lfs_dir_read(lfs_t *lfs, lfs_dir_t *dir, struct lfs_info *info);
int lfsr_dir_read(lfs_t *lfs, lfsr_dir_t *dir, struct lfs_info *info);
// Change the position of the directory
//
// The new off must be a value previous returned from tell and specifies
// an absolute offset in the directory seek.
//
// Returns a negative error code on failure.
//int lfs_dir_seek(lfs_t *lfs, lfs_dir_t *dir, lfs_off_t off);
int lfsr_dir_seek(lfs_t *lfs, lfsr_dir_t *dir, lfs_soff_t off);
// Return the position of the directory
//
// The returned offset is only meant to be consumed by seek and may not make
// sense, but does indicate the current position in the directory iteration.
//
// Returns the position of the directory, or a negative error code on failure.
//lfs_soff_t lfs_dir_tell(lfs_t *lfs, lfs_dir_t *dir);
lfs_soff_t lfsr_dir_tell(lfs_t *lfs, lfsr_dir_t *dir);
// Change the position of the directory to the beginning of the directory
//
// Returns a negative error code on failure.
//int lfs_dir_rewind(lfs_t *lfs, lfs_dir_t *dir);
int lfsr_dir_rewind(lfs_t *lfs, lfsr_dir_t *dir);
/// Traversal operations ///
// Open a traversal
//
// Once open, a traversal can be read from to iterate over all blocks in
// the filesystem.
//
// Returns a negative error code on failure.
int lfsr_traversal_open(lfs_t *lfs, lfsr_traversal_t *t, uint32_t flags);
// Close a traversal
//
// Releases any allocated resources.
// Returns a negative error code on failure.
int lfsr_traversal_close(lfs_t *lfs, lfsr_traversal_t *t);
// Progress the traversal and read an entry
//
// Fills out the tinfo structure.
//
// Returns 0 on success, LFS_ERR_NOENT at the end of traversal, or a
// negative error code on failure.
int lfsr_traversal_read(lfs_t *lfs, lfsr_traversal_t *t,
struct lfs_tinfo *tinfo);
// Reset the traversal
//
// Returns a negative error code on failure.
int lfsr_traversal_rewind(lfs_t *lfs, lfsr_traversal_t *t);
/// Filesystem-level filesystem operations
// Find on-disk info about the filesystem
//
// Fills out the fsinfo structure based on the filesystem found on-disk.
// Returns a negative error code on failure.
int lfsr_fs_stat(lfs_t *lfs, struct lfs_fsinfo *fsinfo);
// Finds the current size of the filesystem
//
// Note: Result is best effort. If files share COW structures, the returned
// size may be larger than the filesystem actually is.
//
// Returns the number of allocated blocks, or a negative error code on failure.
//lfs_ssize_t lfs_fs_size(lfs_t *lfs);
lfs_ssize_t lfsr_fs_size(lfs_t *lfs);
// Traverse through all blocks in use by the filesystem
//
// The provided callback will be called with each block address that is
// currently in use by the filesystem. This can be used to determine which
// blocks are in use or how much of the storage is available.
//
// Returns a negative error code on failure.
//int lfs_fs_traverse(lfs_t *lfs, int (*cb)(void*, lfs_block_t), void *data);
#ifndef LFS_READONLY
// Attempt to make the filesystem consistent and ready for writing
//
// Calling this function is not required, consistency will be implicitly
// enforced on the first operation that writes to the filesystem, but this
// function allows the work to be performed earlier and without other
// filesystem changes.
//
// Returns a negative error code on failure.
int lfsr_fs_mkconsistent(lfs_t *lfs);
#endif
#ifndef LFS_READONLY
// Check the filesystem for metadata errors
//
// Returns LFS_ERR_CORRUPT if a checksum mismatch is found, or a negative
// error code on failure.
int lfsr_fs_ckmeta(lfs_t *lfs);
#endif
#ifndef LFS_READONLY
// Check the filesystem for metadata + data errors
//
// Returns LFS_ERR_CORRUPT if a checksum mismatch is found, or a negative
// error code on failure.
int lfsr_fs_ckdata(lfs_t *lfs);
#endif
// Get the current filesystem checksum
//
// This is a checksum of all metadata + data in the filesystem, which
// can be stored externally to provide increased protection against
// filesystem corruption.
//
// Note this checksum is order-sensitive. So while it's unlikely two
// filesystems with different contents will have the same checksum, two
// filesystems with the same contents may not have the same checksum.
//
// Also note this is only a 32-bit checksum. Collisions should be
// expected.
//
// Returns a negative error code on failure.
int lfsr_fs_cksum(lfs_t *lfs, uint32_t *cksum);
#ifdef LFS_GC
// Perform any janitorial work that may be pending
//
// The exact janitorial work depends on the configured flags and steps.
//
// Calling this function is not required, but may allow the offloading of
// expensive janitorial work to a less time-critical code path.
//
// Returns a negative error code on failure.
int lfsr_fs_gc(lfs_t *lfs);
#endif
// Mark janitorial work as incomplete
//
// Any info flags passed to lfsr_gc_unck will be reset internally,
// forcing the work to be redone.
//
// This is most useful for triggering new ckmeta/ckdata scans with
// LFS_I_CANCKMETA and LFS_I_CANCKDATA. Otherwise littlefs will perform
// only one scan after mount.
//
// Returns a negative error code on failure.
int lfsr_fs_unck(lfs_t *lfs, uint32_t flags);
#ifndef LFS_READONLY
// Change the number of blocks used by the filesystem
//
// This changes the number of blocks we are currently using and updates
// the superblock with the new block count.
//
// Note: This is irreversible.
//
// Returns a negative error code on failure.
int lfsr_fs_grow(lfs_t *lfs, lfs_size_t block_count);
#endif
#ifndef LFS_READONLY
#ifdef LFS_MIGRATE
// Attempts to migrate a previous version of littlefs
//
// Behaves similarly to the lfs_format function. Attempts to mount
// the previous version of littlefs and update the filesystem so it can be
// mounted with the current version of littlefs.
//
// Requires a littlefs object and config struct. This clobbers the littlefs
// object, and does not leave the filesystem mounted. The config struct must
// be zeroed for defaults and backwards compatibility.
//
// Returns a negative error code on failure.
//int lfs_migrate(lfs_t *lfs, const struct lfs_config *cfg);
#endif
#endif
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif