Files
littlefs/tests/test_orphans.toml
Christopher Haster 94d9e097a6 Fixed issue where lfs_fs_deorphan may run more than needed
The underlying issue is that lfs_fs_deorphan did not updating gstate
correctly. The way it determined if there are any orphans remaining in
the filesystem was by subtracting the number of found orphans from an
internal counter.

This internal counter is a leftover from a previous implementation that
allowed leaving the lfs_fs_deorphan loop early if we know the number of
expected orphans. This can happen during recursive mdir relocations, but
with only a single bit in the gstate, can't happen during mount. If we
detect orphans during mount, we set this internal counter to 1, assuming
we will find at least one orphan.

But this presents a problem, what if we find _no_ orphans? If this happens
we never decrement the internal counter of orphans, so we would never
clear the bit in the gstate. This leads to a running lfs_fs_deorphan
on more-or-less every mutable operation in the filesystem, resulting in
an extreme performance hit.

The solution here is to not subtract the number of found orphans, but assume
that when our lfs_fs_deorphan loop finishes, we will have no orphans, because
that's the whole point of lfs_fs_deorphan.

Note that the early termination of lfs_fs_deorphan was dropped because
it would not actually change the runtime complexity of lfs_fs_deorphan,
adds code cost, and risks fragile corner cases such as this one.

---

Also added tests to assert we run lfs_fs_deorphan at most once.

Found by kasper0 and Ldd309
2023-04-26 21:41:26 -05:00

197 lines
6.2 KiB
TOML

[cases.test_orphans_normal]
in = "lfs.c"
if = 'PROG_SIZE <= 0x3fe' # only works with one crc per commit
code = '''
lfs_t lfs;
lfs_format(&lfs, cfg) => 0;
lfs_mount(&lfs, cfg) => 0;
lfs_mkdir(&lfs, "parent") => 0;
lfs_mkdir(&lfs, "parent/orphan") => 0;
lfs_mkdir(&lfs, "parent/child") => 0;
lfs_remove(&lfs, "parent/orphan") => 0;
lfs_unmount(&lfs) => 0;
// corrupt the child's most recent commit, this should be the update
// to the linked-list entry, which should orphan the orphan. Note this
// makes a lot of assumptions about the remove operation.
lfs_mount(&lfs, cfg) => 0;
lfs_dir_t dir;
lfs_dir_open(&lfs, &dir, "parent/child") => 0;
lfs_block_t block = dir.m.pair[0];
lfs_dir_close(&lfs, &dir) => 0;
lfs_unmount(&lfs) => 0;
uint8_t buffer[BLOCK_SIZE];
cfg->read(cfg, block, 0, buffer, BLOCK_SIZE) => 0;
int off = BLOCK_SIZE-1;
while (off >= 0 && buffer[off] == ERASE_VALUE) {
off -= 1;
}
memset(&buffer[off-3], BLOCK_SIZE, 3);
cfg->erase(cfg, block) => 0;
cfg->prog(cfg, block, 0, buffer, BLOCK_SIZE) => 0;
cfg->sync(cfg) => 0;
lfs_mount(&lfs, cfg) => 0;
struct lfs_info info;
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
lfs_stat(&lfs, "parent/child", &info) => 0;
lfs_fs_size(&lfs) => 8;
lfs_unmount(&lfs) => 0;
lfs_mount(&lfs, cfg) => 0;
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
lfs_stat(&lfs, "parent/child", &info) => 0;
lfs_fs_size(&lfs) => 8;
// this mkdir should both create a dir and deorphan, so size
// should be unchanged
lfs_mkdir(&lfs, "parent/otherchild") => 0;
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
lfs_stat(&lfs, "parent/child", &info) => 0;
lfs_stat(&lfs, "parent/otherchild", &info) => 0;
lfs_fs_size(&lfs) => 8;
lfs_unmount(&lfs) => 0;
lfs_mount(&lfs, cfg) => 0;
lfs_stat(&lfs, "parent/orphan", &info) => LFS_ERR_NOENT;
lfs_stat(&lfs, "parent/child", &info) => 0;
lfs_stat(&lfs, "parent/otherchild", &info) => 0;
lfs_fs_size(&lfs) => 8;
lfs_unmount(&lfs) => 0;
'''
# test that we only run deorphan once per power-cycle
[cases.test_orphans_no_orphans]
in = 'lfs.c'
code = '''
lfs_t lfs;
lfs_format(&lfs, cfg) => 0;
lfs_mount(&lfs, cfg) => 0;
// mark the filesystem as having orphans
lfs_fs_preporphans(&lfs, +1) => 0;
lfs_mdir_t mdir;
lfs_dir_fetch(&lfs, &mdir, (lfs_block_t[2]){0, 1}) => 0;
lfs_dir_commit(&lfs, &mdir, NULL, 0) => 0;
// we should have orphans at this state
assert(lfs_gstate_hasorphans(&lfs.gstate));
lfs_unmount(&lfs) => 0;
// mount
lfs_mount(&lfs, cfg) => 0;
// we should detect orphans
assert(lfs_gstate_hasorphans(&lfs.gstate));
// force consistency
lfs_fs_forceconsistency(&lfs) => 0;
// we should no longer have orphans
assert(!lfs_gstate_hasorphans(&lfs.gstate));
lfs_unmount(&lfs) => 0;
'''
[cases.test_orphans_one_orphan]
in = 'lfs.c'
code = '''
lfs_t lfs;
lfs_format(&lfs, cfg) => 0;
lfs_mount(&lfs, cfg) => 0;
// create an orphan
lfs_mdir_t orphan;
lfs_alloc_ack(&lfs);
lfs_dir_alloc(&lfs, &orphan) => 0;
lfs_dir_commit(&lfs, &orphan, NULL, 0) => 0;
// append our orphan and mark the filesystem as having orphans
lfs_fs_preporphans(&lfs, +1) => 0;
lfs_mdir_t mdir;
lfs_dir_fetch(&lfs, &mdir, (lfs_block_t[2]){0, 1}) => 0;
lfs_pair_tole32(orphan.pair);
lfs_dir_commit(&lfs, &mdir, LFS_MKATTRS(
{LFS_MKTAG(LFS_TYPE_SOFTTAIL, 0x3ff, 8), orphan.pair})) => 0;
// we should have orphans at this state
assert(lfs_gstate_hasorphans(&lfs.gstate));
lfs_unmount(&lfs) => 0;
// mount
lfs_mount(&lfs, cfg) => 0;
// we should detect orphans
assert(lfs_gstate_hasorphans(&lfs.gstate));
// force consistency
lfs_fs_forceconsistency(&lfs) => 0;
// we should no longer have orphans
assert(!lfs_gstate_hasorphans(&lfs.gstate));
lfs_unmount(&lfs) => 0;
'''
# reentrant testing for orphans, basically just spam mkdir/remove
[cases.test_orphans_reentrant]
reentrant = true
# TODO fix this case, caused by non-DAG trees
if = '!(DEPTH == 3 && CACHE_SIZE != 64)'
defines = [
{FILES=6, DEPTH=1, CYCLES=20},
{FILES=26, DEPTH=1, CYCLES=20},
{FILES=3, DEPTH=3, CYCLES=20},
]
code = '''
lfs_t lfs;
int err = lfs_mount(&lfs, cfg);
if (err) {
lfs_format(&lfs, cfg) => 0;
lfs_mount(&lfs, cfg) => 0;
}
uint32_t prng = 1;
const char alpha[] = "abcdefghijklmnopqrstuvwxyz";
for (unsigned i = 0; i < CYCLES; i++) {
// create random path
char full_path[256];
for (unsigned d = 0; d < DEPTH; d++) {
sprintf(&full_path[2*d], "/%c", alpha[TEST_PRNG(&prng) % FILES]);
}
// if it does not exist, we create it, else we destroy
struct lfs_info info;
int res = lfs_stat(&lfs, full_path, &info);
if (res == LFS_ERR_NOENT) {
// create each directory in turn, ignore if dir already exists
for (unsigned d = 0; d < DEPTH; d++) {
char path[1024];
strcpy(path, full_path);
path[2*d+2] = '\0';
err = lfs_mkdir(&lfs, path);
assert(!err || err == LFS_ERR_EXIST);
}
for (unsigned d = 0; d < DEPTH; d++) {
char path[1024];
strcpy(path, full_path);
path[2*d+2] = '\0';
lfs_stat(&lfs, path, &info) => 0;
assert(strcmp(info.name, &path[2*d+1]) == 0);
assert(info.type == LFS_TYPE_DIR);
}
} else {
// is valid dir?
assert(strcmp(info.name, &full_path[2*(DEPTH-1)+1]) == 0);
assert(info.type == LFS_TYPE_DIR);
// try to delete path in reverse order, ignore if dir is not empty
for (int d = DEPTH-1; d >= 0; d--) {
char path[1024];
strcpy(path, full_path);
path[2*d+2] = '\0';
err = lfs_remove(&lfs, path);
assert(!err || err == LFS_ERR_NOTEMPTY);
}
lfs_stat(&lfs, full_path, &info) => LFS_ERR_NOENT;
}
}
lfs_unmount(&lfs) => 0;
'''