forked from Imagelibrary/littlefs
Unifying these complicated attr-assigning flags across all the scripts is the main benefit of the new internal Attr system. The only tricky bit is we need to somehow keep track of all input fields in case % modifiers reference fields, when we could previously discard non-data fields. Tricky but doable. Updated flags: - -L/--label -> -L/--add-label - --colors -> -C/--add-color - --formats -> -F/--add-format - --chars -> -*/--add-char/--chars - --line-chars -> -_/--add-line-char/--line-chars I've also tweaked Attr to accept glob matches when figuring out group assignments. This is useful for matching slightly different, but similarly named results in our benchmark scripts. There's probably a clever way to do this by injecting new by fields with csv.py, but just adding globbing is simpler and makes attr assignment even more flexible.
1045 lines
32 KiB
Python
Executable File
1045 lines
32 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
#
|
||
# Inspired by d3:
|
||
# https://d3js.org
|
||
#
|
||
|
||
# prevent local imports
|
||
if __name__ == "__main__":
|
||
__import__('sys').path.pop(0)
|
||
|
||
import bisect
|
||
import collections as co
|
||
import csv
|
||
import fnmatch
|
||
import itertools as it
|
||
import math as mt
|
||
import re
|
||
import shutil
|
||
|
||
|
||
# some nicer colors borrowed from Seaborn
|
||
# note these include a non-opaque alpha
|
||
COLORS = [
|
||
'#4c72b0bf', # blue
|
||
'#dd8452bf', # orange
|
||
'#55a868bf', # green
|
||
'#c44e52bf', # red
|
||
'#8172b3bf', # purple
|
||
'#937860bf', # brown
|
||
'#da8bc3bf', # pink
|
||
'#8c8c8cbf', # gray
|
||
'#ccb974bf', # yellow
|
||
'#64b5cdbf', # cyan
|
||
]
|
||
COLORS_DARK = [
|
||
'#a1c9f4bf', # blue
|
||
'#ffb482bf', # orange
|
||
'#8de5a1bf', # green
|
||
'#ff9f9bbf', # red
|
||
'#d0bbffbf', # purple
|
||
'#debb9bbf', # brown
|
||
'#fab0e4bf', # pink
|
||
'#cfcfcfbf', # gray
|
||
'#fffea3bf', # yellow
|
||
'#b9f2f0bf', # cyan
|
||
]
|
||
|
||
WIDTH = 750
|
||
HEIGHT = 350
|
||
FONT = ['sans-serif']
|
||
FONT_SIZE = 10
|
||
|
||
|
||
def openio(path, mode='r', buffering=-1):
|
||
# allow '-' for stdin/stdout
|
||
if path == '-':
|
||
if 'r' in mode:
|
||
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
|
||
else:
|
||
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
|
||
else:
|
||
return open(path, mode, buffering)
|
||
|
||
# parse different data representations
|
||
def dat(x):
|
||
# allow the first part of an a/b fraction
|
||
if '/' in x:
|
||
x, _ = x.split('/', 1)
|
||
|
||
# first try as int
|
||
try:
|
||
return int(x, 0)
|
||
except ValueError:
|
||
pass
|
||
|
||
# then try as float
|
||
try:
|
||
return float(x)
|
||
# just don't allow infinity or nan
|
||
if mt.isinf(x) or mt.isnan(x):
|
||
raise ValueError("invalid dat %r" % x)
|
||
except ValueError:
|
||
pass
|
||
|
||
# else give up
|
||
raise ValueError("invalid dat %r" % x)
|
||
|
||
def try_dat(x):
|
||
try:
|
||
return dat(x)
|
||
except ValueError:
|
||
return None
|
||
|
||
def collect(csv_paths, defines=[]):
|
||
# collect results from CSV files
|
||
fields = []
|
||
results = []
|
||
for path in csv_paths:
|
||
try:
|
||
with openio(path) as f:
|
||
reader = csv.DictReader(f, restval='')
|
||
fields.extend(
|
||
k for k in reader.fieldnames
|
||
if k not in fields)
|
||
for r in reader:
|
||
# filter by matching defines
|
||
if not all(k in r and r[k] in vs for k, vs in defines):
|
||
continue
|
||
|
||
results.append(r)
|
||
except FileNotFoundError:
|
||
pass
|
||
|
||
return fields, results
|
||
|
||
def fold(results, by=None, fields=None, defines=[]):
|
||
# filter by matching defines
|
||
if defines:
|
||
results_ = []
|
||
for r in results:
|
||
if all(k in r and r[k] in vs for k, vs in defines):
|
||
results_.append(r)
|
||
results = results_
|
||
|
||
if by:
|
||
# find all 'by' values
|
||
keys = set()
|
||
for r in results:
|
||
keys.add(tuple(r.get(k, '') for k in by))
|
||
keys = sorted(keys)
|
||
|
||
# collect datasets
|
||
datasets = co.OrderedDict()
|
||
dataattrs = co.OrderedDict()
|
||
for key in (keys if by else [()]):
|
||
for field in fields:
|
||
# organize by 'by' and field
|
||
dataset = []
|
||
dataattr = {}
|
||
for r in results:
|
||
# filter by 'by'
|
||
if by and not all(
|
||
k in r and r[k] == v
|
||
for k, v in zip(by, key)):
|
||
continue
|
||
|
||
# find field
|
||
if field is not None:
|
||
if field not in r:
|
||
continue
|
||
try:
|
||
v = dat(r[field])
|
||
except ValueError:
|
||
continue
|
||
else:
|
||
v = None
|
||
|
||
# do _not_ sum v here, it's tempting but risks
|
||
# incorrect and misleading results
|
||
dataset.append(v)
|
||
|
||
# include all fields in dataattrs in case we use
|
||
# them for % modifiers
|
||
dataattr.update(r)
|
||
|
||
# hide 'field' if there is only one field
|
||
key_ = key
|
||
if len(fields or []) > 1 or not key_:
|
||
key_ += (field,)
|
||
datasets[key_] = dataset
|
||
dataattrs[key_] = dataattr
|
||
|
||
return datasets, dataattrs
|
||
|
||
# a representation of optionally key-mapped attrs
|
||
class Attr:
|
||
def __init__(self, attrs, *,
|
||
defaults=None):
|
||
# include defaults?
|
||
if (defaults is not None
|
||
and not any(
|
||
not isinstance(attr, tuple)
|
||
or attr[0] in {None, (), ('*',)}
|
||
for attr in (attrs or []))):
|
||
attrs = defaults + (attrs or [])
|
||
|
||
# normalize
|
||
self.attrs = []
|
||
self.keyed = co.OrderedDict()
|
||
for attr in (attrs or []):
|
||
if not isinstance(attr, tuple):
|
||
attr = ((), attr)
|
||
elif attr[0] in {None, (), ('*',)}:
|
||
attr = ((), attr[1])
|
||
|
||
self.attrs.append(attr)
|
||
if attr[0] not in self.keyed:
|
||
self.keyed[attr[0]] = []
|
||
self.keyed[attr[0]].append(attr[1])
|
||
|
||
def __repr__(self):
|
||
return 'Attr(%r)' % [
|
||
(','.join(attr[0]), attr[1])
|
||
for attr in self.attrs]
|
||
|
||
def __iter__(self):
|
||
return it.cycle(self.keyed[()])
|
||
|
||
def __bool__(self):
|
||
return bool(self.attrs)
|
||
|
||
def __getitem__(self, key):
|
||
if isinstance(key, tuple):
|
||
if len(key) > 0 and not isinstance(key[0], str):
|
||
i, key = key
|
||
else:
|
||
i, key = 0, key
|
||
else:
|
||
i, key = key, ()
|
||
|
||
# try to lookup by key
|
||
best = None
|
||
for ks, vs in self.keyed.items():
|
||
prefix = []
|
||
for j, k in enumerate(ks):
|
||
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
|
||
prefix.append(k)
|
||
else:
|
||
prefix = None
|
||
break
|
||
|
||
if prefix is not None and (
|
||
best is None or len(prefix) >= len(best[0])):
|
||
best = (prefix, vs)
|
||
|
||
if best is not None:
|
||
# cycle based on index
|
||
return best[1][i % len(best[1])]
|
||
|
||
return None
|
||
|
||
def __contains__(self, key):
|
||
return self.__getitem__(key) is not None
|
||
|
||
# a key function for sorting by key order
|
||
def key(self, key):
|
||
# allow key to be a tuple to make sorting dicts easier
|
||
if (isinstance(key, tuple)
|
||
and len(key) >= 1
|
||
and isinstance(key[0], tuple)):
|
||
key = key[0]
|
||
|
||
best = None
|
||
for i, ks in enumerate(self.keyed.keys()):
|
||
prefix = []
|
||
for j, k in enumerate(ks):
|
||
if j < len(key) and (not k or key[j] == k):
|
||
prefix.append(k)
|
||
else:
|
||
prefix = None
|
||
break
|
||
|
||
if prefix is not None and (
|
||
best is None or len(prefix) >= len(best[0])):
|
||
best = (prefix, i)
|
||
|
||
if best is not None:
|
||
return best[1]
|
||
|
||
return len(self.keyed)
|
||
|
||
# parse %-escaped strings
|
||
def punescape(s, attrs=None):
|
||
if attrs is None:
|
||
attrs = {}
|
||
if isinstance(attrs, dict):
|
||
attrs_ = attrs
|
||
attrs = lambda k: attrs_[k]
|
||
|
||
pattern = re.compile(
|
||
'%[%n]'
|
||
'|' '%x..'
|
||
'|' '%u....'
|
||
'|' '%U........'
|
||
'|' '%\((?P<field>[^)]*)\)'
|
||
'(?P<format>[+\- #0-9\.]*[scdboxXfFeEgG])')
|
||
def unescape(m):
|
||
if m.group()[1] == '%': return '%'
|
||
elif m.group()[1] == 'n': return '\n'
|
||
elif m.group()[1] == 'x': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == 'u': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == 'U': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == '(':
|
||
try:
|
||
v = attrs(m.group('field'))
|
||
except KeyError:
|
||
return m.group()
|
||
if m.group('format')[-1] in 'dboxXfFeEgG':
|
||
if isinstance(v, str):
|
||
v = try_dat(v) or 0
|
||
else:
|
||
if not isinstance(v, str):
|
||
v = str(v)
|
||
# note we need Python's new format syntax for binary
|
||
f = '{:%s}' % m.group('format')
|
||
return f.format(v)
|
||
else: assert False
|
||
return re.sub(pattern, unescape, s)
|
||
|
||
|
||
|
||
# a type to represent tiles
|
||
class Tile:
|
||
def __init__(self, key, children,
|
||
x=None, y=None, width=None, height=None, *,
|
||
depth=None,
|
||
attrs=None,
|
||
label=None,
|
||
color=None):
|
||
self.key = key
|
||
if isinstance(children, list):
|
||
self.children = children
|
||
self.value = sum(c.value for c in children)
|
||
else:
|
||
self.children = []
|
||
self.value = children
|
||
|
||
self.x = x
|
||
self.y = y
|
||
self.width = width
|
||
self.height = height
|
||
self.depth = depth
|
||
self.attrs = attrs
|
||
self.label = label
|
||
self.color = color
|
||
|
||
def __repr__(self):
|
||
return 'Tile(%r, %r, %r, %r, %r, %r)' % (
|
||
','.join(self.key), self.value,
|
||
self.x, self.y, self.width, self.height)
|
||
|
||
# recursively build heirarchy
|
||
@staticmethod
|
||
def merge(tiles, prefix=()):
|
||
# organize by 'by' field
|
||
tiles_ = co.OrderedDict()
|
||
for t in tiles:
|
||
if len(prefix)+1 >= len(t.key):
|
||
tiles_[t.key] = t
|
||
else:
|
||
key = prefix + (t.key[len(prefix)],)
|
||
if key not in tiles_:
|
||
tiles_[key] = []
|
||
tiles_[key].append(t)
|
||
|
||
tiles__ = []
|
||
for key, t in tiles_.items():
|
||
if isinstance(t, Tile):
|
||
tiles__.append(t)
|
||
else:
|
||
tiles__.append(Tile.merge(t, key))
|
||
tiles_ = tiles__
|
||
|
||
return Tile(prefix, tiles_, depth=len(prefix))
|
||
|
||
def __lt__(self, other):
|
||
return self.value < other.value
|
||
|
||
# recursive traversals
|
||
def tiles(self):
|
||
yield self
|
||
for child in self.children:
|
||
yield from child.tiles()
|
||
|
||
def leaves(self):
|
||
for t in self.tiles():
|
||
if not t.children:
|
||
yield t
|
||
|
||
# sort recursively
|
||
def sort(self):
|
||
self.children.sort(reverse=True)
|
||
for t in self.children:
|
||
t.sort()
|
||
|
||
# recursive align to int boundaries
|
||
def align(self):
|
||
# this extra +0.1 and using points instead of width/height is
|
||
# to help minimize rounding errors
|
||
x0 = int(self.x+0.1)
|
||
y0 = int(self.y+0.1)
|
||
x1 = int(self.x+self.width+0.1)
|
||
y1 = int(self.y+self.height+0.1)
|
||
self.x = x0
|
||
self.y = y0
|
||
self.width = x1 - x0
|
||
self.height = y1 - y0
|
||
|
||
# recurse
|
||
for t in self.children:
|
||
t.align()
|
||
|
||
# return some interesting info about these tiles
|
||
def stat(self):
|
||
leaves = list(self.leaves())
|
||
mean = self.value / max(len(leaves), 1)
|
||
stddev = mt.sqrt(sum((t.value - mean)**2 for t in leaves)
|
||
/ max(len(leaves), 1))
|
||
min_ = min((t.value for t in leaves), default=0)
|
||
max_ = max((t.value for t in leaves), default=0)
|
||
return {
|
||
'total': self.value,
|
||
'mean': mean,
|
||
'stddev': stddev,
|
||
'min': min_,
|
||
'max': max_,
|
||
}
|
||
|
||
|
||
# bounded division, limits result to dividend, useful for avoiding
|
||
# divide-by-zero issues
|
||
def bdiv(a, b):
|
||
return a / max(b, 1)
|
||
|
||
# our partitioning schemes
|
||
|
||
def partition_binary(children, total, x, y, width, height):
|
||
sums = [0]
|
||
for t in children:
|
||
sums.append(sums[-1] + t.value)
|
||
|
||
# recursively partition into a roughly weight-balanced binary tree
|
||
def partition_(i, j, value, x, y, width, height):
|
||
# no child? guess we're done
|
||
if i == j:
|
||
return
|
||
# single child? assign the partition
|
||
elif i == j-1:
|
||
children[i].x = x
|
||
children[i].y = y
|
||
children[i].width = width
|
||
children[i].height = height
|
||
return
|
||
|
||
# binary search to find best split index
|
||
target = sums[i] + (value / 2)
|
||
k = bisect.bisect(sums, target, i+1, j-1)
|
||
|
||
# nudge split index if it results in less error
|
||
if k > i+1 and (sums[k] - target) > (target - sums[k-1]):
|
||
k -= 1
|
||
|
||
l = sums[k] - sums[i]
|
||
r = value - l
|
||
|
||
# split horizontally?
|
||
if width > height:
|
||
dx = bdiv(sums[k] - sums[i], value) * width
|
||
partition_(i, k, l, x, y, dx, height)
|
||
partition_(k, j, r, x+dx, y, width-dx, height)
|
||
|
||
# split vertically?
|
||
else:
|
||
dy = bdiv(sums[k] - sums[i], value) * height
|
||
partition_(i, k, l, x, y, width, dy)
|
||
partition_(k, j, r, x, y+dy, width, height-dy)
|
||
|
||
partition_(0, len(children), total, x, y, width, height)
|
||
|
||
def partition_slice(children, total, x, y, width, height):
|
||
# give each child a slice
|
||
x_ = x
|
||
for t in children:
|
||
t.x = x_
|
||
t.y = y
|
||
t.width = bdiv(t.value, total) * width
|
||
t.height = height
|
||
|
||
x_ += t.width
|
||
|
||
def partition_dice(children, total, x, y, width, height):
|
||
# give each child a slice
|
||
y_ = y
|
||
for t in children:
|
||
t.x = x
|
||
t.y = y_
|
||
t.width = width
|
||
t.height = bdiv(t.value, total) * height
|
||
|
||
y_ += t.height
|
||
|
||
def partition_squarify(children, total, x, y, width, height, *,
|
||
aspect_ratio=(1,1)):
|
||
# this algorithm is described here:
|
||
# https://www.win.tue.nl/~vanwijk/stm.pdf
|
||
i = 0
|
||
x_ = x
|
||
y_ = y
|
||
total_ = total
|
||
width_ = width
|
||
height_ = height
|
||
# note we don't really care about width vs height until
|
||
# actually slicing
|
||
ratio = max(bdiv(aspect_ratio[0], aspect_ratio[1]),
|
||
bdiv(aspect_ratio[1], aspect_ratio[0]))
|
||
|
||
while i < len(children):
|
||
# calculate initial aspect ratio
|
||
sum_ = children[i].value
|
||
min_ = children[i].value
|
||
max_ = children[i].value
|
||
w = total_ * bdiv(ratio,
|
||
max(bdiv(width_, height_), bdiv(height_, width_)))
|
||
ratio_ = max(bdiv(max_*w, sum_**2), bdiv(sum_**2, min_*w))
|
||
|
||
# keep adding children to this row/col until it starts to hurt
|
||
# our aspect ratio
|
||
j = i + 1
|
||
while j < len(children):
|
||
sum__ = sum_ + children[j].value
|
||
min__ = min(min_, children[j].value)
|
||
max__ = max(max_, children[j].value)
|
||
ratio__ = max(bdiv(max__*w, sum__**2), bdiv(sum__**2, min__*w))
|
||
if ratio__ > ratio_:
|
||
break
|
||
|
||
sum_ = sum__
|
||
min_ = min__
|
||
max_ = max__
|
||
ratio_ = ratio__
|
||
j += 1
|
||
|
||
# vertical col? dice horizontally?
|
||
if width_ > height_:
|
||
dx = bdiv(sum_, total_) * width_
|
||
partition_dice(children[i:j], sum_, x_, y_, dx, height_)
|
||
x_ += dx
|
||
width_ -= dx
|
||
|
||
# horizontal row? slice vertically?
|
||
else:
|
||
dy = bdiv(sum_, total_) * height_
|
||
partition_slice(children[i:j], sum_, x_, y_, width_, dy)
|
||
y_ += dy
|
||
height_ -= dy
|
||
|
||
# start partitioning the other direction
|
||
total_ -= sum_
|
||
i = j
|
||
|
||
|
||
def main(csv_paths, output, *,
|
||
quiet=False,
|
||
by=None,
|
||
fields=None,
|
||
defines=[],
|
||
labels=[],
|
||
colors=[],
|
||
width=None,
|
||
height=None,
|
||
no_header=False,
|
||
to_scale=None,
|
||
aspect_ratio=(1,1),
|
||
title=None,
|
||
padding=1,
|
||
no_label=False,
|
||
tiny=False,
|
||
nested=False,
|
||
dark=False,
|
||
font=FONT,
|
||
font_size=FONT_SIZE,
|
||
background=None,
|
||
**args):
|
||
# tiny mode?
|
||
if tiny:
|
||
to_scale = True
|
||
no_header = True
|
||
no_label = True
|
||
|
||
# what colors/labels to use?
|
||
colors_ = Attr(colors, defaults=COLORS_DARK if dark else COLORS)
|
||
|
||
labels_ = Attr(labels)
|
||
|
||
if background is not None:
|
||
background_ = background
|
||
elif dark:
|
||
background_ = '#000000'
|
||
else:
|
||
background_ = '#ffffff'
|
||
|
||
# figure out width/height
|
||
if width is not None:
|
||
width_ = width
|
||
else:
|
||
width_ = WIDTH
|
||
|
||
if height is not None:
|
||
height_ = height
|
||
else:
|
||
height_ = HEIGHT
|
||
|
||
# first collect results from CSV files
|
||
fields_, results = collect(csv_paths, defines)
|
||
|
||
if not by and not fields:
|
||
print("error: needs --by or --fields to figure out fields",
|
||
file=sys.stderr)
|
||
sys.exit(-1)
|
||
|
||
# if by not specified, guess it's anything not in fields/labels/defines
|
||
if not by:
|
||
by = [k for k in fields_
|
||
if k not in (fields or [])
|
||
and k not in (labels or [])
|
||
and not any(k == k_ for k_, _ in defines)]
|
||
|
||
# if fields not specified, guess it's anything not in by/labels/defines
|
||
if not fields:
|
||
fields = [k for k in fields_
|
||
if k not in (by or [])
|
||
and k not in (labels or [])
|
||
and not any(k == k_ for k_, _ in defines)]
|
||
|
||
# then extract the requested dataset
|
||
datasets, dataattrs = fold(results, by, fields, defines)
|
||
|
||
# build tile heirarchy
|
||
children = []
|
||
for key, dataset in datasets.items():
|
||
for i, v in enumerate(dataset):
|
||
children.append(Tile(
|
||
key + ((str(i),) if len(dataset) > 1 else ()),
|
||
v,
|
||
attrs=dataattrs[key]))
|
||
|
||
tile = Tile.merge(children)
|
||
|
||
# merge attrs
|
||
for t in tile.tiles():
|
||
if t.children:
|
||
t.attrs = {k: v
|
||
for t_ in t.leaves()
|
||
for k, v in t_.attrs.items()}
|
||
# also sum fields here in case they're used by % modifiers,
|
||
# note other fields are _not_ summed
|
||
for k in fields:
|
||
t.attrs[k] = sum(t_.value
|
||
for t_ in t.leaves()
|
||
if len(fields) == 1 or t_.key[len(by)] == k)
|
||
|
||
# assign colors/labels before sorting to keep things reproducible
|
||
|
||
# use colors for top of tree
|
||
for i, t in enumerate(tile.children):
|
||
for t_ in t.tiles():
|
||
t_.color = colors_[i, t_.key]
|
||
|
||
# and labels everywhere
|
||
for i, t in enumerate(tile.tiles()):
|
||
if (i, t.key) in labels_:
|
||
t.label = punescape(labels_[i, t.key], t.attrs)
|
||
|
||
# scale width/height if requested now that we have our data
|
||
if to_scale and (width is None or height is None) and tile.value != 0:
|
||
# scale width only
|
||
if height is not None:
|
||
width_ = mt.ceil((tile.value * to_scale) / height_)
|
||
# scale height only
|
||
elif width is not None:
|
||
height_ = mt.ceil((tile.value * to_scale) / width_)
|
||
# scale based on aspect-ratio
|
||
else:
|
||
width_ = mt.ceil(mt.sqrt(tile.value * to_scale)
|
||
* (aspect_ratio[0] / aspect_ratio[1]))
|
||
height_ = mt.ceil((tile.value * to_scale) / width_)
|
||
|
||
# sort
|
||
tile.sort()
|
||
|
||
# recursively partition tiles
|
||
tile.x = 0
|
||
tile.y = 0
|
||
tile.width = width_
|
||
tile.height = height_
|
||
def partition(tile):
|
||
if tile.depth == 0:
|
||
# apply top padding
|
||
tile.x += padding
|
||
tile.y += padding
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
# apply bottom padding
|
||
if not tile.children:
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
|
||
x__ = tile.x
|
||
y__ = tile.y
|
||
width__ = tile.width
|
||
height__ = tile.height
|
||
|
||
# create space for header
|
||
if title is not None or not no_header:
|
||
y__ += mt.ceil(FONT_SIZE * 1.3)
|
||
height__ -= min(mt.ceil(FONT_SIZE * 1.3), height__)
|
||
|
||
else:
|
||
# apply top padding
|
||
if nested and tile.depth != 1:
|
||
tile.x += padding
|
||
tile.y += padding
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
# apply bottom padding
|
||
if nested or not tile.children:
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
|
||
x__ = tile.x
|
||
y__ = tile.y
|
||
width__ = tile.width
|
||
height__ = tile.height
|
||
|
||
# create space for names and junk
|
||
if nested:
|
||
y__ += mt.ceil(FONT_SIZE * 1.3)
|
||
height__ -= min(mt.ceil(FONT_SIZE * 1.3), height__)
|
||
|
||
# partition via requested scheme
|
||
if tile.children:
|
||
if args.get('binary'):
|
||
partition_binary(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif (args.get('slice')
|
||
or (args.get('slice_and_dice') and (tile.depth & 1) == 0)
|
||
or (args.get('dice_and_slice') and (tile.depth & 1) == 1)):
|
||
partition_slice(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif (args.get('dice')
|
||
or (args.get('slice_and_dice') and (tile.depth & 1) == 1)
|
||
or (args.get('dice_and_slice') and (tile.depth & 1) == 0)):
|
||
partition_dice(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif args.get('squarify'):
|
||
partition_squarify(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif args.get('rectify'):
|
||
partition_squarify(tile.children, tile.value,
|
||
x__, y__, width__, height__,
|
||
aspect_ratio=(width_, height_))
|
||
else:
|
||
# default to binary partitioning
|
||
partition_binary(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
|
||
# recursively partition
|
||
for t in tile.children:
|
||
partition(t)
|
||
|
||
partition(tile)
|
||
|
||
# align to pixel boundaries
|
||
tile.align()
|
||
|
||
# create svg file
|
||
with openio(output, 'w') as f:
|
||
def writeln(s=''):
|
||
f.write(s)
|
||
f.write('\n')
|
||
f.writeln = writeln
|
||
|
||
# yes this is svg
|
||
f.write('<svg '
|
||
'viewBox="0,0,%(width)d,%(height)d" '
|
||
'width="%(width)d" '
|
||
'height="%(height)d" '
|
||
'style="max-width: 100%%; '
|
||
'height: auto; '
|
||
'font: %(font_size)dpx %(font)s; '
|
||
'background-color: %(background)s;" '
|
||
'xmlns="http://www.w3.org/2000/svg">' % dict(
|
||
width=width_,
|
||
height=height_,
|
||
font=','.join(font),
|
||
font_size=font_size,
|
||
background=background_))
|
||
|
||
# create header
|
||
if title is not None or not no_header:
|
||
f.write('<text fill="%(color)s">' % dict(
|
||
color='#ffffff' if dark else '#000000'))
|
||
if not no_header:
|
||
stat = tile.stat()
|
||
if title:
|
||
f.write('<tspan x="3" y="1.1em">')
|
||
f.write(punescape(title, tile.attrs))
|
||
f.write('</tspan>')
|
||
if not no_header:
|
||
f.write('<tspan x="%(x)d" y="1.1em" '
|
||
'text-anchor="end">' % dict(
|
||
x=tile.width-3))
|
||
f.write('total %d, avg %d +-%dσ, min %d, max %d' % (
|
||
stat['total'],
|
||
stat['mean'], stat['stddev'],
|
||
stat['min'], stat['max']))
|
||
f.write('</tspan>')
|
||
else:
|
||
f.write('<tspan x="3" y="1.1em">')
|
||
f.write('total %d, avg %d +-%dσ, min %d, max %d' % (
|
||
stat['total'],
|
||
stat['mean'], stat['stddev'],
|
||
stat['min'], stat['max']))
|
||
f.write('</tspan>')
|
||
f.write('</text>')
|
||
|
||
# create tiles
|
||
for i, t in enumerate(tile.tiles() if nested else tile.leaves()):
|
||
# skip the top tile
|
||
if t.depth == 0:
|
||
continue
|
||
# skip anything with zero weight/height after aligning things
|
||
if t.width == 0 or t.height == 0:
|
||
continue
|
||
|
||
if t.label is not None:
|
||
label__ = t.label
|
||
else:
|
||
label__ = '%s\n%d' % (','.join(t.key), t.value)
|
||
|
||
f.write('<g transform="translate(%d,%d)">' % (t.x, t.y))
|
||
f.write('<title>')
|
||
f.write(label__)
|
||
f.write('</title>')
|
||
f.write('<rect '
|
||
'id="tile-%(id)s" '
|
||
'fill="%(color)s" '
|
||
'width="%(width)d" '
|
||
'height="%(height)d">' % dict(
|
||
id=i,
|
||
color=t.color,
|
||
width=t.width,
|
||
height=t.height))
|
||
f.write('</rect>')
|
||
if not no_label:
|
||
f.write('<clipPath id="clip-%s">' % i)
|
||
f.write('<use href="#tile-%s">' % i)
|
||
f.write('</use>')
|
||
f.write('</clipPath>')
|
||
f.write('<text clip-path="url(#clip-%s)">' % i)
|
||
for j, l in enumerate(label__.split('\n')):
|
||
if j == 0:
|
||
f.write('<tspan x="3" y="1.1em">')
|
||
f.write(l)
|
||
f.write('</tspan>')
|
||
else:
|
||
if t.children:
|
||
f.write('<tspan dx="3" y="1.1em" '
|
||
'fill-opacity="0.7">')
|
||
f.write(l)
|
||
f.write('</tspan>')
|
||
else:
|
||
f.write('<tspan x="3" dy="1.1em" '
|
||
'fill-opacity="0.7">')
|
||
f.write(l)
|
||
f.write('</tspan>')
|
||
f.write('</text>')
|
||
f.write('</g>')
|
||
|
||
f.write('</svg>')
|
||
|
||
|
||
# print some summary info
|
||
if not quiet:
|
||
stat = tile.stat()
|
||
print('updated %s, total %d, avg %d +-%dσ, min %d, max %d' % (
|
||
output, stat['total'],
|
||
stat['mean'], stat['stddev'],
|
||
stat['min'], stat['max']))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import argparse
|
||
import sys
|
||
parser = argparse.ArgumentParser(
|
||
description="Render CSV files as a treemap to a d3-esque svg.",
|
||
allow_abbrev=False)
|
||
parser.add_argument(
|
||
'csv_paths',
|
||
nargs='*',
|
||
help="Input *.csv files.")
|
||
parser.add_argument(
|
||
'-o', '--output',
|
||
required=True,
|
||
help="Output *.svg file.")
|
||
parser.add_argument(
|
||
'-q', '--quiet',
|
||
action='store_true',
|
||
help="Don't print info.")
|
||
parser.add_argument(
|
||
'-b', '--by',
|
||
action='append',
|
||
help="Group by this field.")
|
||
parser.add_argument(
|
||
'-f', '--field',
|
||
dest='fields',
|
||
action='append',
|
||
help="Field to use for tile sizes.")
|
||
parser.add_argument(
|
||
'-D', '--define',
|
||
dest='defines',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda k, vs: (
|
||
k.strip(),
|
||
{v.strip() for v in vs.split(',')})
|
||
)(*x.split('=', 1)),
|
||
help="Only include results where this field is this value.")
|
||
parser.add_argument(
|
||
'-L', '--add-label',
|
||
dest='labels',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda ks, v: (
|
||
tuple(k.strip() for k in ks.split(',')),
|
||
v.strip())
|
||
)(*x.split('=', 1))
|
||
if '=' in x else x.strip(),
|
||
help="Add a label to use. Can be assigned to a specific group "
|
||
"where a group is the comma-separated 'by' fields. Accepts %% "
|
||
"modifiers.")
|
||
parser.add_argument(
|
||
'-C', '--add-color',
|
||
dest='colors',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda ks, v: (
|
||
tuple(k.strip() for k in ks.split(',')),
|
||
v.strip())
|
||
)(*x.split('=', 1))
|
||
if '=' in x else x.strip(),
|
||
help="Add a color to use. Can be assigned to a specific group "
|
||
"where a group is the comma-separated 'by' fields.")
|
||
parser.add_argument(
|
||
'-W', '--width',
|
||
type=lambda x: int(x, 0),
|
||
help="Width in pixels. Defaults to %r." % WIDTH)
|
||
parser.add_argument(
|
||
'-H', '--height',
|
||
type=lambda x: int(x, 0),
|
||
help="Height in pixels. Defaults to %r." % HEIGHT)
|
||
parser.add_argument(
|
||
'-N', '--no-header',
|
||
action='store_true',
|
||
help="Don't show the header.")
|
||
parser.add_argument(
|
||
'--binary',
|
||
action='store_true',
|
||
help="Use the binary partitioning scheme. This attempts to "
|
||
"recursively subdivide the tiles into a roughly "
|
||
"weight-balanced binary tree. This is the default.")
|
||
parser.add_argument(
|
||
'--slice',
|
||
action='store_true',
|
||
help="Use the slice partitioning scheme. This simply slices "
|
||
"tiles vertically.")
|
||
parser.add_argument(
|
||
'--dice',
|
||
action='store_true',
|
||
help="Use the dice partitioning scheme. This simply slices "
|
||
"tiles horizontally.")
|
||
parser.add_argument(
|
||
'--slice-and-dice',
|
||
action='store_true',
|
||
help="Use the slice-and-dice partitioning scheme. This "
|
||
"alternates between slicing and dicing each layer.")
|
||
parser.add_argument(
|
||
'--dice-and-slice',
|
||
action='store_true',
|
||
help="Use the dice-and-slice partitioning scheme. This is like "
|
||
"slice-and-dice, but flipped.")
|
||
parser.add_argument(
|
||
'--squarify',
|
||
action='store_true',
|
||
help="Use the squarify partitioning scheme. This is a greedy "
|
||
"algorithm created by Mark Bruls et al that tries to "
|
||
"minimize tile aspect ratios.")
|
||
parser.add_argument(
|
||
'--rectify',
|
||
action='store_true',
|
||
help="Use the rectify partitioning scheme. This is like "
|
||
"squarify, but tries to match the aspect ratio of the "
|
||
"window.")
|
||
parser.add_argument(
|
||
'--to-scale',
|
||
nargs='?',
|
||
type=float,
|
||
const=1,
|
||
help="Scale the resulting treemap such that 1 pixel ~= 1/scale "
|
||
"units. Defaults to scale=1. ")
|
||
parser.add_argument(
|
||
'-R', '--aspect-ratio',
|
||
type=lambda x: tuple(float(v) for v in x.split(':', 1)),
|
||
default=(1, 1),
|
||
help="Aspect ratio to use with --to-scale. Defaults to 1:1.")
|
||
parser.add_argument(
|
||
'-t', '--tiny',
|
||
action='store_true',
|
||
help="Tiny mode, alias for --to-scale=1, --no-header, and "
|
||
"--no-label.")
|
||
parser.add_argument(
|
||
'-r', '--nested',
|
||
action='store_true',
|
||
help="Show nested tiles.")
|
||
parser.add_argument(
|
||
'--title',
|
||
help="Add a title.")
|
||
parser.add_argument(
|
||
'--padding',
|
||
type=float,
|
||
default=1,
|
||
help="Padding to add to each level of the treemap. Defaults to 1.")
|
||
parser.add_argument(
|
||
'--no-label',
|
||
action='store_true',
|
||
help="Don't render any labels.")
|
||
parser.add_argument(
|
||
'--dark',
|
||
action='store_true',
|
||
help="Use the dark style.")
|
||
parser.add_argument(
|
||
'--font',
|
||
type=lambda x: [x.strip() for x in x.split(',')],
|
||
help="Font family to use.")
|
||
parser.add_argument(
|
||
'--font-size',
|
||
help="Font size to use. Defaults to %r." % FONT_SIZE)
|
||
parser.add_argument(
|
||
'--background',
|
||
help="Background color to use. Note #00000000 can make the "
|
||
"background transparent.")
|
||
sys.exit(main(**{k: v
|
||
for k, v in vars(parser.parse_intermixed_args()).items()
|
||
if v is not None}))
|