Files
littlefs/runners/bench_runner.c
Christopher Haster 1422a61d16 Made generated prettyasserts more debuggable
The main star of the show is the adoption of __builtin_trap() for
aborting on assert failure. I discovered this GCC/Clang extension
recently and it integrates much, _much_ better with GDB.

With stdlib's abort(), GDB drops you off in several layers of internal
stdlib functions, which is a pain to navigate out of to get to where the
assert actually happened. With __builtin_trap(), GDB stops immediately,
making debugging quick and easy.

This is great! The pain of debugging needs to come from understanding
the error, not just getting to it.

---

Also tweaked a few things with the internal print functions to make
reading the generated source easier, though I realize this is a rare
thing to do.
2024-02-14 01:14:36 -06:00

1964 lines
60 KiB
C

/*
* Runner for littlefs benchmarks
*
* Copyright (c) 2022, The littlefs authors.
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 199309L
#endif
#include "runners/bench_runner.h"
#include "bd/lfs_emubd.h"
#include <getopt.h>
#include <sys/types.h>
#include <errno.h>
#include <setjmp.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <unistd.h>
#include <execinfo.h>
#include <signal.h>
#include <time.h>
// some helpers
// append to an array with amortized doubling
void *mappend(void **p,
size_t size,
size_t *count,
size_t *capacity) {
uint8_t *p_ = *p;
size_t count_ = *count;
size_t capacity_ = *capacity;
count_ += 1;
if (count_ > capacity_) {
capacity_ = (2*capacity_ < 4) ? 4 : 2*capacity_;
p_ = realloc(p_, capacity_*size);
if (!p_) {
return NULL;
}
}
*p = p_;
*count = count_;
*capacity = capacity_;
return &p_[(count_-1)*size];
}
// a quick self-terminating text-safe varint scheme
static void leb16_print(uintmax_t x) {
// allow 'w' to indicate negative numbers
if ((intmax_t)x < 0) {
printf("w");
x = -x;
}
while (true) {
char nibble = (x & 0xf) | ((x > 0xf) ? 0x10 : 0);
printf("%c", (nibble < 10) ? '0'+nibble : 'a'+nibble-10);
if (x <= 0xf) {
break;
}
x >>= 4;
}
}
static uintmax_t leb16_parse(const char *s, char **tail) {
bool neg = false;
uintmax_t x = 0;
if (tail) {
*tail = (char*)s;
}
if (s[0] == 'w') {
neg = true;
s = s+1;
}
size_t i = 0;
while (true) {
uintmax_t nibble = s[i];
if (nibble >= '0' && nibble <= '9') {
nibble = nibble - '0';
} else if (nibble >= 'a' && nibble <= 'v') {
nibble = nibble - 'a' + 10;
} else {
// invalid?
return 0;
}
x |= (nibble & 0xf) << (4*i);
i += 1;
if (!(nibble & 0x10)) {
s = s + i;
break;
}
}
if (tail) {
*tail = (char*)s;
}
return (neg) ? -x : x;
}
// bench_runner types
typedef struct bench_id {
const char *name;
bench_define_t *defines;
size_t define_count;
} bench_id_t;
// bench define management
// implicit defines declared here
#define BENCH_DEFINE(k, v) \
intmax_t k;
BENCH_IMPLICIT_DEFINES
#undef BENCH_DEFINE
#define BENCH_DEFINE(k, v) \
intmax_t bench_define_##k(void *data, size_t i) { \
(void)data; \
(void)i; \
return v; \
}
BENCH_IMPLICIT_DEFINES
#undef BENCH_DEFINE
const bench_define_t bench_implicit_defines[] = {
#define BENCH_DEFINE(k, v) \
{#k, &k, bench_define_##k, NULL, 1},
BENCH_IMPLICIT_DEFINES
#undef BENCH_DEFINE
};
const size_t bench_implicit_define_count
= sizeof(bench_implicit_defines) / sizeof(bench_define_t);
// some helpers
intmax_t bench_define_lit(void *data, size_t i) {
(void)i;
return (intptr_t)data;
}
#define BENCH_LIT(name, v) ((bench_define_t){ \
name, NULL, bench_define_lit, (void*)(uintptr_t)(v), 1})
// define mapping
const bench_define_t **bench_defines = NULL;
size_t bench_define_count = 0;
size_t bench_define_capacity = 0;
const bench_define_t **bench_suite_defines = NULL;
size_t bench_suite_define_count = 0;
ssize_t *bench_suite_define_map = NULL;
bench_define_t *bench_override_defines = NULL;
size_t bench_override_define_count = 0;
size_t bench_define_depth = 1000;
static inline bool bench_define_isdefined(const bench_define_t *define) {
return define->cb;
}
static inline bool bench_define_ispermutation(const bench_define_t *define) {
// permutation defines are basically anything that's not implicit
return bench_define_isdefined(define)
&& !(define >= bench_implicit_defines
&& define
< bench_implicit_defines
+ bench_implicit_define_count);
}
void bench_define_suite(
const bench_id_t *id,
const struct bench_suite *suite) {
// reset our mapping
bench_define_count = 0;
bench_suite_define_count = 0;
// make sure we have space for everything, just assume the worst case
if (bench_implicit_define_count + suite->define_count
> bench_define_capacity) {
bench_define_capacity
= bench_implicit_define_count + suite->define_count;
bench_defines = realloc(
bench_defines,
bench_define_capacity*sizeof(const bench_define_t*));
bench_suite_defines = realloc(
bench_suite_defines,
bench_define_capacity*sizeof(const bench_define_t*));
bench_suite_define_map = realloc(
bench_suite_define_map,
bench_define_capacity*sizeof(ssize_t));
}
// first map our implicit defines
for (size_t i = 0; i < bench_implicit_define_count; i++) {
bench_suite_defines[i] = &bench_implicit_defines[i];
}
bench_suite_define_count = bench_implicit_define_count;
// build a mapping from suite defines to bench defines
//
// we will use this for both suite and case defines
memset(bench_suite_define_map, -1,
bench_suite_define_count*sizeof(size_t));
for (size_t i = 0; i < suite->define_count; i++) {
// assume suite defines are unique so we only need to compare
// against implicit defines, this avoids a O(n^2)
for (size_t j = 0; j < bench_implicit_define_count; j++) {
if (bench_suite_defines[j]->define == suite->defines[i].define) {
bench_suite_define_map[j] = i;
// don't override implicit defines if we're not defined
if (bench_define_isdefined(&suite->defines[i])) {
bench_suite_defines[j] = &suite->defines[i];
}
goto next_suite_define;
}
}
// map a new suite define
bench_suite_define_map[bench_suite_define_count] = i;
bench_suite_defines[bench_suite_define_count] = &suite->defines[i];
bench_suite_define_count += 1;
next_suite_define:;
}
// map any explicit defines
//
// we ignore any out-of-bounds defines here, even though it's likely
// an error
if (id && id->defines) {
for (size_t i = 0;
i < id->define_count && i < bench_suite_define_count;
i++) {
if (bench_define_isdefined(&id->defines[i])) {
// update name/addr
id->defines[i].name = bench_suite_defines[i]->name;
id->defines[i].define = bench_suite_defines[i]->define;
// map and override suite mapping
bench_suite_defines[i] = &id->defines[i];
bench_suite_define_map[i] = -1;
}
}
}
// map any override defines
//
// note it's not an error to override a define that doesn't exist
for (size_t i = 0; i < bench_override_define_count; i++) {
for (size_t j = 0; j < bench_suite_define_count; j++) {
if (strcmp(
bench_suite_defines[j]->name,
bench_override_defines[i].name) == 0) {
// update addr
bench_override_defines[i].define
= bench_suite_defines[j]->define;
// map and override suite mapping
bench_suite_defines[j] = &bench_override_defines[i];
bench_suite_define_map[j] = -1;
goto next_override_define;
}
}
next_override_define:;
}
}
void bench_define_case(
const bench_id_t *id,
const struct bench_suite *suite,
const struct bench_case *case_,
size_t perm) {
(void)id;
// copy over suite defines
for (size_t i = 0; i < bench_suite_define_count; i++) {
// map case define if case define is defined
if (case_->defines
&& bench_suite_define_map[i] != -1
&& bench_define_isdefined(&case_->defines[
perm*suite->define_count
+ bench_suite_define_map[i]])) {
bench_defines[i] = &case_->defines[
perm*suite->define_count
+ bench_suite_define_map[i]];
} else {
bench_defines[i] = bench_suite_defines[i];
}
}
bench_define_count = bench_suite_define_count;
}
void bench_define_permutation(size_t perm) {
// first zero everything, we really don't want reproducibility issues
for (size_t i = 0; i < bench_define_count; i++) {
*bench_defines[i]->define = 0;
}
// defines may be mutually recursive, which makes evaluation a bit tricky
//
// Rather than doing any clever, we just repeatedly evaluate the
// permutation until values stabilize. If things don't stabilize after
// some number of iterations, error, this likely means defines were
// stuck in a cycle
//
size_t attempt = 0;
while (true) {
const bench_define_t *changed = NULL;
// define-specific permutations are encoded in the case permutation
size_t perm_ = perm;
for (size_t i = 0; i < bench_define_count; i++) {
if (bench_defines[i]->cb) {
intmax_t v = bench_defines[i]->cb(
bench_defines[i]->data,
perm_ % bench_defines[i]->permutations);
if (v != *bench_defines[i]->define) {
*bench_defines[i]->define = v;
changed = bench_defines[i];
}
perm_ /= bench_defines[i]->permutations;
}
}
// stabilized?
if (!changed) {
break;
}
attempt += 1;
if (bench_define_depth && attempt >= bench_define_depth+1) {
fprintf(stderr, "error: could not resolve recursive defines: %s\n",
changed->name);
exit(-1);
}
}
}
void bench_define_cleanup(void) {
// bench define management can allocate a few things
free(bench_defines);
free(bench_suite_defines);
free(bench_suite_define_map);
}
size_t bench_define_permutations(void) {
size_t prod = 1;
for (size_t i = 0; i < bench_define_count; i++) {
prod *= (bench_defines[i]->permutations > 0)
? bench_defines[i]->permutations
: 1;
}
return prod;
}
// override define stuff
typedef struct bench_override_value {
intmax_t start;
intmax_t stop;
// step == 0 indicates a single value
intmax_t step;
} bench_override_value_t;
typedef struct bench_override_data {
bench_override_value_t *values;
size_t value_count;
} bench_override_data_t;
intmax_t bench_override_cb(void *data, size_t i) {
const bench_override_data_t *data_ = data;
for (size_t j = 0; j < data_->value_count; j++) {
const bench_override_value_t *v = &data_->values[j];
// range?
if (v->step) {
size_t range_count;
if (v->step > 0) {
range_count = (v->stop-1 - v->start) / v->step + 1;
} else {
range_count = (v->start-1 - v->stop) / -v->step + 1;
}
if (i < range_count) {
return i*v->step + v->start;
}
i -= range_count;
// value?
} else {
if (i == 0) {
return v->start;
}
i -= 1;
}
}
// should never get here
assert(false);
__builtin_unreachable();
}
// bench state
const bench_id_t *bench_ids = (const bench_id_t[]) {
{NULL, NULL, 0},
};
size_t bench_id_count = 1;
size_t bench_step_start = 0;
size_t bench_step_stop = -1;
size_t bench_step_step = 1;
const char *bench_disk_path = NULL;
const char *bench_trace_path = NULL;
bool bench_trace_backtrace = false;
uint32_t bench_trace_period = 0;
uint32_t bench_trace_freq = 0;
FILE *bench_trace_file = NULL;
uint32_t bench_trace_cycles = 0;
uint64_t bench_trace_time = 0;
uint64_t bench_trace_open_time = 0;
lfs_emubd_sleep_t bench_read_sleep = 0.0;
lfs_emubd_sleep_t bench_prog_sleep = 0.0;
lfs_emubd_sleep_t bench_erase_sleep = 0.0;
// this determines both the backtrace buffer and the trace printf buffer, if
// trace ends up interleaved or truncated this may need to be increased
#ifndef BENCH_TRACE_BACKTRACE_BUFFER_SIZE
#define BENCH_TRACE_BACKTRACE_BUFFER_SIZE 8192
#endif
void *bench_trace_backtrace_buffer[
BENCH_TRACE_BACKTRACE_BUFFER_SIZE / sizeof(void*)];
// trace printing
void bench_trace(const char *fmt, ...) {
if (bench_trace_path) {
// sample at a specific period?
if (bench_trace_period) {
if (bench_trace_cycles % bench_trace_period != 0) {
bench_trace_cycles += 1;
return;
}
bench_trace_cycles += 1;
}
// sample at a specific frequency?
if (bench_trace_freq) {
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
uint64_t now = (uint64_t)t.tv_sec*1000*1000*1000
+ (uint64_t)t.tv_nsec;
if (now - bench_trace_time < (1000*1000*1000) / bench_trace_freq) {
return;
}
bench_trace_time = now;
}
if (!bench_trace_file) {
// Tracing output is heavy and trying to open every trace
// call is slow, so we only try to open the trace file every
// so often. Note this doesn't affect successfully opened files
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
uint64_t now = (uint64_t)t.tv_sec*1000*1000*1000
+ (uint64_t)t.tv_nsec;
if (now - bench_trace_open_time < 100*1000*1000) {
return;
}
bench_trace_open_time = now;
// try to open the trace file
int fd;
if (strcmp(bench_trace_path, "-") == 0) {
fd = dup(1);
if (fd < 0) {
return;
}
} else {
fd = open(
bench_trace_path,
O_WRONLY | O_CREAT | O_APPEND | O_NONBLOCK,
0666);
if (fd < 0) {
return;
}
int err = fcntl(fd, F_SETFL, O_WRONLY | O_CREAT | O_APPEND);
assert(!err);
}
FILE *f = fdopen(fd, "a");
assert(f);
int err = setvbuf(f, NULL, _IOFBF,
BENCH_TRACE_BACKTRACE_BUFFER_SIZE);
assert(!err);
bench_trace_file = f;
}
// print trace
va_list va;
va_start(va, fmt);
int res = vfprintf(bench_trace_file, fmt, va);
va_end(va);
if (res < 0) {
fclose(bench_trace_file);
bench_trace_file = NULL;
return;
}
if (bench_trace_backtrace) {
// print backtrace
size_t count = backtrace(
bench_trace_backtrace_buffer,
BENCH_TRACE_BACKTRACE_BUFFER_SIZE);
// note we skip our own stack frame
for (size_t i = 1; i < count; i++) {
res = fprintf(bench_trace_file, "\tat %p\n",
bench_trace_backtrace_buffer[i]);
if (res < 0) {
fclose(bench_trace_file);
bench_trace_file = NULL;
return;
}
}
}
// flush immediately
fflush(bench_trace_file);
}
}
// bench prng
uint32_t bench_prng(uint32_t *state) {
// A simple xorshift32 generator, easily reproducible. Keep in mind
// determinism is much more important than actual randomness here.
uint32_t x = *state;
// must be non-zero, use uintmax here so that seed=0 is different
// from seed=1 and seed=range(0,n) makes a bit more sense
if (x == 0) {
x = -1;
}
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
*state = x;
return x;
}
// bench factorial
size_t bench_factorial(size_t x) {
size_t y = 1;
for (size_t i = 2; i <= x; i++) {
y *= i;
}
return y;
}
// bench array permutations
void bench_permutation(size_t i, uint32_t *buffer, size_t size) {
// https://stackoverflow.com/a/7919887 and
// https://stackoverflow.com/a/24257996 helped a lot with this, but
// changed to run in O(n) with no extra memory. This has a tradeoff
// of generating the permutations in an unintuitive order.
// initialize array
for (size_t j = 0; j < size; j++) {
buffer[j] = j;
}
for (size_t j = 0; j < size; j++) {
// swap index with digit
//
// .- i%rem --.
// v .----+----.
// [p0 p1 |-> r0 r1 r2 r3]
//
size_t t = buffer[j + (i % (size-j))];
buffer[j + (i % (size-j))] = buffer[j];
buffer[j] = t;
// update i
i /= (size-j);
}
}
// bench recording state
typedef struct bench_record {
const char *meas;
uintmax_t iter;
uintmax_t size;
lfs_emubd_io_t last_readed;
lfs_emubd_io_t last_proged;
lfs_emubd_io_t last_erased;
} bench_record_t;
static struct lfs_config *bench_cfg = NULL;
static bench_record_t *bench_records;
size_t bench_record_count;
size_t bench_record_capacity;
void bench_reset(struct lfs_config *cfg) {
bench_cfg = cfg;
bench_record_count = 0;
}
void bench_start(const char *meas, uintmax_t iter, uintmax_t size) {
// measure current read/prog/erase
assert(bench_cfg);
lfs_emubd_sio_t readed = lfs_emubd_readed(bench_cfg);
assert(readed >= 0);
lfs_emubd_sio_t proged = lfs_emubd_proged(bench_cfg);
assert(proged >= 0);
lfs_emubd_sio_t erased = lfs_emubd_erased(bench_cfg);
assert(erased >= 0);
// allocate a new record
bench_record_t *record = mappend(
(void**)&bench_records,
sizeof(bench_record_t),
&bench_record_count,
&bench_record_capacity);
record->meas = meas;
record->iter = iter;
record->size = size;
record->last_readed = readed;
record->last_proged = proged;
record->last_erased = erased;
}
void bench_stop(const char *meas) {
// measure current read/prog/erase
assert(bench_cfg);
lfs_emubd_sio_t readed = lfs_emubd_readed(bench_cfg);
assert(readed >= 0);
lfs_emubd_sio_t proged = lfs_emubd_proged(bench_cfg);
assert(proged >= 0);
lfs_emubd_sio_t erased = lfs_emubd_erased(bench_cfg);
assert(erased >= 0);
// find our record
for (size_t i = 0; i < bench_record_count; i++) {
if (strcmp(bench_records[i].meas, meas) == 0) {
// print results
printf("benched %s %zd %zd %"PRIu64" %"PRIu64" %"PRIu64"\n",
bench_records[i].meas,
bench_records[i].iter,
bench_records[i].size,
readed - bench_records[i].last_readed,
proged - bench_records[i].last_proged,
erased - bench_records[i].last_erased);
// remove our record
memmove(&bench_records[i],
&bench_records[i+1],
bench_record_count-(i+1));
bench_record_count -= 1;
return;
}
}
// not found?
fprintf(stderr, "error: bench stopped before it was started (%s)\n",
meas);
assert(false);
exit(-1);
}
void bench_result(const char *meas, uintmax_t iter, uintmax_t size,
uintmax_t result) {
// we just print these directly
printf("benched %s %zd %zd %"PRIu64"\n",
meas,
iter,
size,
result);
}
void bench_fresult(const char *meas, uintmax_t iter, uintmax_t size,
double result) {
// we just print these directly
printf("benched %s %zd %zd %.6f\n",
meas,
iter,
size,
result);
}
// encode our permutation into a reusable id
static void perm_printid(
const struct bench_suite *suite,
const struct bench_case *case_) {
(void)suite;
// case[:permutation]
printf("%s:", case_->name);
for (size_t d = 0; d < bench_define_count; d++) {
if (bench_define_ispermutation(bench_defines[d])) {
leb16_print(d);
leb16_print(*bench_defines[d]->define);
}
}
}
// a quick trie for keeping track of permutations we've seen
typedef struct bench_seen {
struct bench_seen_branch *branches;
size_t branch_count;
size_t branch_capacity;
} bench_seen_t;
struct bench_seen_branch {
intmax_t define;
struct bench_seen branch;
};
bool bench_seen_insert(bench_seen_t *seen) {
// use the currently set defines
bool was_seen = true;
for (size_t d = 0; d < bench_define_count; d++) {
// treat unpermuted defines the same as 0
intmax_t v = bench_define_ispermutation(bench_defines[d])
? *bench_defines[d]->define
: 0;
// already seen?
struct bench_seen_branch *branch = NULL;
for (size_t i = 0; i < seen->branch_count; i++) {
if (seen->branches[i].define == v) {
branch = &seen->branches[i];
break;
}
}
// need to create a new node
if (!branch) {
was_seen = false;
branch = mappend(
(void**)&seen->branches,
sizeof(struct bench_seen_branch),
&seen->branch_count,
&seen->branch_capacity);
branch->define = v;
branch->branch = (bench_seen_t){NULL, 0, 0};
}
seen = &branch->branch;
}
return was_seen;
}
void bench_seen_cleanup(bench_seen_t *seen) {
for (size_t i = 0; i < seen->branch_count; i++) {
bench_seen_cleanup(&seen->branches[i].branch);
}
free(seen->branches);
}
// iterate through permutations in a bench case
static void case_forperm(
const bench_id_t *id,
const struct bench_suite *suite,
const struct bench_case *case_,
void (*cb)(
void *data,
const struct bench_suite *suite,
const struct bench_case *case_),
void *data) {
// explicit permutation?
if (id && id->defines) {
// define case permutation, the exact case perm doesn't matter here
bench_define_case(id, suite, case_, 0);
size_t permutations = bench_define_permutations();
for (size_t p = 0; p < permutations; p++) {
// define permutation permutation
bench_define_permutation(p);
cb(data, suite, case_);
}
return;
}
// deduplicate permutations with the same defines
//
// this can easily happen when overriding multiple case permutations,
// we can't tell that multiple case permutations don't change defines,
// duplicating results
bench_seen_t seen = {NULL, 0, 0};
for (size_t k = 0;
k < ((case_->permutations) ? case_->permutations : 1);
k++) {
// define case permutation
bench_define_case(id, suite, case_, k);
size_t permutations = bench_define_permutations();
for (size_t p = 0; p < permutations; p++) {
// define permutation permutation
bench_define_permutation(p);
// have we seen this permutation before?
bool was_seen = bench_seen_insert(&seen);
if (!(k == 0 && p == 0) && was_seen) {
continue;
}
cb(data, suite, case_);
}
}
bench_seen_cleanup(&seen);
}
// how many permutations are there actually in a bench case
struct perm_count_state {
size_t total;
size_t filtered;
};
void perm_count(
void *data,
const struct bench_suite *suite,
const struct bench_case *case_) {
struct perm_count_state *state = data;
(void)suite;
state->total += 1;
if (case_->if_ && !case_->if_()) {
return;
}
state->filtered += 1;
}
// operations we can do
static void summary(void) {
printf("%-23s %7s %7s %7s %15s\n",
"", "flags", "suites", "cases", "perms");
size_t suites = 0;
size_t cases = 0;
bench_flags_t flags = 0;
struct perm_count_state perms = {0, 0};
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
cases += 1;
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_count,
&perms);
}
suites += 1;
flags |= bench_suites[i]->flags;
}
}
char perm_buf[64];
sprintf(perm_buf, "%zu/%zu", perms.filtered, perms.total);
char flag_buf[64];
sprintf(flag_buf, "%s%s",
(flags & BENCH_INTERNAL) ? "i" : "",
(!flags) ? "-" : "");
printf("%-23s %7s %7zu %7zu %15s\n",
"TOTAL",
flag_buf,
suites,
cases,
perm_buf);
}
static void list_suites(void) {
// at least size so that names fit
unsigned name_width = 23;
for (size_t i = 0; i < bench_suite_count; i++) {
size_t len = strlen(bench_suites[i]->name);
if (len > name_width) {
name_width = len;
}
}
name_width = 4*((name_width+1+4-1)/4)-1;
printf("%-*s %7s %7s %15s\n",
name_width, "suite", "flags", "cases", "perms");
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
size_t cases = 0;
struct perm_count_state perms = {0, 0};
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
cases += 1;
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_count,
&perms);
}
// no benches found?
if (!cases) {
continue;
}
char perm_buf[64];
sprintf(perm_buf, "%zu/%zu", perms.filtered, perms.total);
char flag_buf[64];
sprintf(flag_buf, "%s%s",
(bench_suites[i]->flags & BENCH_INTERNAL) ? "i" : "",
(!bench_suites[i]->flags) ? "-" : "");
printf("%-*s %7s %7zu %15s\n",
name_width,
bench_suites[i]->name,
flag_buf,
cases,
perm_buf);
}
}
}
static void list_cases(void) {
// at least size so that names fit
unsigned name_width = 23;
for (size_t i = 0; i < bench_suite_count; i++) {
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
size_t len = strlen(bench_suites[i]->cases[j].name);
if (len > name_width) {
name_width = len;
}
}
}
name_width = 4*((name_width+1+4-1)/4)-1;
printf("%-*s %7s %15s\n", name_width, "case", "flags", "perms");
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
struct perm_count_state perms = {0, 0};
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_count,
&perms);
char perm_buf[64];
sprintf(perm_buf, "%zu/%zu", perms.filtered, perms.total);
char flag_buf[64];
sprintf(flag_buf, "%s%s",
(bench_suites[i]->cases[j].flags & BENCH_INTERNAL)
? "i" : "",
(!bench_suites[i]->cases[j].flags)
? "-" : "");
printf("%-*s %7s %15s\n",
name_width,
bench_suites[i]->cases[j].name,
flag_buf,
perm_buf);
}
}
}
}
static void list_suite_paths(void) {
// at least size so that names fit
unsigned name_width = 23;
for (size_t i = 0; i < bench_suite_count; i++) {
size_t len = strlen(bench_suites[i]->name);
if (len > name_width) {
name_width = len;
}
}
name_width = 4*((name_width+1+4-1)/4)-1;
printf("%-*s %s\n", name_width, "suite", "path");
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
size_t cases = 0;
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
cases += 1;
}
}
// no benches found?
if (!cases) {
continue;
}
printf("%-*s %s\n",
name_width,
bench_suites[i]->name,
bench_suites[i]->path);
}
}
}
static void list_case_paths(void) {
// at least size so that names fit
unsigned name_width = 23;
for (size_t i = 0; i < bench_suite_count; i++) {
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
size_t len = strlen(bench_suites[i]->cases[j].name);
if (len > name_width) {
name_width = len;
}
}
}
name_width = 4*((name_width+1+4-1)/4)-1;
printf("%-*s %s\n", name_width, "case", "path");
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
printf("%-*s %s\n",
name_width,
bench_suites[i]->cases[j].name,
bench_suites[i]->cases[j].path);
}
}
}
}
struct list_defines_define {
const char *name;
intmax_t *values;
size_t value_count;
size_t value_capacity;
};
struct list_defines_defines {
struct list_defines_define *defines;
size_t define_count;
size_t define_capacity;
};
static void list_defines_add(
struct list_defines_defines *defines,
const bench_define_t *define) {
const char *name = define->name;
intmax_t v = *define->define;
// define already in defines?
for (size_t i = 0; i < defines->define_count; i++) {
if (strcmp(defines->defines[i].name, name) == 0) {
// value already in values?
for (size_t j = 0; j < defines->defines[i].value_count; j++) {
if (defines->defines[i].values[j] == v) {
return;
}
}
*(intmax_t*)mappend(
(void**)&defines->defines[i].values,
sizeof(intmax_t),
&defines->defines[i].value_count,
&defines->defines[i].value_capacity) = v;
return;
}
}
// new define?
struct list_defines_define *define_ = mappend(
(void**)&defines->defines,
sizeof(struct list_defines_define),
&defines->define_count,
&defines->define_capacity);
define_->name = name;
define_->values = malloc(sizeof(intmax_t));
define_->values[0] = v;
define_->value_count = 1;
define_->value_capacity = 1;
}
void perm_list_defines(
void *data,
const struct bench_suite *suite,
const struct bench_case *case_) {
struct list_defines_defines *defines = data;
(void)suite;
(void)case_;
// collect defines
for (size_t d = 0; d < bench_define_count; d++) {
if (bench_define_isdefined(bench_defines[d])) {
list_defines_add(defines, bench_defines[d]);
}
}
}
void perm_list_permutation_defines(
void *data,
const struct bench_suite *suite,
const struct bench_case *case_) {
struct list_defines_defines *defines = data;
(void)suite;
(void)case_;
// collect permutation_defines
for (size_t d = 0; d < bench_define_count; d++) {
if (bench_define_ispermutation(bench_defines[d])) {
list_defines_add(defines, bench_defines[d]);
}
}
}
static void list_defines(void) {
struct list_defines_defines defines = {NULL, 0, 0};
// add defines
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_list_defines,
&defines);
}
}
}
for (size_t i = 0; i < defines.define_count; i++) {
printf("%s=", defines.defines[i].name);
for (size_t j = 0; j < defines.defines[i].value_count; j++) {
printf("%jd", defines.defines[i].values[j]);
if (j != defines.defines[i].value_count-1) {
printf(",");
}
}
printf("\n");
}
for (size_t i = 0; i < defines.define_count; i++) {
free(defines.defines[i].values);
}
free(defines.defines);
}
static void list_permutation_defines(void) {
struct list_defines_defines defines = {NULL, 0, 0};
// add permutation defines
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_list_permutation_defines,
&defines);
}
}
}
for (size_t i = 0; i < defines.define_count; i++) {
printf("%s=", defines.defines[i].name);
for (size_t j = 0; j < defines.defines[i].value_count; j++) {
printf("%jd", defines.defines[i].values[j]);
if (j != defines.defines[i].value_count-1) {
printf(",");
}
}
printf("\n");
}
for (size_t i = 0; i < defines.define_count; i++) {
free(defines.defines[i].values);
}
free(defines.defines);
}
static void list_implicit_defines(void) {
struct list_defines_defines defines = {NULL, 0, 0};
// yes we do need to define a suite/case, these do a bit of bookeeping
// around mapping defines
bench_define_suite(NULL,
&(const struct bench_suite){0});
bench_define_case(NULL,
&(const struct bench_suite){0},
&(const struct bench_case){0},
0);
size_t permutations = bench_define_permutations();
for (size_t p = 0; p < permutations; p++) {
// define permutation permutation
bench_define_permutation(p);
// add implicit defines
for (size_t d = 0; d < bench_define_count; d++) {
list_defines_add(&defines, bench_defines[d]);
}
}
for (size_t i = 0; i < defines.define_count; i++) {
printf("%s=", defines.defines[i].name);
for (size_t j = 0; j < defines.defines[i].value_count; j++) {
printf("%jd", defines.defines[i].values[j]);
if (j != defines.defines[i].value_count-1) {
printf(",");
}
}
printf("\n");
}
for (size_t i = 0; i < defines.define_count; i++) {
free(defines.defines[i].values);
}
free(defines.defines);
}
// global bench step count
size_t bench_step = 0;
void perm_run(
void *data,
const struct bench_suite *suite,
const struct bench_case *case_) {
(void)data;
// skip this step?
if (!(bench_step >= bench_step_start
&& bench_step < bench_step_stop
&& (bench_step-bench_step_start) % bench_step_step == 0)) {
bench_step += 1;
return;
}
bench_step += 1;
// filter?
if (case_->if_ && !case_->if_()) {
printf("skipped ");
perm_printid(suite, case_);
printf("\n");
return;
}
// create block device and configuration
lfs_emubd_t bd;
struct lfs_config cfg = {
.context = &bd,
.read = lfs_emubd_read,
.prog = lfs_emubd_prog,
.erase = lfs_emubd_erase,
.sync = lfs_emubd_sync,
BENCH_CFG
};
struct lfs_emubd_config bdcfg = {
.disk_path = bench_disk_path,
.read_sleep = bench_read_sleep,
.prog_sleep = bench_prog_sleep,
.erase_sleep = bench_erase_sleep,
BENCH_BDCFG
};
int err = lfs_emubd_createcfg(&cfg, bench_disk_path, &bdcfg);
if (err) {
fprintf(stderr, "error: could not create block device: %d\n", err);
exit(-1);
}
// run the bench
bench_reset(&cfg);
printf("running ");
perm_printid(suite, case_);
printf("\n");
case_->run(&cfg);
printf("finished ");
perm_printid(suite, case_);
printf("\n");
// cleanup
err = lfs_emubd_destroy(&cfg);
if (err) {
fprintf(stderr, "error: could not destroy block device: %d\n", err);
exit(-1);
}
}
static void run(void) {
// ignore disconnected pipes
signal(SIGPIPE, SIG_IGN);
for (size_t t = 0; t < bench_id_count; t++) {
for (size_t i = 0; i < bench_suite_count; i++) {
bench_define_suite(&bench_ids[t], bench_suites[i]);
for (size_t j = 0; j < bench_suites[i]->case_count; j++) {
// does neither suite nor case name match?
if (bench_ids[t].name && !(
strcmp(bench_ids[t].name,
bench_suites[i]->name) == 0
|| strcmp(bench_ids[t].name,
bench_suites[i]->cases[j].name) == 0)) {
continue;
}
case_forperm(
&bench_ids[t],
bench_suites[i],
&bench_suites[i]->cases[j],
perm_run,
NULL);
}
}
}
}
// option handling
enum opt_flags {
OPT_HELP = 'h',
OPT_SUMMARY = 'Y',
OPT_LIST_SUITES = 'l',
OPT_LIST_CASES = 'L',
OPT_LIST_SUITE_PATHS = 1,
OPT_LIST_CASE_PATHS = 2,
OPT_LIST_DEFINES = 3,
OPT_LIST_PERMUTATION_DEFINES = 4,
OPT_LIST_IMPLICIT_DEFINES = 5,
OPT_DEFINE = 'D',
OPT_DEFINE_DEPTH = 6,
OPT_STEP = 's',
OPT_DISK = 'd',
OPT_TRACE = 't',
OPT_TRACE_BACKTRACE = 7,
OPT_TRACE_PERIOD = 8,
OPT_TRACE_FREQ = 9,
OPT_READ_SLEEP = 10,
OPT_PROG_SLEEP = 11,
OPT_ERASE_SLEEP = 12,
};
const char *short_opts = "hYlLD:s:d:t:";
const struct option long_opts[] = {
{"help", no_argument, NULL, OPT_HELP},
{"summary", no_argument, NULL, OPT_SUMMARY},
{"list-suites", no_argument, NULL, OPT_LIST_SUITES},
{"list-cases", no_argument, NULL, OPT_LIST_CASES},
{"list-suite-paths", no_argument, NULL, OPT_LIST_SUITE_PATHS},
{"list-case-paths", no_argument, NULL, OPT_LIST_CASE_PATHS},
{"list-defines", no_argument, NULL, OPT_LIST_DEFINES},
{"list-permutation-defines",
no_argument, NULL, OPT_LIST_PERMUTATION_DEFINES},
{"list-implicit-defines",
no_argument, NULL, OPT_LIST_IMPLICIT_DEFINES},
{"define", required_argument, NULL, OPT_DEFINE},
{"define-depth", required_argument, NULL, OPT_DEFINE_DEPTH},
{"step", required_argument, NULL, OPT_STEP},
{"disk", required_argument, NULL, OPT_DISK},
{"trace", required_argument, NULL, OPT_TRACE},
{"trace-backtrace", no_argument, NULL, OPT_TRACE_BACKTRACE},
{"trace-period", required_argument, NULL, OPT_TRACE_PERIOD},
{"trace-freq", required_argument, NULL, OPT_TRACE_FREQ},
{"read-sleep", required_argument, NULL, OPT_READ_SLEEP},
{"prog-sleep", required_argument, NULL, OPT_PROG_SLEEP},
{"erase-sleep", required_argument, NULL, OPT_ERASE_SLEEP},
{NULL, 0, NULL, 0},
};
const char *const help_text[] = {
"Show this help message.",
"Show quick summary.",
"List bench suites.",
"List bench cases.",
"List the path for each bench suite.",
"List the path and line number for each bench case.",
"List all defines in this bench-runner.",
"List explicit defines in this bench-runner.",
"List implicit defines in this bench-runner.",
"Override a bench define.",
"How deep to evaluate recursive defines before erroring.",
"Comma-separated range of bench permutations to run (start,stop,step).",
"Direct block device operations to this file.",
"Direct trace output to this file.",
"Include a backtrace with every trace statement.",
"Sample trace output at this period in cycles.",
"Sample trace output at this frequency in hz.",
"Artificial read delay in seconds.",
"Artificial prog delay in seconds.",
"Artificial erase delay in seconds.",
};
int main(int argc, char **argv) {
void (*op)(void) = run;
size_t bench_override_define_capacity = 0;
size_t bench_id_capacity = 0;
// parse options
while (true) {
int c = getopt_long(argc, argv, short_opts, long_opts, NULL);
switch (c) {
// generate help message
case OPT_HELP:;
printf("usage: %s [options] [bench_id]\n", argv[0]);
printf("\n");
printf("options:\n");
size_t i = 0;
while (long_opts[i].name) {
size_t indent;
if (long_opts[i].has_arg == no_argument) {
if (long_opts[i].val >= '0' && long_opts[i].val < 'z') {
indent = printf(" -%c, --%s ",
long_opts[i].val,
long_opts[i].name);
} else {
indent = printf(" --%s ",
long_opts[i].name);
}
} else {
if (long_opts[i].val >= '0' && long_opts[i].val < 'z') {
indent = printf(" -%c %s, --%s %s ",
long_opts[i].val,
long_opts[i].name,
long_opts[i].name,
long_opts[i].name);
} else {
indent = printf(" --%s %s ",
long_opts[i].name,
long_opts[i].name);
}
}
// a quick, hacky, byte-level method for text wrapping
size_t len = strlen(help_text[i]);
size_t j = 0;
if (indent < 24) {
printf("%*s %.80s\n",
(int)(24-1-indent),
"",
&help_text[i][j]);
j += 80;
} else {
printf("\n");
}
while (j < len) {
printf("%24s%.80s\n", "", &help_text[i][j]);
j += 80;
}
i += 1;
}
printf("\n");
exit(0);
// summary/list flags
case OPT_SUMMARY:;
op = summary;
break;
case OPT_LIST_SUITES:;
op = list_suites;
break;
case OPT_LIST_CASES:;
op = list_cases;
break;
case OPT_LIST_SUITE_PATHS:;
op = list_suite_paths;
break;
case OPT_LIST_CASE_PATHS:;
op = list_case_paths;
break;
case OPT_LIST_DEFINES:;
op = list_defines;
break;
case OPT_LIST_PERMUTATION_DEFINES:;
op = list_permutation_defines;
break;
case OPT_LIST_IMPLICIT_DEFINES:;
op = list_implicit_defines;
break;
// configuration
case OPT_DEFINE:;
// allocate space
bench_define_t *override = mappend(
(void**)&bench_override_defines,
sizeof(bench_define_t),
&bench_override_define_count,
&bench_override_define_capacity);
// parse into string key/intmax_t value, cannibalizing the
// arg in the process
char *sep = strchr(optarg, '=');
char *parsed = NULL;
if (!sep) {
goto invalid_define;
}
*sep = '\0';
override->name = optarg;
optarg = sep+1;
// parse comma-separated permutations
{
bench_override_value_t *override_values = NULL;
size_t override_value_count = 0;
size_t override_value_capacity = 0;
size_t override_permutations = 0;
while (true) {
optarg += strspn(optarg, " ");
if (strncmp(optarg, "range", strlen("range")) == 0) {
// range of values
optarg += strlen("range");
optarg += strspn(optarg, " ");
if (*optarg != '(') {
goto invalid_define;
}
optarg += 1;
intmax_t start = strtoumax(optarg, &parsed, 0);
intmax_t stop = -1;
intmax_t step = 1;
// allow empty string for start=0
if (parsed == optarg) {
start = 0;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != ',' && *optarg != ')') {
goto invalid_define;
}
if (*optarg == ',') {
optarg += 1;
stop = strtoumax(optarg, &parsed, 0);
// allow empty string for stop=end
if (parsed == optarg) {
stop = -1;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != ',' && *optarg != ')') {
goto invalid_define;
}
if (*optarg == ',') {
optarg += 1;
step = strtoumax(optarg, &parsed, 0);
// allow empty string for stop=1
if (parsed == optarg) {
step = 1;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != ')') {
goto invalid_define;
}
}
} else {
// single value = stop only
stop = start;
start = 0;
}
if (*optarg != ')') {
goto invalid_define;
}
optarg += 1;
// append range
*(bench_override_value_t*)mappend(
(void**)&override_values,
sizeof(bench_override_value_t),
&override_value_count,
&override_value_capacity)
= (bench_override_value_t){
.start = start,
.stop = stop,
.step = step,
};
if (step > 0) {
override_permutations += (stop-1 - start)
/ step + 1;
} else {
override_permutations += (start-1 - stop)
/ -step + 1;
}
} else if (*optarg != '\0') {
// single value
intmax_t define = strtoumax(optarg, &parsed, 0);
if (parsed == optarg) {
goto invalid_define;
}
optarg = parsed + strspn(parsed, " ");
// append value
*(bench_override_value_t*)mappend(
(void**)&override_values,
sizeof(bench_override_value_t),
&override_value_count,
&override_value_capacity)
= (bench_override_value_t){
.start = define,
.step = 0,
};
override_permutations += 1;
} else {
break;
}
if (*optarg == ',') {
optarg += 1;
}
}
// define should be patched in bench_define_suite
override->define = NULL;
override->cb = bench_override_cb;
override->data = malloc(sizeof(bench_override_data_t));
*(bench_override_data_t*)override->data
= (bench_override_data_t){
.values = override_values,
.value_count = override_value_count,
};
override->permutations = override_permutations;
}
break;
invalid_define:;
fprintf(stderr, "error: invalid define: %s\n", optarg);
exit(-1);
case OPT_DEFINE_DEPTH:;
parsed = NULL;
bench_define_depth = strtoumax(optarg, &parsed, 0);
if (parsed == optarg) {
fprintf(stderr, "error: invalid define-depth: %s\n", optarg);
exit(-1);
}
break;
case OPT_STEP:;
parsed = NULL;
bench_step_start = strtoumax(optarg, &parsed, 0);
bench_step_stop = -1;
bench_step_step = 1;
// allow empty string for start=0
if (parsed == optarg) {
bench_step_start = 0;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != ',' && *optarg != '\0') {
goto step_unknown;
}
if (*optarg == ',') {
optarg += 1;
bench_step_stop = strtoumax(optarg, &parsed, 0);
// allow empty string for stop=end
if (parsed == optarg) {
bench_step_stop = -1;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != ',' && *optarg != '\0') {
goto step_unknown;
}
if (*optarg == ',') {
optarg += 1;
bench_step_step = strtoumax(optarg, &parsed, 0);
// allow empty string for stop=1
if (parsed == optarg) {
bench_step_step = 1;
}
optarg = parsed + strspn(parsed, " ");
if (*optarg != '\0') {
goto step_unknown;
}
}
} else {
// single value = stop only
bench_step_stop = bench_step_start;
bench_step_start = 0;
}
break;
step_unknown:;
fprintf(stderr, "error: invalid step: %s\n", optarg);
exit(-1);
case OPT_DISK:;
bench_disk_path = optarg;
break;
case OPT_TRACE:;
bench_trace_path = optarg;
break;
case OPT_TRACE_BACKTRACE:;
bench_trace_backtrace = true;
break;
case OPT_TRACE_PERIOD:;
parsed = NULL;
bench_trace_period = strtoumax(optarg, &parsed, 0);
if (parsed == optarg) {
fprintf(stderr, "error: invalid trace-period: %s\n", optarg);
exit(-1);
}
break;
case OPT_TRACE_FREQ:;
parsed = NULL;
bench_trace_freq = strtoumax(optarg, &parsed, 0);
if (parsed == optarg) {
fprintf(stderr, "error: invalid trace-freq: %s\n", optarg);
exit(-1);
}
break;
case OPT_READ_SLEEP:;
parsed = NULL;
double read_sleep = strtod(optarg, &parsed);
if (parsed == optarg) {
fprintf(stderr, "error: invalid read-sleep: %s\n", optarg);
exit(-1);
}
bench_read_sleep = read_sleep*1.0e9;
break;
case OPT_PROG_SLEEP:;
parsed = NULL;
double prog_sleep = strtod(optarg, &parsed);
if (parsed == optarg) {
fprintf(stderr, "error: invalid prog-sleep: %s\n", optarg);
exit(-1);
}
bench_prog_sleep = prog_sleep*1.0e9;
break;
case OPT_ERASE_SLEEP:;
parsed = NULL;
double erase_sleep = strtod(optarg, &parsed);
if (parsed == optarg) {
fprintf(stderr, "error: invalid erase-sleep: %s\n", optarg);
exit(-1);
}
bench_erase_sleep = erase_sleep*1.0e9;
break;
// done parsing
case -1:;
goto getopt_done;
// unknown arg, getopt prints a message for us
default:;
exit(-1);
}
}
getopt_done: ;
if (argc > optind) {
// reset our bench identifier list
bench_ids = NULL;
bench_id_count = 0;
bench_id_capacity = 0;
}
// parse bench identifier, if any, cannibalizing the arg in the process
for (; argc > optind; optind++) {
bench_define_t *defines = NULL;
size_t define_count = 0;
// parse name, can be suite or case
char *name = argv[optind];
char *defines_ = strchr(name, ':');
if (defines_) {
*defines_ = '\0';
defines_ += 1;
}
// remove optional path and .toml suffix
char *slash = strrchr(name, '/');
if (slash) {
name = slash+1;
}
size_t name_len = strlen(name);
if (name_len > 5 && strcmp(&name[name_len-5], ".toml") == 0) {
name[name_len-5] = '\0';
}
if (defines_) {
// parse defines
while (true) {
char *parsed;
size_t d = leb16_parse(defines_, &parsed);
intmax_t v = leb16_parse(parsed, &parsed);
if (parsed == defines_) {
break;
}
defines_ = parsed;
if (d >= define_count) {
// align to power of two to avoid any superlinear growth
size_t ncount = 1 << lfs_npw2(d+1);
defines = realloc(defines,
ncount*sizeof(bench_define_t));
memset(defines+define_count, 0,
(ncount-define_count)*sizeof(bench_define_t));
define_count = ncount;
}
// name/define should be patched in bench_define_suite
defines[d] = BENCH_LIT(NULL, v);
}
}
// append to identifier list
*(bench_id_t*)mappend(
(void**)&bench_ids,
sizeof(bench_id_t),
&bench_id_count,
&bench_id_capacity) = (bench_id_t){
.name = name,
.defines = defines,
.define_count = define_count,
};
}
// do the thing
op();
// cleanup (need to be done for valgrind benching)
bench_define_cleanup();
if (bench_override_defines) {
for (size_t i = 0; i < bench_override_define_count; i++) {
free((void*)bench_override_defines[i].data);
}
free((void*)bench_override_defines);
}
if (bench_id_capacity) {
for (size_t i = 0; i < bench_id_count; i++) {
free((void*)bench_ids[i].defines);
}
free((void*)bench_ids);
}
}