forked from Imagelibrary/littlefs
crc32c, with a polynomial of 0x11edc6f41, is generally numerically superior to the more common crc32 standard. Catching more bit errors across a wider range of message messages (except 2-bit errors) without any changes to the underlying algorithm. Philip Koopman has a large body of work exploring optimal polynomials here: http://users.ece.cmu.edu/~koopman/crc/crc32.html And from his experiments we know the maximum message size where we can still detect a given number of bit errors for each polynomial: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 crc32 0x104c11db7 = ∞ 4294967263 91607 2974 268 171 91 57 34 21 12 10 10 10 - - - crc32c 0x11edc6f41 = ∞ 2147483615 2147483615 5243 5243 177 177 47 47 20 20 8 8 6 6 1 1 So really crc32c should be prefered where possible. Koopman also has alternative polynomials with slightly different properties, but crc32c is already popular enough to have a decent amount of hardware support. --- Another nice feature of crc32c is that its polynomial has even parity. It turns out that even-parity polynomials give us the nifty property parity(crc(m)) == parity(m). A quick proof: crc(m) = m(x) x^|P|-1 mod P(x) parity(m) = m(x) x mod x+1 though note: x mod x+1 = 1, by hand so: parity(m) = m(x)*1 mod x+1 = m(x) mod x+1 solving for parity(crc(m)): parity(crc(m)) = (m(x) x^|P|-1 mod P(x)) mod x+1 note: (a mod b) mod c = a mod c, if c divides b, aka (a mod b) mod c = a mod c, if b mod c = 0 so if P(x) mod x+1 = 0, aka if parity(P) = 0: parity(crc(m)) = m(x) x^|P|-1 mod x+1 but, like before: x^|P|-1 mod x+1 = 1, by hand so: parity(crc(m)) = m(x)*1 mod x+1 = m(x) mod x+1 = parity(m) so if parity(P) = 0: parity(crc(m)) = parity(m) This has the potential to replace the 1-bit counter in the metadata tags with a more general solution that doesn't require extra state.
254 lines
7.2 KiB
C
254 lines
7.2 KiB
C
/*
|
|
* lfs utility functions
|
|
*
|
|
* Copyright (c) 2022, The littlefs authors.
|
|
* Copyright (c) 2017, Arm Limited. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
#ifndef LFS_UTIL_H
|
|
#define LFS_UTIL_H
|
|
|
|
// Users can override lfs_util.h with their own configuration by defining
|
|
// LFS_CONFIG as a header file to include (-DLFS_CONFIG=lfs_config.h).
|
|
//
|
|
// If LFS_CONFIG is used, none of the default utils will be emitted and must be
|
|
// provided by the config file. To start, I would suggest copying lfs_util.h
|
|
// and modifying as needed.
|
|
#ifdef LFS_CONFIG
|
|
#define LFS_STRINGIZE(x) LFS_STRINGIZE2(x)
|
|
#define LFS_STRINGIZE2(x) #x
|
|
#include LFS_STRINGIZE(LFS_CONFIG)
|
|
#else
|
|
|
|
// System includes
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#ifndef LFS_NO_MALLOC
|
|
#include <stdlib.h>
|
|
#endif
|
|
#ifndef LFS_NO_ASSERT
|
|
#include <assert.h>
|
|
#endif
|
|
#if !defined(LFS_NO_DEBUG) || \
|
|
!defined(LFS_NO_WARN) || \
|
|
!defined(LFS_NO_ERROR) || \
|
|
defined(LFS_YES_TRACE)
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
|
|
// Macros, may be replaced by system specific wrappers. Arguments to these
|
|
// macros must not have side-effects as the macros can be removed for a smaller
|
|
// code footprint
|
|
|
|
// Logging functions
|
|
#ifndef LFS_TRACE
|
|
#ifdef LFS_YES_TRACE
|
|
#define LFS_TRACE_(fmt, ...) \
|
|
printf("%s:%d:trace: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
|
|
#define LFS_TRACE(...) LFS_TRACE_(__VA_ARGS__, "")
|
|
#else
|
|
#define LFS_TRACE(...)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef LFS_DEBUG
|
|
#ifndef LFS_NO_DEBUG
|
|
#define LFS_DEBUG_(fmt, ...) \
|
|
printf("%s:%d:debug: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
|
|
#define LFS_DEBUG(...) LFS_DEBUG_(__VA_ARGS__, "")
|
|
#else
|
|
#define LFS_DEBUG(...)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef LFS_WARN
|
|
#ifndef LFS_NO_WARN
|
|
#define LFS_WARN_(fmt, ...) \
|
|
printf("%s:%d:warn: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
|
|
#define LFS_WARN(...) LFS_WARN_(__VA_ARGS__, "")
|
|
#else
|
|
#define LFS_WARN(...)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef LFS_ERROR
|
|
#ifndef LFS_NO_ERROR
|
|
#define LFS_ERROR_(fmt, ...) \
|
|
printf("%s:%d:error: " fmt "%s\n", __FILE__, __LINE__, __VA_ARGS__)
|
|
#define LFS_ERROR(...) LFS_ERROR_(__VA_ARGS__, "")
|
|
#else
|
|
#define LFS_ERROR(...)
|
|
#endif
|
|
#endif
|
|
|
|
// Runtime assertions
|
|
#ifndef LFS_ASSERT
|
|
#ifndef LFS_NO_ASSERT
|
|
#define LFS_ASSERT(test) assert(test)
|
|
#else
|
|
#define LFS_ASSERT(test)
|
|
#endif
|
|
#endif
|
|
|
|
|
|
// Builtin functions, these may be replaced by more efficient
|
|
// toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more
|
|
// expensive basic C implementation for debugging purposes
|
|
|
|
// Min/max functions for unsigned 32-bit numbers
|
|
static inline uint32_t lfs_max(uint32_t a, uint32_t b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
static inline uint32_t lfs_min(uint32_t a, uint32_t b) {
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
// Align to nearest multiple of a size
|
|
static inline uint32_t lfs_aligndown(uint32_t a, uint32_t alignment) {
|
|
return a - (a % alignment);
|
|
}
|
|
|
|
static inline uint32_t lfs_alignup(uint32_t a, uint32_t alignment) {
|
|
return lfs_aligndown(a + alignment-1, alignment);
|
|
}
|
|
|
|
// Find the smallest power of 2 greater than or equal to a
|
|
static inline uint32_t lfs_npw2(uint32_t a) {
|
|
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
|
|
return 32 - __builtin_clz(a-1);
|
|
#else
|
|
uint32_t r = 0;
|
|
uint32_t s;
|
|
a -= 1;
|
|
s = (a > 0xffff) << 4; a >>= s; r |= s;
|
|
s = (a > 0xff ) << 3; a >>= s; r |= s;
|
|
s = (a > 0xf ) << 2; a >>= s; r |= s;
|
|
s = (a > 0x3 ) << 1; a >>= s; r |= s;
|
|
return (r | (a >> 1)) + 1;
|
|
#endif
|
|
}
|
|
|
|
// Count the number of trailing binary zeros in a
|
|
// lfs_ctz(0) may be undefined
|
|
static inline uint32_t lfs_ctz(uint32_t a) {
|
|
#if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__)
|
|
return __builtin_ctz(a);
|
|
#else
|
|
return lfs_npw2((a & -a) + 1) - 1;
|
|
#endif
|
|
}
|
|
|
|
// Count the number of binary ones in a
|
|
static inline uint32_t lfs_popc(uint32_t a) {
|
|
#if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM))
|
|
return __builtin_popcount(a);
|
|
#else
|
|
a = a - ((a >> 1) & 0x55555555);
|
|
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
|
|
return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
|
|
#endif
|
|
}
|
|
|
|
// Find the sequence comparison of a and b, this is the distance
|
|
// between a and b ignoring overflow
|
|
static inline int lfs_scmp(uint32_t a, uint32_t b) {
|
|
return (int)(unsigned)(a - b);
|
|
}
|
|
|
|
// Convert between 32-bit little-endian and native order
|
|
static inline uint32_t lfs_fromle32(uint32_t a) {
|
|
#if (defined( BYTE_ORDER ) && defined( ORDER_LITTLE_ENDIAN ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER ) && defined(__ORDER_LITTLE_ENDIAN ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
|
|
return a;
|
|
#elif !defined(LFS_NO_INTRINSICS) && ( \
|
|
(defined( BYTE_ORDER ) && defined( ORDER_BIG_ENDIAN ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER ) && defined(__ORDER_BIG_ENDIAN ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
|
|
return __builtin_bswap32(a);
|
|
#else
|
|
return (((uint8_t*)&a)[0] << 0) |
|
|
(((uint8_t*)&a)[1] << 8) |
|
|
(((uint8_t*)&a)[2] << 16) |
|
|
(((uint8_t*)&a)[3] << 24);
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t lfs_tole32(uint32_t a) {
|
|
return lfs_fromle32(a);
|
|
}
|
|
|
|
// Convert between 32-bit big-endian and native order
|
|
static inline uint32_t lfs_frombe32(uint32_t a) {
|
|
#if !defined(LFS_NO_INTRINSICS) && ( \
|
|
(defined( BYTE_ORDER ) && defined( ORDER_LITTLE_ENDIAN ) && BYTE_ORDER == ORDER_LITTLE_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER ) && defined(__ORDER_LITTLE_ENDIAN ) && __BYTE_ORDER == __ORDER_LITTLE_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
|
|
return __builtin_bswap32(a);
|
|
#elif (defined( BYTE_ORDER ) && defined( ORDER_BIG_ENDIAN ) && BYTE_ORDER == ORDER_BIG_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER ) && defined(__ORDER_BIG_ENDIAN ) && __BYTE_ORDER == __ORDER_BIG_ENDIAN ) || \
|
|
(defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
|
return a;
|
|
#else
|
|
return (((uint8_t*)&a)[0] << 24) |
|
|
(((uint8_t*)&a)[1] << 16) |
|
|
(((uint8_t*)&a)[2] << 8) |
|
|
(((uint8_t*)&a)[3] << 0);
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t lfs_tobe32(uint32_t a) {
|
|
return lfs_frombe32(a);
|
|
}
|
|
|
|
// Calculate CRC-32 with polynomial = 0x04c11db7
|
|
uint32_t lfs_crc(uint32_t crc, const void *buffer, size_t size);
|
|
|
|
// Calculate crc32c incrementally
|
|
//
|
|
// polynomial = 0x11edc6f41
|
|
// init = 0xffffffff
|
|
// fini = 0xffffffff
|
|
//
|
|
uint32_t lfs_crc32c(uint32_t crc, const void *buffer, size_t size);
|
|
|
|
|
|
// Allocate memory, only used if buffers are not provided to littlefs
|
|
// Note, memory must be 64-bit aligned
|
|
static inline void *lfs_malloc(size_t size) {
|
|
#ifndef LFS_NO_MALLOC
|
|
return malloc(size);
|
|
#else
|
|
(void)size;
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
// Deallocate memory, only used if buffers are not provided to littlefs
|
|
static inline void lfs_free(void *p) {
|
|
#ifndef LFS_NO_MALLOC
|
|
free(p);
|
|
#else
|
|
(void)p;
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef __cplusplus
|
|
} /* extern "C" */
|
|
#endif
|
|
|
|
#endif
|
|
#endif
|