#!/usr/bin/env python3 import bisect import collections as co import itertools as it import math as m import os import struct TAG_NULL = 0x0000 TAG_CONFIG = 0x0000 TAG_MAGIC = 0x0003 TAG_VERSION = 0x0004 TAG_RCOMPAT = 0x0005 TAG_WCOMPAT = 0x0006 TAG_OCOMPAT = 0x0007 TAG_GEOMETRY = 0x0009 TAG_NAMELIMIT = 0x000c TAG_SIZELIMIT = 0x000d TAG_GDELTA = 0x0100 TAG_GRMDELTA = 0x0100 TAG_NAME = 0x0200 TAG_REG = 0x0201 TAG_DIR = 0x0202 TAG_ORPHAN = 0x0203 TAG_BOOKMARK = 0x0204 TAG_STRUCT = 0x0300 TAG_DATA = 0x0300 TAG_BLOCK = 0x0304 TAG_BSHRUB = 0x0308 TAG_BTREE = 0x030c TAG_DID = 0x0310 TAG_BECKSUM = 0x0314 TAG_BRANCH = 0x031c TAG_MROOT = 0x0321 TAG_MDIR = 0x0325 TAG_MTREE = 0x032c TAG_UATTR = 0x0400 TAG_SATTR = 0x0600 TAG_SHRUB = 0x1000 TAG_CKSUM = 0x3000 TAG_ECKSUM = 0x3100 TAG_ALT = 0x4000 TAG_GT = 0x2000 TAG_R = 0x1000 # some ways of block geometry representations # 512 -> 512 # 512x16 -> (512, 16) # 0x200x10 -> (512, 16) def bdgeom(s): s = s.strip() b = 10 if s.startswith('0x') or s.startswith('0X'): s = s[2:] b = 16 elif s.startswith('0o') or s.startswith('0O'): s = s[2:] b = 8 elif s.startswith('0b') or s.startswith('0B'): s = s[2:] b = 2 if 'x' in s: s, s_ = s.split('x', 1) return (int(s, b), int(s_, b)) else: return int(s, b) # parse some rbyd addr encodings # 0xa -> [0xa] # 0xa.c -> [(0xa, 0xc)] # 0x{a,b} -> [0xa, 0xb] # 0x{a,b}.c -> [(0xa, 0xc), (0xb, 0xc)] def rbydaddr(s): s = s.strip() b = 10 if s.startswith('0x') or s.startswith('0X'): s = s[2:] b = 16 elif s.startswith('0o') or s.startswith('0O'): s = s[2:] b = 8 elif s.startswith('0b') or s.startswith('0B'): s = s[2:] b = 2 trunk = None if '.' in s: s, s_ = s.split('.', 1) trunk = int(s_, b) if s.startswith('{') and '}' in s: ss = s[1:s.find('}')].split(',') else: ss = [s] addr = [] for s in ss: if trunk is not None: addr.append((int(s, b), trunk)) else: addr.append(int(s, b)) return addr def crc32c(data, crc=0): crc ^= 0xffffffff for b in data: crc ^= b for j in range(8): crc = (crc >> 1) ^ ((crc & 1) * 0x82f63b78) return 0xffffffff ^ crc def popc(x): return bin(x).count('1') def fromle32(data): return struct.unpack('>15, tag&0x7fff, weight, size, 2+d+d_ def frombranch(data): d = 0 block, d_ = fromleb128(data[d:]); d += d_ trunk, d_ = fromleb128(data[d:]); d += d_ cksum = fromle32(data[d:]); d += 4 return block, trunk, cksum def xxd(data, width=16): for i in range(0, len(data), width): yield '%-*s %-*s' % ( 3*width, ' '.join('%02x' % b for b in data[i:i+width]), width, ''.join( b if b >= ' ' and b <= '~' else '.' for b in map(chr, data[i:i+width]))) def tagrepr(tag, w, size, off=None): if (tag & 0xefff) == TAG_NULL: return '%snull%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', ' w%d' % w if w else '', ' %d' % size if size else '') elif (tag & 0xef00) == TAG_CONFIG: return '%s%s%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', 'magic' if (tag & 0xfff) == TAG_MAGIC else 'version' if (tag & 0xfff) == TAG_VERSION else 'rcompat' if (tag & 0xfff) == TAG_RCOMPAT else 'wcompat' if (tag & 0xfff) == TAG_WCOMPAT else 'ocompat' if (tag & 0xfff) == TAG_OCOMPAT else 'geometry' if (tag & 0xfff) == TAG_GEOMETRY else 'sizelimit' if (tag & 0xfff) == TAG_SIZELIMIT else 'namelimit' if (tag & 0xfff) == TAG_NAMELIMIT else 'config 0x%02x' % (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xef00) == TAG_GDELTA: return '%s%s%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', 'grmdelta' if (tag & 0xfff) == TAG_GRMDELTA else 'gdelta 0x%02x' % (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xef00) == TAG_NAME: return '%s%s%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', 'name' if (tag & 0xfff) == TAG_NAME else 'reg' if (tag & 0xfff) == TAG_REG else 'dir' if (tag & 0xfff) == TAG_DIR else 'orphan' if (tag & 0xfff) == TAG_ORPHAN else 'bookmark' if (tag & 0xfff) == TAG_BOOKMARK else 'name 0x%02x' % (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xef00) == TAG_STRUCT: return '%s%s%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', 'data' if (tag & 0xfff) == TAG_DATA else 'block' if (tag & 0xfff) == TAG_BLOCK else 'bshrub' if (tag & 0xfff) == TAG_BSHRUB else 'btree' if (tag & 0xfff) == TAG_BTREE else 'did' if (tag & 0xfff) == TAG_DID else 'becksum' if (tag & 0xfff) == TAG_BECKSUM else 'branch' if (tag & 0xfff) == TAG_BRANCH else 'mroot' if (tag & 0xfff) == TAG_MROOT else 'mdir' if (tag & 0xfff) == TAG_MDIR else 'mtree' if (tag & 0xfff) == TAG_MTREE else 'struct 0x%02x' % (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xef00) == TAG_UATTR: return '%suattr 0x%02x%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', ((tag & 0x100) >> 1) | (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xef00) == TAG_SATTR: return '%ssattr 0x%02x%s %d' % ( 'shrub' if tag & TAG_SHRUB else '', ((tag & 0x100) >> 1) | (tag & 0xff), ' w%d' % w if w else '', size) elif (tag & 0xff00) == TAG_CKSUM: return 'cksum 0x%02x%s %d' % ( tag & 0xff, ' w%d' % w if w > 0 else '', size) elif (tag & 0xff00) == TAG_ECKSUM: return 'ecksum%s%s %d' % ( ' 0x%02x' % (tag & 0xff) if tag & 0xff else '', ' w%d' % w if w > 0 else '', size) elif tag & TAG_ALT: return 'alt%s%s%s w%d %s' % ( 'r' if tag & TAG_R else 'b', 'a' if tag & 0x0fff == 0 and tag & TAG_GT else 'n' if tag & 0x0fff == 0 else 'gt' if tag & TAG_GT else 'le', ' 0x%x' % (tag & 0x0fff) if tag & 0x0fff != 0 else '', w, '0x%x' % (0xffffffff & (off-size)) if off is not None else '-%d' % off) else: return '0x%04x w%d %d' % (tag, w, size) # this type is used for tree representations TBranch = co.namedtuple('TBranch', 'a, b, d, c') # our core rbyd type class Rbyd: def __init__(self, block, data, rev, eoff, trunk, weight): self.block = block self.data = data self.rev = rev self.eoff = eoff self.trunk = trunk self.weight = weight self.redund_blocks = [] def addr(self): if not self.redund_blocks: return '0x%x.%x' % (self.block, self.trunk) else: return '0x{%x,%s}.%x' % ( self.block, ','.join('%x' % block for block in self.redund_blocks), self.trunk) @classmethod def fetch(cls, f, block_size, blocks, trunk=None): if isinstance(blocks, int): blocks = [blocks] if len(blocks) > 1: # fetch all blocks rbyds = [cls.fetch(f, block_size, block, trunk) for block in blocks] # determine most recent revision i = 0 for i_, rbyd in enumerate(rbyds): # compare with sequence arithmetic if rbyd and ( not rbyds[i] or not ((rbyd.rev - rbyds[i].rev) & 0x80000000) or (rbyd.rev == rbyds[i].rev and rbyd.trunk > rbyds[i].trunk)): i = i_ # keep track of the other blocks rbyd = rbyds[i] rbyd.redund_blocks = [rbyds[(i+1+j) % len(rbyds)].block for j in range(len(rbyds)-1)] return rbyd else: # block may encode a trunk block = blocks[0] if isinstance(block, tuple): if trunk is None: trunk = block[1] block = block[0] # seek to the block f.seek(block * block_size) data = f.read(block_size) # fetch the rbyd rev = fromle32(data[0:4]) cksum = 0 cksum_ = crc32c(data[0:4]) eoff = 0 j_ = 4 trunk_ = 0 trunk__ = 0 trunk___ = 0 weight = 0 weight_ = 0 weight__ = 0 wastrunk = False trunkeoff = None while j_ < len(data) and (not trunk or eoff <= trunk): v, tag, w, size, d = fromtag(data[j_:]) if v != (popc(cksum_) & 1): break cksum_ = crc32c(data[j_:j_+d], cksum_) j_ += d if not tag & TAG_ALT and j_ + size > len(data): break # take care of cksums if not tag & TAG_ALT: if (tag & 0xff00) != TAG_CKSUM: cksum_ = crc32c(data[j_:j_+size], cksum_) # found a cksum? else: cksum__ = fromle32(data[j_:j_+4]) if cksum_ != cksum__: break # commit what we have eoff = trunkeoff if trunkeoff else j_ + size cksum = cksum_ trunk_ = trunk__ weight = weight_ # evaluate trunks if (tag & 0xf000) != TAG_CKSUM and ( not trunk or trunk >= j_-d or wastrunk): # new trunk? if not wastrunk: wastrunk = True trunk___ = j_-d weight__ = 0 # keep track of weight weight__ += w # end of trunk? if not tag & TAG_ALT: wastrunk = False # update trunk/weight unless we found a shrub or an # explicit trunk (which may be a shrub) is requested if not tag & TAG_SHRUB or trunk: trunk__ = trunk___ weight_ = weight__ # keep track of eoff for best matching trunk if trunk and j_ + size > trunk: trunkeoff = j_ + size eoff = trunkeoff cksum = cksum_ trunk_ = trunk__ weight = weight_ if not tag & TAG_ALT: j_ += size return cls(block, data, rev, eoff, trunk_, weight) def lookup(self, rid, tag): if not self: return True, 0, -1, 0, 0, 0, b'', [] tag = max(tag, 0x1) lower = 0 upper = self.weight path = [] # descend down tree j = self.trunk while True: _, alt, weight_, jump, d = fromtag(self.data[j:]) # found an alt? if alt & TAG_ALT: # follow? if ((rid, tag & 0xfff) > (upper-weight_-1, alt & 0xfff) if alt & TAG_GT else ((rid, tag & 0xfff) <= (lower+weight_-1, alt & 0xfff))): lower += upper-lower-weight_ if alt & TAG_GT else 0 upper -= upper-lower-weight_ if not alt & TAG_GT else 0 j = j - jump # figure out which color if alt & TAG_R: _, nalt, _, _, _ = fromtag(self.data[j+jump+d:]) if nalt & TAG_R: path.append((j+jump, j, True, 'y')) else: path.append((j+jump, j, True, 'r')) else: path.append((j+jump, j, True, 'b')) # stay on path else: lower += weight_ if not alt & TAG_GT else 0 upper -= weight_ if alt & TAG_GT else 0 j = j + d # figure out which color if alt & TAG_R: _, nalt, _, _, _ = fromtag(self.data[j:]) if nalt & TAG_R: path.append((j-d, j, False, 'y')) else: path.append((j-d, j, False, 'r')) else: path.append((j-d, j, False, 'b')) # found tag else: rid_ = upper-1 tag_ = alt w_ = upper-lower done = not tag_ or (rid_, tag_) < (rid, tag) return done, rid_, tag_, w_, j, d, self.data[j+d:j+d+jump], path def __bool__(self): return bool(self.trunk) def __eq__(self, other): return self.block == other.block and self.trunk == other.trunk def __ne__(self, other): return not self.__eq__(other) def __iter__(self): tag = 0 rid = -1 while True: done, rid, tag, w, j, d, data, _ = self.lookup(rid, tag+0x1) if done: break yield rid, tag, w, j, d, data # create tree representation for debugging def tree(self): trunks = co.defaultdict(lambda: (-1, 0)) alts = co.defaultdict(lambda: {}) rid, tag = -1, 0 while True: done, rid, tag, w, j, d, data, path = self.lookup(rid, tag+0x1) # found end of tree? if done: break # keep track of trunks/alts trunks[j] = (rid, tag) for j_, j__, followed, c in path: if followed: alts[j_] |= {'f': j__, 'c': c} else: alts[j_] |= {'nf': j__, 'c': c} # treat unreachable alts as converging paths for j_, alt in alts.items(): if 'f' not in alt: alt['f'] = alt['nf'] elif 'nf' not in alt: alt['nf'] = alt['f'] # find the trunk and depth of each alt def rec_trunk(j_): if j_ not in alts: return trunks[j_] else: if 'nft' not in alts[j_]: alts[j_]['nft'] = rec_trunk(alts[j_]['nf']) return alts[j_]['nft'] for j_ in alts.keys(): rec_trunk(j_) for j_, alt in alts.items(): if alt['f'] in alts: alt['ft'] = alts[alt['f']]['nft'] else: alt['ft'] = trunks[alt['f']] def rec_height(j_): if j_ not in alts: return 0 else: if 'h' not in alts[j_]: alts[j_]['h'] = max( rec_height(alts[j_]['f']), rec_height(alts[j_]['nf'])) + 1 return alts[j_]['h'] for j_ in alts.keys(): rec_height(j_) t_depth = max((alt['h']+1 for alt in alts.values()), default=0) # convert to more general tree representation tree = set() for j, alt in alts.items(): # note all non-trunk edges should be black tree.add(TBranch( a=alt['nft'], b=alt['nft'], d=t_depth-1 - alt['h'], c=alt['c'], )) tree.add(TBranch( a=alt['nft'], b=alt['ft'], d=t_depth-1 - alt['h'], c='b', )) return tree, t_depth def main(disk, roots=None, *, block_size=None, block_count=None, trunk=None, color='auto', **args): # figure out what color should be if color == 'auto': color = sys.stdout.isatty() elif color == 'always': color = True else: color = False # is bd geometry specified? if isinstance(block_size, tuple): block_size, block_count_ = block_size if block_count is None: block_count = block_count_ # flatten roots, default to block 0 if not roots: roots = [[0]] roots = [block for roots_ in roots for block in roots_] # we seek around a bunch, so just keep the disk open with open(disk, 'rb') as f: # if block_size is omitted, assume the block device is one big block if block_size is None: f.seek(0, os.SEEK_END) block_size = f.tell() # fetch the root btree = Rbyd.fetch(f, block_size, roots, trunk) print('btree %s, rev %d, weight %d' % ( btree.addr(), btree.rev, btree.weight)) # look up a bid, while keeping track of the search path def btree_lookup(bid, *, depth=None): rbyd = btree rid = bid depth_ = 1 path = [] # corrupted? return a corrupted block once if not rbyd: return bid > 0, bid, 0, rbyd, -1, [], path while True: # collect all tags, normally you don't need to do this # but we are debugging here name = None tags = [] branch = None rid_ = rid tag = 0 w = 0 for i in it.count(): done, rid__, tag, w_, j, d, data, _ = rbyd.lookup( rid_, tag+0x1) if done or (i != 0 and rid__ != rid_): break # first tag indicates the branch's weight if i == 0: rid_, w = rid__, w_ # catch any branches if tag & 0xfff == TAG_BRANCH: branch = (tag, j, d, data) tags.append((tag, j, d, data)) # keep track of path path.append((bid + (rid_-rid), w, rbyd, rid_, tags)) # descend down branch? if branch is not None and ( not depth or depth_ < depth): tag, j, d, data = branch block, trunk, cksum = frombranch(data) rbyd = Rbyd.fetch(f, block_size, block, trunk) # corrupted? bail here so we can keep traversing the tree if not rbyd: return False, bid + (rid_-rid), w, rbyd, -1, [], path rid -= (rid_-(w-1)) depth_ += 1 else: return not tags, bid + (rid_-rid), w, rbyd, rid_, tags, path # precompute rbyd-trees if requested t_width = 0 if args.get('tree'): # find the max depth of each layer to nicely align trees bdepths = {} bid = -1 while True: done, bid, w, rbyd, rid, tags, path = btree_lookup( bid+1, depth=args.get('depth')) if done: break for d, (bid, w, rbyd, rid, tags) in enumerate(path): _, rdepth = rbyd.tree() bdepths[d] = max(bdepths.get(d, 0), rdepth) # find all branches tree = set() root = None branches = {} bid = -1 while True: done, bid, w, rbyd, rid, tags, path = btree_lookup( bid+1, depth=args.get('depth')) if done: break d_ = 0 leaf = None for d, (bid, w, rbyd, rid, tags) in enumerate(path): if not tags: continue # map rbyd tree into B-tree space rtree, rdepth = rbyd.tree() # note we adjust our bid/rids to be left-leaning, # this allows a global order and make tree rendering quite # a bit easier rtree_ = set() for branch in rtree: a_rid, a_tag = branch.a b_rid, b_tag = branch.b _, _, _, a_w, _, _, _, _ = rbyd.lookup(a_rid, 0) _, _, _, b_w, _, _, _, _ = rbyd.lookup(b_rid, 0) rtree_.add(TBranch( a=(a_rid-(a_w-1), a_tag), b=(b_rid-(b_w-1), b_tag), d=branch.d, c=branch.c, )) rtree = rtree_ # connect our branch to the rbyd's root if leaf is not None: root = min(rtree, key=lambda branch: branch.d, default=None) if root is not None: r_rid, r_tag = root.a else: r_rid, r_tag = rid-(w-1), tags[0][0] tree.add(TBranch( a=leaf, b=(bid-rid+r_rid, d, r_rid, r_tag), d=d_-1, c='b', )) for branch in rtree: # map rbyd branches into our btree space a_rid, a_tag = branch.a b_rid, b_tag = branch.b tree.add(TBranch( a=(bid-rid+a_rid, d, a_rid, a_tag), b=(bid-rid+b_rid, d, b_rid, b_tag), d=branch.d + d_ + bdepths.get(d, 0)-rdepth, c=branch.c, )) d_ += max(bdepths.get(d, 0), 1) leaf = (bid-(w-1), d, rid-(w-1), next((tag for tag, _, _, _ in tags if tag & 0xfff == TAG_BRANCH), TAG_BRANCH)) # remap branches to leaves if we aren't showing inner branches if not args.get('inner'): # step through each layer backwards b_depth = max((branch.b[1]+1 for branch in tree), default=0) # keep track of the original bids, unfortunately because we # store the bids in the branches we overwrite these tree = {(branch.b[0] - branch.b[2], branch) for branch in tree} for bd in reversed(range(b_depth-1)): # find leaf-roots at this level roots = {} for bid, branch in tree: # choose the highest node as the root if (branch.b[1] == b_depth-1 and (bid not in roots or branch.d < roots[bid].d)): roots[bid] = branch # remap branches to leaf-roots tree_ = set() for bid, branch in tree: if branch.a[1] == bd and branch.a[0] in roots: branch = TBranch( a=roots[branch.a[0]].b, b=branch.b, d=branch.d, c=branch.c, ) if branch.b[1] == bd and branch.b[0] in roots: branch = TBranch( a=branch.a, b=roots[branch.b[0]].b, d=branch.d, c=branch.c, ) tree_.add((bid, branch)) tree = tree_ # strip out bids tree = {branch for _, branch in tree} # precompute B-trees if requested elif args.get('btree'): # find all branches tree = set() root = None branches = {} bid = -1 while True: done, bid, w, rbyd, rid, tags, path = btree_lookup( bid+1, depth=args.get('depth')) if done: break # if we're not showing inner nodes, prefer names higher in # the tree since this avoids showing vestigial names name = None if not args.get('inner'): name = None for bid_, w_, rbyd_, rid_, tags_ in reversed(path): for tag_, j_, d_, data_ in tags_: if tag_ & 0x7f00 == TAG_NAME: name = (tag_, j_, d_, data_) if rid_-(w_-1) != 0: break a = root for d, (bid, w, rbyd, rid, tags) in enumerate(path): if not tags: continue b = (bid-(w-1), d, rid-(w-1), (name if name else tags[0])[0]) # remap branches to leaves if we aren't showing # inner branches if not args.get('inner'): if b not in branches: bid, w, rbyd, rid, tags = path[-1] if not tags: continue branches[b] = ( bid-(w-1), len(path)-1, rid-(w-1), (name if name else tags[0])[0]) b = branches[b] # found entry point? if root is None: root = b a = root tree.add(TBranch( a=a, b=b, d=d, c='b', )) a = b # common tree renderer if args.get('tree') or args.get('btree'): # find the max depth from the tree t_depth = max((branch.d+1 for branch in tree), default=0) if t_depth > 0: t_width = 2*t_depth + 2 def treerepr(bid, w, bd, rid, tag): if t_depth == 0: return '' def branchrepr(x, d, was): for branch in tree: if branch.d == d and branch.b == x: if any(branch.d == d and branch.a == x for branch in tree): return '+-', branch.c, branch.c elif any(branch.d == d and x > min(branch.a, branch.b) and x < max(branch.a, branch.b) for branch in tree): return '|-', branch.c, branch.c elif branch.a < branch.b: return '\'-', branch.c, branch.c else: return '.-', branch.c, branch.c for branch in tree: if branch.d == d and branch.a == x: return '+ ', branch.c, None for branch in tree: if (branch.d == d and x > min(branch.a, branch.b) and x < max(branch.a, branch.b)): return '| ', branch.c, was if was: return '--', was, was return ' ', None, None trunk = [] was = None for d in range(t_depth): t, c, was = branchrepr( (bid-(w-1), bd, rid-(w-1), tag), d, was) trunk.append('%s%s%s%s' % ( '\x1b[33m' if color and c == 'y' else '\x1b[31m' if color and c == 'r' else '\x1b[90m' if color and c == 'b' else '', t, ('>' if was else ' ') if d == t_depth-1 else '', '\x1b[m' if color and c else '')) return '%s ' % ''.join(trunk) # dynamically size the id field w_width = m.ceil(m.log10(max(1, btree.weight)+1)) # prbyd here means the last rendered rbyd, we update # in dbg_branch to always print interleaved addresses prbyd = None def dbg_branch(bid, w, rbyd, rid, tags, bd): nonlocal prbyd # show human-readable representation for i, (tag, j, d, data) in enumerate(tags): print('%10s %s%*s %-*s %s' % ( '%04x.%04x:' % (rbyd.block, rbyd.trunk) if prbyd is None or rbyd != prbyd else '', treerepr(bid, w, bd, rid, tag) if args.get('tree') or args.get('btree') else '', 2*w_width+1, '' if i != 0 else '%d-%d' % (bid-(w-1), bid) if w > 1 else bid if w > 0 else '', 21+w_width, tagrepr( tag, w if i == 0 else 0, len(data), None), next(xxd(data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '')) prbyd = rbyd # show in-device representation if args.get('device'): print('%9s %*s%*s %04x %08x %07x' % ( '', t_width, '', 2*w_width+1, '', tag, w if i == 0 else 0, len(data))) # show on-disk encoding of tags/data if args.get('raw'): for o, line in enumerate(xxd(rbyd.data[j:j+d])): print('%9s: %*s%*s %s' % ( '%04x' % (j + o*16), t_width, '', 2*w_width+1, '', line)) if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(data)): print('%9s: %*s%*s %s' % ( '%04x' % (j+d + o*16), t_width, '', 2*w_width+1, '', line)) # traverse and print entries bid = -1 prbyd = None ppath = [] corrupted = False while True: done, bid, w, rbyd, rid, tags, path = btree_lookup( bid+1, depth=args.get('depth')) if done: break # print inner btree entries if requested if args.get('inner'): changed = False for (x, px) in it.zip_longest( enumerate(path[:-1]), enumerate(ppath[:-1])): if x is None: break if not (changed or px is None or x != px): continue changed = True # show the inner entry d, (bid_, w_, rbyd_, rid_, tags_) = x dbg_branch(bid_, w_, rbyd_, rid_, tags_, d) ppath = path # corrupted? try to keep printing the tree if not rbyd: print('%04x.%04x: %*s%s%s%s' % ( rbyd.block, rbyd.trunk, t_width, '', '\x1b[31m' if color else '', '(corrupted rbyd %s)' % rbyd.addr(), '\x1b[m' if color else '')) prbyd = rbyd corrupted = True continue # if we're not showing inner nodes, prefer names higher in the tree # since this avoids showing vestigial names if not args.get('inner'): name = None for bid_, w_, rbyd_, rid_, tags_ in reversed(path): for tag_, j_, d_, data_ in tags_: if tag_ & 0x7f00 == TAG_NAME: name = (tag_, j_, d_, data_) if rid_-(w_-1) != 0: break if name is not None: tags = [name] + [(tag, j, d, data) for tag, j, d, data in tags if tag & 0x7f00 != TAG_NAME] # show the branch dbg_branch(bid, w, rbyd, rid, tags, len(path)-1) if args.get('error_on_corrupt') and corrupted: sys.exit(2) if __name__ == "__main__": import argparse import sys parser = argparse.ArgumentParser( description="Debug rbyd B-trees.", allow_abbrev=False) parser.add_argument( 'disk', help="File containing the block device.") parser.add_argument( 'roots', nargs='*', type=rbydaddr, help="Block address of the roots of the tree.") parser.add_argument( '-b', '--block-size', type=bdgeom, help="Block size/geometry in bytes.") parser.add_argument( '--block-count', type=lambda x: int(x, 0), help="Block count in blocks.") parser.add_argument( '--trunk', type=lambda x: int(x, 0), help="Use this offset as the trunk of the tree.") parser.add_argument( '--color', choices=['never', 'always', 'auto'], default='auto', help="When to use terminal colors. Defaults to 'auto'.") parser.add_argument( '-r', '--raw', action='store_true', help="Show the raw data including tag encodings.") parser.add_argument( '-x', '--device', action='store_true', help="Show the device-side representation of tags.") parser.add_argument( '-T', '--no-truncate', action='store_true', help="Don't truncate, show the full contents.") parser.add_argument( '-t', '--tree', action='store_true', help="Show the underlying rbyd trees.") parser.add_argument( '-B', '--btree', action='store_true', help="Show the underlying B-tree.") parser.add_argument( '-i', '--inner', action='store_true', help="Show inner branches.") parser.add_argument( '-z', '--depth', nargs='?', type=lambda x: int(x, 0), const=0, help="Depth of tree to show.") parser.add_argument( '-e', '--error-on-corrupt', action='store_true', help="Error if B-tree is corrupt.") sys.exit(main(**{k: v for k, v in vars(parser.parse_intermixed_args()).items() if v is not None}))