#!/usr/bin/env python3 # prevent local imports if __name__ == "__main__": __import__('sys').path.pop(0) import bisect import collections as co import functools as ft import itertools as it import math as mt import os import struct import sys try: import crc32c as crc32c_lib except ModuleNotFoundError: crc32c_lib = None TAG_NULL = 0x0000 ## 0x0000 v--- ---- ---- ---- TAG_CONFIG = 0x0000 ## 0x00tt v--- ---- -ttt tttt TAG_MAGIC = 0x0031 # 0x003r v--- ---- --11 --rr TAG_VERSION = 0x0034 # 0x0034 v--- ---- --11 -1-- TAG_RCOMPAT = 0x0035 # 0x0035 v--- ---- --11 -1-1 TAG_WCOMPAT = 0x0036 # 0x0036 v--- ---- --11 -11- TAG_OCOMPAT = 0x0037 # 0x0037 v--- ---- --11 -111 TAG_GEOMETRY = 0x0038 # 0x0038 v--- ---- --11 1--- TAG_NAMELIMIT = 0x0039 # 0x0039 v--- ---- --11 1--1 TAG_FILELIMIT = 0x003a # 0x003a v--- ---- --11 1-1- TAG_GDELTA = 0x0100 ## 0x01tt v--- ---1 -ttt ttrr TAG_GRMDELTA = 0x0100 # 0x0100 v--- ---1 ---- ---- TAG_NAME = 0x0200 ## 0x02tt v--- --1- -ttt tttt TAG_BNAME = 0x0200 # 0x0200 v--- --1- ---- ---- TAG_REG = 0x0201 # 0x0201 v--- --1- ---- ---1 TAG_DIR = 0x0202 # 0x0202 v--- --1- ---- --1- TAG_STICKYNOTE = 0x0203 # 0x0203 v--- --1- ---- --11 TAG_BOOKMARK = 0x0204 # 0x0204 v--- --1- ---- -1-- TAG_MNAME = 0x0220 # 0x0220 v--- --1- --1- ---- TAG_STRUCT = 0x0300 ## 0x03tt v--- --11 -ttt ttrr TAG_BRANCH = 0x0300 # 0x030r v--- --11 ---- --rr TAG_DATA = 0x0304 # 0x0304 v--- --11 ---- -1-- TAG_BLOCK = 0x0308 # 0x0308 v--- --11 ---- 1err TAG_DID = 0x0314 # 0x0314 v--- --11 ---1 -1-- TAG_BSHRUB = 0x0318 # 0x0318 v--- --11 ---1 1--- TAG_BTREE = 0x031c # 0x031c v--- --11 ---1 11rr TAG_MROOT = 0x0321 # 0x032r v--- --11 --1- --rr TAG_MDIR = 0x0325 # 0x0324 v--- --11 --1- -1rr TAG_MTREE = 0x032c # 0x032c v--- --11 --1- 11rr TAG_ATTR = 0x0400 ## 0x04aa v--- -1-a -aaa aaaa TAG_UATTR = 0x0400 # 0x04aa v--- -1-- -aaa aaaa TAG_SATTR = 0x0500 # 0x05aa v--- -1-1 -aaa aaaa TAG_SHRUB = 0x1000 ## 0x1kkk v--1 kkkk -kkk kkkk TAG_ALT = 0x4000 ## 0x4kkk v1cd kkkk -kkk kkkk TAG_B = 0x0000 TAG_R = 0x2000 TAG_LE = 0x0000 TAG_GT = 0x1000 TAG_CKSUM = 0x3000 ## 0x300p v-11 ---- ---- -pqq TAG_PHASE = 0x0003 TAG_PERTURB = 0x0004 TAG_NOTE = 0x3100 ## 0x3100 v-11 ---1 ---- ---- TAG_ECKSUM = 0x3200 ## 0x3200 v-11 --1- ---- ---- TAG_GCKSUMDELTA = 0x3300 ## 0x3300 v-11 --11 ---- ---- # some ways of block geometry representations # 512 -> 512 # 512x16 -> (512, 16) # 0x200x10 -> (512, 16) def bdgeom(s): s = s.strip() b = 10 if s.startswith('0x') or s.startswith('0X'): s = s[2:] b = 16 elif s.startswith('0o') or s.startswith('0O'): s = s[2:] b = 8 elif s.startswith('0b') or s.startswith('0B'): s = s[2:] b = 2 if 'x' in s: s, s_ = s.split('x', 1) return (int(s, b), int(s_, b)) else: return int(s, b) # parse some rbyd addr encodings # 0xa -> (0xa,) # 0xa.c -> ((0xa, 0xc),) # 0x{a,b} -> (0xa, 0xb) # 0x{a,b}.c -> ((0xa, 0xc), (0xb, 0xc)) def rbydaddr(s): s = s.strip() b = 10 if s.startswith('0x') or s.startswith('0X'): s = s[2:] b = 16 elif s.startswith('0o') or s.startswith('0O'): s = s[2:] b = 8 elif s.startswith('0b') or s.startswith('0B'): s = s[2:] b = 2 trunk = None if '.' in s: s, s_ = s.split('.', 1) trunk = int(s_, b) if s.startswith('{') and '}' in s: ss = s[1:s.find('}')].split(',') else: ss = [s] addr = [] for s in ss: if trunk is not None: addr.append((int(s, b), trunk)) else: addr.append(int(s, b)) return tuple(addr) def crc32c(data, crc=0): if crc32c_lib is not None: return crc32c_lib.crc32c(data, crc) else: crc ^= 0xffffffff for b in data: crc ^= b for j in range(8): crc = (crc >> 1) ^ ((crc & 1) * 0x82f63b78) return 0xffffffff ^ crc def pmul(a, b): r = 0 while b: if b & 1: r ^= a a <<= 1 b >>= 1 return r def crc32cmul(a, b): r = pmul(a, b) for _ in range(31): r = (r >> 1) ^ ((r & 1) * 0x82f63b78) return r def crc32ccube(a): return crc32cmul(crc32cmul(a, a), a) def popc(x): return bin(x).count('1') def parity(x): return popc(x) & 1 def fromle32(data, j=0): return struct.unpack('H', data[j:j+2].ljust(2, b'\0'))[0]; d += 2 weight, d_ = fromleb128(data, j+d); d += d_ size, d_ = fromleb128(data, j+d); d += d_ return tag>>15, tag&0x7fff, weight, size, d def frombranch(data, j=0): d = 0 block, d_ = fromleb128(data, j+d); d += d_ trunk, d_ = fromleb128(data, j+d); d += d_ cksum = fromle32(data, j+d); d += 4 return block, trunk, cksum, d def frombtree(data, j=0): d = 0 w, d_ = fromleb128(data, j+d); d += d_ block, trunk, cksum, d_ = frombranch(data, j+d); d += d_ return w, block, trunk, cksum, d def frommdir(data, j=0): blocks = [] d = 0 while j+d < len(data): block, d_ = fromleb128(data, j+d) blocks.append(block) d += d_ return tuple(blocks), d def fromshrub(data, j=0): d = 0 weight, d_ = fromleb128(data, j+d); d += d_ trunk, d_ = fromleb128(data, j+d); d += d_ return weight, trunk, d def frombptr(data, j=0): d = 0 size, d_ = fromleb128(data, j+d); d += d_ block, d_ = fromleb128(data, j+d); d += d_ off, d_ = fromleb128(data, j+d); d += d_ cksize, d_ = fromleb128(data, j+d); d += d_ cksum = fromle32(data, j+d); d += 4 return size, block, off, cksize, cksum, d def xxd(data, width=16): for i in range(0, len(data), width): yield '%-*s %-*s' % ( 3*width, ' '.join('%02x' % b for b in data[i:i+width]), width, ''.join( b if b >= ' ' and b <= '~' else '.' for b in map(chr, data[i:i+width]))) # human readable tag repr def tagrepr(tag, weight=None, size=None, *, global_=False, toff=None): # null tags if (tag & 0x6fff) == TAG_NULL: return '%snull%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', ' w%d' % weight if weight else '', ' %d' % size if size else '') # config tags elif (tag & 0x6f00) == TAG_CONFIG: return '%s%s%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 'magic' if (tag & 0xfff) == TAG_MAGIC else 'version' if (tag & 0xfff) == TAG_VERSION else 'rcompat' if (tag & 0xfff) == TAG_RCOMPAT else 'wcompat' if (tag & 0xfff) == TAG_WCOMPAT else 'ocompat' if (tag & 0xfff) == TAG_OCOMPAT else 'geometry' if (tag & 0xfff) == TAG_GEOMETRY else 'namelimit' if (tag & 0xfff) == TAG_NAMELIMIT else 'filelimit' if (tag & 0xfff) == TAG_FILELIMIT else 'config 0x%02x' % (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # global-state delta tags elif (tag & 0x6f00) == TAG_GDELTA: if global_: return '%s%s%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 'grm' if (tag & 0xfff) == TAG_GRMDELTA else 'gstate 0x%02x' % (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') else: return '%s%s%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 'grmdelta' if (tag & 0xfff) == TAG_GRMDELTA else 'gdelta 0x%02x' % (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # name tags, includes file types elif (tag & 0x6f00) == TAG_NAME: return '%s%s%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 'bname' if (tag & 0xfff) == TAG_BNAME else 'reg' if (tag & 0xfff) == TAG_REG else 'dir' if (tag & 0xfff) == TAG_DIR else 'stickynote' if (tag & 0xfff) == TAG_STICKYNOTE else 'bookmark' if (tag & 0xfff) == TAG_BOOKMARK else 'mname' if (tag & 0xfff) == TAG_MNAME else 'name 0x%02x' % (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # structure tags elif (tag & 0x6f00) == TAG_STRUCT: return '%s%s%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 'branch' if (tag & 0xfff) == TAG_BRANCH else 'data' if (tag & 0xfff) == TAG_DATA else 'block' if (tag & 0xfff) == TAG_BLOCK else 'did' if (tag & 0xfff) == TAG_DID else 'bshrub' if (tag & 0xfff) == TAG_BSHRUB else 'btree' if (tag & 0xfff) == TAG_BTREE else 'mroot' if (tag & 0xfff) == TAG_MROOT else 'mdir' if (tag & 0xfff) == TAG_MDIR else 'mtree' if (tag & 0xfff) == TAG_MTREE else 'struct 0x%02x' % (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # custom attributes elif (tag & 0x6e00) == TAG_ATTR: return '%s%sattr 0x%02x%s%s' % ( 'shrub' if tag & TAG_SHRUB else '', 's' if tag & 0x100 else 'u', ((tag & 0x100) >> 1) + (tag & 0xff), ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # alt pointers elif tag & TAG_ALT: return 'alt%s%s 0x%03x%s%s' % ( 'r' if tag & TAG_R else 'b', 'gt' if tag & TAG_GT else 'le', tag & 0x0fff, ' w%d' % weight if weight is not None else '', ' 0x%x' % (0xffffffff & (toff-size)) if size and toff is not None else ' -%d' % size if size else '') # checksum tags elif (tag & 0x7f00) == TAG_CKSUM: return 'cksum%s%s%s%s%s' % ( 'q%d' % (tag & 0x3), 'p' if tag & TAG_PERTURB else '', ' 0x%02x' % (tag & 0xff) if tag & 0xf8 else '', ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # note tags elif (tag & 0x7f00) == TAG_NOTE: return 'note%s%s%s' % ( ' 0x%02x' % (tag & 0xff) if tag & 0xff else '', ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # erased-state checksum tags elif (tag & 0x7f00) == TAG_ECKSUM: return 'ecksum%s%s%s' % ( ' 0x%02x' % (tag & 0xff) if tag & 0xff else '', ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # global-checksum delta tags elif (tag & 0x7f00) == TAG_GCKSUMDELTA: if global_: return 'gcksum%s%s%s' % ( ' 0x%02x' % (tag & 0xff) if tag & 0xff else '', ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') else: return 'gcksumdelta%s%s%s' % ( ' 0x%02x' % (tag & 0xff) if tag & 0xff else '', ' w%d' % weight if weight else '', ' %s' % size if size is not None else '') # unknown tags else: return '0x%04x%s%s' % ( tag, ' w%d' % weight if weight is not None else '', ' %d' % size if size is not None else '') # compute the difference between two paths, returning everything # in a after the paths diverge, as well as the relevant index def pathdelta(a, b): if not isinstance(a, list): a = list(a) i = 0 for a_, b_ in zip(a, b): try: if type(a_) == type(b_) and a_ == b_: i += 1 else: break # treat exceptions here as failure to match, most likely # the compared types are incompatible, it's the caller's # problem except Exception: break return [(i+j, a_) for j, a_ in enumerate(a[i:])] # a simple wrapper over an open file with bd geometry class Bd: def __init__(self, f, block_size=None, block_count=None): self.f = f self.block_size = block_size self.block_count = block_count def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'bd %sx%s' % (self.block_size, self.block_count) def read(self, block, off, size): self.f.seek(block*self.block_size + off) return self.f.read(size) def readblock(self, block): self.f.seek(block*self.block_size) return self.f.read(self.block_size) # tagged data in an rbyd class Rattr: def __init__(self, tag, weight, blocks, toff, tdata, data): self.tag = tag self.weight = weight if isinstance(blocks, int): self.blocks = (blocks,) else: self.blocks = blocks self.toff = toff self.tdata = tdata self.data = data @property def block(self): return self.blocks[0] @property def tsize(self): return len(self.tdata) @property def off(self): return self.toff + len(self.tdata) @property def size(self): return len(self.data) def __bytes__(self): return self.data def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return tagrepr(self.tag, self.weight, self.size) def __iter__(self): return iter((self.tag, self.weight, self.data)) def __eq__(self, other): return ((self.tag, self.weight, self.data) == (other.tag, other.weight, other.data)) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self.tag, self.weight, self.data)) # convenience for did/name access def _parse_name(self): # note we return a null name for non-name tags, this is so # vestigial names in btree nodes act as a catch-all if (self.tag & 0xff00) != TAG_NAME: did = 0 name = b'' else: did, d = fromleb128(self.data) name = self.data[d:] # cache both self.did = did self.name = name @ft.cached_property def did(self): self._parse_name() return self.did @ft.cached_property def name(self): self._parse_name() return self.name class Ralt: def __init__(self, tag, weight, blocks, toff, tdata, jump, color=None, followed=None): self.tag = tag self.weight = weight if isinstance(blocks, int): self.blocks = (blocks,) else: self.blocks = blocks self.toff = toff self.tdata = tdata self.jump = jump if color is not None: self.color = color else: self.color = 'r' if tag & TAG_R else 'b' self.followed = followed @property def block(self): return self.blocks[0] @property def tsize(self): return len(self.tdata) @property def off(self): return self.toff + len(self.tdata) @property def joff(self): return self.toff - self.jump def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return tagrepr(self.tag, self.weight, self.jump, toff=self.toff) def __iter__(self): return iter((self.tag, self.weight, self.jump)) def __eq__(self, other): return ((self.tag, self.weight, self.jump) == (other.tag, other.weight, other.jump)) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self.tag, self.weight, self.jump)) # our core rbyd type class Rbyd: def __init__(self, blocks, trunk, weight, rev, eoff, cksum, data, *, shrub=False, gcksumdelta=None, redund=0): if isinstance(blocks, int): self.blocks = (blocks,) else: self.blocks = blocks self.trunk = trunk self.weight = weight self.rev = rev self.eoff = eoff self.cksum = cksum self.data = data self.shrub = shrub self.gcksumdelta = gcksumdelta self.redund = redund @property def block(self): return self.blocks[0] @property def corrupt(self): # use redund=-1 to indicate corrupt rbyds return self.redund >= 0 def addr(self): if len(self.blocks) == 1: return '0x%x.%x' % (self.block, self.trunk) else: return '0x{%s}.%x' % ( ','.join('%x' % block for block in self.blocks), self.trunk) def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'rbyd %s w%s' % (self.addr(), self.weight) def __bool__(self): # use redund=-1 to indicate corrupt rbyds return self.redund >= 0 def __eq__(self, other): return ((frozenset(self.blocks), self.trunk) == (frozenset(other.blocks), other.trunk)) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((frozenset(self.blocks), self.trunk)) @classmethod def _fetch(cls, data, block, trunk=None): # fetch the rbyd rev = fromle32(data, 0) cksum = 0 cksum_ = crc32c(data[0:4]) cksum__ = cksum_ perturb = False eoff = 0 eoff_ = None j_ = 4 trunk_ = 0 trunk__ = 0 trunk___ = 0 weight = 0 weight_ = 0 weight__ = 0 gcksumdelta = None gcksumdelta_ = None while j_ < len(data) and (not trunk or eoff <= trunk): # read next tag v, tag, w, size, d = fromtag(data, j_) if v != parity(cksum__): break cksum__ ^= 0x00000080 if v else 0 cksum__ = crc32c(data[j_:j_+d], cksum__) j_ += d if not tag & TAG_ALT and j_ + size > len(data): break # take care of cksums if not tag & TAG_ALT: if (tag & 0xff00) != TAG_CKSUM: cksum__ = crc32c(data[j_:j_+size], cksum__) # found a gcksumdelta? if (tag & 0xff00) == TAG_GCKSUMDELTA: gcksumdelta_ = Rattr(tag, w, block, j_-d, data[j_-d:j_], data[j_:j_+size]) # found a cksum? else: # check cksum cksum___ = fromle32(data, j_) if cksum__ != cksum___: break # commit what we have eoff = eoff_ if eoff_ else j_ + size cksum = cksum_ trunk_ = trunk__ weight = weight_ gcksumdelta = gcksumdelta_ gcksumdelta_ = None # update perturb bit perturb = bool(tag & TAG_PERTURB) # revert to data cksum and perturb cksum__ = cksum_ ^ (0xfca42daf if perturb else 0) # evaluate trunks if (tag & 0xf000) != TAG_CKSUM: if not (trunk and j_-d > trunk and not trunk___): # new trunk? if not trunk___: trunk___ = j_-d weight__ = 0 # keep track of weight weight__ += w # end of trunk? if not tag & TAG_ALT: # update trunk/weight unless we found a shrub or an # explicit trunk (which may be a shrub) is requested if not tag & TAG_SHRUB or trunk___ == trunk: trunk__ = trunk___ weight_ = weight__ # keep track of eoff for best matching trunk if trunk and j_ + size > trunk: eoff_ = j_ + size eoff = eoff_ cksum = cksum__ ^ ( 0xfca42daf if perturb else 0) trunk_ = trunk__ weight = weight_ gcksumdelta = gcksumdelta_ trunk___ = 0 # update canonical checksum, xoring out any perturb state cksum_ = cksum__ ^ (0xfca42daf if perturb else 0) if not tag & TAG_ALT: j_ += size return cls(block, trunk_, weight, rev, eoff, cksum, data, gcksumdelta=gcksumdelta, redund=0 if trunk_ else -1) @classmethod def fetch(cls, bd, blocks, trunk=None): # multiple blocks? if not isinstance(blocks, int): # fetch all blocks rbyds = [cls.fetch(bd, block, trunk) for block in blocks] # determine most recent revision/trunk rev, trunk = None, None for rbyd in rbyds: # compare with sequence arithmetic if rbyd and ( rev is None or not ((rbyd.rev - rev) & 0x80000000) or (rbyd.rev == rev and rbyd.trunk > trunk)): rev, trunk = rbyd.rev, rbyd.trunk # sort for reproducibility rbyds.sort(key=lambda rbyd: ( # prioritize valid redund blocks 0 if rbyd and rbyd.rev == rev and rbyd.trunk == trunk else 1, # default to sorting by block rbyd.block)) # choose an active rbyd rbyd = rbyds[0] # keep track of the other blocks rbyd.blocks = tuple(rbyd.block for rbyd in rbyds) # keep track of how many redund blocks are valid rbyd.redund = -1 + sum(1 for rbyd in rbyds if rbyd and rbyd.rev == rev and rbyd.trunk == trunk) # and patch the gcksumdelta if we have one if rbyd.gcksumdelta is not None: rbyd.gcksumdelta.blocks = rbyd.blocks return rbyd # seek/read the block block = blocks data = bd.readblock(block) # fetch the rbyd return cls._fetch(data, block, trunk) @classmethod def fetchck(cls, bd, blocks, trunk, weight, cksum): # try to fetch the rbyd normally rbyd = cls.fetch(bd, blocks, trunk) # cksum mismatch? trunk/weight mismatch? if (rbyd.cksum != cksum or rbyd.trunk != trunk or rbyd.weight != weight): # mark as corrupt and keep track of expected trunk/weight rbyd.redund = -1 rbyd.trunk = trunk rbyd.weight = weight return rbyd @classmethod def fetchshrub(cls, rbyd, trunk): # steal the original rbyd's data # # this helps avoid race conditions with cksums and stuff shrub = cls._fetch(rbyd.data, rbyd.block, trunk) shrub.blocks = rbyd.blocks shrub.shrub = True return shrub def lookupnext(self, rid, tag=None, *, path=False): if not self or rid >= self.weight: if path: return None, None, [] else: return None, None tag = max(tag or 0, 0x1) lower = 0 upper = self.weight path_ = [] # descend down tree j = self.trunk while True: _, alt, w, jump, d = fromtag(self.data, j) # found an alt? if alt & TAG_ALT: # follow? if ((rid, tag & 0xfff) > (upper-w-1, alt & 0xfff) if alt & TAG_GT else ((rid, tag & 0xfff) <= (lower+w-1, alt & 0xfff))): lower += upper-lower-w if alt & TAG_GT else 0 upper -= upper-lower-w if not alt & TAG_GT else 0 j = j - jump if path: # figure out which color if alt & TAG_R: _, nalt, _, _, _ = fromtag(self.data, j+jump+d) if nalt & TAG_R: color = 'y' else: color = 'r' else: color = 'b' path_.append(Ralt( alt, w, self.blocks, j+jump, self.data[j+jump:j+jump+d], jump, color=color, followed=True)) # stay on path else: lower += w if not alt & TAG_GT else 0 upper -= w if alt & TAG_GT else 0 j = j + d if path: # figure out which color if alt & TAG_R: _, nalt, _, _, _ = fromtag(self.data, j) if nalt & TAG_R: color = 'y' else: color = 'r' else: color = 'b' path_.append(Ralt( alt, w, self.blocks, j-d, self.data[j-d:j], jump, color=color, followed=False)) # found tag else: rid_ = upper-1 tag_ = alt w_ = upper-lower if not tag_ or (rid_, tag_) < (rid, tag): if path: return None, None, path_ else: return None, None rattr_ = Rattr(tag_, w_, self.blocks, j, self.data[j:j+d], self.data[j+d:j+d+jump]) if path: return rid_, rattr_, path_ else: return rid_, rattr_ def lookup(self, rid, tag=None, mask=None, *, path=False): if tag is None: tag, mask = 0, 0xffff if mask is None: mask = 0 r = self.lookupnext(rid, tag & ~mask, path=path) if path: rid_, rattr_, path_ = r else: rid_, rattr_ = r if (rid_ is None or rid_ != rid or (rattr_.tag & ~mask & 0xfff) != (tag & ~mask & 0xfff)): if path: return None, path_ else: return None if path: return rattr_, path_ else: return rattr_ def rids(self, *, path=False): rid = -1 while True: r = self.lookupnext(rid, path=path) if path: rid, name, path_ = r else: rid, name = r # found end of tree? if rid is None: break if path: yield rid, name, path_ else: yield rid, name rid += 1 def rattrs(self, rid=None, tag=None, mask=None, *, path=False): if rid is None: rid, tag = -1, 0 while True: r = self.lookupnext(rid, tag+0x1, path=path) if path: rid, rattr, path_ = r else: rid, rattr = r # found end of tree? if rid is None: break if path: yield rid, rattr, path_ else: yield rid, rattr tag = rattr.tag else: if tag is None: tag, mask = 0, 0xffff if mask is None: mask = 0 tag_ = max((tag & ~mask) - 1, 0) while True: r = self.lookupnext(rid, tag_+0x1, path=path) if path: rid_, rattr_, path_ = r else: rid_, rattr_ = r # found end of tree? if (rid_ is None or rid_ != rid or (rattr_.tag & ~mask & 0xfff) != (tag & ~mask & 0xfff)): break if path: yield rattr_, path_ else: yield rattr_ tag_ = rattr_.tag # lookup by name def namelookup(self, did, name): # binary search best = None, None lower = 0 upper = self.weight while lower < upper: rid, name_ = self.lookupnext( lower + (upper-1-lower)//2) if rid is None: break # bisect search space if (name_.did, name_.name) > (did, name): upper = rid-(name_.weight-1) elif (name_.did, name_.name) < (did, name): lower = rid + 1 # keep track of best match best = rid, name_ else: # found a match return rid, name_ return best # our rbyd btree type class Btree: def __init__(self, bd, rbyd): self.bd = bd self.rbyd = rbyd @property def block(self): return self.rbyd.block @property def blocks(self): return self.rbyd.blocks @property def trunk(self): return self.rbyd.trunk @property def weight(self): return self.rbyd.weight @property def rev(self): return self.rbyd.rev @property def cksum(self): return self.rbyd.cksum @property def shrub(self): return self.rbyd.shrub def addr(self): return self.rbyd.addr() def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'btree %s w%s' % (self.addr(), self.weight) def __eq__(self, other): return self.rbyd == other.rbyd def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.rbyd) @classmethod def fetch(cls, bd, blocks, trunk=None): # rbyd fetch does most of the work here rbyd = Rbyd.fetch(bd, blocks, trunk) return cls(bd, rbyd) @classmethod def fetchck(cls, bd, blocks, trunk, weight, cksum): # rbyd fetchck does most of the work here rbyd = Rbyd.fetchck(bd, blocks, trunk, weight, cksum) return cls(bd, rbyd) @classmethod def fetchshrub(cls, bd, rbyd, trunk): shrub = Rbyd.fetchshrub(rbyd, trunk) return cls(bd, shrub) def lookupleaf(self, bid, *, path=False, depth=None): if not self or bid >= self.weight: if path: return None, None, None, None, [] else: return None, None, None, None rbyd = self.rbyd rid = bid depth_ = 1 path_ = [] while True: # corrupt branch? if not rbyd: if path: return bid, rbyd, rid, None, path_ else: return bid, rbyd, rid, None # first tag indicates the branch's weight rid_, name_ = rbyd.lookupnext(rid) if rid_ is None: if path: return None, None, None, None, path_ else: return None, None, None, None # keep track of path if path: path_.append((bid + (rid_-rid), rbyd, rid_, name_)) # find branch tag if there is one branch_ = rbyd.lookup(rid_, TAG_BRANCH, 0x3) # descend down branch? if branch_ is not None and ( not depth or depth_ < depth): block, trunk, cksum, _ = frombranch(branch_.data) rbyd = Rbyd.fetchck(self.bd, block, trunk, name_.weight, cksum) rid -= (rid_-(name_.weight-1)) depth_ += 1 else: if path: return bid + (rid_-rid), rbyd, rid_, name_, path_ else: return bid + (rid_-rid), rbyd, rid_, name_ # the non-leaf variants discard the rbyd info, these can be a bit # more convenient, but at a performance cost def lookupnext(self, bid, *, path=False, depth=None): # just discard the rbyd info r = self.lookupleaf(bid, path=path, depth=depth) if path: bid, rbyd, rid, name, path_ = r else: bid, rbyd, rid, name = r if path: return bid, name, path_ else: return bid, name def lookup(self, bid, tag=None, mask=None, *, path=False, depth=None): # lookup rbyd in btree # # note this function expects bid to be known, use lookupnext # first if you don't care about the exact bid (or better yet, # lookupleaf and call lookup on the returned rbyd) # # this matches rbyd's lookup behavior, which needs a known rid # to avoid a double lookup r = self.lookupleaf(bid, path=path, depth=depth) if path: bid_, rbyd_, rid_, name_, path_ = r else: bid_, rbyd_, rid_, name_ = r if bid_ is None or bid_ != bid: if path: return None, path_ else: return None # lookup tag in rbyd rattr_ = rbyd_.lookup(rid_, tag, mask) if rattr_ is None: if path: return None, path_ else: return None if path: return rattr_, path_ else: return rattr_ # note leaves only iterates over leaf rbyds, whereas traverse # traverses all rbyds def leaves(self, *, path=False, depth=None): # include our root rbyd even if the weight is zero if self.weight == 0: if path: yield -1, self.rbyd, [] else: yield -1, self.rbyd return bid = 0 while True: r = self.lookupleaf(bid, path=path, depth=depth) if r: bid, rbyd, rid, name, path_ = r else: bid, rbyd, rid, name = r if bid is None: break if path: yield (bid-rid + (rbyd.weight-1), rbyd, # path tail is usually redundant unless corrupt path_[:-1] if path_ and path_[-1][1] == rbyd else path_) else: yield bid-rid + (rbyd.weight-1), rbyd bid += rbyd.weight - rid + 1 def traverse(self, *, path=False, depth=None): ptrunk_ = [] for bid, rbyd, path_ in self.leaves( path=True, depth=depth): # we only care about the rbyds here trunk_ = ([(bid_-rid_ + (rbyd_.weight-1), rbyd_) for bid_, rbyd_, rid_, name_ in path_] + [(bid, rbyd)]) for d, (bid_, rbyd_) in pathdelta( trunk_, ptrunk_): # but include branch rids in the path if requested if path: yield bid_, rbyd_, path_[:d] else: yield bid_, rbyd_ ptrunk_ = trunk_ # note bids/rattrs do _not_ include corrupt btree nodes! def bids(self, *, leaves=False, path=False, depth=None): for r in self.leaves( path=path, depth=depth): if path: bid, rbyd, path_ = r else: bid, rbyd = r for rid, name in rbyd.rids(): bid_ = bid-(rbyd.weight-1) + rid if leaves: if path: yield (bid_, rbyd, rid, name, path_+[(bid_, rbyd, rid, name)]) else: yield bid_, rbyd, rid, name else: if path: yield (bid_, name, path_+[(bid_, rbyd, rid, name)]) else: yield bid_, name def rattrs(self, bid=None, tag=None, mask=None, *, leaves=False, path=False, depth=None): if bid is None: for r in self.leaves( path=path, depth=depth): if path: bid, rbyd, path_ = r else: bid, rbyd = r for rid, name in rbyd.rids(): bid_ = bid-(rbyd.weight-1) + rid for rattr in rbyd.rattrs(rid): if leaves: if path: yield (bid_, rbyd, rid, rattr, path_+[(bid_, rbyd, rid, name)]) else: yield bid_, rbyd, rid, rattr else: if path: yield (bid_, rattr, path_+[(bid_, rbyd, rid, name)]) else: yield bid_, rattr else: r = self.lookupleaf(bid, path=path, depth=depth) if path: bid, rbyd, rid, name, path_ = r else: bid, rbyd, rid, name = r if bid is None: return for rattr in rbyd.rattrs(rid, tag, mask): if leaves: if path: yield rbyd, rid, rattr, path_ else: yield rbyd, rid, rattr else: if path: yield rattr, path_ else: yield rattr # lookup by name def namelookupleaf(self, did, name, *, path=False, depth=None): rbyd = self.rbyd bid = 0 depth_ = 1 path_ = [] while True: # corrupt branch? if not rbyd: bid_ = bid+(rbyd.weight-1) if path: return bid_, rbyd, rbyd.weight-1, None, path_ else: return bid_, rbyd, rbyd.weight-1, None rid_, name_ = rbyd.namelookup(did, name) # keep track of path if path: path_.append((bid + rid_, rbyd, rid_, name_)) # find branch tag if there is one branch_ = rbyd.lookup(rid_, TAG_BRANCH, 0x3) # found another branch if branch_ is not None and ( not depth or depth_ < depth): block, trunk, cksum, _ = frombranch(branch_.data) rbyd = Rbyd.fetchck(self.bd, block, trunk, name_.weight, cksum) # update our bid bid += rid_ - (name_.weight-1) depth_ += 1 # found best match else: if path: return bid + rid_, rbyd, rid_, name_, path_ else: return bid + rid_, rbyd, rid_, name_ def namelookup(self, bid, *, path=False, depth=None): # just discard the rbyd info r = self.namelookupleaf(did, name, path=path, depth=depth) if path: bid, rbyd, rid, name, path_ = r else: bid, rbyd, rid, name = r if path: return bid, name, path_ else: return bid, name # a metadata id, this includes mbits for convenience class Mid: def __init__(self, mbid, mrid=None, *, mbits=None): # we need one of these to figure out mbits if mbits is not None: self.mbits = mbits elif isinstance(mbid, Mid): self.mbits = mbid.mbits else: assert mbits is not None, "mbits?" # accept other mids which can be useful for changing mrids if isinstance(mbid, Mid): mbid = mbid.mbid # accept either merged mid or separate mbid+mrid if mrid is None: mid = mbid mbid = mid | ((1 << self.mbits) - 1) mrid = mid & ((1 << self.mbits) - 1) # map mrid=-1 if mrid == ((1 << self.mbits) - 1): mrid = -1 self.mbid = mbid self.mrid = mrid @property def mid(self): return ((self.mbid & ~((1 << self.mbits) - 1)) | (self.mrid & ((1 << self.mbits) - 1))) def mbidrepr(self): return str(self.mbid >> self.mbits) def mridrepr(self): return str(self.mrid) def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return '%s.%s' % (self.mbidrepr(), self.mridrepr()) def __iter__(self): return iter((self.mbid, self.mrid)) # note this is slightly different from mid order when mrid=-1 def __eq__(self, other): if isinstance(other, Mid): return (self.mbid, self.mrid) == (other.mbid, other.mrid) else: return self.mid == other def __ne__(self, other): if isinstance(other, Mid): return (self.mbid, self.mrid) != (other.mbid, other.mrid) else: return self.mid != other def __hash__(self): return hash((self.mbid, self.mrid)) def __lt__(self, other): return (self.mbid, self.mrid) < (other.mbid, other.mrid) def __le__(self, other): return (self.mbid, self.mrid) <= (other.mbid, other.mrid) def __gt__(self, other): return (self.mbid, self.mrid) > (other.mbid, other.mrid) def __ge__(self, other): return (self.mbid, self.mrid) >= (other.mbid, other.mrid) # mdirs, the gooey atomic center of littlefs # # really the only difference between this and our rbyd class is the # implicit mbid associated with the mdir class Mdir: def __init__(self, mid, rbyd, *, mbits=None): # we need one of these to figure out mbits if mbits is not None: self.mbits = mbits elif isinstance(mid, Mid): self.mbits = mid.mbits elif isinstance(rbyd, Mdir): self.mbits = rbyd.mbits else: assert mbits is not None, "mbits?" # strip mrid, bugs will happen if caller relies on mrid here self.mid = Mid(mid, -1, mbits=self.mbits) # accept either another mdir or rbyd if isinstance(rbyd, Mdir): self.rbyd = rbyd.rbyd else: self.rbyd = rbyd @property def data(self): return self.rbyd.data @property def block(self): return self.rbyd.block @property def blocks(self): return self.rbyd.blocks @property def trunk(self): return self.rbyd.trunk @property def weight(self): return self.rbyd.weight @property def rev(self): return self.rbyd.rev @property def eoff(self): return self.rbyd.eoff @property def cksum(self): return self.rbyd.cksum @property def gcksumdelta(self): return self.rbyd.gcksumdelta @property def corrupt(self): return self.rbyd.corrupt @property def redund(self): return self.rbyd.redund def addr(self): if len(self.blocks) == 1: return '0x%x' % self.block else: return '0x{%s}' % ( ','.join('%x' % block for block in self.blocks)) def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'mdir %s %s w%s' % ( self.mid.mbidrepr(), self.addr(), self.weight) def __bool__(self): return bool(self.rbyd) # we _don't_ care about mid for equality, or trunk even def __eq__(self, other): return frozenset(self.blocks) == frozenset(other.blocks) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(frozenset(self.blocks)) @classmethod def fetch(cls, bd, mid, blocks, trunk=None): rbyd = Rbyd.fetch(bd, blocks, trunk) return cls(mid, rbyd, mbits=Mtree.mbits_(bd)) def lookupnext(self, mid, tag=None, *, path=False): # this is similar to rbyd lookupnext, we just error if # lookupnext changes mids if not isinstance(mid, Mid): mid = Mid(mid, mbits=self.mbits) r = self.rbyd.lookupnext(mid.mrid, tag, path=path) if path: rid, rattr, path_ = r else: rid, rattr = r if rid != mid.mrid: if path: return None, path_ else: return None if path: return rattr, path_ else: return rattr def lookup(self, mid, tag=None, mask=None, *, path=False): if not isinstance(mid, Mid): mid = Mid(mid, mbits=self.mbits) return self.rbyd.lookup(mid.mrid, tag, mask, path=path) def mids(self, *, path=False): for r in self.rbyd.rids( path=path): if path: rid, name, path_ = r else: rid, name = r mid = Mid(self.mid, rid) if path: yield mid, name, path_ else: yield mid, name def rattrs(self, mid=None, tag=None, mask=None, *, path=False): if mid is None: for r in self.rbyd.rattrs( path=path): if path: rid, rattr, path_ = r else: rid, rattr = r mid = Mid(self.mid, rid) if path: yield mid, rattr, path_ else: yield mid, rattr else: if not isinstance(mid, Mid): mid = Mid(mid, mbits=self.mbits) yield from self.rbyd.rattrs(mid.mrid, tag, mask, path=path) # lookup by name def namelookup(self, did, name): # unlike rbyd namelookup, we need an exact match here rid, name_ = self.rbyd.namelookup(did, name) if rid is None or (name_.did, name_.name) != (did, name): return None, None return Mid(self.mid, rid), name_ # the mtree, the skeletal structure of littlefs class Mtree: def __init__(self, bd, mrootchain, mtree, *, mrootpath=False, mtreepath=False, mbits=None): if isinstance(mrootchain, Mdir): mrootchain = [Mdir] # we at least need the mrootanchor, even if it is corrupt assert len(mrootchain) >= 1 self.bd = bd if mbits is not None: self.mbits = mbits else: self.mbits = Mtree.mbits_(self.bd) self.mrootchain = mrootchain self.mrootanchor = mrootchain[0] self.mroot = mrootchain[-1] self.mtree = mtree # mbits is a static value derived from the block_size @staticmethod def mbits_(block_size): if isinstance(block_size, Bd): block_size = block_size.block_size return mt.ceil(mt.log2(block_size)) - 3 # convenience function for creating mbits-dependent mids def mid(self, mbid, mrid=None): return Mid(mbid, mrid, mbits=self.mbits) @property def block(self): return self.mroot.block @property def blocks(self): return self.mroot.blocks @property def trunk(self): return self.mroot.trunk @property def weight(self): if self.mtree is None: return 0 else: return self.mtree.weight @property def mbweight(self): return self.weight @property def mrweight(self): return 1 << self.mbits def mbweightrepr(self): return str(self.mbweight >> self.mbits) def mrweightrepr(self): return str(self.mrweight) @property def rev(self): return self.mroot.rev @property def cksum(self): return self.mroot.cksum def addr(self): return self.mroot.addr() def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'mtree %s w%s.%s' % ( self.addr(), self.mbweightrepr(), self.mrweightrepr()) def __eq__(self, other): return self.mrootanchor == other.mrootanchor def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.mrootanchor) @classmethod def fetch(cls, bd, blocks=None, trunk=None, *, depth=None): # default to blocks 0x{0,1} if blocks is None: blocks = [0, 1] # figure out mbits mbits = Mtree.mbits_(bd) # fetch the mrootanchor mrootanchor = Mdir.fetch(bd, -1, blocks, trunk) # follow the mroot chain to try to find the active mroot mroot = mrootanchor mrootchain = [mrootanchor] mrootseen = set() while True: # corrupted? if not mroot: break # cycle detected? if mroot in mrootseen: break mrootseen.add(mroot) # stop here? if depth and len(mrootchain) >= depth: break # fetch the next mroot rattr_ = mroot.lookup(-1, TAG_MROOT, 0x3) if rattr_ is None: break blocks_, _ = frommdir(rattr_.data) mroot = Mdir.fetch(bd, -1, blocks_) mrootchain.append(mroot) # fetch the actual mtree, if there is one mtree = None if not depth or len(mrootchain) < depth: rattr_ = mroot.lookup(-1, TAG_MTREE, 0x3) if rattr_ is not None: w_, block_, trunk_, cksum_, _ = frombtree(rattr_.data) mtree = Btree.fetchck(bd, block_, trunk_, w_, cksum_) return cls(bd, mrootchain, mtree, mbits=mbits) def _lookupleaf(self, mid, *, path=False, depth=None): if not isinstance(mid, Mid): mid = self.mid(mid) if path or depth: # iterate over mrootchain path_ = [] for mroot in self.mrootchain: # stop here? if depth and len(path_) >= depth: if path: return mroot, path_ else: return mroot name = mroot.lookup(-1, TAG_MAGIC) path_.append((mroot.mid, mroot, name)) # no mtree? must be inlined in mroot if self.mtree is None: if mid.mbid != -1: if path: return None, path_ else: return None if path: return self.mroot, path_ else: return self.mroot # mtree? lookup in mtree else: # need to do two steps here in case lookupleaf stops early r = self.mtree.lookupleaf(mid.mid, path=path or depth, depth=depth-len(path_) if depth else None) if path or depth: bid_, rbyd_, rid_, name_, path__ = r path_.extend(path__) else: bid_, rbyd_, rid_, name_ = r if bid_ is None: if path: return None, path_ else: return None # corrupt btree node? if not rbyd_: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) # stop here? it's not an mdir, but we only return btree nodes # if explicitly requested if depth and len(path_) >= depth: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) # fetch the mdir rattr_ = rbyd_.lookup(rid_, TAG_MDIR, 0x3) # mdir tag missing? weird if rattr_ is None: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) blocks_, _ = frommdir(rattr_.data) mdir = Mdir.fetch(self.bd, mid, blocks_) if path: return mdir, path_ else: return mdir def lookupleaf(self, mid, *, mdirs_only=True, path=False, depth=None): # most of the logic is in _lookupleaf, this just helps # deduplicate the mdirs_only logic r = self._lookupleaf(mid, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None or ( mdirs_only and not isinstance(mdir, Mdir)): if path: return None, path_ else: return None if path: return mdir, path_ else: return mdir def lookup(self, mid, *, path=False, depth=None): if not isinstance(mid, Mid): mid = self.mid(mid) # lookup the relevant mdir r = self.lookupleaf(mid, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None: if path: return None, None, path_ else: return None, None # not in mdir? if mid.mrid >= mdir.weight: if path: return None, None, path_ else: return None, None # lookup mid in mdir rattr = mdir.lookup(mid) if path: return mdir, rattr, path_+[(mid, mdir, rattr)] else: return mdir, rattr # iterate over all mdirs, this includes the mrootchain def _leaves(self, *, path=False, depth=None): # iterate over mrootchain if path or depth: path_ = [] for mroot in self.mrootchain: if path: yield mroot, path_ else: yield mroot if path or depth: # stop here? if depth and len(path_) >= depth: return name = mroot.lookup(-1, TAG_MAGIC) path_.append((mroot.mid, mroot, name)) # do we even have an mtree? if self.mtree is not None: # include the mtree root even if the weight is zero if self.mtree.weight == 0: if path: yield -1, self.mtree.rbyd, path_ else: yield -1, self.mtree.rbyd return mid = self.mid(0) while True: r = self.lookupleaf(mid, mdirs_only=False, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None: break # mdir? if isinstance(mdir, Mdir): if path: yield mdir, path_ else: yield mdir mid = self.mid(mid.mbid+1) # btree node? else: bid, rbyd, rid = mdir if path: yield ((bid-rid + (rbyd.weight-1), rbyd), # path tail is usually redundant unless corrupt path_[:-1] if path_ and isinstance(path_[-1][1], Rbyd) and path_[-1][1] == rbyd else path_) else: yield (bid-rid + (rbyd.weight-1), rbyd) mid = self.mid(bid-rid + (rbyd.weight-1) + 1) def leaves(self, *, mdirs_only=False, path=False, depth=None): for r in self._leaves( path=path, depth=depth): if path: mdir, path_ = r else: mdir = r if mdirs_only and not isinstance(mdir, Mdir): continue if path: yield mdir, path_ else: yield mdir # traverse over all mdirs and btree nodes # - mdir => Mdir # - btree node => (bid, rbyd) def _traverse(self, *, path=False, depth=None): ptrunk_ = [] for mdir, path_ in self.leaves( path=True, depth=depth): # we only care about the mdirs/rbyds here trunk_ = ([(lambda mid_, mdir_, name_: mdir_)(*p) if isinstance(p[1], Mdir) else (lambda bid_, rbyd_, rid_, name_: (bid_-rid_ + (rbyd_.weight-1), rbyd_))(*p) for p in path_] + [mdir]) for d, mdir in pathdelta( trunk_, ptrunk_): # but include branch mids/rids in the path if requested if path: yield mdir, path_[:d] else: yield mdir ptrunk_ = trunk_ def traverse(self, *, mdirs_only=False, path=False, depth=None): for r in self._traverse( path=path, depth=depth): if path: mdir, path_ = r else: mdir = r if mdirs_only and not isinstance(mdir, Mdir): continue if path: yield mdir, path_ else: yield mdir # these are just aliases # the difference between mdirs and leaves is mdirs defaults to only # mdirs, leaves can include btree nodes if corrupt def mdirs(self, *, mdirs_only=True, path=False, depth=None): return self.leaves( mdirs_only=mdirs_only, path=path, depth=depth) # note mids/rattrs do _not_ include corrupt btree nodes! def mids(self, *, mdirs_only=True, path=False, depth=None): for r in self.mdirs( mdirs_only=mdirs_only, path=path, depth=depth): if path: mdir, path_ = r else: mdir = r if isinstance(mdir, Mdir): for mid, name in mdir.mids(): if path: yield (mid, mdir, name, path_+[(mid, mdir, name)]) else: yield mid, mdir, name else: bid, rbyd = mdir for rid, name in rbyd.rids(): bid_ = bid-(rbyd.weight-1) + rid mid_ = self.mid(bid_) mdir_ = (bid_, rbyd, rid) if path: yield (mid_, mdir_, name, path_+[(bid_, rbyd, rid, name)]) else: yield mid_, mdir_, name def rattrs(self, mid=None, tag=None, mask=None, *, mdirs_only=True, path=False, depth=None): if mid is None: for r in self.mdirs( mdirs_only=mdirs_only, path=path, depth=depth): if path: mdir, path_ = r else: mdir = r if isinstance(mdir, Mdir): for mid, rattr in mdir.rattrs(): if path: yield (mid, mdir, rattr, path_+[(mid, mdir, mdir.lookup(mid))]) else: yield mid, mdir, rattr else: bid, rbyd = mdir for rid, name in rbyd.rids(): bid_ = bid-(rbyd.weight-1) + rid mid_ = self.mid(bid_) mdir_ = (bid_, rbyd, rid) for rattr in rbyd.rattrs(rid): if path: yield (mid_, mdir_, rattr, path_+[(bid_, rbyd, rid, name)]) else: yield mid_, mdir_, rattr else: if not isinstance(mid, Mid): mid = self.mid(mid) r = self.lookupleaf(mid, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None or ( mdirs_only and not isinstance(mdir, Mdir)): return if isinstance(mdir, Mdir): for rattr in mdir.rattrs(mid, tag, mask): if path: yield rattr, path_ else: yield rattr else: bid, rbyd, rid = mdir for rattr in rbyd.rattrs(rid, tag, mask): if path: yield rattr, path_ else: yield rattr # lookup by name def _namelookupleaf(self, did, name, *, path=False, depth=None): if path or depth: # iterate over mrootchain path_ = [] for mroot in self.mrootchain: # stop here? if depth and len(path_) >= depth: if path: return mroot, path_ else: return mroot name = mroot.lookup(-1, TAG_MAGIC) path_.append((mroot.mid, mroot, name)) # no mtree? must be inlined in mroot if self.mtree is None: if path: return self.mroot, path_ else: return self.mroot # mtree? find name in mtree else: # need to do two steps here in case namelookupleaf stops early r = self.mtree.namelookupleaf(did, name, path=path or depth, depth=depth-len(path_) if depth else None) if path or depth: bid_, rbyd_, rid_, name_, path__ = r path_.extend(path__) else: bid_, rbyd_, rid_, name_ = r if bid_ is None: if path: return None, path_ else: return None # corrupt btree node? if not rbyd_: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) # stop here? it's not an mdir, but we only return btree nodes # if explicitly requested if depth and len(path_) >= depth: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) # fetch the mdir rattr_ = rbyd_.lookup(rid_, TAG_MDIR, 0x3) # mdir tag missing? weird if rattr_ is None: if path: return (bid_, rbyd_, rid_), path_ else: return (bid_, rbyd_, rid_) blocks_, _ = frommdir(rattr_.data) mdir = Mdir.fetch(self.bd, self.mid(bid_), blocks_) if path: return mdir, path_ else: return mdir def namelookupleaf(self, did, name, *, mdirs_only=True, path=False, depth=None): # most of the logic is in _namelookupleaf, this just helps # deduplicate the mdirs_only logic r = self._namelookupleaf(did, name, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None or ( mdirs_only and not isinstance(mdir, Mdir)): if path: return None, path_ else: return None if path: return mdir, path_ else: return mdir def namelookup(self, did, name, *, path=False, depth=None): # lookup the relevant mdir r = self.namelookupleaf(did, name, path=path, depth=depth) if path: mdir, path_ = r else: mdir = r if mdir is None: if path: return None, None, None, path_ else: return None, None, None # find name in mdir mid_, name_ = mdir.namelookup(did, name) if mid_ is None: if path: return None, None, None, path_ else: return None, None, None if path: return mid_, mdir, name_, path_+[(mid_, mdir, name_)] else: return mid_, mdir, name_ # in-btree block pointers class Bptr: def __init__(self, rattr, block, off, size, cksize, cksum, ckdata, *, corrupt=False): self.rattr = rattr self.block = block self.off = off self.size = size self.cksize = cksize self.cksum = cksum self.ckdata = ckdata self.corrupt = corrupt @property def tag(self): return self.rattr.tag @property def weight(self): return self.rattr.weight # this is just for consistency with btrees, rbyds, etc @property def blocks(self): return [self.block] # try to avoid unnecessary allocations @ft.cached_property def data(self): return self.ckdata[self.off:self.off+self.size] def addr(self): return '0x%x.%x' % (self.block, self.off) def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return '%sblock %s w%s %s' % ( 'shrub' if self.tag & TAG_SHRUB else '', self.addr(), self.weight, self.size) # lazily check the cksum @ft.cached_property def corrupt(self): cksum_ = crc32c(self.ckdata) return (cksum_ != self.cksum) @property def redund(self): return -1 if self.corrupt else 0 def __bool__(self): return not self.corrupt @classmethod def fetch(cls, bd, rattr, block, off, size, cksize, cksum): # seek/read cksize bytes from the block, the actual data should # always be a subset of cksize ckdata = bd.read(block, 0, cksize) return cls(rattr, block, off, size, cksize, cksum, ckdata) @classmethod def fetchck(cls, bd, rattr, blocks, off, size, cksize, cksum): # fetch the bptr normally bptr = cls.fetch(bd, rattr, blocks, off, size, cksize, cksum) # bit of a hack, but this exposes the lazy cksum checker del bptr.corrupt return bptr # yeah, so, this doesn't catch mismatched cksizes, but at least the # underlying data should be identical assuming no mutation def __eq__(self, other): return ((self.block, self.off, self.size) == (other.block, other.off, other.size)) def __ne__(self, other): return ((self.block, self.off, self.size) != (other.block, other.off, other.size)) def __hash__(self): return hash((self.block, self.off, self.size)) # lazy config object class Config: def __init__(self, mroot): self.mroot = mroot # lookup a specific tag def lookup(self, tag=None, mask=None): rattr = self.mroot.rbyd.lookup(-1, tag, mask) if rattr is None: return None return self._parse(rattr.tag, rattr) def __getitem__(self, key): if not isinstance(key, tuple): key = (key,) return self.lookup(*key) def __contains__(self, key): if not isinstance(key, tuple): key = (key,) return self.lookup(*key) is not None def __iter__(self): for rattr in self.mroot.rbyd.rattrs(-1, TAG_CONFIG, 0xff): yield self._parse(rattr.tag, rattr) # common config operations class Config: tag = None mask = None def __init__(self, mroot, tag, rattr): # replace tag with what we find self.tag = tag # and keep track of rattr self.rattr = rattr @property def block(self): return self.rattr.block @property def blocks(self): return self.rattr.blocks @property def toff(self): return self.rattr.toff @property def tdata(self): return self.rattr.data @property def off(self): return self.rattr.off @property def data(self): return self.rattr.data @property def size(self): return self.rattr.size def __bytes__(self): return self.data def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return self.rattr.repr() def __iter__(self): return iter((self.tag, self.data)) def __eq__(self, other): return (self.tag, self.data) == (other.tag, other.data) def __ne__(self, other): return (self.tag, self.data) != (other.tag, other.data) def __hash__(self): return hash((self.tag, self.data)) # marker class for unknown config class Unknown(Config): pass # special handling for known configs # the filesystem magic string class Magic(Config): tag = TAG_MAGIC mask = 0x3 def repr(self): return 'magic \"%s\"' % ( ''.join(b if b >= ' ' and b <= '~' else '.' for b in map(chr, self.data))) # version tuple class Version(Config): tag = TAG_VERSION def __init__(self, mroot, tag, rattr): super().__init__(mroot, tag, rattr) d = 0 self.major, d_ = fromleb128(self.data, d); d += d_ self.minor, d_ = fromleb128(self.data, d); d += d_ @property def tuple(self): return (self.major, self.minor) def repr(self): return 'version v%s.%s' % (self.major, self.minor) # compat flags class Rcompat(Config): tag = TAG_RCOMPAT def repr(self): return 'rcompat 0x%s' % ( ''.join('%02x' % f for f in reversed(self.data))) class Wcompat(Config): tag = TAG_WCOMPAT def repr(self): return 'wcompat 0x%s' % ( ''.join('%02x' % f for f in reversed(self.data))) class Ocompat(Config): tag = TAG_OCOMPAT def repr(self): return 'ocompat 0x%s' % ( ''.join('%02x' % f for f in reversed(self.data))) # block device geometry class Geometry(Config): tag = TAG_GEOMETRY def __init__(self, mroot, tag, rattr): super().__init__(mroot, tag, rattr) d = 0 block_size, d_ = fromleb128(self.data, d); d += d_ block_count, d_ = fromleb128(self.data, d); d += d_ # these are offset by 1 to avoid overflow issues self.block_size = block_size + 1 self.block_count = block_count + 1 def repr(self): return 'geometry %sx%s' % (self.block_size, self.block_count) # file name limit class NameLimit(Config): tag = TAG_NAMELIMIT def __init__(self, mroot, tag, rattr): super().__init__(mroot, tag, rattr) self.limit, _ = fromleb128(self.data) def __int__(self): return self.limit def repr(self): return 'namelimit %s' % self.limit # file size limit class FileLimit(Config): tag = TAG_FILELIMIT def __init__(self, mroot, tag, rattr): super().__init__(mroot, tag, rattr) self.limit, _ = fromleb128(self.data) def __int__(self): return self.limit def repr(self): return 'filelimit %s' % self.limit # keep track of known configs _known = [c for c in Config.__subclasses__() if c.tag is not None] # parse if known def _parse(self, tag, rattr): # known config? for c in self._known: if (c.tag & ~(c.mask or 0)) == (tag & ~(c.mask or 0)): return c(self.mroot, tag, rattr) # otherwise return a marker class else: return self.Unknown(self.mroot, tag, rattr) # create cached accessors for known config def _parser(c): def _parser(self): return self.lookup(c.tag, c.mask) return _parser for c in _known: locals()[c.__name__.lower()] = ft.cached_property(_parser(c)) # lazy gstate object class Gstate: def __init__(self, mtree): self.mtree = mtree # lookup a specific tag def lookup(self, tag=None, mask=None): # collect relevant gdeltas in the mtree gdeltas = [] for mdir in self.mtree.mdirs(): # gcksumdelta is a bit special since it's outside the # rbyd tree if tag == TAG_GCKSUMDELTA: gdelta = mdir.gcksumdelta else: gdelta = mdir.rbyd.lookup(-1, tag, mask) if gdelta is not None: gdeltas.append((mdir.mid, gdelta)) # xor to find gstate return self._parse(tag, gdeltas) def __getitem__(self, key): if not isinstance(key, tuple): key = (key,) return self.lookup(*key) def __contains__(self, key): # note gstate doesn't really "not exist" like normal attrs, # missing gstate is equivalent to zero gstate, but we can # still test if there are any gdeltas that match the given # tag here if not isinstance(key, tuple): key = (key,) return any( (mdir.gcksumdelta if tag == TAG_GCKSUMDELTA else mdir.rbyd.lookup(-1, *key)) is not None for mdir in self.mtree.mdirs()) def __iter__(self): # first figure out what gstate tags actually exist in the # filesystem gtags = set() for mdir in self.mtree.mdirs(): if mdir.gcksumdelta is not None: gtags.add(TAG_GCKSUMDELTA) for rattr in mdir.rbyd.rattrs(-1): if (rattr.tag & 0xff00) == TAG_GDELTA: gtags.add(rattr.tag) # sort to keep things stable, moving gcksum to the front gtags = sorted(gtags, key=lambda t: (-(t & 0xf000), t)) # compute all gstate in one pass (well, two technically) gdeltas = {tag: [] for tag in gtags} for mdir in self.mtree.mdirs(): for tag in gtags: # gcksumdelta is a bit special since it's outside the # rbyd tree if tag == TAG_GCKSUMDELTA: gdelta = mdir.gcksumdelta else: gdelta = mdir.rbyd.lookup(-1, tag) if gdelta is not None: gdeltas[tag].append((mdir.mid, gdelta)) for tag in gtags: # xor to find gstate yield self._parse(tag, gdeltas[tag]) # common gstate operations class Gstate: tag = None mask = None def __init__(self, mtree, tag, gdeltas): # replace tag with what we find self.tag = tag # keep track of gdeltas for debugging self.gdeltas = gdeltas # xor together to build our gstate data = bytes() for mid, gdelta in gdeltas: data = bytes( a^b for a, b in it.zip_longest( data, gdelta.data, fillvalue=0)) self.data = data @property def size(self): return len(self.data) def __bytes__(self): return self.data def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return tagrepr(self.tag, 0, self.size, global_=True) def __iter__(self): return iter((self.tag, self.data)) def __eq__(self, other): return (self.tag, self.data) == (other.tag, other.data) def __ne__(self, other): return (self.tag, self.data) != (other.tag, other.data) def __hash__(self): return hash((self.tag, self.data)) # marker class for unknown gstate class Unknown(Gstate): pass # special handling for known gstate # the global-checksum, cubed class Gcksum(Gstate): tag = TAG_GCKSUMDELTA def __init__(self, mtree, tag, gdeltas): super().__init__(mtree, tag, gdeltas) self.gcksum = fromle32(self.data) def __int__(self): return self.gcksum def repr(self): return 'gcksum %08x' % self.gcksum # any global-removes class Grm(Gstate): tag = TAG_GRMDELTA def __init__(self, mtree, tag, gdeltas): super().__init__(mtree, tag, gdeltas) queue = [] d = 0 for _ in range(2): mid, d_ = fromleb128(self.data, d); d += d_ # a null mid (mid=0.0) terminates the grm queue if not mid: break mid = mtree.mid(mid) # map mbids -> -1 if mroot-inlined if mtree.mtree is None: mid = mtree.mid(-1, mid.mrid) queue.append(mid) self.queue = queue def repr(self): return 'grm [%s]' % ', '.join(mid.repr() for mid in self.queue) # keep track of known gstate _known = [g for g in Gstate.__subclasses__() if g.tag is not None] # parse if known def _parse(self, tag, gdeltas): # known config? for g in self._known: if (g.tag & ~(g.mask or 0)) == (tag & ~(g.mask or 0)): return g(self.mtree, tag, gdeltas) # otherwise return a marker class else: return Unknown(self.mtree, tag, gdeltas) # create cached accessors for known gstate def _parser(g): def _parser(self): return self.lookup(g.tag, g.mask) return _parser for g in _known: locals()[g.__name__.lower()] = ft.cached_property(_parser(g)) # high-level littlefs representation class Lfs3: def __init__(self, bd, mtree, config=None, gstate=None, cksum=None, *, corrupt=False): self.bd = bd self.mtree = mtree # create lazy config/gstate objects self.config = config or Config(self.mroot) self.gstate = gstate or Gstate(self.mtree) # go ahead and fetch some expected fields self.version = self.config.version self.rcompat = self.config.rcompat self.wcompat = self.config.wcompat self.ocompat = self.config.ocompat if self.config.geometry is not None: self.block_count = self.config.geometry.block_count self.block_size = self.config.geometry.block_size else: self.block_count = self.bd.block_count self.block_size = self.bd.block_size # calculate on-disk gcksum if cksum is None: cksum = 0 for mdir in self.mtree.mdirs(): cksum ^= mdir.cksum self.cksum = cksum # is the filesystem corrupt? self.corrupt = corrupt # create the root directory, this is a bit of a special case self.root = self.Root(self) # mbits is a static value derived from the block_size @staticmethod def mbits_(block_size): return Mtree.mbits_(block_size) @property def mbits(self): return self.mtree.mbits # convenience function for creating mbits-dependent mids def mid(self, mbid, mrid=None): return self.mtree.mid(mbid, mrid) # most of our fields map to the mtree @property def block(self): return self.mroot.block @property def blocks(self): return self.mroot.blocks @property def trunk(self): return self.mroot.trunk @property def rev(self): return self.mroot.rev @property def weight(self): return self.mtree.weight @property def mbweight(self): return self.mtree.mbweight @property def mrweight(self): return self.mtree.mrweight def mbweightrepr(self): return self.mtree.mbweightrepr() def mrweightrepr(self): return self.mtree.mrweightrepr() @property def mrootchain(self): return self.mtree.mrootchain @property def mrootanchor(self): return self.mtree.mrootanchor @property def mroot(self): return self.mtree.mroot def addr(self): return self.mroot.addr() def __repr__(self): return '<%s %s>' % (self.__class__.__name__, self.repr()) def repr(self): return 'littlefs v%s.%s %sx%s %s w%s.%s' % ( self.version.major if self.version is not None else '?', self.version.minor if self.version is not None else '?', self.block_size if self.block_size is not None else '?', self.block_count if self.block_count is not None else '?', self.addr(), self.mbweightrepr(), self.mrweightrepr()) def __bool__(self): return not self.corrupt def __eq__(self, other): return self.mrootanchor == other.mrootanchor def __ne__(self, other): return self.mrootanchor != other.mrootanchor def __hash__(self): return hash(self.mrootanchor) @classmethod def fetch(cls, bd, blocks=None, trunk=None, *, depth=None, no_ck=False, no_ckmroot=False, no_ckmagic=False, no_ckgcksum=False): # Mtree does most of the work here mtree = Mtree.fetch(bd, blocks, trunk, depth=depth) # create lfs object lfs = cls(bd, mtree) # don't check anything? if no_ck: return lfs # check mroot if (not no_ckmroot and not lfs.corrupt and not lfs.ckmroot()): lfs.corrupt = True # check magic if (not no_ckmagic and not lfs.corrupt and not lfs.ckmagic()): lfs.corrupt = True # check gcksum if (not no_ckgcksum and not lfs.corrupt and not lfs.ckgcksum()): lfs.corrupt = True return lfs # check that the mroot is valid def ckmroot(self): return bool(self.mroot) # check that the magic string is littlefs def ckmagic(self): if self.config.magic is None: return False return self.config.magic.data == b'littlefs' # check that the gcksum checks out def ckgcksum(self): return crc32ccube(self.cksum) == int(self.gstate.gcksum) # read custom attrs def uattrs(self): return self.mroot.rattrs(-1, TAG_UATTR, 0xff) def sattrs(self): return self.mroot.rattrs(-1, TAG_SATTR, 0xff) def attrs(self): yield from self.uattrs() yield from self.sattrs() # is file in grm queue? def grmed(self, mid): if not isinstance(mid, Mid): mid = self.mid(mid) return mid in self.gstate.grm.queue # lookup operations def lookup(self, mid, mdir=None, *, all=False): import builtins all_, all = all, builtins.all # is this mid grmed? if not all_ and self.grmed(mid): return None if mdir is None: mdir, name = self.mtree.lookup(mid) if mdir is None: return None else: name = mdir.lookup(mid) # stickynote? if not all_ and name.tag == TAG_STICKYNOTE: return None return self._open(mid, mdir, name.tag, name) def namelookup(self, did, name, *, all=False): import builtins all_, all = all, builtins.all mid_, mdir_, name_ = self.mtree.namelookup(did, name) if mid_ is None: return None # is this mid grmed? if not all_ and self.grmed(mid_): return None # stickynote? if not all_ and name_.tag == TAG_STICKYNOTE: return None return self._open(mid_, mdir_, name_.tag, name_) class PathError(Exception): pass # split a path into its components # # note this follows littlefs's internal logic, so dots and dotdot # entries get resolved _before_ walking the path @staticmethod def pathsplit(path): path_ = path if isinstance(path_, str): path_ = path_.encode('utf8') # empty path? if path_ == b'': raise Lfs3.PathError("invalid path: %r" % path) path__ = [] for p in path_.split(b'/'): # skip multiple slashes and dots if p == b'' or p == b'.': continue path__.append(p) path_ = path__ # resolve dotdots path__ = [] dotdots = 0 for p in reversed(path_): if p == b'..': dotdots += 1 elif dotdots: dotdots -= 1 else: path__.append(p) if dotdots: raise Lfs3.PathError("invalid path: %r" % path) path__.reverse() path_ = path__ return path_ def pathlookup(self, did, path_=None, *, all=False, path=False, depth=None): import builtins all_, all = all, builtins.all # default to the root directory if path_ is None: did, path_ = 0, did # parse/split the path if isinstance(path_, (bytes, str)): path_ = self.pathsplit(path_) # start at the root dir dir = self.root did = did if path or depth: path__ = [] for p in path_: # lookup the next file file = self.namelookup(did, p, all=all_) if file is None: if path: return None, path__ else: return None # file? done? if not file.recursable: if path: return file, path__ else: return file # recurse down the file tree dir = file did = dir.did if path or depth: path__.append(dir) # stop here? if depth and len(path__) >= depth: if path: return None, path__ else: return None if path: return dir, path__ else: return dir def files(self, did=None, *, all=False, path=False, depth=None): import builtins all_, all = all, builtins.all # default to the root directory did = did or self.root.did # start with the bookmark entry mid, mdir, name = self.mtree.namelookup(did, b'') # no bookmark? weird if mid is None: return # iterate over files until we find a different did while name.did == did: # yield file, hiding grms, stickynotes, etc, by default if all_ or (not self.grmed(mid) and not name.tag == TAG_BOOKMARK and not name.tag == TAG_STICKYNOTE): file = self._open(mid, mdir, name.tag, name) if path: yield file, [] else: yield file # recurse? if (file.recursable and depth is not None and (depth == 0 or depth > 1)): for r in self.files(file.did, all=all_, path=path, depth=depth-1 if depth else 0): if path: file_, path_ = r yield file_, [file]+path_ else: file_ = r yield file_ # increment mid and find the next mdir if needed mbid, mrid = mid.mbid, mid.mrid + 1 if mrid == mdir.weight: mbid, mrid = mbid + (1 << self.mbits), 0 mdir = self.mtree.lookupleaf(mbid) if mdir is None: break # lookup name and adjust rid if necessary, you don't # normally need to do this, but we don't want the iteration # to terminate early on a corrupt filesystem mrid, name = mdir.rbyd.lookupnext(mrid) if mrid is None: break mid = self.mid(mbid, mrid) def orphans(self, all=False): import builtins all_, all = all, builtins.all # first find all reachable dids dids = {self.root.did} for file in self.files(depth=mt.inf): if file.recursable: dids.add(file.did) # then iterate over all dids and yield any that aren't reachable for mid, mdir, name in self.mtree.mids(): # is this mid grmed? if not all_ and self.grmed(mid): continue # stickynote? if not all_ and name.tag == TAG_STICKYNOTE: continue # unreachable? note this lazily parses the did if name.did not in dids: file = self._open(mid, mdir, name.tag, name) # mark as orphaned file.orphaned = True yield file # traverse the filesystem def traverse(self, *, mtree_only=False, shrubs=False, fragments=False, path=False): # traverse the mtree for r in self.mtree.traverse( path=path): if path: mdir, path_ = r else: mdir = r # mdir? if isinstance(mdir, Mdir): if path: yield mdir, path_ else: yield mdir # btree node? we only care about the rbyd for simplicity else: bid, rbyd = mdir if path: yield rbyd, path_ else: yield rbyd # traverse file bshrubs/btrees if not mtree_only and isinstance(mdir, Mdir): for mid, name in mdir.mids(): file = self._open(mid, mdir, name.tag, name) for r in file.traverse( path=path): if path: pos, data, path__ = r path__ = [(mid, mdir, name)]+path__ else: pos, data = r # inlined data? we usually ignore these if isinstance(data, Rattr): if fragments: if path: yield data, path_+path__ else: yield data # block pointer? elif isinstance(data, Bptr): if path: yield data, path_+path__ else: yield data # bshrub/btree node? we only care about the rbyd # for simplicity, we also usually ignore shrubs # since these live the the parent mdir else: if shrubs or not data.shrub: if path: yield data, path_+path__ else: yield data # common file operations, note Reg extends this for regular files class File: tag = None mask = None internal = False recursable = False grmed = False orphaned = False def __init__(self, lfs, mid, mdir, tag, name): self.lfs = lfs self.mid = mid self.mdir = mdir # replace tag with what we find self.tag = tag self.name = name # fetch the file structure if there is one self.struct = mdir.lookup(mid, TAG_STRUCT, 0xff) # bshrub/btree? self.bshrub = None if (self.struct is not None and (self.struct.tag & ~0x3) == TAG_BSHRUB): weight, trunk, _ = fromshrub(self.struct.data) self.bshrub = Btree.fetchshrub(lfs.bd, mdir.rbyd, trunk) elif (self.struct is not None and (self.struct.tag & ~0x3) == TAG_BTREE): weight, block, trunk, cksum, _ = frombtree(self.struct.data) self.bshrub = Btree.fetchck( lfs.bd, block, trunk, weight, cksum) # did? self.did = None if (self.struct is not None and self.struct.tag == TAG_DID): self.did, _ = fromleb128(self.struct.data) # some other info that is useful for scripts # mark as grmed if grmed if lfs.grmed(mid): self.grmed = True @property def size(self): if self.bshrub is not None: return self.bshrub.weight else: return 0 def structrepr(self): if self.struct is not None: # inlined bshrub? if (self.struct.tag & ~0x3) == TAG_BSHRUB: return 'bshrub %s' % self.bshrub.addr() # btree? elif (self.struct.tag & ~0x3) == TAG_BTREE: return 'btree %s' % self.bshrub.addr() # btree? else: return self.struct.repr() else: return '' def __repr__(self): return '<%s %s.%s %s>' % ( self.__class__.__name__, self.mid.mbidrepr(), self.mid.mridrepr(), self.repr()) def repr(self): return 'type 0x%02x%s' % ( self.tag & 0xff, ', %s' % self.structrepr() if self.struct is not None else '') def __eq__(self, other): return self.mid == other.mid def __ne__(self, other): return self.mid != other.mid def __hash__(self): return hash(self.mid) # read attrs, note this includes _all_ attrs def rattrs(self): return self.mdir.rattrs(self.mid) # read custom attrs def uattrs(self): return self.mdir.rattrs(self.mid, TAG_UATTR, 0xff) def sattrs(self): return self.mdir.rattrs(self.mid, TAG_SATTR, 0xff) def attrs(self): yield from self.uattrs() yield from self.sattrs() # lookup data in the underlying bshrub def _lookupleaf(self, pos, *, path=False, depth=None): # no bshrub? if self.bshrub is None: if path: return None, None, [] else: return None, None # lookup data in our bshrub r = self.bshrub.lookupleaf(pos, path=path or depth, depth=depth) if path or depth: bid, rbyd, rid, rattr, path_ = r else: bid, rbyd, rid, rattr = r if bid is None: if path: return None, None, path_ else: return None, None # corrupt btree node? if not rbyd: if path: return bid-(rbyd.weight-1), rbyd, path_ else: return bid-(rbyd.weight-1), rbyd # stop here? if depth and len(path_) >= depth: if path: return bid-(rattr.weight-1), rbyd, path_ else: return bid-(rattr.weight-1), rbyd # inlined data? if (rattr.tag & ~0x1003) == TAG_DATA: if path: return bid-(rattr.weight-1), rattr, path_ else: return bid-(rattr.weight-1), rattr # block pointer? elif (rattr.tag & ~0x1003) == TAG_BLOCK: size, block, off, cksize, cksum, _ = frombptr(rattr.data) bptr = Bptr.fetchck(self.lfs.bd, rattr, block, off, size, cksize, cksum) if path: return bid-(rattr.weight-1), bptr, path_ else: return bid-(rattr.weight-1), bptr # uh oh, something is broken else: if path: return bid-(rattr.weight-1), rattr, path_ else: return bid-(rattr.weight-1), rattr def lookupleaf(self, pos, *, data_only=True, path=False, depth=None): r = self._lookupleaf(pos, path=path, depth=depth) if path: pos, data, path_ = r else: pos, data = r if pos is None or ( data_only and not isinstance(data, (Rattr, Bptr))): if path: return None, None, path_ else: return None, None if path: return pos, data, path_ else: return pos, data def _leaves(self, *, path=False, depth=None): pos = 0 while True: r = self.lookupleaf(pos, data_only=False, path=path, depth=depth) if path: pos, data, path_ = r else: pos, data = r if pos is None: break # data? if isinstance(data, (Rattr, Bptr)): if path: yield pos, data, path_ else: yield pos, data pos += data.weight # btree node? else: rbyd = data if path: yield (pos, rbyd, # path tail is usually redundant unless corrupt path_[:-1] if path_ and path_[-1][1] == rbyd else path_) else: yield pos, rbyd pos += rbyd.weight def leaves(self, *, data_only=False, path=False, depth=None): for r in self._leaves( path=path, depth=depth): if path: pos, data, path_ = r else: pos, data = r if data_only and not isinstance(data, (Rattr, Bptr)): continue if path: yield pos, data, path_ else: yield pos, data def _traverse(self, *, path=False, depth=None): ptrunk_ = [] for pos, data, path_ in self.leaves( path=True, depth=depth): # we only care about the data/rbyds here trunk_ = ([(bid_-rid_, rbyd_) for bid_, rbyd_, rid_, name_ in path_] + [(pos, data)]) for d, (pos, data) in pathdelta( trunk_, ptrunk_): # but include branch rids in path if requested if path: yield pos, data, path_[:d] else: yield pos, data ptrunk_ = trunk_ def traverse(self, *, data_only=False, path=False, depth=None): for r in self._traverse( path=path, depth=depth): if path: pos, data, path_ = r else: pos, data = r if data_only and not isinstance(data, (Rattr, Bptr)): continue if path: yield pos, data, path_ else: yield pos, data def datas(self, *, data_only=True, path=False, depth=None): return self.leaves( data_only=data_only, path=path, depth=depth) # some convience operations for reading data def bytes(self, *, depth=None): for pos, data in self.datas(depth=depth): if data.size > 0: yield data.data if data.weight > data.size: yield b'\0' * (data.weight-data.size) def read(self, *, depth=None): return b''.join(self.bytes()) # bleh, with that out of the way, here are our known file types # regular files class Reg(File): tag = TAG_REG def repr(self): return 'reg %s%s' % ( self.size, ', %s' % self.structrepr() if self.struct is not None else '') # directories class Dir(File): tag = TAG_DIR def __init__(self, lfs, mid, mdir, tag, name): super().__init__(lfs, mid, mdir, tag, name) # we're recursable if we're a non-grmed directory with a did if (isinstance(self, Lfs3.Dir) and not self.grmed and self.did is not None): self.recursable = True def repr(self): return 'dir %s%s' % ( '0x%x' % self.did if self.did is not None else '?', ', %s' % self.structrepr() if self.struct is not None and self.struct.tag != TAG_DID else '') # provide some convenient filesystem access relative to our did def namelookup(self, name, **args): if self.did is None: return None return self.lfs.namelookup(self.did, name, **args) def pathlookup(self, path_, **args): if self.did is None: if args.get('path'): return None, [] else: return None return self.lfs.pathlookup(self.did, path_, **args) def files(self, **args): if self.did is None: return iter(()) return self.lfs.files(self.did, **args) # root is a bit special class Root(Dir): tag = None def __init__(self, lfs): # root always has mid=-1 and did=0 super().__init__(lfs, lfs.mid(-1), lfs.mroot, TAG_DIR, None) self.did = 0 self.recursable = True def repr(self): return 'root' # bookmarks keep track of where directories start class Bookmark(File): tag = TAG_BOOKMARK internal = True def repr(self): return 'bookmark %s%s' % ( '0x%x' % self.name.did if self.name.did is not None else '?', ', %s' % self.structrepr() if self.struct is not None else '') # stickynotes, i.e. uncommitted files, behave the same as files # for the most part class Stickynote(File): tag = TAG_STICKYNOTE internal = True def repr(self): return 'stickynote%s' % ( ' %s, %s' % (self.size, self.structrepr()) if self.struct is not None else '') # marker class for unknown file types class Unknown(File): pass # keep track of known file types _known = [f for f in File.__subclasses__() if f.tag is not None] # fetch/parse state if known def _open(self, mid, mdir, tag, name): # known file type? tag = name.tag for f in self._known: if (f.tag & ~(f.mask or 0)) == (tag & ~(f.mask or 0)): return f(self, mid, mdir, tag, name) # otherwise return a marker class else: return self.Unknown(self, mid, mdir, tag, name) # tree renderer class TreeArt: # tree branches are an abstract thing for tree rendering class Branch(co.namedtuple('Branch', ['a', 'b', 'z', 'color'])): __slots__ = () def __new__(cls, a, b, z=0, color='b'): # a and b are context specific return super().__new__(cls, a, b, z, color) def __repr__(self): return '%s(%s, %s, %s, %s)' % ( self.__class__.__name__, self.a, self.b, self.z, self.color) # don't include color in branch comparisons, or else our tree # renderings can end up with inconsistent colors between runs def __eq__(self, other): return (self.a, self.b, self.z) == (other.a, other.b, other.z) def __ne__(self, other): return (self.a, self.b, self.z) != (other.a, other.b, other.z) def __hash__(self): return hash((self.a, self.b, self.z)) # also order by z first, which can be useful for reproducibly # prioritizing branches when simplifying trees def __lt__(self, other): return (self.z, self.a, self.b) < (other.z, other.a, other.b) def __le__(self, other): return (self.z, self.a, self.b) <= (other.z, other.a, other.b) def __gt__(self, other): return (self.z, self.a, self.b) > (other.z, other.a, other.b) def __ge__(self, other): return (self.z, self.a, self.b) >= (other.z, other.a, other.b) # apply a function to a/b while trying to avoid copies def map(self, filter_, map_=None): if map_ is None: filter_, map_ = None, filter_ a = self.a if filter_ is None or filter_(a): a = map_(a) b = self.b if filter_ is None or filter_(b): b = map_(b) if a != self.a or b != self.b: return self.__class__( a if a != self.a else self.a, b if b != self.b else self.b, self.z, self.color) else: return self def __init__(self, tree): self.tree = tree self.depth = max((t.z+1 for t in tree), default=0) if self.depth > 0: self.width = 2*self.depth + 2 else: self.width = 0 def __iter__(self): return iter(self.tree) def __bool__(self): return bool(self.tree) def __len__(self): return len(self.tree) # render an rbyd rbyd tree for debugging @classmethod def _fromrbydrtree(cls, rbyd, **args): trunks = co.defaultdict(lambda: (-1, 0)) alts = co.defaultdict(lambda: {}) for rid, rattr, path in rbyd.rattrs(path=True): # keep track of trunks/alts trunks[rattr.toff] = (rid, rattr.tag) for ralt in path: if ralt.followed: alts[ralt.toff] |= {'f': ralt.joff, 'c': ralt.color} else: alts[ralt.toff] |= {'nf': ralt.off, 'c': ralt.color} if args.get('tree_rbyd'): # treat unreachable alts as converging paths for j_, alt in alts.items(): if 'f' not in alt: alt['f'] = alt['nf'] elif 'nf' not in alt: alt['nf'] = alt['f'] else: # prune any alts with unreachable edges pruned = {} for j, alt in alts.items(): if 'f' not in alt: pruned[j] = alt['nf'] elif 'nf' not in alt: pruned[j] = alt['f'] for j in pruned.keys(): del alts[j] for j, alt in alts.items(): while alt['f'] in pruned: alt['f'] = pruned[alt['f']] while alt['nf'] in pruned: alt['nf'] = pruned[alt['nf']] # find the trunk and depth of each alt def rec_trunk(j): if j not in alts: return trunks[j] else: if 'nft' not in alts[j]: alts[j]['nft'] = rec_trunk(alts[j]['nf']) return alts[j]['nft'] for j in alts.keys(): rec_trunk(j) for j, alt in alts.items(): if alt['f'] in alts: alt['ft'] = alts[alt['f']]['nft'] else: alt['ft'] = trunks[alt['f']] def rec_height(j): if j not in alts: return 0 else: if 'h' not in alts[j]: alts[j]['h'] = max( rec_height(alts[j]['f']), rec_height(alts[j]['nf'])) + 1 return alts[j]['h'] for j in alts.keys(): rec_height(j) t_depth = max((alt['h']+1 for alt in alts.values()), default=0) # convert to more general tree representation tree = set() for j, alt in alts.items(): # note all non-trunk edges should be colored black tree.add(cls.Branch( alt['nft'], alt['nft'], t_depth-1 - alt['h'], alt['c'])) if alt['ft'] != alt['nft']: tree.add(cls.Branch( alt['nft'], alt['ft'], t_depth-1 - alt['h'], 'b')) return cls(tree) # render an rbyd btree tree for debugging @classmethod def _fromrbydbtree(cls, rbyd, **args): # for rbyds this is just a pointer to every rid tree = set() root = None for rid, name in rbyd.rids(): b = (rid, name.tag) if root is None: root = b tree.add(cls.Branch(root, b)) return cls(tree) # render an rbyd tree for debugging @classmethod def fromrbyd(cls, rbyd, **args): if args.get('tree_btree'): return cls._fromrbydbtree(rbyd, **args) else: return cls._fromrbydrtree(rbyd, **args) # render some nice ascii trees def repr(self, x, color=False): if self.depth == 0: return '' def branchrepr(tree, x, d, was): for t in tree: if t.z == d and t.b == x: if any(t.z == d and t.a == x for t in tree): return '+-', t.color, t.color elif any(t.z == d and x > min(t.a, t.b) and x < max(t.a, t.b) for t in tree): return '|-', t.color, t.color elif t.a < t.b: return '\'-', t.color, t.color else: return '.-', t.color, t.color for t in tree: if t.z == d and t.a == x: return '+ ', t.color, None for t in tree: if (t.z == d and x > min(t.a, t.b) and x < max(t.a, t.b)): return '| ', t.color, was if was: return '--', was, was return ' ', None, None trunk = [] was = None for d in range(self.depth): t, c, was = branchrepr(self.tree, x, d, was) trunk.append('%s%s%s%s' % ( '\x1b[33m' if color and c == 'y' else '\x1b[31m' if color and c == 'r' else '\x1b[1;30m' if color and c == 'b' else '', t, ('>' if was else ' ') if d == self.depth-1 else '', '\x1b[m' if color and c else '')) return '%s ' % ''.join(trunk) # some more renderers # render a btree rbyd tree for debugging @classmethod def _treeartfrombtreertree(cls, btree, *, depth=None, inner=False, **args): # precompute rbyd trees so we know the max depth at each layer # to nicely align trees rtrees = {} rdepths = {} for bid, rbyd, path in btree.traverse(path=True, depth=depth): if not rbyd: continue rtree = cls.fromrbyd(rbyd, **args) rtrees[rbyd] = rtree rdepths[len(path)] = max(rdepths.get(len(path), 0), rtree.depth) # map rbyd branches into our btree space tree = set() for bid, rbyd, path in btree.traverse(path=True, depth=depth): if not rbyd: continue # yes we can find new rbyds if disk is being mutated, just # ignore these if rbyd not in rtrees: continue rtree = rtrees[rbyd] rz = max((t.z+1 for t in rtree), default=0) d = sum(rdepths[d]+1 for d in range(len(path))) # map into our btree space for t in rtree: # note we adjust our bid to be left-leaning, this allows # a global order and makes tree rendering quite a bit easier a_rid, a_tag = t.a b_rid, b_tag = t.b _, (_, a_w, _) = rbyd.lookupnext(a_rid) _, (_, b_w, _) = rbyd.lookupnext(b_rid) tree.add(cls.Branch( (bid-(rbyd.weight-1)+a_rid-(a_w-1), len(path), a_tag), (bid-(rbyd.weight-1)+b_rid-(b_w-1), len(path), b_tag), d + rdepths[len(path)]-rz + t.z, t.color)) # connect rbyd branches to rbyd roots if path: l_bid, l_rbyd, l_rid, l_name = path[-1] l_branch = l_rbyd.lookup(l_rid, TAG_BRANCH, 0x3) if rtree: r_rid, r_tag = min(rtree, key=lambda t: t.z).a _, (_, r_w, _) = rbyd.lookupnext(r_rid) else: r_rid, (r_tag, r_w, _) = rbyd.lookupnext(-1) tree.add(cls.Branch( (l_bid-(l_name.weight-1), len(path)-1, l_branch.tag), (bid-(rbyd.weight-1)+r_rid-(r_w-1), len(path), r_tag), d-1)) # remap branches to leaves if we aren't showing inner branches if not inner: # step through each btree layer backwards b_depth = max((t.a[1]+1 for t in tree), default=0) for d in reversed(range(b_depth-1)): # find bid ranges at this level bids = set() for t in tree: if t.b[1] == d: bids.add(t.b[0]) bids = sorted(bids) # find the best root for each bid range roots = {} for i in range(len(bids)): for t in tree: if (t.a[1] > d and t.a[0] >= bids[i] and (i == len(bids)-1 or t.a[0] < bids[i+1]) and (bids[i] not in roots or t < roots[bids[i]])): roots[bids[i]] = t # remap branches to leaf-roots tree = {t.map( lambda x: x[1] == d and x[0] in roots, lambda x: roots[x[0]].a) for t in tree} return cls(tree) # render a btree btree tree for debugging @classmethod def _treeartfrombtreebtree(cls, btree, *, depth=None, inner=False, **args): # find all branches tree = set() root = None branches = {} for bid, name, path in btree.bids( path=True, depth=depth): # create branch for each jump in path # # note we adjust our bid to be left-leaning, this allows # a global order and makes tree rendering quite a bit easier a = root for d, (bid_, rbyd_, rid_, name_) in enumerate(path): # map into our btree space bid__ = bid_-(name_.weight-1) b = (bid__, d, name_.tag) # remap branches to leaves if we aren't showing inner # branches if not inner: if b not in branches: bid_, rbyd_, rid_, name_ = path[-1] bid__ = bid_-(name_.weight-1) branches[b] = (bid__, len(path)-1, name_.tag) b = branches[b] # render the root path on first rid, this is arbitrary if root is None: root, a = b, b tree.add(cls.Branch(a, b, d)) a = b return cls(tree) # render a btree tree for debugging @classmethod def treeartfrombtree(cls, btree, **args): if args.get('tree_btree'): return cls._frombtreebtree(btree, **args) else: return cls._frombtreertree(btree, **args) TreeArt._frombtreertree = _treeartfrombtreertree TreeArt._frombtreebtree = _treeartfrombtreebtree TreeArt.frombtree = treeartfrombtree # render a file tree for debugging @classmethod def treeartfromfile(cls, file, **args): tree = cls.frombtree(file.bshrub, **args) t_depth = tree.depth # connect bptr tags to bptrs tree = set(tree) bptrs = {} for pos, data, path in file.datas( path=True, depth=args.get('depth')): if isinstance(data, Bptr): a = (pos, len(path)-1, data.tag) b = (pos, len(path), data.tag) bptrs[a] = b tree.add(cls.Branch(a, b, t_depth)) # if we're not showing inner branches, nudge bptr tags to # their bptrs if not args.get('inner'): tree = {t.map(lambda x: bptrs.get(x, x)) for t in tree} return cls(tree) TreeArt.fromfile = treeartfromfile # show the littlefs config def dbg_config(lfs, *, color=False, w_width=2, **args): for i, config in enumerate(it.chain( lfs.config, lfs.attrs())): # some special situations worth reporting notes = [] # magic corrupt? if (config.tag == TAG_MAGIC and config.data != b'littlefs'): notes.append('magic!=littlefs') print('%s%12s %*s %-*s %s%s%s' % ( '\x1b[31m' if color and notes else '', '{%s}:' % ','.join('%04x' % block for block in config.blocks) if i == 0 else '', 2*w_width+1, '%d.%d' % (-1, -1) if i == 0 else '', 21+w_width, config.repr(), next(xxd(config.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '', ' (%s)' % ', '.join(notes) if notes else '', '\x1b[m' if color and notes else '')) # show on-disk encoding if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(config.data)): print('%11s: %*s %s' % ( '%04x' % (config.toff + o*16), 2*w_width+1, '', line)) # show the littlefs gstate def dbg_gstate(lfs, *, color=False, w_width=2, **args): for i, gstate in enumerate(lfs.gstate): # some special situations worth reporting notes = [] # gcksum mismatch? if (gstate.tag == TAG_GCKSUMDELTA and int(gstate) != crc32ccube(lfs.cksum)): notes.append('gcksum!=%08x' % crc32ccube(lfs.cksum)) print('%s%12s %*s %-*s %s%s%s' % ( '\x1b[31m' if color and notes else '', 'gstate:' if i == 0 or args.get('gdelta') else '', 2*w_width+1, 'g.-1' if i == 0 or args.get('gdelta') else '', 21+w_width, gstate.repr(), next(xxd(gstate.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '', ' (%s)' % ', '.join(notes) if notes else '', '\x1b[m' if color and notes else '')) # show on-disk encoding if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(gstate.data)): print('%11s: %*s %s' % ( '%04x' % (o*16), 2*w_width+1, '', line)) # print gdeltas? if args.get('gdelta'): for mid, gdelta in gstate.gdeltas: print('%s%12s %*s %-*s %s%s' % ( '\x1b[1;30m' if color else '', '{%s}:' % ','.join('%04x' % block for block in gdelta.blocks), 2*w_width+1, mid.repr(), 21+w_width, gdelta.repr(), next(xxd(gdelta.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '', '\x1b[m' if color else '')) # show on-disk encoding if args.get('raw'): for o, line in enumerate(xxd(gdelta.tdata)): print('%11s: %*s %s' % ( '%04x' % (gdelta.toff + o*16), 2*w_width+1, '', line)) if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(gdelta.data)): print('%11s: %*s %s' % ( '%04x' % (gdelta.off + o*16), 2*w_width+1, '', line)) # show the littlefs file tree def dbg_files(lfs, paths, *, color=False, w_width=2, recurse=None, all=False, no_orphans=False, **args): import builtins all_, all = all, builtins.all # parse all paths first, error if anything is malformed dirs = [] # default paths to the root dir for path in (paths or ['/']): try: dir = lfs.pathlookup(path, all=args.get('all')) except Lfs3.PathError as e: print("error: %s" % e, file=sys.stderr) sys.exit(-1) if dir is not None: dirs.append(dir) # it's kinda tricky to iterate over everything we want to show, # so create a reusable iterator def iter_dir(dir, **args_): if dir.recursable: yield from dir.files(**args_) else: if args_.get('path'): yield dir, [] else: yield dir # include any orphaned entries in the root directory to help # debugging (these don't actually live in the root directory) if not no_orphans and isinstance(dir, Lfs3.Root): # finding orphans is expensive, so cache this if not hasattr(iter_dir, 'orphans'): iter_dir.orphans = dir.lfs.orphans() for orphan in iter_dir.orphans: if args_.get('path'): yield orphan, [] else: yield orphan # do a pass to figure out the width+depth of the file tree # and file names so we can format things nicely f_depth, f_width = 0, 0 for dir in dirs: for file, path in iter_dir(dir, all=all_, depth=recurse, path=True): f_depth = max(f_depth, len(path)+1) f_width = max(f_width, 4*len(path) + len(file.name.name)) # only show the mdir/rbyd/block address on mdir change pmdir = None # recursively print directories def dbg_dir(dir, depth, prefixes=('', '', '', '')): nonlocal pmdir # first figure out the dir length so we know when the dir ends if prefixes != ('', '', '', ''): len_ = sum(1 for _ in iter_dir(dir, all=all_)) else: len_ = 1 # print files for i, file in enumerate(iter_dir(dir, all=all_)): # some special situations worth reporting notes = [] # grmed? if file.grmed: notes.append('grmed') # orphaned? if file.orphaned: notes.append('orphaned') # missing bookmark/did? if isinstance(file, Lfs3.Dir): if file.did is None: notes.append('missing did') elif lfs.namelookup(file.did, b'') is None: notes.append('missing bookmark') # print human readable file entry print('%s%12s %*s %-*s %s%s%s' % ( '\x1b[31m' if color and not file.grmed and notes else '\x1b[1;30m' if color and (file.grmed or file.internal) else '', '{%s}:' % ','.join('%04x' % block for block in file.mdir.blocks) if not isinstance(pmdir, Mdir) or file.mdir != pmdir else '', 2*w_width+1, file.mid.repr(), f_width, '%s%s' % ( prefixes[0+(i==len_-1)], file.name.name.decode('utf8', errors='backslashreplace')), file.repr(), ' (%s)' % ', '.join(notes) if notes else '', '\x1b[m' if color and (notes or file.grmed or file.internal) else '')) pmdir = file.mdir # print attrs associated with each file? if args.get('attrs'): for rattr in file.rattrs(): print('%12s %*s %-*s %s' % ( '', 2*w_width+1, '', 21+w_width, rattr.repr(), next(xxd(rattr.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '')) # show on-disk encoding if args.get('raw'): for o, line in enumerate(xxd(rattr.tdata)): print('%11s: %*s %s' % ( '%04x' % (rattr.toff + o*16), 2*w_width+1, '', line)) if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(rattr.data)): print('%11s: %*s %s' % ( '%04x' % (rattr.off + o*16), 2*w_width+1, '', line)) # print file structures? if args.get('structs'): dbg_struct(file) # recurse? if (file.recursable and depth is not None and (depth == 0 or depth > 1)): dbg_dir(file, depth-1 if depth else 0, (prefixes[2+(i==len_-1)] + "|-> ", prefixes[2+(i==len_-1)] + "'-> ", prefixes[2+(i==len_-1)] + "| ", prefixes[2+(i==len_-1)] + " ")) # print file structures def dbg_struct(file): nonlocal pmdir # no tree? if file.bshrub is None: return # precompute tree renderings bt_width = 0 if (args.get('tree') or args.get('tree_rbyd') or args.get('tree_btree')): treeart = TreeArt.fromfile(file, **args) bt_width = treeart.width # dynamically size the id field bw_width = mt.ceil(mt.log10(max(1, file.size)+1)) # recursively print bshrub branches def dbg_branch(d, bid, rbyd, rid, name): nonlocal pmdir for rattr in rbyd.rattrs(rid): print('%12s %*s %s%*s %-*s %s' % ( '%04x.%04x:' % (rbyd.block, rbyd.trunk) if not isinstance(pmdir, Rbyd) or rbyd != pmdir else '', 2*w_width+1, '', treeart.repr( (bid-(name.weight-1), d, rattr.tag), color) if args.get('tree') or args.get('tree_rbyd') or args.get('tree_btree') else '', 2*bw_width+1, '%d-%d' % (bid-(rattr.weight-1), bid) if rattr.weight > 1 else bid if rattr.weight > 0 else '', 21+2*bw_width+1, rattr.repr(), next(xxd(rattr.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else '')) pmdir = rbyd # show on-disk encoding of tags/data if args.get('raw'): for o, line in enumerate(xxd(rattr.tdata)): print('%11s: %*s %*s%*s %s' % ( '%04x' % (rattr.toff + o*16), 2*w_width+1, '', bt_width, '', 2*bw_width+1, '', line)) if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(rattr.data)): print('%11s: %*s %*s%*s %s' % ( '%04x' % (rattr.off + o*16), 2*w_width+1, '', bt_width, '', 2*bw_width+1, '', line)) # print inlined data, block pointers, etc def dbg_bptr(d, pos, bptr): nonlocal pmdir # some special situations worth reporting notes = [] # cksum mismatch? cksum = crc32c(bptr.ckdata) if cksum != bptr.cksum: notes.append('cksum!=%08x' % bptr.cksum) print('%s%12s%s %*s %s%s%s%-*s%s%s' % ( '\x1b[31m' if color and notes else '', '%04x.%04x:' % (bptr.block, bptr.off) if not isinstance(pmdir, Bptr) or bptr != pmdir else '', '\x1b[0m' if color and notes else '', 2*w_width+1, '', treeart.repr((pos, d, bptr.tag), color) if args.get('tree') or args.get('tree_rbyd') or args.get('tree_btree') else '', '\x1b[31m' if color and notes else '', '%*s ' % ( 2*bw_width+1, '%d-%d' % (pos, pos+(bptr.weight-1)) if bptr.weight > 1 else pos if bptr.weight > 0 else ''), 56+2*bw_width+1, '%-*s %s' % ( 21+2*bw_width+1, bptr.repr(), next(xxd(bptr.data, 8), '') if not args.get('raw') and not args.get('no_truncate') else ''), ' (%s)' % ', '.join(notes) if notes else '', '\x1b[m' if color and notes else '')) pmdir = bptr # show on-disk encoding of tag/bptr/data if args.get('raw'): for o, line in enumerate(xxd(bptr.rattr.tdata)): print('%11s: %*s %*s%s%s' % ( '%04x' % (bptr.rattr.toff + o*16), 2*w_width+1, '', bt_width, '', '%*s ' % (2*bw_width+1, ''), line)) if args.get('raw'): for o, line in enumerate(xxd(bptr.rattr.data)): print('%11s: %*s %*s%s%s' % ( '%04x' % (bptr.rattr.off + o*16), 2*w_width+1, '', bt_width, '', '%*s ' % (2*bw_width+1, ''), line)) if args.get('raw') or args.get('no_truncate'): for o, line in enumerate(xxd(bptr.data)): print('%11s: %*s %*s%s%s' % ( '%04x' % (bptr.off + o*16), 2*w_width+1, '', bt_width, '', '%*s ' % (2*bw_width+1, ''), line)) # traverse and print entries ppath = [] for pos, data, path in file.leaves( path=True, depth=args.get('depth')): # print inner branches if requested if args.get('inner'): for d, (bid_, rbyd_, rid_, name_) in pathdelta( path, ppath): dbg_branch(d, bid_, rbyd_, rid_, name_) ppath = path # inlined data? if isinstance(data, Rattr): # a bit of a hack if not args.get('inner'): bid_, rbyd_, rid_, name_ = path[-1] dbg_branch(len(path)-1, bid_, rbyd_, rid_, data) # block pointer? elif isinstance(data, Bptr): # show the data dbg_bptr(len(path), pos, data) # btree node? else: rbyd = data bid = pos + (rbyd.weight-1) # corrupted? try to keep printing the tree if not rbyd: print('%s%11s: %*s %*s%s%s' % ( '\x1b[31m' if color else '', '%04x.%04x' % (rbyd.block, rbyd.trunk), 2*w_width+1, '', bt_width, '', '(corrupted rbyd %s)' % rbyd.addr(), '\x1b[m' if color else '')) pmdir = None continue for rid, name in rbyd.rids(): bid_ = bid-(rbyd.weight-1) + rid # show the leaf entry/branch dbg_branch(len(path), bid_, rbyd, rid, name) # print stuff for dir in dirs: dbg_dir(dir, recurse) # common ck function def dbg_ck(lfs, *, meta=True, data=True, mtree_only=False, quiet=False, color=False, **args): # lfs traverse does most of the work here corrupted = False for child in lfs.traverse( mtree_only=mtree_only): # limit to metadata blocks? if (((meta and isinstance(child, (Mdir, Rbyd))) or (data and isinstance(child, Bptr))) and not child): if not quiet: print('%s%11s: %s%s' % ( '\x1b[31m' if color else '', '{%s}' % ','.join('%04x' % block for block in child.blocks) if isinstance(child, Mdir) else '%04x.%04x' % (child.block, child.trunk) if isinstance(child, Rbyd) else '%04x.%04x' % (child.block, child.off), '(corrupted %s %s)' % ( 'mroot' if isinstance(child, Mdir) and child.mid == -1 else 'mdir' if isinstance(child, Mdir) else 'rbyd' if isinstance(child, Rbyd) else 'bptr', child.addr()), '\x1b[m' if color else '')) corrupted = True return not corrupted # check metadata blocks for errors def dbg_ckmeta(lfs, **args): return dbg_ck(lfs, meta=True, **args) # check metadata + data blocks for errors def dbg_ckdata(lfs, **args): return dbg_ck(lfs, meta=True, data=True, **args) def main(disk, mroots=None, paths=None, *, trunk=None, block_size=None, block_count=None, quiet=False, color='auto', **args): # figure out what color should be if color == 'auto': color = sys.stdout.isatty() elif color == 'always': color = True else: color = False # show files be default, but there's quite a few other things we # can show if requested show_config = args.get('config') show_gstate = (args.get('gstate') or args.get('gdelta')) show_files = (args.get('files') or args.get('structs') or args.get('attrs')) show_ckmeta = args.get('ckmeta') show_ckdata = args.get('ckdata') if (not show_config and not show_gstate and not show_files and not show_ckmeta and not show_ckdata): show_files = True # is bd geometry specified? if isinstance(block_size, tuple): block_size, block_count_ = block_size if block_count is None: block_count = block_count_ # flatten mroots, default to 0x{0,1} mroots = list(it.chain.from_iterable(mroots)) if mroots else [0, 1] # mroots may also encode trunks mroots, trunk = ( [block[0] if isinstance(block, tuple) else block for block in mroots], trunk if trunk is not None else ft.reduce( lambda x, y: y, (block[1] for block in mroots if isinstance(block, tuple)), None)) # we seek around a bunch, so just keep the disk open with open(disk, 'rb') as f: # if block_size is omitted, assume the block device is one big block if block_size is None: f.seek(0, os.SEEK_END) block_size = f.tell() # fetch the filesystem bd = Bd(f, block_size, block_count) lfs = Lfs3.fetch(bd, mroots, trunk) # print some information about the filesystem if not quiet: print('littlefs%s v%s.%s %sx%s %s w%s.%s, ' 'rev %08x, ' 'cksum %08x%s' % ( '' if lfs.ckmagic() else '?', lfs.version.major if lfs.version is not None else '?', lfs.version.minor if lfs.version is not None else '?', lfs.block_size if lfs.block_size is not None else '?', lfs.block_count if lfs.block_count is not None else '?', lfs.addr(), lfs.mbweightrepr(), lfs.mrweightrepr(), lfs.rev, lfs.cksum, '' if lfs.ckgcksum() else '?')) # dynamically size the id field w_width = max( mt.ceil(mt.log10(max(1, lfs.mbweight >> lfs.mbits)+1)), mt.ceil(mt.log10(max(1, max( mdir.weight for mdir in lfs.mtree.mdirs())))+1), # in case of -1.-1 2) # show the on-disk config? if show_config and not quiet: dbg_config(lfs, color=color, w_width=w_width, **args) # show the on-disk gstate? if show_gstate and not quiet: dbg_gstate(lfs, color=color, w_width=w_width, **args) # show the on-disk file tree? if show_files and not quiet: dbg_files(lfs, paths, color=color, w_width=w_width, **args) # always check magic/gcksum corrupted = not bool(lfs) # check metadata blocks for errors if show_ckmeta and not show_ckdata: if not dbg_ckmeta(lfs, quiet=quiet, color=color, w_width=w_width, **args): corrupted = True # check metadata + data blocks for errors if show_ckdata: if not dbg_ckdata(lfs, quiet=quiet, color=color, w_width=w_width, **args): corrupted = True # ckmeta/ckdata implies error_on_corrupt if ((show_ckmeta or show_ckdata or args.get('error_on_corrupt')) and corrupted): sys.exit(2) if __name__ == "__main__": import argparse import sys parser = argparse.ArgumentParser( description="Debug littlefs stuff.", allow_abbrev=False) parser.add_argument( 'disk', help="File containing the block device.") class AppendMrootOrPath(argparse.Action): def __call__(self, parser, namespace, values, option): for value in values: # mroot? if not isinstance(value, str): if getattr(namespace, 'mroots', None) is None: namespace.mroots = [] namespace.mroots.append(value) # or path? else: if getattr(namespace, 'paths', None) is None: namespace.paths = [] namespace.paths.append(value) parser.add_argument( 'mroots', nargs='*', type=lambda x: rbydaddr(x) if not x.startswith('/') else x, action=AppendMrootOrPath, help="Block address of the mroots. Defaults to 0x{0,1}.") parser.add_argument( 'paths', nargs='*', type=lambda x: rbydaddr(x) if not x.startswith('/') else x, action=AppendMrootOrPath, help="Paths to show, must start with a leading slash. Defaults " "to the root directory.") parser.add_argument( '--trunk', type=lambda x: int(x, 0), help="Use this offset as the trunk of the mroots.") parser.add_argument( '-b', '--block-size', type=bdgeom, help="Block size/geometry in bytes. Accepts x.") parser.add_argument( '--block-count', type=lambda x: int(x, 0), help="Block count in blocks.") parser.add_argument( '-q', '--quiet', action='store_true', help="Don't show anything, useful when checking for errors.") parser.add_argument( '--color', choices=['never', 'always', 'auto'], default='auto', help="When to use terminal colors. Defaults to 'auto'.") parser.add_argument( '--config', action='store_true', help="Show the on-disk config.") parser.add_argument( '--gstate', action='store_true', help="Show the on-disk global-state.") parser.add_argument( '--gdelta', action='store_true', help="Show relevant gdeltas used to build the gstate. " "Implies --gstate.") parser.add_argument( '--files', action='store_true', help="Show the file tree (the default).") parser.add_argument( '--structs', action='store_true', help="Show the internal structure of files. Implies --files.") parser.add_argument( '--attrs', action='store_true', help="Show custom attributes attached to files. Implies --files.") parser.add_argument( '--ckmeta', action='store_true', help="Check metadata blocks for errors.") parser.add_argument( '--ckdata', action='store_true', help="Check metadata + data blocks for errors.") parser.add_argument( '--mtree-only', action='store_true', help="Only traverse the mtree.") parser.add_argument( '-r', '--recurse', '--file-depth', nargs='?', type=lambda x: int(x, 0), const=0, help="Depth of the file tree to show. 0 shows all files in the " "filesystem. Defaults to 1, which only shows the root " "directory.") parser.add_argument( '-a', '--all', action='store_true', help="Show all files including bookmarks, stickynotes, grms, " "etc.") parser.add_argument( '--no-orphans', action='store_true', help="Don't scan for orphaned files.") parser.add_argument( '-x', '--raw', action='store_true', help="Show the raw data including tag encodings.") parser.add_argument( '-T', '--no-truncate', action='store_true', help="Don't truncate, show the full contents.") parser.add_argument( '-t', '--tree', action='store_true', help="Show the rbyd tree.") parser.add_argument( '-R', '--tree-rbyd', action='store_true', help="Show the full rbyd tree.") parser.add_argument( '-B', '--tree-btree', action='store_true', help="Show a simplified btree tree.") parser.add_argument( '-i', '--inner', action='store_true', help="Show inner branches.") parser.add_argument( '-z', '--depth', '--tree-depth', nargs='?', type=lambda x: int(x, 0), const=0, help="Depth of trees to show. Defaults to 0, which shows full " "trees.") parser.add_argument( '-e', '--error-on-corrupt', action='store_true', help="Error if the filesystem is corrupt.") sys.exit(main(**{k: v for k, v in vars(parser.parse_intermixed_args()).items() if v is not None}))