The intention is to help interop with older minor versions of littlefs.
Unfortunately, since lfs2.0 drivers cannot mount lfs2.1 images, there are
situations where it would be useful to write to write strictly lfs2.0
compatible images. The solution here adds a "disk_version" configuration
option which determines the behavior of lfs2.1 dependent features.
Normally you would expect this to only change write behavior. But since the
main change in lfs2.1 increased validation of erased data, we also need to
skip this extra validation (fcrc) or see terrible slowdowns when writing.
In terms of ease-of-use, a user familiar with other filesystems expects
block_usage in fsinfo. But in terms of practicality, block_usage can be
expensive to find in littlefs, so if it's not needed in the resulting
fsinfo, that operation is wasteful.
It's not clear to me what the best course of action is, but since
block_usage can always be added to fsinfo later, but not removed without
breaking backwards compatibility, I'm leaving this out for now.
Block usage can still be found by explicitly calling lfs_fs_size.
Version are now returned with major/minor packed into 32-bits,
so 0x00020001 is the current disk version, for example.
1. This needed to change to use a disk_* prefix for consistency with the
defines that already exist for LFS_VERSION/LFS_DISK_VERSION.
2. Encoding the version this way has the nice side effect of making 0 an
invalid value. This is useful for adding a similar config option
that needs to have reasonable default behavior for backwards
compatibility.
In theory this uses more space, but in practice most other config/status
is 32-bits in littlefs. We would be wasting this space for alignment
anyways.
This function naturally doesn't exist in the previous version. We should
eventually add these calls when we can expect the previous version to
support this function, though it's a bit unclear when that should happen.
Or maybe not! Maybe this is testing more of the previous version than we
really care about.
LFS_VERSION -> LFS_DISK_VERSION
These tests shouldn't depend on LFS_VERSION. It's a bit subtle, but
LFS_VERSION versions the API, and LFS_DISK_VERSION versions the
on-disk format, which is what test_compat should be testing.
Currently this includes:
- minor_version - on-disk minor version
- block_usage - estimated number of in-use blocks
- name_max - configurable name limit
- file_max - configurable file limit
- attr_max - configurable attr limit
These are currently the only configuration operations that need to be
written to disk. Other configuration is either needed to mount, such as
block_size, or does not change the on-disk representation, such as
read/prog_size.
This also includes the current block usage, which is common in other
filesystems, though a more expensive to find in littlefs. I figure it's
not unreasonable to make lfs_fs_stat no worse than block allocation,
hopefully this isn't a mistake. It may be worth caching the current
usage after the most recent lookahead scan.
More configuration may be added to this struct in the future.
lfs_fs_mkconsistent allows running the internal consistency operations
(desuperblock/deorphan/demove) on demand and without any other
filesystem changes.
This can be useful for front-loading and persisting consistency operations
when you don't want to pay for this cost on the first write to the
filesystem.
Conveniently, this also offers a way to force the on-disk minor version
to bump, if that is wanted behavior.
Idea from kasper0
The underlying issue is that lfs_fs_deorphan did not updating gstate
correctly. The way it determined if there are any orphans remaining in
the filesystem was by subtracting the number of found orphans from an
internal counter.
This internal counter is a leftover from a previous implementation that
allowed leaving the lfs_fs_deorphan loop early if we know the number of
expected orphans. This can happen during recursive mdir relocations, but
with only a single bit in the gstate, can't happen during mount. If we
detect orphans during mount, we set this internal counter to 1, assuming
we will find at least one orphan.
But this presents a problem, what if we find _no_ orphans? If this happens
we never decrement the internal counter of orphans, so we would never
clear the bit in the gstate. This leads to a running lfs_fs_deorphan
on more-or-less every mutable operation in the filesystem, resulting in
an extreme performance hit.
The solution here is to not subtract the number of found orphans, but assume
that when our lfs_fs_deorphan loop finishes, we will have no orphans, because
that's the whole point of lfs_fs_deorphan.
Note that the early termination of lfs_fs_deorphan was dropped because
it would not actually change the runtime complexity of lfs_fs_deorphan,
adds code cost, and risks fragile corner cases such as this one.
---
Also added tests to assert we run lfs_fs_deorphan at most once.
Found by kasper0 and Ldd309
This just means a rewrite of the superblock entry with the new minor
version.
Though it's interesting to note, we don't need to rewrite the superblock
entry until the first write operation in the filesystem, an optimization
that is already in use for the fixing of orphans and in-flight moves.
To keep track of any outdated minor version found during lfs_mount, we
can carve out a bit from the reserved bits in our gstate. These are
currently used for a counter tracking the number of orphans in the
filesystem, but this is usually a very small number so this hopefully
won't be an issue.
In-device gstate tag:
[-- 32 --]
[1|- 11 -| 10 |1| 9 ]
^----^-----^--^--^-- 1-bit has orphans
'-----|--|--|-- 11-bit move type
'--|--|-- 10-bit move id
'--|-- 1-bit needs superblock
'-- 9-bit orphan count
This is a bit tricky since we need two different version of littlefs in
order to test for most compatibility concerns.
Fortunately we already have scripts/changeprefix.py for version-specific
symbols, so it's not that hard to link in the previous version of
littlefs in CI as a separate set of symbols, "lfsp_" in this case.
So that we can at least test the compatibility tests locally, I've added
an ifdef against the expected define "LFSP" to define a set of aliases
mapping "lfsp_" symbols to "lfs_" symbols. This is manual at the moment,
and a bit hacky, but gets the job done.
---
Also changed BUILDDIR creation to derive subdirectories from a few
Makefile variables. This makes the subdirectories less manual and more
flexible for things like LFSP. Note this wasn't possible until BUILDDIR
was changed to default to "." when omitted.
Removed the weird alignment requirement from the general truncate tests.
This explicitly hid off-by-one truncation errors.
These tests now reveal the same issue as the block-sized truncation test
while also testing for other potential off-by-one errors.
When truncation is done on a file to the block size, there seems to be
an error where it points to an incorrect block. Perform a write /
truncate / readback operation to verify this issue.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
- General cleanup from integration, including cleaning up some older
commit code
- Partial-prog tests do not make sense when prog_size == block_size
(there can't be partial-progs!)
- Fixed signed-comparison issue in modified filebd
This change is necessary to handle out-of-order writes found by pjsg's
fuzzing work.
The problem is that it is possible for (non-NOR) block devices to write
pages in any order, or to even write random data in the case of a
power-loss. This breaks littlefs's use of the first bit in a page to
indicate the erase-state.
pjsg notes this behavior is documented in the W25Q here:
https://community.cypress.com/docs/DOC-10507
---
The basic idea here is to CRC the next page, and use this "erase-state CRC" to
check if the next page is erased and ready to accept programs.
.------------------. \ commit
| metadata | |
| | +---.
| | | |
|------------------| | |
| erase-state CRC -----. |
|------------------| | | |
| commit CRC ---|-|-'
|------------------| / |
| padding | | padding (doesn't need CRC)
| | |
|------------------| \ | next prog
| erased? | +-'
| | | |
| v | /
| |
| |
'------------------'
This is made a bit annoying since littlefs doesn't actually store the
page (prog_size) in the superblock, since it doesn't need to know the
size for any other operation. We can work around this by storing both
the CRC and size of the next page when necessary.
Another interesting note is that we don't need to any bit tweaking
information, since we read the next page every time we would need to
know how to clobber the erase-state CRC. And since we only read
prog_size, this works really well with our caching, since the caches
must be a multiple of prog_size.
This also brings back the internal lfs_bd_crc function, in which we can
use some optimizations added to lfs_bd_cmp.
Needs some cleanup but the idea is passing most relevant tests.
When you add a function to every benchmark suite, you know if should
probably be provided by the benchmark runner itself. That being said,
randomness in tests/benchmarks is a bit tricky because it needs to be
strictly controlled and reproducible.
No global state is used, allowing tests/benches to maintain multiple
randomness stream which can be useful for checking results during a run.
There's an argument for having global prng state in that the prng could
be preserved across power-loss, but I have yet to see a use for this,
and it would add a significant requirement to any future test/bench runner.
These are just incorrect limits in the tests that can be triggered by
powerloss testing, which can end up with more metadata-pairs than
without powerloss testing due to orphans.
- Fixed prettyasserts.py parsing when '->' is in expr
- Made prettyasserts.py failures not crash (yay dynamic typing)
- Fixed the initial state of the emubd disk file to match the internal
state in RAM
- Fixed true/false getting changed to True/False in test.py/bench.py
defines
- Fixed accidental substring matching in plot.py's --by comparison
- Fixed a missed LFS_BLOCk_CYCLES in test_superblocks.toml that was
missed
- Changed test.py/bench.py -v to only show commands being run
Including the test output is still possible with test.py -v -O-, making
the implicit inclusion redundant and noisy.
- Added license comments to bench_runner/test_runner
These are really just different flavors of test.py and test_runner.c
without support for power-loss testing, but with support for measuring
the cumulative number of bytes read, programmed, and erased.
Note that the existing define parameterization should work perfectly
fine for running benchmarks across various dimensions:
./scripts/bench.py \
runners/bench_runner \
bench_file_read \
-gnor \
-DSIZE='range(0,131072,1024)'
Also added a couple basic benchmarks as a starting point.
The main benefit is small test ids everywhere, though this is with the
downside of needing longer names to properly prefix and avoid
collisions. But this fits into the rest of the scripts with globally
unique names a bit better. This is a C project after all.
The other small benefit is test generators may have an easier time since
per-case symbols can expect to be unique.
This is really more work for the bench runner. With this change defines
can be manipulated at a rather high level at runtime. Which should be
useful for generating benchmarks across various dimensions.
The define grammar in the test_runner is now a bit more powerful,
accepting:
1. A single value: -DN=42
2. A list of values, which get permuted: -DN=1,2,3
3. A range: -DN=range(10)
4. Some combo: -DN=1,2,range(3,0,-1)
This is more complex in the test .toml defines, which can also be C
expressions:
1. A single value: define=42
2. A single expression: define='42*42'
3. A list: define=[1,2,3]
4. A comma separated string: define='1,2,3'
5. A range: define='42*range(10)'
6. This mess: define=[1,2,'3,4,range(2)*range(2)+3']
On one hand this seems like the wrong place for these tests, on the
other hand, it's good to know that the block device is behaving as
expected when debugging the filesystem.
Maybe this should be moved to an external program for users to test
their block devices in the future?
This mostly required names for each test case, declarations of
previously-implicit variables since the new test framework is more
conservative with what it declares (the small extra effort to add
declarations is well worth the simplicity and improved readability),
and tweaks to work with not-really-constant defines.
Also renamed test_ -> test, replacing the old ./scripts/test.py,
unfortunately git seems to have had a hard time with this.
This was caused by the new lfs_file_rawseek optimization that can skip
flushing when calculated file->pos is unchanged combined with an
implicit expectation in lfs_file_truncate that lfs_file_rawseek
unconditionally sets file->pos.
Because of this assumption, lfs_file_truncate could leave file->pos in
an outdated state while changing the internal file metadata. Humorously,
this was always gauranteed to trigger the skip in lfs_file_rawseek when
we try to restore the file->pos, leaving the file->cache used to do the
CTZ skip-list lookup in a potentially bad state.
The easiest fix is to just update file->pos correctly. Note we don't
want to explicitly flush since we can leverage the same noop
optimization if we truncate to the file position. Which I've added a
test for.
These two features have been much requested by users, and have even had
several PRs proposed to fix these in several cases. Before this, these
error conditions usually were caught by internal asserts, however
asserts prevented users from implementing their own workarounds.
It's taken me a while to provide/accept a useful recovery mechanism
(returning LFS_ERR_CORRUPT instead of asserting) because my original thinking
was that these error conditions only occur due to bugs in the filesystem, and
these bugs should be fixed properly.
While I still think this is mostly true, the point has been made clear
that being able to recover from these conditions is definitely worth the
code cost. Hopefully this new behaviour helps the longevity of devices
even if the storage code fails.
Another, less important, reason I didn't want to accept fixes for these
situations was the lack of tests that prove the code's value. This has
been fixed with the new testing framework thanks to the additional of
"internal tests" which can call C static functions and really take
advantage of the internal information of the filesystem.
With the superblock expansion stuff, the test_format tests have grown
to test more advanced superblock-related features. This is fine but
deserves a rename so it's more clear.
Also fixed a typo that meant tests never ran with block cycles.
Byte-level writes are expensive and not suggested (caches >= 4 bytes
make much more sense), however there are many corner cases with
byte-level writes that can be easy to miss (power-loss leaving single
bytes written to disk).
Unfortunately, byte-level writes mixed with power-loss testing, the
Travis infrastructure, and Arm Thumb instruction set simulation
exceeds the 50-minute budget Travis allocates for jobs.
For now I'm disabling the byte-level tests under Qemu, with the hope that
performance improvements in littlefs will let us turn these tests back
on in the future.
- Added caching to Travis install dirs, because otherwise
pip3 install fails randomly
- Increased size of littlefs-fuse disk because test script has
a larger footprint now
- Skip a couple of reentrant tests under byte-level writes because
the tests just take too long and cause Travis to bail due to no
output for 10m
- Fixed various Valgrind errors
- Suppressed uninit checks for tests where LFS_BLOCK_ERASE_VALUE == -1.
In this case rambd goes uninitialized, which is fine for rambd's
purposes. Note I couldn't figure out how to limit this suppression
to only the malloc in rambd, this doesn't seem possible with Valgrind.
- Fixed memory leaks in exhaustion tests
- Fixed off-by-1 string null-terminator issue in paths tests
- Fixed lfs_file_sync issue caused by revealed by fixing memory leaks
in exhaustion tests. Getting ENOSPC during a file write puts the file
in a bad state where littlefs doesn't know how to write it out safely.
In this case, lfs_file_sync and lfs_file_close return 0 without
writing out state so that device-side resources can still be cleaned
up. To recover from ENOSPC, the file needs to be reopened and the
writes recreated. Not sure if there is a better way to handle this.
- Added some quality-of-life improvements to Valgrind testing
- Fit Valgrind messages into truncated output when not in verbose mode
- Turned on origin tracking
Moved .travis.yml over to use the new test framework. A part of this
involved testing all of the configurations ran on the old framework
and deciding which to carry over. The new framework duplicates some of
the cases tested by the configurations so some configurations could be
dropped.
The .travis.yml includes some extreme ones, such as no inline files,
relocations every cycle, no intrinsics, power-loss every byte, unaligned
block_count and lookahead, and odd read_sizes.
There were several configurations were some tests failed because of
limitations in the tests themselves, so many conditions were added
to make sure the configurations can run on as many tests as possible.
These should probably have been cleaned up in each commit to allow
cherry-picking, but due to time I haven't been able to.
- Went with creating an mdir copy in lfs_dir_commit. This handles a
number of related cleanup issues in lfs_dir_compact and it does so
more robustly. As a plus we can use the copy to update dependencies
in the mlist.
- Eliminated code left by the ENOSPC file outlining
- Cleaned up TODOs and lingering comments
- Changed the reentrant many directory create/rename/remove test to use
a smaller set of directories because of space issues when
READ/PROG_SIZE=512
This was caused by the previous fix for allocations during
lfs_fs_deorphan in this branch. To catch half-orphans during block
allocations we needed to duplicate all metadata-pairs reported to
lfs_fs_traverse. Unfortunately this causes lfs_fs_size to report 2x the
number of metadata-pairs, which would undoubtably confuse users.
The fix here is inelegantly simple, just do a different traversale for
allocations and size measurements. It reuses the same code but touches
slightly different sets of blocks.
Unfortunately, this causes the public lfs_fs_traverse and lfs_fs_size
functions to split in how they report blocks. This is technically
allowed, since lfs_fs_traverse may report blocks multiple times due to
CoW behavior, however it's undesirable and I'm sure there will be some
confusion.
But I don't have a better solution, so from this point lfs_fs_traverse
will be reporting 2x metadata-blocks and shouldn't be used for finding
the number of available blocks on the filesystem.
This was an interesting issue found during a GitHub discussion with
rmollway and thrasher8390.
Blocks in the metadata-pair are relocated every "block_cycles", or, more
mathy, when rev % block_cycles == 0 as long as rev += 1 every block write.
But there's a problem, rev isn't += 1 every block write. There are two
blocks in a metadata-pair, so looking at it from each blocks
perspective, rev += 2 every block write.
This leads to a sort of aliasing issue, where, if block_cycles is
divisible by 2, one block in the metadata-pair is always relocated, and
the other block is _never_ relocated. Causing a complete failure of
block-level wear-leveling.
Fortunately, because of a previous workaround to avoid block_cycles = 1
(since this will cause the relocation algorithm to never terminate), the
actual math is rev % (block_cycles+1) == 0. This means the bug only
shows its head in the much less likely case where block_cycles is a
multiple of 2 plus 1, or, in more mathy terms, block_cycles = 2n+1 for
some n.
To workaround this we can bitwise or our block_cycles with 1 to force it
to never be a multiple of 2n.
(Maybe we should do this during initialization? But then block_cycles
would need to be mutable.)
---
There's a few unrelated changes mixed into this commit that shouldn't be
there since I added this as part of a branch of bug fixes I'm putting
together rather hastily, so unfortunately this is not easily cherry-pickable.
It's interesting how many ways block devices can show failed writes:
1. prog can error
2. erase can error
3. read can error after writing (ECC failure)
4. prog doesn't error but doesn't write the data correctly
5. erase doesn't error but doesn't erase correctly
Can read fail without an error? Yes, though this appears the same as
prog and erase failing.
These weren't all simulated by testbd since I unintentionally assumed
the block device could always error. Fixed by added additional bad-black
behaviors to testbd.
Note: This also includes a small fix where we can miss bad writes if the
underlying block device contains a valid commit with the exact same
size in the exact same offset.
Fixes:
- Fixed reproducability issue when we can't read a directory revision
- Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size
- Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
outline a file in lfs_file_sync
- Fixed cleanup issue if we run out of space while extending a CTZ skip-list
- Fixed missing half-orphans when allocating blocks during lfs_fs_deorphan
Also:
- Added cycle-detection to readtree.py
- Allowed pseudo-C expressions in test conditions (and it's
beautifully hacky, see line 187 of test.py)
- Better handling of ctrl-C during test runs
- Added build-only mode to test.py
- Limited stdout of test failures to 5 lines unless in verbose mode
Explanation of fixes below
1. Fixed reproducability issue when we can't read a directory revision
An interesting subtlety of the block-device layer is that the
block-device is allowed to return LFS_ERR_CORRUPT on reads to
untouched blocks. This can easily happen if a user is using ECC or
some sort of CMAC on their blocks. Normally we never run into this,
except for the optimization around directory revisions where we use
uninitialized data to start our revision count.
We correctly handle this case by ignoring whats on disk if the read
fails, but end up using unitialized RAM instead. This is not an issue
for normal use, though it can lead to a small information leak.
However it creates a big problem for reproducability, which is very
helpful for debugging.
I ended up running into a case where the RAM values for the revision
count was different, causing two identical runs to wear-level at
different times, leading to one version running out of space before a
bug occured because it expanded the superblock early.
2. Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size
This could be caused if the previous tag was a valid commit and we
lost power causing a partially written tag as the start of a new
commit.
Fortunately we already have a separate condition for exceeding the
block size, so we can force that case to always treat the mdir as
unerased.
3. Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
outline a file in lfs_file_sync
Most operations involving metadata-pairs treat the mdir struct as
entirely temporary and throw it out if any error occurs. Except for
lfs_file_sync since the mdir is also a part of the file struct.
This is relevant because of a cleanup issue in lfs_dir_compact that
usually doesn't have side-effects. The issue is that lfs_fs_relocate
can fail. It needs to allocate new blocks to relocate to, and as the
disk reaches its end of life, it can fail with ENOSPC quite often.
If lfs_fs_relocate fails, the containing lfs_dir_compact would return
immediately without restoring the previous state of the mdir. If a new
commit comes in on the same mdir, the old state left there could
corrupt the filesystem.
It's interesting to note this is forced to happen in lfs_file_sync,
since it always tries to outline the file if it gets ENOSPC (ENOSPC
can mean both no blocks to allocate and that the mdir is full). I'm
not actually sure this bit of code is necessary anymore, we may be
able to remove it.
4. Fixed cleanup issue if we run out of space while extending a CTZ
skip-list
The actually CTZ skip-list logic itself hasn't been touched in more
than a year at this point, so I was surprised to find a bug here. But
it turns out the CTZ skip-list could be put in an invalid state if we
run out of space while trying to extend the skip-list.
This only becomes a problem if we keep the file open, clean up some
space elsewhere, and then continue to write to the open file without
modifying it. Fortunately an easy fix.
5. Fixed missing half-orphans when allocating blocks during
lfs_fs_deorphan
This was a really interesting bug. Normally, we don't have to worry
about allocations, since we force consistency before we are allowed
to allocate blocks. But what about the deorphan operation itself?
Don't we need to allocate blocks if we relocate while deorphaning?
It turns out the deorphan operation can lead to allocating blocks
while there's still orphans and half-orphans on the threaded
linked-list. Orphans aren't an issue, but half-orphans may contain
references to blocks in the outdated half, which doesn't get scanned
during the normal allocation pass.
Fortunately we already fetch directory entries to check CTZ lists, so
we can also check half-orphans here. However this causes
lfs_fs_traverse to duplicate all metadata-pairs, not sure what to do
about this yet.
- Removed old tests and test scripts
- Reorganize the block devices to live under one directory
- Plugged new test framework into Makefile
renamed:
- scripts/test_.py -> scripts/test.py
- tests_ -> tests
- {file,ram,test}bd/* -> bd/*
It took a surprising amount of effort to make the Makefile behave since
it turns out the "test_%" rule could override "tests/test_%.toml.test"
which is generated as part of test.py.
Sometimes small, single line code change hides behind it a complicated
story. This is one of those times.
If you look at this diff, you may note that this is a case of
lfs_dir_fetchmatch not correctly handling a tag that invalidates a
callback used to search for some condition, in this case a search for a
parent, which is invalidated by a later dir tag overwritting the
previous dir pair.
But how can this happen? Dir-pair-tags are only overwritten during
relocations (when a block goes bad or exceeds the block_cycles config
option for dynamic wear-leveling). Other dir operations create new
directory entries. And the only lfs_dir_fetchmatch condition that relies
on overwrites (as opposed to proper deletes) is when we need to find a
directory's parent, an operation that only occurs during a _different_
relocation. And a false _positive_, can only happen if we don't have a
parent. Which is really unlikely when we search for directory parents!
This bug and minimal test case was found by Matthew Renzelmann. In a
unfortunate series of events, first a file creation causes a directory
split to occur. This creates a new, orphaned metadata-pair containing
our new file. However, the revision count on this metadata-pair
indicates the pair is due for relocation as a part of wear-leveling.
Normally, this is fine, even though this metadata-pair has no parent,
the lfs_dir_find should return ENOENT and continue without error.
However, here we get hit by our fetchmatch bug. A previous, unrelated
relocation overwrites a pair which just happens to contain the block
allocated for a new metadata-pair. When we search for a parent,
lfs_dir_fetchmatch incorrectly finds this old, outdated metadata pair
and incorrectly tells our orphan it's found its parent.
As you can imagine the orphan's dissapointment must be immense.
So an unfortunately timed dir split triggers a relocation which
incorrectly finds a previously written parent that has been outdated
by another relocation.
As a solution we can outdate our found tag if it is overwritten by
an exact match during lfs_dir_fetchmatch.
As a part of this I started adding a new set of tests: tests/test_relocations,
for aggressive relocations tests. This is already by appended to by
another PR. I suspect relocations is relatively under-tested and is
becoming more important due to recent improvements in wear-leveling.
The superblock entry takes up id 0 in the root directory (not all
entries are files, though currently the superblock is the only
exception). Normally, reading a directory correctly skips the
superblock and only reports non-superblock files.
However, this doesn't work perfectly for lfs_dir_seek, which tries
to be clever to not touch the disk.
Fortunately, we can fix this by adding an offset for the superblock.
This will only work while the superblock is the only non-file entry,
otherwise we would need to touch the disk to properly seek in a
directory (though we already touch the disk a bit to get dir-tails
during seeks).
Found by jhartika
This is caused by dir->head not being updated when dir->m.pair may be.
This causes the two to fall out of sync and later dir rewinds to fail.
This bug stems all the way back from the first commits of littlefs, so
it's surprising it has avoided detection for this long. Perhaps because
lfs_dir_rewind is not used often.