Commit Graph

7 Commits

Author SHA1 Message Date
Christopher Haster
8a75a68d8b Made rbyd cksums erased-state agnostic
Long story short, rbyd checksums are now fully reproducible. If you
write the same set of tags to any block, you will end up with the same
checksum.

This is actually a bit tricky with littlefs's constraints.

---

The main problem boils down to erased-state. littlefs has a fairly
flexible model for erased-state, and this brings some challenges. In
littlefs, storage goes through 2 states:

1. Erase - Prepare storage for progging. Reads after an erase may return
   arbitrary, but consistent, values.

2. Prog - Program storage with data. Storage must be erased and no progs
   attempted. Reads after a prog must return the new data.

Note in this model erased-state may not be all 0xffs, though it likely
will be for flash. This allows littlefs to support a wide range of
other storage devices: SD, RAM, NVRAM, encryption, ECC, etc.

But this model also means erased-state may be different from block to
block, and even different on later erases of the same block.

And if that wasn't enough of a challenge, _erased-state can contain
perfectly valid commits_. Usually you can expect arbitrary valid cksums
to be rare, but thanks to SD, RAM, etc, modeling erase as a noop, valid
cksums in erased-state is actually very common.

So how do we manage erased-state in our rbyds?

First we need some way to detect it, since we can't prog if we're not
erased. This is accomplished by the forward-looking erased-state cksum
(ecksum):

  .---+---+---+---.     \
  |     commit    |     |
  |               |     |
  |               |     |
  +---+---+---+---+     +-.
  |     ecksum -------. | | <-- ecksum - cksum of erased state
  +---+---+---+---+   | / |
  |     cksum --------|---' <-- cksum - cksum of commit,
  +---+---+---+---+   |                 including ecksum
  |    padding    |   |
  |               |   |
  +---+---+---+---+ \ |
  |     erased    | +-'
  |               | /
  .               .
  .               .

You may have already noticed the start of our problems. The ecksum
contains the erased-state, which is different per-block, and our rbyd
cksum contains the ecksum. We need to include the ecksum so we know if
it's valid, but this means our rbyd cksum changes block to block.

Solving this is simple enough: Stop the rbyd's canonical cksum before
the ecksum, but include the ecksum in the actual cksum we write to disk.

Future commits will need to start from the canonical cksum, so the old
ecksum won't be included in new commits, but this shouldn't be a
problem:

  .---+---+---+---. . . \ . \ . . . . .---+---+---+---.     \   \
  |     commit    |     |   |         |     commit    |     |   |
  |               |     |   +- rbyd   |               |     |   |
  |               |     |   |  cksum  |               |     |   |
  +---+---+---+---+     +-. /         +---+---+---+---+     |   |
  |     ecksum -------. | |           |     ecksum    |     .   .
  +---+---+---+---+   | / |           +---+---+---+---+     .   .
  |     cksum --------|---'           |     cksum     |     .   .
  +---+---+---+---+   |               +---+---+---+---+     .   .
  |    padding    |   |               |    padding    |     .   .
  |               |   |               |               |     .   .
  +---+---+---+---+ \ | . . . . . . . +---+---+---+---+     |   |
  |     erased    | +-'               |     commit    |     |   |
  |               | /                 |               |     |   +- rbyd
  .               .                   |               |     |   |  cksum
  .               .                   +---+---+---+---+     +-. /
                                      |     ecksum -------. | |
                                      +---+---+---+---+   | / |
                                      |     cksum ------------'
                                      +---+---+---+---+   |
                                      |    padding    |   |
                                      |               |   |
                                      +---+---+---+---+ \ |
                                      |     erased    | +-'
                                      |               | /
                                      .               .
                                      .               .

The second challenge is the pesky possibility of existing valid commits.
We need some way to ensure that erased-state following a commit does not
accidentally contain a valid old commit.

This is where are tag's valid bits come into play: The valid bit of each
tag must match the parity of all preceding tags (equivalent to the
parity of the crc32c), and we can use some perturb bits in the cksum tag
to make sure any tags in our erased-state do _not_ match:

  .---+---+---+---. \ . . . . . .---+---+---+---. \   \   \
  |v|    tag      | |           |v|    tag      | |   |   |
  +---+---+---+---+ |           +---+---+---+---+ |   |   |
  |     commit    | |           |     commit    | |   |   |
  |               | |           |               | |   |   |
  +---+---+---+---+ +-----.     +---+---+---+---+ +-. |   |
  |v|p|  tag      | |     |     |v|p|  tag      | | | |   |
  +---+---+---+---+ /     |     +---+---+---+---+ / | |   |
  |     cksum     |       |     |     cksum     |   | .   .
  +---+---+---+---+       |     +---+---+---+---+   | .   .
  |    padding    |       |     |    padding    |   | .   .
  |               |       |     |               |   | .   .
  +---+---+---+---+ . . . | . . +---+---+---+---+   | |   |
  |v---------------- != --'     |v------------------' |   |
  |     erased    |             +---+---+---+---+     |   |
  .               .             |     commit    |     |   |
  .               .             |               |     |   |
                                +---+---+---+---+     +-. +-.
                                |v|p|  tag      |     | | | |
                                +---+---+---+---+     / | / |
                                |     cksum ----------------'
                                +---+---+---+---+       |
                                |    padding    |       |
                                |               |       |
                                +---+---+---+---+       |
                                |v---------------- != --'
                                |     erased    |
                                .               .
                                .               .

New problem! The rbyd cksum contains the valid bits, which contain the
perturb bits, which depends on the erased-state!

And you can't just derive the valid bits from the rbyd's canonical
cksum. This avoids erased-state poisoning, sure, but then nothing in the
new commit depends on the perturb bits! The catch-22 here is that we
need the valid bits to both depend on, and ignore, the erased-state
poisoned perturb bits.

As far as I can tell, the only way around this is to make the rybd's
canonical cksum not include the parity bits. Which is annoying, masking
out bits is not great for bulk cksum calculation...

But this does solve our problem:

  .---+---+---+---. \ . . . . . .---+---+---+---. \   \   \   \
  |v|    tag      | |           |v|    tag      | |   |   o   o
  +---+---+---+---+ |           +---+---+---+---+ |   |   |   |
  |     commit    | |           |     commit    | |   |   |   |
  |               | |           |               | |   |   |   |
  +---+---+---+---+ +-----.     +---+---+---+---+ +-. |   |   |
  |v|p|  tag      | |     |     |v|p|  tag      | | | |   .   .
  +---+---+---+---+ /     |     +---+---+---+---+ / | |   .   .
  |     cksum     |       |     |     cksum     |   | .   .   .
  +---+---+---+---+       |     +---+---+---+---+   | .   .   .
  |    padding    |       |     |    padding    |   | .   .   .
  |               |       |     |               |   | .   .   .
  +---+---+---+---+ . . . | . . +---+---+---+---+   | |   |   |
  |v---------------- != --'     |v------------------' |   o   o
  |     erased    |             +---+---+---+---+     |   |   |
  .               .             |     commit    |     |   |   +- rbyd
  .               .             |               |     |   |   |  cksum
                                +---+---+---+---+     +-. +-. /
                                |v|p|  tag      |     | | o |
                                +---+---+---+---+     / | / |
                                |     cksum ----------------'
                                +---+---+---+---+       |
                                |    padding    |       |
                                |               |       |
                                +---+---+---+---+       |
                                |v---------------- != --'
                                |     erased    |
                                .               .
                                .               .

Note that because each commit's cksum derives from the canonical cksum,
the valid bits and commit cksums no longer contain the same data, so our
parity(m) = parity(crc32c(m)) trick no longer works.

However our crc32c still does tell us a bit about each tag's parity, so
with a couple well-placed xors we can at least avoid needing two
parallel calculations:

  cksum' = crc32c(cksum, m)
  valid' = parity(cksum' xor cksum) xor valid

This also means our commit cksums don't include any information about
the valid bits, since we mask these out before cksum calculation. Which
is a bit concerning, but as far as I can tell not a real problem.

---

An alternative design would be to just keep track of two cksums: A
commit cksum and a canonical cksum.

This would be much simpler, but would also require storing two cksums in
RAM in our lfsr_rbyd_t struct. A bit annoying for our 4-byte crc32cs,
and a bit more than a bit annoying for hypothetical 32-byte sha256s.

It's also not entirely clear how you would update both crc32cs
efficiently. There is a way to xor out the initial state before each
tag, but I think it would still require O(n) cycles of crc32c
calculation...

As it is, the extra bit needed to keep track of commit parity is easy
enough to sneak into some unused sign bits in our lfsr_rbyd_t struct.

---

I've also gone ahead and mixed in the current commit parity into our
cksum's perturb bits, so the commit cksum at least contains _some_
information about the previous parity.

But it's not entirely clear this actually adds anything. Our perturb
bits aren't _required_ to reflect the commit parity, so a very unlucky
power-loss could in theory still make a cksum valid for the wrong
parity.

At least this situation will be caught by later valid bits...

I've also carved out a tag encoding, LFSR_TAG_PERTURB, solely for adding
more perturb bits to commit cksums:

  LFSR_TAG_CKSUM          0x3cpp  v-11 cccc -ppp pppp

  LFSR_TAG_CKSUM          0x30pp  v-11 ---- -ppp pppp
  LFSR_TAG_PERTURB        0x3100  v-11 ---1 ---- ----
  LFSR_TAG_ECKSUM         0x3200  v-11 --1- ---- ----
  LFSR_TAG_GCKSUMDELTA+   0x3300  v-11 --11 ---- ----

  + Planned

This allows for more than 7 perturb bits, and could even mix in the
entire previous commit cksum, if we ever think that is worth the RAM
tradeoff.

LFSR_TAG_PERTURB also has the advantage that it is validated by the
cksum tag's valid bit before being included in the commit cksum, which
indirectly includes the current commit parity. We may eventually want to
use this instead of the cksum tag's perturb bits for this reason, but
right now I'm not sure this tiny bit of extra safety is worth the
minimum 5-byte per commit overhead...

Note if you want perturb bits that are also included in the rbyd's
canonical cksum, you can just use an LFSR_TAG_SHRUBDATA tag. Or any
unreferenced shrub tag really.

---

All of these changes required a decent amount of code, I think mostly
just to keep track of the parity bit. But the isolation of rbyd cksums
from erased-state is necessary for several future-planned features:

           code          stack
  before: 33564           2816
  after:  33916 (+1.0%)   2824 (+0.3%)
2024-05-04 17:25:01 -05:00
Christopher Haster
c4fcc78814 Tweaked file types/name tag encoding to be a bit less quirky
The intention behind the quirky encoding was to leverage bit 1 to
indicate if the underlying file type would be backed by the common file
B-tree data structure. Looking forward, there may be several of these
types, compressed files, contiguous files, etc, that for all intents and
purposes are just normal files interpreted differently.

But trying to leverage too many bits like this is probably going to give
us a sparse, awkward, and confusing tag encoding, so I've reverted to a
hopefully more normal encoding:

  LFSR_TAG_NAME           0x02tt  v--- --1- -ttt tttt

  LFSR_TAG_NAME           0x0200  v--- --1- ---- ----
  LFSR_TAG_REG            0x0201  v--- --1- ---- ---1
  LFSR_TAG_DIR            0x0202  v--- --1- ---- --1-
  LFSR_TAG_SYMLINK*       0x0203  v--- --1- ---- --11
  LFSR_TAG_BOOKMARK       0x0204  v--- --1- ---- -1--
  LFSR_TAG_ORPHAN         0x0205  v--- --1- ---- -1-1
  LFSR_TAG_COMPR*         0x0206  v--- --1- ---- -11-
  LFSR_TAG_CONTIG*        0x0207  v--- --1- ---- -111

  * Hypothetical

Note the carve-out for the hypothetical symlink tag. Symlinks are
actually incredibly low in the priority list, but they are also
the only current hypothetical file type that would need to be exposed to
users. Grouping these up makes sense.

This will get a bit messy if we ever end up with a 4th user-facing type,
but there isn't any in POSIX at least (ignoring non-fs types, socket,
fifo, character, block, etc).

The gap also helps line things up so reg/orphan are a single bit flip,
and the non-user facing types all share a bit.

This had no impact on code size:

           code          stack
  before: 33564           2816
  after:  33564 (+0.0%)   2816 (+0.0%)
2024-05-04 17:24:48 -05:00
Christopher Haster
6e5d314c20 Tweaked struct tag encoding so b*/m* tags are earlier
These b*/m* struct tags have a common pattern that would be good to
emphasize in the encoding. The later struct tags get a bit more messy as
they leave space for future possible extensions.

New encoding:

  LFSR_TAG_STRUCT         0x03tt  v--- --11 -ttt ttrr

  LFSR_TAG_DATA           0x0300  v--- --11 ---- ----
  LFSR_TAG_BLOCK          0x0304  v--- --11 ---- -1rr
  LFSR_TAG_BSHRUB         0x0308  v--- --11 ---- 1---
  LFSR_TAG_BTREE          0x030c  v--- --11 ---- 11rr
  LFSR_TAG_MROOT          0x0310  v--- --11 ---1 --rr
  LFSR_TAG_MDIR           0x0314  v--- --11 ---1 -1rr
  LFSR_TAG_MSHRUB*        0x0318  v--- --11 ---1 1---
  LFSR_TAG_MTREE          0x031c  v--- --11 ---1 11rr
  LFSR_TAG_DID            0x0320  v--- --11 --1- ----
  LFSR_TAG_BRANCH         0x032c  v--- --11 --1- 11rr

  * Hypothetical

Note that all shrubs currently end with 1---, and all btrees, including
the awkward branch tag, end with 11rr.

This had no impact on code size:

           code          stack
  before: 33564           2816
  after:  33564 (+0.0%)   2816 (+0.0%)
2024-05-04 17:24:33 -05:00
Christopher Haster
5fa85583cd Dropped block-level erased-state checksums for RAM-tracked erased-state
Unfortunately block-level erased-state checksums (becksums) don't really
work as intended.

An invalid becksum _does_ signal that a prog has been attempted, but a
valid becksum does _not_ prove that a prog has _not_ been attempted.

Rbyd ecksums work, but only thanks to a combination of prioritizing
valid commits and the use of perturb bits to force erased-state changes.
It _is_ possible to end up with an ecksum collision, but only if you
1. lose power before completing a commit, and 2. end up with a
non-trivial crc32c collision. If this does happen, at the very least the
resulting commit will likely end up corrupted and thrown away later.

Block-level becksums, at least as originally designed, don't have either
of these protections. To make matters worse, the blocks these becksums
reference contain only raw user data. Write 0xffs into a file and you
will likely end up with a becksum collision!

This is a problem for a couple of reasons:

1. Progging multiple times to erased-state is likely to result in
   corrupted data, though this is also likely to get caught with
   validating writes.

   Worst case, the resulting data looks valid, but with weakened data
   retention.

2. Because becksums are stored in the copy-on-write metadata of the
   file, attempting to open a file twice for writing (or more advanced
   copy-on-write operations in the future) can lead to a situation where
   a prog is attempted on _already committed_ data.

   This is very bad and breaks copy-on-write guarantees.

---

So clearly becksums are not fit for purpose and should be dropped. What
can we replace them with?

The first option, implemented here, is RAM-tracked erased state. Give
each lfsr_file_t its own eblock/eoff fields to track the last known good
erased-state. And before each prog, clear eblock/eoff so we never
accidentally prog to the same erased-state twice.

It's interesting to note we don't currently clear eblock/eoff in all
file handles, this is ok only because we don't currently share
eblock/eoff across file handles. Each eblock/eoff is exclusive to the
lfsr_file_t and does not appear anywhere else in the system.

The main downside of this approach is that, well, the RAM-tracked
erase-state is only tracked in RAM. Block-level erased-state effectively
does not persist across reboots. I've considered adding some sort of
per-file erased-state tracking to the mdir that would need to be cleared
before use, but such a mechanism ends up quite complicated.

At the moment, I think the best second option is to put erased-state
tracking in the future-planned bmap. This would let you opt-in to
on-disk tracking of all erased-state in the system.

One nice thing about RAM-tracked erased-state is that it's not on disk,
so it's not really a compatibility concern and won't get in the way of
additional future erased-state tracking.

---

Benchmarking becksums vs RAM-tracking has been quite interesting. While
in theory becksums can track much more erased-state, it's quite unlikely
anything but the most recent erased-state actually ends up used. The end
result is no real measurable performance loss, and actually a minor
speedup because we don't need to calculate becksums on every block
write.

There are some pathological cases, such as multiple write heads, but
these are out-of-scope right now (note! multiple explicit file handles
currently handle this case beautifully because we don't share
eblock/eoff!)

Becksums were also relatively complicated, and needed extra scaffolding
to pass around/propagate as secondary tags alongside the primary bptr.
So trading these for RAM-tracking also gives us a nice bit of code/stack
savings, albeit at a 2-word RAM cost in lfsr_file_t:

           code          stack          structs
  before: 33888           2864             1096
  after:  33564 (-1.0%)   2816 (-1.7%)     1104 (+0.7%)

  lfsr_file_t before: 104
  lfsr_file_t after:  112 (+7.7%)
2024-05-04 17:22:56 -05:00
Christopher Haster
86a8582445 Tweaked canonical altn to point to itself
By definition, altns should never be followed, so it doesn't really
matter where they point. But it's not like they can point literally
nowhere, so where should they point?

A couple options:

1. jump=jump - Wherever the old alt pointed
   - Easy, literally a noop
   - Unsafe, bugs could reveal outdated parts of the tree
   - Encoding size eh

2. jump=0 - Point to offset=0
   - Easier, +0 code
   - Safer, branching to 0 should assert
   - Worst possible encoding size

3. jump=itself - Point to itself
   - A bit tricky, +4 code
   - Safe, should assert, even without asserts worst case infinite loop
   - Optimal encoding size

An infinite loop isn't the best failure state, but we can catch this
with an assert, which we would need for jump=0 anyways. And this is only
a concern if there are other fs bugs. jump=0 is actually slightly worse
if asserts are disabled, since we'd end up reading the revision count as
garbage.

Adopting jump=itself gives us the optimal 4-byte encoding:

  altbn w0 = 40 00 00 00
             '-+-'  ^  ^
               '----|--|-- tag = altbn
                    '--|-- weight = 0
                       '-- jump = itself (branch - 0)

This requires tweaking the alt encoder a bit, to avoid relative encoding
jump=0s, but this is pretty cheap:

                code          stack
  jump=jump:   34068           2864
  jump=0:      34068 (+0.0%)   2864 (+0.0%)
  jump=itself: 34072 (+0.0%)   2864 (+0.0%)

I thought we may need to also tweak the decoder, so later trunk copies
don't accidentally point to the old location, but humorously our pruning
kicks in redundantly to reset altbn's jump=itself on every trunk.

Note lfsr_rbyd_lookupnext was also rearranged a bit to make it easier to
assert on infinite loops and this also added some code. Probably just
due to compiler noise:

           code          stack
  before: 34068           2864
  after:  34076 (+0.0%)   2864 (+0.0%)

Also note that we still accept all of the above altbn encoding options.
This only affects encoding and dbg scripts.
2024-04-28 13:21:46 -05:00
Christopher Haster
faf8c4b641 Tweaked alt-tag encoding to match color/dir naming order
This is mainly to avoid mistakes caused by names/encodings disagreeing:

  LFSR_TAG_ALT  0x4kkk  v1cd kkkk -kkk kkkk
                        ^ ^^ '------+-----'
                        '-||--------|------- valid bit
                          '|--------|------- color
                           '--------|------- dir
                                    '------- key

Notably, the LFSR_TAG_ALT() macro has already caused issues by being
both 1. ambiguous, and 2. not really type-checkable. It's easy to get
the order wrong and things not really break, just behave poorly, it's
really not great!

To be honest the exact order is a bit arbitrary, the color->dir naming
appeared by accident because I guess it felt more natural. Maybe because
of English's weird implicit adjective ordering? Maybe because of how
often conditions show up as the last part of the name in other
instruction sets?

At least one plus is that this moves the dir-bit next to the key. This
makes it so all of the condition information is encoding is the lowest
13-bits of the tag, which may lead to minor optimization tricks for
implementing flips and such.

Code changes:

           code          stack
  before: 34080           2864
  after:  34068 (-0.0%)   2864 (+0.0%)
2024-04-28 13:21:41 -05:00
Christopher Haster
8a646d5b8e Added dbgtag.py for easy tag decoding on the command-line
Example:

  $ ./scripts/dbgtag.py 0x3001
  cksum 0x01

dbgtag.py inherits most of crc32c.py's decoding options. The most useful
probably being -x/--hex:

  $ ./scripts/dbgtag.py -x e1 00 01 8a 09
  altbgt 0x100 w1 -1162

dbgtag.py also supports reading from a block device if either
-b/--block-size or --off are provided. This is mainly for consistency
with the other dbg*.py scripts:

  $ ./scripts/dbgtag.py disk -b4096 0x2.1e4
  bookmark w1 1

This should help when debugging and finding a raw tag/alt in some
register. Manually decoding is just an unnecessary road bump when this
happens.
2024-04-01 16:29:13 -05:00