Added some rbyd benchmarks, fixed/tweaked some related scripts

- Added both uattr (limited to 256) and id (limited to 65535) benchmarks
  covering the main rbyd operations

- Fixed issue where --defines gets passed to the test/bench runners when
  querying id-specific information. After changing the test/bench
  runners to prioritize explicit defines, this causes problems for
  recorded benchmark results and debug related things.

- In plot.py/plotmpl.py, made --by/-x/-y in subplots behave somewhat
  reasonably, contributing to a global dataset and the figure's legend,
  colors, etc, but only shown in the specified subplot. This is useful
  mainly for showing different -y values on different subplots.

- In plot.py/plotmpl.py, added --labels to allow explicit configuration
  of legend labels, much like --colors/--formats/--chars/etc. This
  removes one of the main annoying needs for modifying benchmark results.
This commit is contained in:
Christopher Haster
2023-01-20 01:54:49 -06:00
parent 27e4fbd3ad
commit 9a8e1d93c6
5 changed files with 926 additions and 112 deletions

View File

@@ -260,11 +260,11 @@ def datasets(results, by=None, x=None, y=None, define=[]):
results = results_
# if y not specified, try to guess from data
if y is None:
if not y:
y = co.OrderedDict()
for r in results:
for k, v in r.items():
if (by is None or k not in by) and v.strip():
if (not by or k not in by) and v.strip():
try:
dat(v)
y[k] = True
@@ -272,7 +272,7 @@ def datasets(results, by=None, x=None, y=None, define=[]):
y[k] = False
y = list(k for k,v in y.items() if v)
if by is not None:
if by:
# find all 'by' values
ks = set()
for r in results:
@@ -281,8 +281,8 @@ def datasets(results, by=None, x=None, y=None, define=[]):
# collect all datasets
datasets = co.OrderedDict()
for ks_ in (ks if by is not None else [()]):
for x_ in (x if x is not None else [None]):
for ks_ in (ks if by else [()]):
for x_ in (x if x else [None]):
for y_ in y:
# hide x/y if there is only one field
k_x = x_ if len(x or []) > 1 else ''
@@ -293,7 +293,7 @@ def datasets(results, by=None, x=None, y=None, define=[]):
x_,
y_,
[(by_, {k_}) for by_, k_ in zip(by, ks_)]
if by is not None else [])
if by else [])
return datasets
@@ -533,7 +533,7 @@ class Grid:
self.yweights = new_yweights
self.map = other_map | {(x+len(other.xweights), y): s
for (x, y), s in self_map.items()}
def scale(self, width, height):
self.xweights = [s*width for s in self.xweights]
@@ -570,6 +570,7 @@ def main(csv_paths, output, *,
points_and_lines=False,
colors=None,
formats=None,
labels=None,
width=WIDTH,
height=HEIGHT,
xlim=(None,None),
@@ -645,6 +646,11 @@ def main(csv_paths, output, *,
else:
formats_ = FORMATS
if labels is not None:
labels_ = labels
else:
labels_ = ['']
if font_color is not None:
font_color_ = font_color
elif dark:
@@ -723,24 +729,36 @@ def main(csv_paths, output, *,
# equivalent to 96, maybe this is the default for SVG rendering?
plt.rc('figure', dpi=96)
# subplot can also contribute to subplots, resolve this here or things
# become a mess...
subplots += subplot.pop('subplots', [])
# allow any subplots to contribute to by/x/y
def subplots_get(k, *, subplots=[], **args):
v = args.get(k, []).copy()
for _, subargs in subplots:
v.extend(subplots_get(k, **subargs))
return v
all_by = (by or []) + subplots_get('by', **subplot, subplots=subplots)
all_x = (x or []) + subplots_get('x', **subplot, subplots=subplots)
all_y = (y or []) + subplots_get('y', **subplot, subplots=subplots)
# separate out renames
renames = list(it.chain.from_iterable(
((k, v) for v in vs)
for k, vs in it.chain(by or [], x or [], y or [])))
if by is not None:
by = [k for k, _ in by]
if x is not None:
x = [k for k, _ in x]
if y is not None:
y = [k for k, _ in y]
for k, vs in it.chain(all_by, all_x, all_y)))
all_by = [k for k, _ in all_by]
all_x = [k for k, _ in all_x]
all_y = [k for k, _ in all_y]
# first collect results from CSV files
results = collect(csv_paths, renames)
# then extract the requested datasets
datasets_ = datasets(results, by, x, y, define)
datasets_ = datasets(results, all_by, all_x, all_y, define)
# figure out formats/colors here so that subplot defines
# figure out formats/colors/labels here so that subplot defines
# don't change them later, that'd be bad
dataformats_ = {
name: formats_[i % len(formats_)]
@@ -748,11 +766,12 @@ def main(csv_paths, output, *,
datacolors_ = {
name: colors_[i % len(colors_)]
for i, name in enumerate(datasets_.keys())}
datalabels_ = {
name: labels_[i % len(labels_)]
for i, name in enumerate(datasets_.keys())}
# create a grid of subplots
grid = Grid.fromargs(
subplots=subplots + subplot.pop('subplots', []),
**subplot)
grid = Grid.fromargs(**subplot, subplots=subplots)
# create a matplotlib plot
fig = plt.figure(figsize=(
@@ -785,6 +804,8 @@ def main(csv_paths, output, *,
# now plot each subplot
for s in grid:
# allow subplot params to override global params
x_ = {k for k,_ in (x or []) + s.args.get('x', [])}
y_ = {k for k,_ in (y or []) + s.args.get('y', [])}
define_ = define + s.args.get('define', [])
xlim_ = s.args.get('xlim', xlim)
ylim_ = s.args.get('ylim', ylim)
@@ -812,7 +833,13 @@ def main(csv_paths, output, *,
# data can be constrained by subplot-specific defines,
# so re-extract for each plot
subdatasets = datasets(results, by, x, y, define_)
subdatasets = datasets(results, all_by, all_x, all_y, define_)
# filter by subplot x/y
subdatasets = co.OrderedDict([(name, dataset)
for name, dataset in subdatasets.items()
if not name[-2] or name[-2] in x_
if not name[-1] or name[-1] in y_])
# plot!
ax = s.ax
@@ -924,17 +951,24 @@ def main(csv_paths, output, *,
#
# note this was written before constrained_layout supported legend
# collisions, hopefully this is added in the future
labels = co.OrderedDict()
legend = {}
for s in grid:
for h, l in zip(*s.ax.get_legend_handles_labels()):
labels[l] = h
legend[l] = h
# sort in dataset order
legend_ = []
for name in datasets_.keys():
name_ = ','.join(k for k in name if k)
if name_ in legend:
legend_.append((datalabels_[name] or name_, legend[name_]))
legend = legend_
if legend_right:
ax = fig.add_subplot(gs[(1 if legend_above else 0):,-1])
ax.set_axis_off()
ax.legend(
labels.values(),
labels.keys(),
[h for _,h in legend],
[l for l,_ in legend],
loc='upper left',
fancybox=False,
borderaxespad=0)
@@ -944,10 +978,19 @@ def main(csv_paths, output, *,
ax.set_axis_off()
# try different column counts until we fit in the axes
for ncol in reversed(range(1, len(labels)+1)):
for ncol in reversed(range(1, len(legend)+1)):
# permute the labels, mpl wants to order these column first
nrow = m.ceil(len(legend)/ncol)
legend_ = ncol*nrow*[None]
for x in range(ncol):
for y in range(nrow):
if x+ncol*y < len(legend):
legend_[x*nrow+y] = legend[x+ncol*y]
legend_ = [l for l in legend_ if l is not None]
legend_ = ax.legend(
labels.values(),
labels.keys(),
[h for _,h in legend_],
[l for l,_ in legend_],
loc='upper center',
ncol=ncol,
fancybox=False,
@@ -969,10 +1012,19 @@ def main(csv_paths, output, *,
weight=plt.rcParams['axes.labelweight'])
# try different column counts until we fit in the axes
for ncol in reversed(range(1, len(labels)+1)):
for ncol in reversed(range(1, len(legend)+1)):
# permute the labels, mpl wants to order these column first
nrow = m.ceil(len(legend)/ncol)
legend_ = ncol*nrow*[None]
for x in range(ncol):
for y in range(nrow):
if x+ncol*y < len(legend):
legend_[x*nrow+y] = legend[x+ncol*y]
legend_ = [l for l in legend_ if l is not None]
legend_ = ax.legend(
labels.values(),
labels.keys(),
[h for _,h in legend_],
[l for l,_ in legend_],
loc='upper center',
ncol=ncol,
fancybox=False,
@@ -1088,6 +1140,10 @@ if __name__ == "__main__":
type=lambda x: [x.strip().replace('0',',') for x in x.split(',')],
help="Comma-separated matplotlib formats to use. Allows '0' as an "
"alternative for ','.")
parser.add_argument(
'--labels',
type=lambda x: [x.strip() for x in x.split(',')],
help="Comma-separated legend labels.")
parser.add_argument(
'-W', '--width',
type=lambda x: int(x, 0),