Added back heuristic-based power-loss testing

The main change here from the previous test framework design is:

1. Powerloss testing remains in-process, speeding up testing.

2. The state of a test, included all powerlosses, is encoded in the
   test id + leb16 encoded powerloss string. This means exhaustive
   testing can be run in CI, but then easily reproduced locally with
   full debugger support.

   For example:

   ./scripts/test.py test_dirs#reentrant_many_dir#10#1248g1g2 --gdb

   Will run the test test_dir, case reentrant_many_dir, permutation #10,
   with powerlosses at 1, 2, 4, 8, 16, and 32 cycles. Dropping into gdb
   if an assert fails.

The changes to the block-device are a work-in-progress for a
lazily-allocated/copy-on-write block device that I'm hoping will keep
exhaustive testing relatively low-cost.
This commit is contained in:
Christopher Haster
2022-08-19 18:57:55 -05:00
parent 01b11da31b
commit 61455b6191
8 changed files with 1391 additions and 571 deletions

View File

@@ -11,6 +11,79 @@
#include <stdlib.h>
// access to lazily-allocated/copy-on-write blocks
//
// Note we can only modify a block if we have exclusive access to it (rc == 1)
//
// TODO
__attribute__((unused))
static void lfs_testbd_incblock(lfs_testbd_t *bd, lfs_block_t block) {
if (bd->blocks[block]) {
bd->blocks[block]->rc += 1;
}
}
static void lfs_testbd_decblock(lfs_testbd_t *bd, lfs_block_t block) {
if (bd->blocks[block]) {
bd->blocks[block]->rc -= 1;
if (bd->blocks[block]->rc == 0) {
free(bd->blocks[block]);
bd->blocks[block] = NULL;
}
}
}
static const lfs_testbd_block_t *lfs_testbd_getblock(lfs_testbd_t *bd,
lfs_block_t block) {
return bd->blocks[block];
}
static lfs_testbd_block_t *lfs_testbd_mutblock(lfs_testbd_t *bd,
lfs_block_t block, lfs_size_t block_size) {
if (bd->blocks[block] && bd->blocks[block]->rc == 1) {
// rc == 1? can modify
return bd->blocks[block];
} else if (bd->blocks[block]) {
// rc > 1? need to create a copy
lfs_testbd_block_t *b = malloc(
sizeof(lfs_testbd_block_t) + block_size);
if (!b) {
return NULL;
}
memcpy(b, bd->blocks[block], sizeof(lfs_testbd_block_t) + block_size);
b->rc = 1;
lfs_testbd_decblock(bd, block);
bd->blocks[block] = b;
return b;
} else {
// no block? need to allocate
lfs_testbd_block_t *b = malloc(
sizeof(lfs_testbd_block_t) + block_size);
if (!b) {
return NULL;
}
b->rc = 1;
b->wear = 0;
// zero for consistency
memset(b->data,
(bd->cfg->erase_value != -1) ? bd->cfg->erase_value : 0,
block_size);
bd->blocks[block] = b;
return b;
}
}
// testbd create/destroy
int lfs_testbd_createcfg(const struct lfs_config *cfg, const char *path,
const struct lfs_testbd_config *bdcfg) {
LFS_TESTBD_TRACE("lfs_testbd_createcfg(%p {.context=%p, "
@@ -20,62 +93,35 @@ int lfs_testbd_createcfg(const struct lfs_config *cfg, const char *path,
"\"%s\", "
"%p {.erase_value=%"PRId32", .erase_cycles=%"PRIu32", "
".badblock_behavior=%"PRIu8", .power_cycles=%"PRIu32", "
".buffer=%p, .wear_buffer=%p})",
".powerloss_behavior=%"PRIu8", .powerloss_cb=%p, "
".powerloss_data=%p, .track_branches=%d})",
(void*)cfg, cfg->context,
(void*)(uintptr_t)cfg->read, (void*)(uintptr_t)cfg->prog,
(void*)(uintptr_t)cfg->erase, (void*)(uintptr_t)cfg->sync,
cfg->read_size, cfg->prog_size, cfg->block_size, cfg->block_count,
path, (void*)bdcfg, bdcfg->erase_value, bdcfg->erase_cycles,
bdcfg->badblock_behavior, bdcfg->power_cycles,
bdcfg->buffer, bdcfg->wear_buffer);
bdcfg->powerloss_behavior, (void*)(uintptr_t)bdcfg->powerloss_cb,
bdcfg->powerloss_data, bdcfg->track_branches);
lfs_testbd_t *bd = cfg->context;
bd->cfg = bdcfg;
// allocate our block array, all blocks start as uninitialized
bd->blocks = malloc(cfg->block_count * sizeof(lfs_testbd_block_t*));
if (!bd->blocks) {
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
memset(bd->blocks, 0, cfg->block_count * sizeof(lfs_testbd_block_t*));
// setup testing things
bd->persist = path;
bd->power_cycles = bd->cfg->power_cycles;
bd->branches = NULL;
bd->branch_capacity = 0;
bd->branch_count = 0;
// create scratch block if we need it (for emulating erase values)
if (bd->cfg->erase_value != -1) {
if (bd->cfg->scratch_buffer) {
bd->scratch = bd->cfg->scratch_buffer;
} else {
bd->scratch = lfs_malloc(cfg->block_size);
if (!bd->scratch) {
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
}
}
// create map of wear
if (bd->cfg->erase_cycles) {
if (bd->cfg->wear_buffer) {
bd->wear = bd->cfg->wear_buffer;
} else {
bd->wear = lfs_malloc(sizeof(lfs_testbd_wear_t)*cfg->block_count);
if (!bd->wear) {
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
}
memset(bd->wear, 0, sizeof(lfs_testbd_wear_t) * cfg->block_count);
}
// create underlying block device
if (bd->persist) {
int err = lfs_filebd_create(cfg, path);
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", err);
return err;
} else {
bd->u.ram.cfg = (struct lfs_rambd_config){
.buffer = bd->cfg->buffer,
};
int err = lfs_rambd_createcfg(cfg, &bd->u.ram.cfg);
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", err);
return err;
}
LFS_TESTBD_TRACE("lfs_testbd_createcfg -> %d", 0);
return 0;
}
int lfs_testbd_create(const struct lfs_config *cfg, const char *path) {
@@ -99,65 +145,65 @@ int lfs_testbd_destroy(const struct lfs_config *cfg) {
LFS_TESTBD_TRACE("lfs_testbd_destroy(%p)", (void*)cfg);
lfs_testbd_t *bd = cfg->context;
if (bd->cfg->erase_value != -1 && !bd->cfg->scratch_buffer) {
lfs_free(bd->scratch);
}
if (bd->cfg->erase_cycles && !bd->cfg->wear_buffer) {
lfs_free(bd->wear);
// decrement reference counts
for (lfs_block_t i = 0; i < cfg->block_count; i++) {
lfs_testbd_decblock(bd, i);
}
if (bd->persist) {
int err = lfs_filebd_destroy(cfg);
LFS_TESTBD_TRACE("lfs_testbd_destroy -> %d", err);
return err;
} else {
int err = lfs_rambd_destroy(cfg);
LFS_TESTBD_TRACE("lfs_testbd_destroy -> %d", err);
return err;
}
// free memory
free(bd->blocks);
free(bd->branches);
LFS_TESTBD_TRACE("lfs_testbd_destroy -> %d", 0);
return 0;
}
/// Internal mapping to block devices ///
static int lfs_testbd_rawread(const struct lfs_config *cfg, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
lfs_testbd_t *bd = cfg->context;
if (bd->persist) {
return lfs_filebd_read(cfg, block, off, buffer, size);
} else {
return lfs_rambd_read(cfg, block, off, buffer, size);
}
}
static int lfs_testbd_rawprog(const struct lfs_config *cfg, lfs_block_t block,
lfs_off_t off, const void *buffer, lfs_size_t size) {
lfs_testbd_t *bd = cfg->context;
if (bd->persist) {
return lfs_filebd_prog(cfg, block, off, buffer, size);
} else {
return lfs_rambd_prog(cfg, block, off, buffer, size);
}
}
static int lfs_testbd_rawerase(const struct lfs_config *cfg,
lfs_block_t block) {
lfs_testbd_t *bd = cfg->context;
if (bd->persist) {
return lfs_filebd_erase(cfg, block);
} else {
return lfs_rambd_erase(cfg, block);
}
}
///// Internal mapping to block devices ///
//static int lfs_testbd_rawread(const struct lfs_config *cfg, lfs_block_t block,
// lfs_off_t off, void *buffer, lfs_size_t size) {
// lfs_testbd_t *bd = cfg->context;
// if (bd->persist) {
// return lfs_filebd_read(cfg, block, off, buffer, size);
// } else {
// return lfs_rambd_read(cfg, block, off, buffer, size);
// }
//}
//
//static int lfs_testbd_rawprog(const struct lfs_config *cfg, lfs_block_t block,
// lfs_off_t off, const void *buffer, lfs_size_t size) {
// lfs_testbd_t *bd = cfg->context;
// if (bd->persist) {
// return lfs_filebd_prog(cfg, block, off, buffer, size);
// } else {
// return lfs_rambd_prog(cfg, block, off, buffer, size);
// }
//}
//
//static int lfs_testbd_rawerase(const struct lfs_config *cfg,
// lfs_block_t block) {
// lfs_testbd_t *bd = cfg->context;
// if (bd->persist) {
// return lfs_filebd_erase(cfg, block);
// } else {
// return lfs_rambd_erase(cfg, block);
// }
//}
//
//static int lfs_testbd_rawsync(const struct lfs_config *cfg) {
// lfs_testbd_t *bd = cfg->context;
// if (bd->persist) {
// return lfs_filebd_sync(cfg);
// } else {
// return lfs_rambd_sync(cfg);
// }
//}
static int lfs_testbd_rawsync(const struct lfs_config *cfg) {
lfs_testbd_t *bd = cfg->context;
if (bd->persist) {
return lfs_filebd_sync(cfg);
} else {
return lfs_rambd_sync(cfg);
}
}
/// block device API ///
// block device API
int lfs_testbd_read(const struct lfs_config *cfg, lfs_block_t block,
lfs_off_t off, void *buffer, lfs_size_t size) {
LFS_TESTBD_TRACE("lfs_testbd_read(%p, "
@@ -171,17 +217,27 @@ int lfs_testbd_read(const struct lfs_config *cfg, lfs_block_t block,
LFS_ASSERT(size % cfg->read_size == 0);
LFS_ASSERT(off+size <= cfg->block_size);
// block bad?
if (bd->cfg->erase_cycles && bd->wear[block] >= bd->cfg->erase_cycles &&
bd->cfg->badblock_behavior == LFS_TESTBD_BADBLOCK_READERROR) {
LFS_TESTBD_TRACE("lfs_testbd_read -> %d", LFS_ERR_CORRUPT);
return LFS_ERR_CORRUPT;
// get the block
const lfs_testbd_block_t *b = lfs_testbd_getblock(bd, block);
if (b) {
// block bad?
if (bd->cfg->erase_cycles && b->wear >= bd->cfg->erase_cycles &&
bd->cfg->badblock_behavior == LFS_TESTBD_BADBLOCK_READERROR) {
LFS_TESTBD_TRACE("lfs_testbd_read -> %d", LFS_ERR_CORRUPT);
return LFS_ERR_CORRUPT;
}
// read data
memcpy(buffer, &b->data[off], size);
} else {
// zero for consistency
memset(buffer,
(bd->cfg->erase_value != -1) ? bd->cfg->erase_value : 0,
size);
}
// read
int err = lfs_testbd_rawread(cfg, block, off, buffer, size);
LFS_TESTBD_TRACE("lfs_testbd_read -> %d", err);
return err;
LFS_TESTBD_TRACE("lfs_testbd_read -> %d", 0);
return 0;
}
int lfs_testbd_prog(const struct lfs_config *cfg, lfs_block_t block,
@@ -197,8 +253,15 @@ int lfs_testbd_prog(const struct lfs_config *cfg, lfs_block_t block,
LFS_ASSERT(size % cfg->prog_size == 0);
LFS_ASSERT(off+size <= cfg->block_size);
// get the block
lfs_testbd_block_t *b = lfs_testbd_mutblock(bd, block, cfg->block_size);
if (!b) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
// block bad?
if (bd->cfg->erase_cycles && bd->wear[block] >= bd->cfg->erase_cycles) {
if (bd->cfg->erase_cycles && b->wear >= bd->cfg->erase_cycles) {
if (bd->cfg->badblock_behavior ==
LFS_TESTBD_BADBLOCK_PROGERROR) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", LFS_ERR_CORRUPT);
@@ -212,54 +275,34 @@ int lfs_testbd_prog(const struct lfs_config *cfg, lfs_block_t block,
}
}
// emulate an erase value?
// were we erased properly?
if (bd->cfg->erase_value != -1) {
int err = lfs_testbd_rawread(cfg, block, 0,
bd->scratch, cfg->block_size);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
return err;
}
// assert that program block was erased
for (lfs_off_t i = 0; i < size; i++) {
LFS_ASSERT(bd->scratch[off+i] == bd->cfg->erase_value);
}
memcpy(&bd->scratch[off], buffer, size);
err = lfs_testbd_rawerase(cfg, block);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
return err;
}
err = lfs_testbd_rawprog(cfg, block, 0,
bd->scratch, cfg->block_size);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
return err;
}
} else {
// prog
int err = lfs_testbd_rawprog(cfg, block, off, buffer, size);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
return err;
LFS_ASSERT(b->data[off+i] == bd->cfg->erase_value);
}
}
// prog data
memcpy(&b->data[off], buffer, size);
// lose power?
if (bd->power_cycles > 0) {
bd->power_cycles -= 1;
if (bd->power_cycles == 0) {
// sync to make sure we persist the last changes
LFS_ASSERT(lfs_testbd_rawsync(cfg) == 0);
// simulate power loss
exit(33);
bd->cfg->powerloss_cb(bd->cfg->powerloss_data);
}
}
// // track power-loss branch?
// if (bd->cfg->track_branches) {
// int err = lfs_testbd_trackbranch(bd);
// if (err) {
// LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
// return err;
// }
// }
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", 0);
return 0;
}
@@ -271,9 +314,16 @@ int lfs_testbd_erase(const struct lfs_config *cfg, lfs_block_t block) {
// check if erase is valid
LFS_ASSERT(block < cfg->block_count);
// get the block
lfs_testbd_block_t *b = lfs_testbd_mutblock(bd, block, cfg->block_size);
if (!b) {
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
// block bad?
if (bd->cfg->erase_cycles) {
if (bd->wear[block] >= bd->cfg->erase_cycles) {
if (b->wear >= bd->cfg->erase_cycles) {
if (bd->cfg->badblock_behavior ==
LFS_TESTBD_BADBLOCK_ERASEERROR) {
LFS_TESTBD_TRACE("lfs_testbd_erase -> %d", LFS_ERR_CORRUPT);
@@ -285,70 +335,69 @@ int lfs_testbd_erase(const struct lfs_config *cfg, lfs_block_t block) {
}
} else {
// mark wear
bd->wear[block] += 1;
b->wear += 1;
}
}
// emulate an erase value?
if (bd->cfg->erase_value != -1) {
memset(bd->scratch, bd->cfg->erase_value, cfg->block_size);
int err = lfs_testbd_rawerase(cfg, block);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_erase -> %d", err);
return err;
}
err = lfs_testbd_rawprog(cfg, block, 0,
bd->scratch, cfg->block_size);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_erase -> %d", err);
return err;
}
} else {
// erase
int err = lfs_testbd_rawerase(cfg, block);
if (err) {
LFS_TESTBD_TRACE("lfs_testbd_erase -> %d", err);
return err;
}
memset(b->data, bd->cfg->erase_value, cfg->block_size);
}
// lose power?
if (bd->power_cycles > 0) {
bd->power_cycles -= 1;
if (bd->power_cycles == 0) {
// sync to make sure we persist the last changes
LFS_ASSERT(lfs_testbd_rawsync(cfg) == 0);
// simulate power loss
exit(33);
bd->cfg->powerloss_cb(bd->cfg->powerloss_data);
}
}
// // track power-loss branch?
// if (bd->cfg->track_branches) {
// int err = lfs_testbd_trackbranch(bd);
// if (err) {
// LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", err);
// return err;
// }
// }
LFS_TESTBD_TRACE("lfs_testbd_prog -> %d", 0);
return 0;
}
int lfs_testbd_sync(const struct lfs_config *cfg) {
LFS_TESTBD_TRACE("lfs_testbd_sync(%p)", (void*)cfg);
int err = lfs_testbd_rawsync(cfg);
LFS_TESTBD_TRACE("lfs_testbd_sync -> %d", err);
return err;
// do nothing
(void)cfg;
LFS_TESTBD_TRACE("lfs_testbd_sync -> %d", 0);
return 0;
}
/// simulated wear operations ///
// simulated wear operations
lfs_testbd_swear_t lfs_testbd_getwear(const struct lfs_config *cfg,
lfs_block_t block) {
LFS_TESTBD_TRACE("lfs_testbd_getwear(%p, %"PRIu32")", (void*)cfg, block);
lfs_testbd_t *bd = cfg->context;
// check if block is valid
LFS_ASSERT(bd->cfg->erase_cycles);
LFS_ASSERT(block < cfg->block_count);
LFS_TESTBD_TRACE("lfs_testbd_getwear -> %"PRIu32, bd->wear[block]);
return bd->wear[block];
// get the wear
lfs_testbd_wear_t wear;
const lfs_testbd_block_t *b = lfs_testbd_getblock(bd, block);
if (b) {
wear = b->wear;
} else {
wear = 0;
}
LFS_TESTBD_TRACE("lfs_testbd_getwear -> %"PRIu32, wear);
return wear;
}
int lfs_testbd_setwear(const struct lfs_config *cfg,
@@ -357,11 +406,58 @@ int lfs_testbd_setwear(const struct lfs_config *cfg,
lfs_testbd_t *bd = cfg->context;
// check if block is valid
LFS_ASSERT(bd->cfg->erase_cycles);
LFS_ASSERT(block < cfg->block_count);
bd->wear[block] = wear;
// set the wear
lfs_testbd_block_t *b = lfs_testbd_mutblock(bd, block, cfg->block_size);
if (!b) {
LFS_TESTBD_TRACE("lfs_testbd_setwear -> %"PRIu32, LFS_ERR_NOMEM);
return LFS_ERR_NOMEM;
}
b->wear = wear;
LFS_TESTBD_TRACE("lfs_testbd_setwear -> %d", 0);
LFS_TESTBD_TRACE("lfs_testbd_setwear -> %"PRIu32, 0);
return 0;
}
lfs_testbd_spowercycles_t lfs_testbd_getpowercycles(
const struct lfs_config *cfg) {
LFS_TESTBD_TRACE("lfs_testbd_getpowercycles(%p)", (void*)cfg);
lfs_testbd_t *bd = cfg->context;
LFS_TESTBD_TRACE("lfs_testbd_getpowercycles -> %"PRIi32, bd->power_cycles);
return bd->power_cycles;
}
int lfs_testbd_setpowercycles(const struct lfs_config *cfg,
lfs_testbd_powercycles_t power_cycles) {
LFS_TESTBD_TRACE("lfs_testbd_setpowercycles(%p, %"PRIi32")",
(void*)cfg, power_cycles);
lfs_testbd_t *bd = cfg->context;
bd->power_cycles = power_cycles;
LFS_TESTBD_TRACE("lfs_testbd_getpowercycles -> %d", 0);
return 0;
}
//int lfs_testbd_getbranch(const struct lfs_config *cfg,
// lfs_testbd_powercycles_t branch, lfs_testbd_t *bd) {
// LFS_TESTBD_TRACE("lfs_testbd_getbranch(%p, %zu, %p)",
// (void*)cfg, branch, bd);
// lfs_testbd_t *bd = cfg->context;
//
// // TODO
//
// LFS_TESTBD_TRACE("lfs_testbd_getbranch -> %d", 0);
// return 0;
//}
lfs_testbd_spowercycles_t lfs_testbd_getbranchcount(
const struct lfs_config *cfg) {
LFS_TESTBD_TRACE("lfs_testbd_getbranchcount(%p)", (void*)cfg);
lfs_testbd_t *bd = cfg->context;
LFS_TESTBD_TRACE("lfs_testbd_getbranchcount -> %"PRIu32, bd->branch_count);
return bd->branch_count;
}

View File

@@ -29,23 +29,33 @@ extern "C"
#endif
#endif
// Mode determining how "bad blocks" behave during testing. This simulates
// Mode determining how "bad-blocks" behave during testing. This simulates
// some real-world circumstances such as progs not sticking (prog-noop),
// a readonly disk (erase-noop), and ECC failures (read-error).
//
// Not that read-noop is not allowed. Read _must_ return a consistent (but
// may be arbitrary) value on every read.
enum lfs_testbd_badblock_behavior {
typedef enum lfs_testbd_badblock_behavior {
LFS_TESTBD_BADBLOCK_PROGERROR,
LFS_TESTBD_BADBLOCK_ERASEERROR,
LFS_TESTBD_BADBLOCK_READERROR,
LFS_TESTBD_BADBLOCK_PROGNOOP,
LFS_TESTBD_BADBLOCK_ERASENOOP,
};
} lfs_testbd_badblock_behavior_t;
// Mode determining how power-loss behaves during testing. For now this
// only supports a noop behavior, leaving the data on-disk untouched.
typedef enum lfs_testbd_powerloss_behavior {
LFS_TESTBD_POWERLOSS_NOOP,
} lfs_testbd_powerloss_behavior_t;
// Type for measuring wear
typedef uint32_t lfs_testbd_wear_t;
typedef int32_t lfs_testbd_swear_t;
typedef int32_t lfs_testbd_swear_t;
// Type for tracking power-cycles
typedef uint32_t lfs_testbd_powercycles_t;
typedef int32_t lfs_testbd_spowercycles_t;
// testbd config, this is required for testing
struct lfs_testbd_config {
@@ -55,42 +65,77 @@ struct lfs_testbd_config {
int32_t erase_value;
// Number of erase cycles before a block becomes "bad". The exact behavior
// of bad blocks is controlled by the badblock_mode.
// of bad blocks is controlled by badblock_behavior.
uint32_t erase_cycles;
// The mode determining how bad blocks fail
uint8_t badblock_behavior;
// The mode determining how bad-blocks fail
lfs_testbd_badblock_behavior_t badblock_behavior;
// Number of write operations (erase/prog) before forcefully killing
// the program with exit. Simulates power-loss. 0 disables.
uint32_t power_cycles;
// Number of write operations (erase/prog) before triggering a power-loss.
// power_cycles=0 disables this. The exact behavior of power-loss is
// controlled by a combination of powerloss_behavior and powerloss_cb.
lfs_testbd_powercycles_t power_cycles;
// Optional buffer for RAM block device.
void *buffer;
// The mode determining how power-loss affects disk
lfs_testbd_powerloss_behavior_t powerloss_behavior;
// Optional buffer for wear.
void *wear_buffer;
// Function to call to emulate power-loss. The exact behavior of power-loss
// is up to the runner to provide.
void (*powerloss_cb)(void*);
// Optional buffer for scratch memory, needed when erase_value != -1.
void *scratch_buffer;
// Data for power-loss callback
void *powerloss_data;
// True to track when power-loss could have occured. Note this involves
// heavy memory usage!
bool track_branches;
// // Optional buffer for RAM block device.
// void *buffer;
//
// // Optional buffer for wear.
// void *wear_buffer;
//
// // Optional buffer for scratch memory, needed when erase_value != -1.
// void *scratch_buffer;
};
// A reference counted block
typedef struct lfs_testbd_block {
uint32_t rc;
lfs_testbd_wear_t wear;
uint8_t data[];
} lfs_testbd_block_t;
// testbd state
typedef struct lfs_testbd {
union {
struct {
lfs_filebd_t bd;
} file;
struct {
lfs_rambd_t bd;
struct lfs_rambd_config cfg;
} ram;
} u;
bool persist;
// array of copy-on-write blocks
lfs_testbd_block_t **blocks;
uint32_t power_cycles;
lfs_testbd_wear_t *wear;
uint8_t *scratch;
// array of tracked branches
struct lfs_testbd *branches;
lfs_testbd_powercycles_t branch_count;
lfs_testbd_powercycles_t branch_capacity;
// TODO file?
// union {
// struct {
// lfs_filebd_t bd;
// } file;
// struct {
// lfs_rambd_t bd;
// struct lfs_rambd_config cfg;
// } ram;
// } u;
//
// bool persist;
// uint32_t power_cycles;
// lfs_testbd_wear_t *wear;
// uint8_t *scratch;
const struct lfs_testbd_config *cfg;
} lfs_testbd_t;
@@ -139,6 +184,22 @@ lfs_testbd_swear_t lfs_testbd_getwear(const struct lfs_config *cfg,
int lfs_testbd_setwear(const struct lfs_config *cfg,
lfs_block_t block, lfs_testbd_wear_t wear);
// Get the remaining power-cycles
lfs_testbd_spowercycles_t lfs_testbd_getpowercycles(
const struct lfs_config *cfg);
// Manually set the remaining power-cycles
int lfs_testbd_setpowercycles(const struct lfs_config *cfg,
lfs_testbd_powercycles_t power_cycles);
// Get a power-loss branch, requires track_branches=true
int lfs_testbd_getbranch(const struct lfs_config *cfg,
lfs_testbd_powercycles_t branch, lfs_testbd_t *bd);
// Get the current number of power-loss branches
lfs_testbd_spowercycles_t lfs_testbd_getbranchcount(
const struct lfs_config *cfg);
#ifdef __cplusplus
} /* extern "C" */