/* * SPDX-FileCopyrightText: 2024 Matthew Conte * * SPDX-License-Identifier: BSD-3-Clause */ #pragma once #include "tlsf_block_functions.h" #if defined(__cplusplus) extern "C" { #define tlsf_decl static inline #else #define tlsf_decl static inline __attribute__((always_inline)) #endif enum tlsf_config { /* All allocation sizes and addresses are aligned to 4 bytes. */ ALIGN_SIZE_LOG2 = 2, ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2), }; /* The TLSF control structure. */ typedef struct control_t { /* Empty lists point at this block to indicate they are free. */ block_header_t block_null; /* Local parameter for the pool. Given the maximum * value of each field, all the following parameters * can fit on 4 bytes when using bitfields */ unsigned int fl_index_count : 5; // 5 cumulated bits unsigned int fl_index_shift : 3; // 8 cumulated bits unsigned int fl_index_max : 6; // 14 cumulated bits unsigned int sl_index_count : 6; // 20 cumulated bits /* log2 of number of linear subdivisions of block sizes. Larger ** values require more memory in the control structure. Values of ** 4 or 5 are typical. */ unsigned int sl_index_count_log2 : 3; // 23 cumulated bits unsigned int small_block_size : 8; // 31 cumulated bits /* size of the metadata ( size of control block, * sl_bitmap and blocks ) */ size_t size; /* Bitmaps for free lists. */ unsigned int fl_bitmap; unsigned int *sl_bitmap; /* Head of free lists. */ block_header_t** blocks; } control_t; /* ** Architecture-specific bit manipulation routines. ** ** TLSF achieves O(1) cost for malloc and free operations by limiting ** the search for a free block to a free list of guaranteed size ** adequate to fulfill the request, combined with efficient free list ** queries using bitmasks and architecture-specific bit-manipulation ** routines. ** ** Most modern processors provide instructions to count leading zeroes ** in a word, find the lowest and highest set bit, etc. These ** specific implementations will be used when available, falling back ** to a reasonably efficient generic implementation. ** ** NOTE: TLSF spec relies on ffs/fls returning value 0..31. ** ffs/fls return 1-32 by default, returning 0 for error. */ /* ** Detect whether or not we are building for a 32- or 64-bit (LP/LLP) ** architecture. There is no reliable portable method at compile-time. */ #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \ || defined (_WIN64) || defined (__LP64__) || defined (__LLP64__) #define TLSF_64BIT #endif /* ** gcc 3.4 and above have builtin support, specialized for architecture. ** Some compilers masquerade as gcc; patchlevel test filters them out. */ #if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \ && defined (__GNUC_PATCHLEVEL__) #if defined (__SNC__) /* SNC for Playstation 3. */ tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __builtin_clz(reverse); return bit - 1; } #else tlsf_decl int tlsf_ffs(unsigned int word) { return __builtin_ffs(word) - 1; } #endif tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __builtin_clz(word) : 0; return bit - 1; } #elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64)) /* Microsoft Visual C++ support on x86/X64 architectures. */ #include #pragma intrinsic(_BitScanReverse) #pragma intrinsic(_BitScanForward) tlsf_decl int tlsf_fls(unsigned int word) { unsigned long index; return _BitScanReverse(&index, word) ? index : -1; } tlsf_decl int tlsf_ffs(unsigned int word) { unsigned long index; return _BitScanForward(&index, word) ? index : -1; } #elif defined (_MSC_VER) && defined (_M_PPC) /* Microsoft Visual C++ support on PowerPC architectures. */ #include tlsf_decl int tlsf_fls(unsigned int word) { const int bit = 32 - _CountLeadingZeros(word); return bit - 1; } tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - _CountLeadingZeros(reverse); return bit - 1; } #elif defined (__ARMCC_VERSION) /* RealView Compilation Tools for ARM */ tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __clz(reverse); return bit - 1; } tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __clz(word) : 0; return bit - 1; } #elif defined (__ghs__) /* Green Hills support for PowerPC */ #include tlsf_decl int tlsf_ffs(unsigned int word) { const unsigned int reverse = word & (~word + 1); const int bit = 32 - __CLZ32(reverse); return bit - 1; } tlsf_decl int tlsf_fls(unsigned int word) { const int bit = word ? 32 - __CLZ32(word) : 0; return bit - 1; } #else /* Fall back to generic implementation. */ tlsf_decl int tlsf_fls_generic(unsigned int word) { int bit = 32; if (!word) bit -= 1; if (!(word & 0xffff0000)) { word <<= 16; bit -= 16; } if (!(word & 0xff000000)) { word <<= 8; bit -= 8; } if (!(word & 0xf0000000)) { word <<= 4; bit -= 4; } if (!(word & 0xc0000000)) { word <<= 2; bit -= 2; } if (!(word & 0x80000000)) { word <<= 1; bit -= 1; } return bit; } /* Implement ffs in terms of fls. */ tlsf_decl int tlsf_ffs(unsigned int word) { return tlsf_fls_generic(word & (~word + 1)) - 1; } tlsf_decl int tlsf_fls(unsigned int word) { return tlsf_fls_generic(word) - 1; } #endif /* Possibly 64-bit version of tlsf_fls. */ #if defined (TLSF_64BIT) tlsf_decl int tlsf_fls_sizet(size_t size) { int high = (int)(size >> 32); int bits = 0; if (high) { bits = 32 + tlsf_fls(high); } else { bits = tlsf_fls((int)size & 0xffffffff); } return bits; } #else #define tlsf_fls_sizet tlsf_fls #endif tlsf_decl size_t align_up(size_t x, size_t align) { tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return (x + (align - 1)) & ~(align - 1); } tlsf_decl size_t align_down(size_t x, size_t align) { tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return x - (x & (align - 1)); } tlsf_decl void* align_ptr(const void* ptr, size_t align) { const tlsfptr_t aligned = (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1); tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two"); return tlsf_cast(void*, aligned); } tlsf_decl size_t tlsf_align_size(void) { return ALIGN_SIZE; } tlsf_decl size_t tlsf_block_size_min(void) { return block_size_min; } tlsf_decl size_t tlsf_block_size_max(control_t *control) { if (control == NULL) { return 0; } return tlsf_cast(size_t, 1) << control->fl_index_max; } /* ** Adjust an allocation size to be aligned to word size, and no smaller ** than internal minimum. */ tlsf_decl size_t adjust_request_size(control_t *control, size_t size, size_t align) { size_t adjust = 0; if (size) { const size_t aligned = align_up(size, align); /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */ if (aligned < tlsf_block_size_max(control)) { adjust = tlsf_max(aligned, block_size_min); } } return adjust; } /* ** TLSF utility functions. In most cases, these are direct translations of ** the documentation found in the white paper. */ tlsf_decl void mapping_insert(control_t* control, size_t size, int* fli, int* sli) { int fl, sl; if (size < control->small_block_size) { /* Store small blocks in first list. */ fl = 0; sl = tlsf_cast(int, size) / (control->small_block_size / control->sl_index_count); } else { fl = tlsf_fls_sizet(size); sl = tlsf_cast(int, size >> (fl - control->sl_index_count_log2)) ^ (1 << control->sl_index_count_log2); fl -= (control->fl_index_shift - 1); } *fli = fl; *sli = sl; } /* This version rounds up to the next block size (for allocations) */ tlsf_decl void mapping_search(control_t* control, size_t* size, int* fli, int* sli) { if (*size >= control->small_block_size) { const size_t round = (1 << (tlsf_fls_sizet(*size) - control->sl_index_count_log2)); *size = align_up(*size, round); } mapping_insert(control, *size, fli, sli); } tlsf_decl block_header_t* search_suitable_block(control_t* control, int* fli, int* sli) { int fl = *fli; int sl = *sli; /* ** First, search for a block in the list associated with the given ** fl/sl index. */ unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl); if (!sl_map) { /* No block exists. Search in the next largest first-level list. */ const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1)); if (!fl_map) { /* No free blocks available, memory has been exhausted. */ return 0; } fl = tlsf_ffs(fl_map); *fli = fl; sl_map = control->sl_bitmap[fl]; } tlsf_assert(sl_map && "internal error - second level bitmap is null"); sl = tlsf_ffs(sl_map); *sli = sl; /* Return the first block in the free list. */ return control->blocks[fl * control->sl_index_count + sl]; } /* Remove a free block from the free list.*/ tlsf_decl void remove_free_block(control_t* control, block_header_t* block, int fl, int sl) { block_header_t* prev = block->prev_free; block_header_t* next = block->next_free; tlsf_assert(prev && "prev_free field can not be null"); tlsf_assert(next && "next_free field can not be null"); next->prev_free = prev; prev->next_free = next; /* If this block is the head of the free list, set new head. */ if (control->blocks[fl * control->sl_index_count + sl] == block) { control->blocks[fl * control->sl_index_count + sl] = next; /* If the new head is null, clear the bitmap. */ if (next == &control->block_null) { control->sl_bitmap[fl] &= ~(1U << sl); /* If the second bitmap is now empty, clear the fl bitmap. */ if (!control->sl_bitmap[fl]) { control->fl_bitmap &= ~(1U << fl); } } } } /* Insert a free block into the free block list. */ tlsf_decl void insert_free_block(control_t* control, block_header_t* block, int fl, int sl) { block_header_t* current = control->blocks[fl * control->sl_index_count + sl]; tlsf_assert(current && "free list cannot have a null entry"); tlsf_assert(block && "cannot insert a null entry into the free list"); block->next_free = current; block->prev_free = &control->block_null; current->prev_free = block; tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE) && "block not aligned properly"); /* ** Insert the new block at the head of the list, and mark the first- ** and second-level bitmaps appropriately. */ control->blocks[fl * control->sl_index_count + sl] = block; control->fl_bitmap |= (1U << fl); control->sl_bitmap[fl] |= (1U << sl); } /* Remove a given block from the free list. */ tlsf_decl void block_remove(control_t* control, block_header_t* block) { int fl, sl; mapping_insert(control, block_size(block), &fl, &sl); remove_free_block(control, block, fl, sl); } /* Insert a given block into the free list. */ tlsf_decl void block_insert(control_t* control, block_header_t* block) { int fl, sl; mapping_insert(control, block_size(block), &fl, &sl); insert_free_block(control, block, fl, sl); } tlsf_decl int block_can_split(block_header_t* block, size_t size) { return block_size(block) >= sizeof(block_header_t) + size; } /* Split a block into two, the second of which is free. */ tlsf_decl block_header_t* block_split(block_header_t* block, size_t size) { /* Calculate the amount of space left in the remaining block. * REMINDER: remaining pointer's first field is `prev_phys_block` but this field is part of the * previous physical block. */ block_header_t* remaining = offset_to_block(block_to_ptr(block), size - block_header_overhead); /* `size` passed as an argument is the first block's new size, thus, the remaining block's size * is `block_size(block) - size`. However, the block's data must be precedeed by the data size. * This field is NOT part of the size, so it has to be substracted from the calculation. */ const size_t remain_size = block_size(block) - (size + block_header_overhead); tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE) && "remaining block not aligned properly"); tlsf_assert(block_size(block) == remain_size + size + block_header_overhead); block_set_size(remaining, remain_size); tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size"); block_set_size(block, size); block_mark_as_free(remaining); /** * Here is the final outcome of this function: * * block remaining (block_ptr + size - BHO) * + + * | | * v v * +----------------------------------------------------------------------+ * |0000| |xxxxxxxxxxxxxxxxxxxxxx|xxxx| |###########################| * |0000| |xxxxxxxxxxxxxxxxxxxxxx|xxxx| |###########################| * |0000| |xxxxxxxxxxxxxxxxxxxxxx|xxxx| |###########################| * |0000| |xxxxxxxxxxxxxxxxxxxxxx|xxxx| |###########################| * +----------------------------------------------------------------------+ * | | | | * + +<------------------------->+ +<-------------------------> * BHO `size` (argument) bytes BHO `remain_size` bytes * * Where BHO = block_header_overhead, * 0: part of the memory owned by a `block`'s previous neighbour, * x: part of the memory owned by `block`. * #: part of the memory owned by `remaining`. */ return remaining; } /*! * @brief Weak function filling the given memory with a given fill pattern. * * @param start: pointer to the start of the memory region to fill * @param size: size of the memory region to fill * @param is_free: Indicate if the pattern to use the fill the region should be * an after free or after allocation pattern. */ __attribute__((weak)) void block_absorb_post_hook(void *start, size_t size, bool is_free); /* Absorb a free block's storage into an adjacent previous free block. */ tlsf_decl block_header_t* block_absorb(block_header_t* prev, block_header_t* block) { tlsf_assert(!block_is_last(prev) && "previous block can't be last"); /* Note: Leaves flags untouched. */ prev->size += block_size(block) + block_header_overhead; block_link_next(prev); if (block_absorb_post_hook != NULL) { block_absorb_post_hook(block, sizeof(block_header_t), POISONING_AFTER_FREE); } return prev; } /* Merge a just-freed block with an adjacent previous free block. */ tlsf_decl block_header_t* block_merge_prev(control_t* control, block_header_t* block) { if (block_is_prev_free(block)) { block_header_t* prev = block_prev(block); tlsf_assert(prev && "prev physical block can't be null"); tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such"); block_remove(control, prev); block = block_absorb(prev, block); } return block; } /* Merge a just-freed block with an adjacent free block. */ tlsf_decl block_header_t* block_merge_next(control_t* control, block_header_t* block) { block_header_t* next = block_next(block); tlsf_assert(next && "next physical block can't be null"); if (block_is_free(next)) { tlsf_assert(!block_is_last(block) && "previous block can't be last"); block_remove(control, next); block = block_absorb(block, next); } return block; } /* Trim any trailing block space off the end of a block, return to pool. */ tlsf_decl void block_trim_free(control_t* control, block_header_t* block, size_t size) { tlsf_assert(block_is_free(block) && "block must be free"); if (block_can_split(block, size)) { block_header_t* remaining_block = block_split(block, size); block_link_next(block); block_set_prev_free(remaining_block); block_insert(control, remaining_block); } } /* Trim any trailing block space off the end of a used block, return to pool. */ tlsf_decl void block_trim_used(control_t* control, block_header_t* block, size_t size) { tlsf_assert(!block_is_free(block) && "block must be used"); if (block_can_split(block, size)) { /* If the next block is free, we must coalesce. */ block_header_t* remaining_block = block_split(block, size); block_set_prev_used(remaining_block); remaining_block = block_merge_next(control, remaining_block); block_insert(control, remaining_block); } } tlsf_decl block_header_t* block_trim_free_leading(control_t* control, block_header_t* block, size_t size) { block_header_t* remaining_block = block; if (block_can_split(block, size)) { /* We want to split `block` in two: the first block will be freed and the * second block will be returned. */ remaining_block = block_split(block, size - block_header_overhead); /* `remaining_block` is the second block, mark its predecessor (first * block) as free. */ block_set_prev_free(remaining_block); block_link_next(block); /* Put back the first block into the free memory list. */ block_insert(control, block); } return remaining_block; } tlsf_decl block_header_t* block_locate_free(control_t* control, size_t* size) { int fl = 0, sl = 0; block_header_t* block = 0; if (*size) { mapping_search(control, size, &fl, &sl); /* ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up ** with indices that are off the end of the block array. ** So, we protect against that here, since this is the only callsite of mapping_search. ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range. */ if (fl < control->fl_index_count) { block = search_suitable_block(control, &fl, &sl); } } if (block) { tlsf_assert(block_size(block) >= *size); remove_free_block(control, block, fl, sl); } return block; } tlsf_decl void* block_prepare_used(control_t* control, block_header_t* block, size_t size) { void* p = 0; if (block) { tlsf_assert(size && "size must be non-zero"); block_trim_free(control, block, size); block_mark_as_used(block); p = block_to_ptr(block); } return p; } #undef tlsf_decl #if defined(__cplusplus) }; #endif