/* * SPDX-FileCopyrightText: 2006-2016 Matthew Conte * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include "tlsf.h" #include "tlsf_block_functions.h" #include "tlsf_control_functions.h" /* ** Static assertion mechanism. */ #define _tlsf_glue2(x, y) x ## y #define _tlsf_glue(x, y) _tlsf_glue2(x, y) #define tlsf_static_assert(exp) \ typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1] /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */ tlsf_static_assert(sizeof(int) * CHAR_BIT == 32); tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32); tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64); /* Clear structure and point all empty lists at the null block. */ static control_t* control_construct(control_t* control, size_t bytes) { // check that the requested size can at least hold the control_t. This will allow us // to fill in the field of control_t necessary to determine the final size of // the metadata overhead and check that the requested size can hold // this data and at least a block of minimum size if (bytes < sizeof(control_t)) { return NULL; } /* Find the closest power of two for first layer */ control->fl_index_max = 32 - __builtin_clz(bytes); /* Adapt second layer to the pool */ if (bytes <= 16 * 1024) control->sl_index_count_log2 = 3; else if (bytes <= 256 * 1024) control->sl_index_count_log2 = 4; else control->sl_index_count_log2 = 5; control->fl_index_shift = (control->sl_index_count_log2 + ALIGN_SIZE_LOG2); control->sl_index_count = 1 << control->sl_index_count_log2; control->fl_index_count = control->fl_index_max - control->fl_index_shift + 1; control->small_block_size = 1 << control->fl_index_shift; // the total size fo the metadata overhead is the size of the control_t // added to the size of the sl_bitmaps and the size of blocks control->size = sizeof(control_t) + (sizeof(*control->sl_bitmap) * control->fl_index_count) + (sizeof(*control->blocks) * (control->fl_index_count * control->sl_index_count)); // check that the requested size can hold the whole control structure and // a small block at least if (bytes < control->size + block_size_min) { return NULL; } control->block_null.next_free = &control->block_null; control->block_null.prev_free = &control->block_null; control->fl_bitmap = 0; control->sl_bitmap = align_ptr(control + 1, sizeof(*control->sl_bitmap)); control->blocks = align_ptr(control->sl_bitmap + control->fl_index_count, sizeof(*control->blocks)); /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */ tlsf_assert(sizeof(unsigned int) * CHAR_BIT >= control->sl_index_count && "CHAR_BIT less than sl_index_count"); /* Ensure we've properly tuned our sizes. */ tlsf_assert(ALIGN_SIZE == control->small_block_size / control->sl_index_count); //ALIGN_SIZE does not match"); for (int i = 0; i < control->fl_index_count; ++i) { control->sl_bitmap[i] = 0; for (int j = 0; j < control->sl_index_count; ++j) { control->blocks[i * control->sl_index_count + j] = &control->block_null; } } return control; } /* ** Debugging utilities. */ typedef struct integrity_t { int prev_status; int status; } integrity_t; #define tlsf_insist(x) { if (!(x)) { status--; } } static bool integrity_walker(void* ptr, size_t size, int used, void* user) { block_header_t* block = block_from_ptr(ptr); integrity_t* integ = tlsf_cast(integrity_t*, user); const int this_prev_status = block_is_prev_free(block) ? 1 : 0; const int this_status = block_is_free(block) ? 1 : 0; const size_t this_block_size = block_size(block); int status = 0; tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect"); tlsf_insist(size == this_block_size && "block size incorrect"); if (tlsf_check_hook != NULL) { /* block_size(block) returns the size of the usable memory when the block is allocated. * As the block under test is free, we need to subtract to the block size the next_free * and prev_free fields of the block header as they are not a part of the usable memory * when the block is free. In addition, we also need to subtract the size of prev_phys_block * as this field is in fact part of the current free block and not part of the next (allocated) * block. Check the comments in block_split function for more details. */ const size_t actual_free_block_size = used ? this_block_size : this_block_size - offsetof(block_header_t, next_free)- block_header_overhead; void* ptr_block = used ? (void*)block + block_start_offset : (void*)block + sizeof(block_header_t); tlsf_insist(tlsf_check_hook(ptr_block, actual_free_block_size, !used)); } integ->prev_status = this_status; integ->status += status; return true; } int tlsf_check(tlsf_t tlsf) { int i, j; control_t* control = tlsf_cast(control_t*, tlsf); int status = 0; /* Check that the free lists and bitmaps are accurate. */ for (i = 0; i < control->fl_index_count; ++i) { for (j = 0; j < control->sl_index_count; ++j) { const int fl_map = control->fl_bitmap & (1U << i); const int sl_list = control->sl_bitmap[i]; const int sl_map = sl_list & (1U << j); const block_header_t* block = control->blocks[i * control->sl_index_count + j]; /* Check that first- and second-level lists agree. */ if (!fl_map) { tlsf_insist(!sl_map && "second-level map must be null"); } if (!sl_map) { tlsf_insist(block == &control->block_null && "block list must be null"); continue; } /* Check that there is at least one free block. */ tlsf_insist(sl_list && "no free blocks in second-level map"); tlsf_insist(block != &control->block_null && "block should not be null"); while (block != &control->block_null) { int fli, sli; const bool is_block_free = block_is_free(block); tlsf_insist(is_block_free && "block should be free"); tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced"); tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced"); tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free"); tlsf_insist(block_size(block) >= block_size_min && "block not minimum size"); mapping_insert(control, block_size(block), &fli, &sli); tlsf_insist(fli == i && sli == j && "block size indexed in wrong list"); block = block->next_free; } } } return status; } #undef tlsf_insist static bool default_walker(void* ptr, size_t size, int used, void* user) { (void)user; printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, block_from_ptr(ptr)); return true; } void tlsf_walk_pool(pool_t pool, tlsf_walker walker, void* user) { tlsf_walker pool_walker = walker ? walker : default_walker; block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); bool ret_val = true; while (block && !block_is_last(block) && ret_val == true) { ret_val = pool_walker( block_to_ptr(block), block_size(block), !block_is_free(block), user); if (ret_val == true) { block = block_next(block); } } } size_t tlsf_block_size(void* ptr) { size_t size = 0; if (ptr) { const block_header_t* block = block_from_ptr(ptr); size = block_size(block); } return size; } int tlsf_check_pool(pool_t pool) { /* Check that the blocks are physically correct. */ integrity_t integ = { 0, 0 }; tlsf_walk_pool(pool, integrity_walker, &integ); return integ.status; } size_t tlsf_fit_size(tlsf_t tlsf, size_t size) { if (size == 0 || tlsf == NULL) { return 0; } control_t* control = tlsf_cast(control_t*, tlsf); if (size < control->small_block_size) { return adjust_request_size(tlsf, size, ALIGN_SIZE); } /* because it's GoodFit, allocable size is one range lower */ size_t sl_interval; sl_interval = (1 << (32 - __builtin_clz(size) - 1)) / control->sl_index_count; return size & ~(sl_interval - 1); } /* ** Size of the TLSF structures in a given memory block passed to ** tlsf_create, equal to the size of a control_t */ size_t tlsf_size(tlsf_t tlsf) { if (tlsf == NULL) { return 0; } control_t* control = tlsf_cast(control_t*, tlsf); return control->size; } /* ** Overhead of the TLSF structures in a given memory block passed to ** tlsf_add_pool, equal to the overhead of a free block and the ** sentinel block. */ size_t tlsf_pool_overhead(void) { return 2 * block_header_overhead; } size_t tlsf_alloc_overhead(void) { return block_header_overhead; } pool_t tlsf_add_pool(tlsf_t tlsf, void* mem, size_t bytes) { block_header_t* block; block_header_t* next; const size_t pool_overhead = tlsf_pool_overhead(); const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE); if (((ptrdiff_t)mem % ALIGN_SIZE) != 0) { printf("tlsf_add_pool: Memory must be aligned by %u bytes.\n", (unsigned int)ALIGN_SIZE); return 0; } if (pool_bytes < block_size_min || pool_bytes > tlsf_block_size_max(tlsf)) { #if defined (TLSF_64BIT) printf("tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n", (unsigned int)(pool_overhead + block_size_min), (unsigned int)((pool_overhead + tlsf_block_size_max(tlsf)) / 256)); #else printf("tlsf_add_pool: Memory size must be between %u and %u bytes.\n", (unsigned int)(pool_overhead + block_size_min), (unsigned int)(pool_overhead + tlsf_block_size_max(tlsf))); #endif return 0; } /* ** Create the main free block. Offset the start of the block slightly ** so that the prev_phys_block field falls outside of the pool - ** it will never be used. */ block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead); block_set_size(block, pool_bytes); block_set_free(block); block_set_prev_used(block); block_insert(tlsf_cast(control_t*, tlsf), block); /* Split the block to create a zero-size sentinel block. */ next = block_link_next(block); block_set_size(next, 0); block_set_used(next); block_set_prev_free(next); return mem; } void tlsf_remove_pool(tlsf_t tlsf, pool_t pool) { control_t* control = tlsf_cast(control_t*, tlsf); block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); int fl = 0, sl = 0; tlsf_assert(block_is_free(block) && "block should be free"); tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free"); tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero"); mapping_insert(control, block_size(block), &fl, &sl); remove_free_block(control, block, fl, sl); } /* ** TLSF main interface. */ #if _DEBUG int test_ffs_fls() { /* Verify ffs/fls work properly. */ int rv = 0; rv += (tlsf_ffs(0) == -1) ? 0 : 0x1; rv += (tlsf_fls(0) == -1) ? 0 : 0x2; rv += (tlsf_ffs(1) == 0) ? 0 : 0x4; rv += (tlsf_fls(1) == 0) ? 0 : 0x8; rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10; rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20; rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40; rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80; #if defined (TLSF_64BIT) rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100; rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200; rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400; #endif if (rv) { printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv); } return rv; } #endif tlsf_t tlsf_create(void* mem, size_t max_bytes) { #if _DEBUG if (test_ffs_fls()) { return NULL; } #endif if (mem == NULL) { return NULL; } if (((tlsfptr_t)mem % ALIGN_SIZE) != 0) { printf("tlsf_create: Memory must be aligned to %u bytes.\n", (unsigned int)ALIGN_SIZE); return NULL; } control_t* control_ptr = control_construct(tlsf_cast(control_t*, mem), max_bytes); return tlsf_cast(tlsf_t, control_ptr); } tlsf_t tlsf_create_with_pool(void* mem, size_t pool_bytes, size_t max_bytes) { tlsf_t tlsf = tlsf_create(mem, max_bytes ? max_bytes : pool_bytes); if (tlsf != NULL) { tlsf_add_pool(tlsf, (char*)mem + tlsf_size(tlsf), pool_bytes - tlsf_size(tlsf)); } return tlsf; } void tlsf_destroy(tlsf_t tlsf) { /* Nothing to do. */ (void)tlsf; } pool_t tlsf_get_pool(tlsf_t tlsf) { return tlsf_cast(pool_t, (char*)tlsf + tlsf_size(tlsf)); } void* tlsf_malloc(tlsf_t tlsf, size_t size) { control_t* control = tlsf_cast(control_t*, tlsf); size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE); // Returned size is 0 when the requested size is larger than the max block // size. if (adjust == 0) { return NULL; } // block_locate_free() may adjust our allocated size further. block_header_t* block = block_locate_free(control, &adjust); return block_prepare_used(control, block, adjust); } /** * @brief Allocate memory of at least `size` bytes at a given address in the pool. * * @param tlsf TLSF structure to allocate memory from. * @param size Minimum size, in bytes, of the memory to allocate * @param address address at which the allocation must be done * * @return pointer to free memory or NULL in case of incapacity to perform the malloc */ void* tlsf_malloc_addr(tlsf_t tlsf, size_t size, void *address) { control_t* control = tlsf_cast(control_t*, tlsf); /* adjust the address to be ALIGN_SIZE bytes aligned. */ const uintptr_t addr_adjusted = align_down(tlsf_cast(uintptr_t, address), ALIGN_SIZE); /* adjust the size to be ALIGN_SIZE bytes aligned. Add to the size the difference * between the requested address and the address_adjusted. */ size_t size_adjusted = align_up(size + (tlsf_cast(uintptr_t, address) - addr_adjusted), ALIGN_SIZE); /* find the free block that starts before the address in the pool and is big enough * to support the size of allocation at the given address */ block_header_t* block = offset_to_block(tlsf_get_pool(tlsf), -(int)block_header_overhead); const char *alloc_start = tlsf_cast(char*, addr_adjusted); const char *alloc_end = alloc_start + size_adjusted; bool block_found = false; do { const char *block_start = tlsf_cast(char*, block_to_ptr(block)); const char *block_end = tlsf_cast(char*, block_to_ptr(block)) + block_size(block); if (block_start <= alloc_start && block_end > alloc_start) { /* A: block_end >= alloc_end. B: block is free */ if (block_end < alloc_end || !block_is_free(block)) { /* not(A) || not(B) * We won't find another suitable block from this point on * so we can break and return NULL */ break; } /* A && B * The block can fit the alloc and is located at a position allowing for the alloc * to be placed at the given address. We can return from the while */ block_found = true; } else if (!block_is_last(block)) { /* the block doesn't match the expected criteria, continue with the next block */ block = block_next(block); } } while (!block_is_last(block) && block_found == false); if (!block_found) { return NULL; } /* remove block from the free list since a part of it will be used */ block_remove(control, block); /* trim any leading space or add the leading space to the overall requested size * if the leading space is not big enough to store a block of minimum size */ const size_t space_before_addr_adjusted = addr_adjusted - tlsf_cast(uintptr_t, block_to_ptr(block)); block_header_t *return_block = block; if (space_before_addr_adjusted >= block_size_min) { return_block = block_trim_free_leading(control, block, space_before_addr_adjusted); } else { size_adjusted += space_before_addr_adjusted; } /* trim trailing space if any and return a pointer to the first usable byte allocated */ return block_prepare_used(control, return_block, size_adjusted); } /** * @brief Allocate memory of at least `size` bytes where byte at `data_offset` will be aligned to `alignment`. * * This function will allocate memory pointed by `ptr`. However, the byte at `data_offset` of * this piece of memory (i.e., byte at `ptr` + `data_offset`) will be aligned to `alignment`. * This function is useful for allocating memory that will internally have a header, and the * usable memory following the header (i.e. `ptr` + `data_offset`) must be aligned. * * For example, a call to `multi_heap_aligned_alloc_impl_offs(heap, 64, 256, 20)` will return a * pointer `ptr` to free memory of minimum 64 bytes, where `ptr + 20` is aligned on `256`. * So `(ptr + 20) % 256` equals 0. * * @param tlsf TLSF structure to allocate memory from. * @param align Alignment for the returned pointer's offset. * @param size Minimum size, in bytes, of the memory to allocate INCLUDING * `data_offset` bytes. * @param data_offset Offset to be aligned on `alignment`. This can be 0, in * this case, the returned pointer will be aligned on * `alignment`. If it is not a multiple of CPU word size, * it will be aligned up to the closest multiple of it. * * @return pointer to free memory. */ void* tlsf_memalign_offs(tlsf_t tlsf, size_t align, size_t size, size_t data_offset) { control_t* control = tlsf_cast(control_t*, tlsf); const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE); const size_t off_adjust = align_up(data_offset, ALIGN_SIZE); /* ** We must allocate an additional minimum block size bytes so that if ** our free block will leave an alignment gap which is smaller, we can ** trim a leading free block and release it back to the pool. We must ** do this because the previous physical block is in use, therefore ** the prev_phys_block field is not valid, and we can't simply adjust ** the size of that block. */ const size_t gap_minimum = sizeof(block_header_t) + off_adjust; /* The offset is included in both `adjust` and `gap_minimum`, so we ** need to subtract it once. */ const size_t size_with_gap = adjust_request_size(tlsf, adjust + align + gap_minimum - off_adjust, align); /* ** If alignment is less than or equal to base alignment, we're done, because ** we are guaranteed that the size is at least sizeof(block_header_t), enough ** to store next blocks' metadata. Plus, all pointers allocated will all be ** aligned on a 4-byte bound, so ptr + data_offset will also have this ** alignment constraint. Thus, the gap is not required. ** If we requested 0 bytes, return null, as tlsf_malloc(0) does. */ size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust; block_header_t* block = block_locate_free(control, &aligned_size); /* This can't be a static assert. */ tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead); if (block) { void* ptr = block_to_ptr(block); void* aligned = align_ptr(ptr, align); size_t gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr)); /* ** If gap size is too small or if there is no gap but we need one, ** offset to next aligned boundary. ** NOTE: No need for a gap if the alignment required is less than or is ** equal to ALIGN_SIZE. */ if ((gap && gap < gap_minimum) || (!gap && off_adjust && align > ALIGN_SIZE)) { const size_t gap_remain = gap_minimum - gap; const size_t offset = tlsf_max(gap_remain, align); const void* next_aligned = tlsf_cast(void*, tlsf_cast(tlsfptr_t, aligned) + offset); aligned = align_ptr(next_aligned, align); gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr)); } if (gap) { tlsf_assert(gap >= gap_minimum && "gap size too small"); block = block_trim_free_leading(control, block, gap - off_adjust); } } /* Preparing the block will also the trailing free memory. */ return block_prepare_used(control, block, adjust); } /** * @brief Same as `tlsf_memalign_offs` function but with a 0 offset. * The pointer returned is aligned on `align`. */ void* tlsf_memalign(tlsf_t tlsf, size_t align, size_t size) { return tlsf_memalign_offs(tlsf, align, size, 0); } void tlsf_free(tlsf_t tlsf, void* ptr) { /* Don't attempt to free a NULL pointer. */ if (ptr) { control_t* control = tlsf_cast(control_t*, tlsf); block_header_t* block = block_from_ptr(ptr); tlsf_assert(!block_is_free(block) && "block already marked as free"); block_mark_as_free(block); block = block_merge_prev(control, block); block = block_merge_next(control, block); block_insert(control, block); } } /* ** The TLSF block information provides us with enough information to ** provide a reasonably intelligent implementation of realloc, growing or ** shrinking the currently allocated block as required. ** ** This routine handles the somewhat esoteric edge cases of realloc: ** - a non-zero size with a null pointer will behave like malloc ** - a zero size with a non-null pointer will behave like free ** - a request that cannot be satisfied will leave the original buffer ** untouched ** - an extended buffer size will leave the newly-allocated area with ** contents undefined */ void* tlsf_realloc(tlsf_t tlsf, void* ptr, size_t size) { control_t* control = tlsf_cast(control_t*, tlsf); void* p = 0; /* Zero-size requests are treated as free. */ if (ptr && size == 0) { tlsf_free(tlsf, ptr); } /* Requests with NULL pointers are treated as malloc. */ else if (!ptr) { p = tlsf_malloc(tlsf, size); } else { block_header_t* block = block_from_ptr(ptr); block_header_t* next = block_next(block); const size_t cursize = block_size(block); const size_t combined = cursize + block_size(next) + block_header_overhead; const size_t adjust = adjust_request_size(tlsf, size, ALIGN_SIZE); // if adjust if equal to 0, the size is too big if (adjust == 0) { return p; } tlsf_assert(!block_is_free(block) && "block already marked as free"); /* ** If the next block is used, or when combined with the current ** block, does not offer enough space, we must reallocate and copy. */ if (adjust > cursize && (!block_is_free(next) || adjust > combined)) { p = tlsf_malloc(tlsf, size); if (p) { const size_t minsize = tlsf_min(cursize, size); memcpy(p, ptr, minsize); tlsf_free(tlsf, ptr); } } else { /* Do we need to expand to the next block? */ if (adjust > cursize) { block_merge_next(control, block); block_mark_as_used(block); } /* Trim the resulting block and return the original pointer. */ block_trim_used(control, block, adjust); p = ptr; } } return p; } void* tlsf_find_containing_block(pool_t pool, void *ptr) { block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); while (block && !block_is_last(block)) { if (!block_is_free(block)) { void *block_end = block_to_ptr(block) + block_size(block); if (block_to_ptr(block) <= ptr && block_end > ptr) { // we found the containing block, return return block_to_ptr(block); } } block = block_next(block); } return NULL; }