m

the high-performance embedded kernel

User Guide

Version 5

Express Logic

858.613.6640
Toll Free 888.THREADX

FAX 858.521.4259

http://www.expresslogic.com

©1997-2019 by Express Logic

All rights reserved. This document and the associated ThreadX software are the sole property of
Express Logic. Each contains proprietary information of Express Logic. Reproduction or duplication by
any means of any portion of this document without the prior written consent of Express Logic is
expressly forbidden.

Express Logic reserves the right to make changes to the specifications described herein at any time
and without notice in order to improve design or reliability of ThreadX. The information in this
document has been carefully checked for accuracy; however, Express Logic makes no warranty
pertaining to the correctness of this document.

Trademarks

ThreadX is a registered trademark of Express Logic, and picokernel, preemption-threshold, and event-
chaining are trademarks of Express Logic.

All other product and company names are trademarks or registered trademarks of their respective
holders.

Warranty Limitations

Express Logic makes no warranty of any kind that the ThreadX products will meet the USER’s
requirements, or will operate in the manner specified by the USER, or that the operation of the
ThreadX products will operate uninterrupted or error free, or that any defects that may exist in the
ThreadX products will be corrected after the warranty period. Express Logic makes no warranties of
any kind, either expressed or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose, with respect to the ThreadX products. No oral or
written information or advice given by Express Logic, its dealers, distributors, agents, or employees
shall create any other warranty or in any way increase the scope of this warranty, and licensee may not
rely on any such information or advice.

Safety Certifications

IEC 61508 up to SIL 4
mm SRR SCEET L EC 62304 up to SW safety Class C
T FUNCTIONAL SAFETY |SO 26262 AS”_ D

APPROVED

SAAR EN 50128 SW-SIL 4

“ UL/IEC 60730, UL/IEC 60335, UL 1998
(H Us

MISRA-C:2004 Compliant
MISRA C:2012 Compliant

Part Number: 000-1001
Revision 5.9

Express Logic

Contents

About This Guide 9

«» Organization 9
«» Guide Conventions 10
«» ThreadX Data Types 11

«» Customer Support Center 12

1 Introduction to ThreadX 15

«» ThreadX Unique Features 16
a» Safety Certifications 18

«» Embedded Applications 20
«» ThreadX Benefits 22

2 Installation and Use of ThreadX 27

«» Host Considerations 28
«» Target Considerations 28
«» Product Distribution 29
«» ThreadX Installation 30
«» Using ThreadX 31

«» Small Example System 31
«» Troubleshooting 33

«» Configuration Options 33
«» ThreadX Version ID 40

<EXXEEY & Uscr Guide

ThreadX

3 Functional Components of ThreadX 41
«» Execution Overview 44
«» Memory Usage 46
«» |nitialization 48
«» Thread Execution 50
«» Message Queues 67
«» Counting Semaphores 72
«» Mutexes 78
«» Event Flags 82
«» Memory Block Pools 85
«» Memory Byte Pools 89
«» Application Timers 93
«» Relative Time 96
«» Interrupts 96

4 Description of ThreadX Services 101

5 Device Drivers for ThreadX 289

«» Device Driver Introduction 290
«» Driver Functions 290

«» Simple Driver Example 292
«» Advanced Driver Issues 297

6 Demonstration System for ThreadX 305
«» Overview 306
«» Application Define 306
«» Thread 0 308
«» Thread 1 308
«» Thread 2 308

m User Guide

Contents

«» Threads 3 and 4 309

«» Thread 5 309

«» Threads 6 and 7 310

«» Observing the Demonstration 310
«» Distribution file: demo_threadx.c 311

Appendices

A ThreadX API Services 317
B ThreadX Constants 323

C ThreadX Data Types 329

D ASCII Character Codes 337

Index 339

Express Logic, Inc.

<EEEXEY & Uscr Guide

ThreadX

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Template for Application Development 32
Types of Program Execution 45
Memory Area Example 47
Initialization Process 51

Thread State Transition 52

Typical Thread Stack 60

Stack Preset to OXEFEF 61
Example of Suspended Threads 77
Simple Driver Initialization 294
Simple Driver Input 295

Simple Driver Output 296

Logic for Circular Input Buffer 299
Logic for Circular Output Buffer 300
I/O Buffer 300

Input-Output Lists 302

<EIIIF > 5o Guice

<EEEXEY & Uscr Guide

ThreadX

About This Guide

Organization

This guide provides comprehensive information
about ThreadX, the high-performance real-time
kernel from Express Logic.

It is intended for the embedded real-time software
developer. The developer should be familiar with
standard real-time operating system functions and
the C programming language.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Provides a basic overview of
ThreadX and its relationship to
real-time embedded
development.

Gives the basic steps to install
and use ThreadX in your
application right out of the box.

Describes in detail the functional
operation of ThreadX, the high-
performance real-time kernel.

Details the application’s interface
to ThreadX.

Describes writing I/O drivers for
ThreadX applications.

Describes the demonstration
application that is supplied with
every ThreadX processor
support package.

<EIIIF > 5o Guice

10 ThreadX

Appendix A
Appendix B
Appendix C
Appendix D

Index

Guide Conventions

Italics

Boldface

i
A

<EEXEXY & User Guide

ThreadX API
ThreadX constants
ThreadX data types
ASCII chart

Topic cross reference

typeface denotes book titles,
emphasizes important words,
and indicates variables.

typeface denotes file names,
key words, and further
emphasizes important words
and variables.

Information symbols draw
attention to important or
additional information that could
affect performance or function.

Warning symbols draw attention
to situations in which developers
should take care to avoid
because they could cause fatal
errors.

About This Guide 11

ThreadX Data Types

In addition to the custom ThreadX control structure
data types, there are a series of special data types
that are used in ThreadX service call interfaces.
These special data types map directly to data types
of the underlying C compiler. This is done to insure
portability between different C compilers. The exact
implementation can be found in the tx_port.h file
included on the distribution disk.

The following is a list of ThreadX service call data
types and their associated meanings:

UINT Basic unsigned integer. This
type must support 8-bit unsigned
data; however, it is mapped to
the most convenient unsigned

data type.

ULONG Unsigned long type. This type
must support 32-bit unsigned
data.

VvOoID Almost always equivalent to the

compiler’s void type.

CHAR Most often a standard 8-bit
character type.

Additional data types are used within the ThreadX
source. They are also located in the tx_port.h file.

Express Logic

12 ThreadX

Customer Support Center

Support engineers 858.613.6640

Support fax 858.521.4259

Support email support@expresslogic.com

Web page http://www.expresslogic.com
Latest Product Visit the Express Logic web site and select the
Information “Support” menu option to find the latest online

support information, including information about the
latest ThreadX product releases.

What We Need Please supply us with the following information in an
From You email message so we can more efficiently resolve
your support request:

1. A detailed description of the problem, including
frequency of occurrence and whether it can be
reliably reproduced.

2. A detailed description of any changes to the
application and/or ThreadX that preceded the
problem.

3. The contents of the _tx_version_id string found
in the tx_port.h file of your distribution. This string
will provide us valuable information regarding
your run-time environment.

4. The contents in RAM of the _tx_build_options
ULONG variable. This variable will give us
information on how your ThreadX library was built.

<EEXEXY & User Guide

Where to Send
Comments About
This Guide

About This Guide 13

The staff at Express Logic is always striving to
provide you with better products. To help us achieve
this goal, email any comments and suggestions to
the Customer Support Center at

support@expresslogic.com

Enter “ThreadX User Guide” in the subject line.

Express Logic

14 ThreadX

<EEEXEY & Uscr Guide

Introduction to ThreadX

ThreadX is a high-performance real-time kernel
designed specifically for embedded applications. This
chapter contains an introduction to the product and a
description of its applications and benefits.

«» ThreadX Unique Features 16
picokernel™ Architecture 16
ANSI C Source Code 16
Advanced Technology 16
Not A Black Box 17
The RTOS Standard 18

«» Safety Certifications 18
TUV Certification 18
MISRA C Compliant 19
UL Certification 19
Certification Pack 20

«» Embedded Applications 20
Real-time Software 20
Multitasking 21
Tasks vs. Threads 21

«» ThreadX Benefits 22
Improved Responsiveness 22
Software Maintenance 23
Increased Throughput 23
Processor Isolation 24
Dividing the Application 24
Ease of Use 24
Improve
Time-to-market 24
Protecting the Software Investment 25

<EIIIF > 5o Guice

16

Introduction to ThreadX

ThreadX Unique Features

picokernel™
Architecture

ANSI C Source
Code

Advanced
Technology

Unlike other real-time kernels, ThreadX is designed
to be versatile—easily scaling among small micro-
controller-based applications through those that use
powerful CISC, RISC, and DSP processors.

ThreadX is scalable based on its underlying
architecture. Because ThreadX services are
implemented as a C library, only those services
actually used by the application are brought into the
run-time image. Hence, the actual size of ThreadX is
completely determined by the application. For most
applications, the instruction image of ThreadX
ranges between 2 KBytes and 15 KBytes in size.

Instead of layering kernel functions on top of each
other like traditional microkernel architectures,
ThreadX services plug directly into its core. This
results in the fastest possible context switching and
service call performance. We call this non-layering
design a picokernel architecture.

ThreadX is written primarily in ANSI C. A small
amount of assembly language is needed to tailor the
kernel to the underlying target processor. This design
makes it possible to port ThreadX to a new processor
family in a very short time—usually within weeks!

The following are highlights of the ThreadX
advanced technology:

* Simple picokernel architecture

* Automatic scaling (small footprint)

® Deterministic processing

® Fast real-time performance

<EEXEXY & User Guide

Not A Black Box

ThreadX Unique Features 17

* Preemptive and cooperative scheduling
* Flexible thread priority support (32-1024)
* Dynamic system object creation

* Unlimited number of system objects

e Optimized interrupt handling

* Preemption-threshold™

® Priority inheritance

¢ Event-chaining™

* Fast software timers

® Run-time memory management

® Run-time performance monitoring

* Run-time stack analysis

e Built-in system trace

® Vast processor support

* Vast development tool support

e Completely endian neutral

Most distributions of ThreadX include the complete C
source code as well as the processor-specific
assembly language. This eliminates the “black-box”
problems that occur with many commercial kernels.
With ThreadX, application developers can see
exactly what the kernel is doing—there are no
mysteries!

The source code also allows for application specific
modifications. Although not recommended, it is
certainly beneficial to have the ability to modify the
kernel if it is absolutely required.

These features are especially comforting to
developers accustomed to working with their own in-
house kernels. They expect to have source code and
the ability to modify the kernel. ThreadX is the
ultimate kernel for such developers.

Express Logic

18

The RTOS
Standard

Introduction to ThreadX

Because of its versatility, high-performance
picokernel architecture, advanced technology, and
demonstrated portability, ThreadX is deployed in
more than two-billion devices today. This effectively
makes ThreadX the RTOS standard for deeply
embedded applications.

Safety Certifications

TUV Certification

ThreadX has been certified by SGS-TUV Saar for
use in safety-critical systems, according to IEC-
61508 and IEC-62304. The certification confirms that
ThreadX can be used in the development of safety-
related software for the highest safety integrity levels
of the International Electrotechnical Commission
(IEC) 61508 and IEC 62304, for the “Functional
Safety of electrical, electronic, and programmable
electronic safety-related systems.” SGS-TUV Saar,
formed through a joint venture of Germany’s SGS-
Group and TUV Saarland, has become the leading
accredited, independent company for testing,
auditing, verifying, and certifying embedded software
for safety-related systems worldwide. The industrial
safety standard IEC 61508, and all standards that
are derived from it, including IEC 62304, are used to
assure the functional safety of electrical, electronic,
and programmable electronic safety-related medical
devices, process control systems, industrial
machinery, and railway control systems.

SGS-TUV Saar has certified ThreadX to be used in
safety-critical automotive systems, according to the
ISO 26262 standard. Furthermore, ThreadX is
certified to Automotive Safety Integrity Level (ASIL)
D, which represents the highest level of ISO 26262
certification.

<EEXEXY & User Guide

] GEPRUFT

T FUNCTIONAL SAFETY
S

GE FUNKTIONALE SICHERHEIT
APPROVED

AAR

MISRA C
Compliant

UL Certification

Safety Certifications 19

In addition, SGS-TUV Saar has certified ThreadX to
be used in safety-critical railway applications,
meeting to the EN 50128 standard up to SW-SIL 4.

IEC 61508 up to SIL 4

IEC 62304 up to SW safety Class C
ISO 26262 ASIL D

EN 50128 SW-SIL 4

Please contact sales@expresslogic.com for more
information on which version(s) of ThreadX have
been certified by TUV or for the availability of test
reports, certificates, and associated documentation.

MISRA C is a set of programming guidelines for
critical systems using the C programming language.
The original MISRA C guidelines were primarily
targeted toward automotive applications; however,
MISRA C is now widely recognized as being
applicable to any safety critical application. ThreadX
is compliant with all “required” and “mandatory” rules
of MISRA-C:2004 and MISRA C:2012. ThreadX is
also compliant with all but three “advisory” rules.
Refer to the ThreadX_MISRA_Compliance.pdf
document for more details.

ThreadX has been certified by UL for compliance
with UL 60730-1 Annex H, CSA E60730-1 Annex H,
IEC 60730-1 Annex H, UL 60335-1 Annex R, IEC
60335-1 Annex R, and UL 1998 safety standards for
software in programmable components. Along with
IEC/UL 60730-1, which has requirements for
“Controls Using Software” in its Annex H, the IEC
60335-1 standard describes the requirements for
“Programmable Electronic Circuits” in its Annex R.
IEC 60730 Annex H and IEC 60335-1 Annex R
address the safety of MCU hardware and software

Express Logic

20

C“ US

Certification Pack

Introduction to ThreadX

used in appliances such as washing machines,
dishwashers, dryers, refrigerators, freezers, and
ovens.

UL/IEC 60730, UL/IEC 60335, UL 1998

Please contact sales@expresslogic.com for more
information on which version(s) of ThreadX have
been certified by TUV or for the availability of test
reports, certificates, and associated documentation.

The ThreadX Certification Pack™ is a 100%
complete, turnkey, industry-specific, stand-alone
package that provides all of the ThreadX evidence
needed to certify or successfully submit the ThreadX-
based product to the highest reliability and criticality
levels required for safety-critical Aviation, Medical,
and Industrial systems. Certifications supported
include DO-178B, ED-12B, DO-278, FDA510(k), IEC-
62304, IEC-60601, ISO-14971, UL-1998, IEC-61508,
CENELEC EN50128, BS50128, and 49CFR236. Please
contact sales@expresslogic.com for more
information on Certification Pack.

Embedded Applications

Real-time Software

Embedded applications execute on microprocessors
buried within products such as wireless
communication devices, automobile engines, laser
printers, medical devices, etc. Another distinction of
embedded applications is that their software and
hardware have a dedicated purpose.

When time constraints are imposed on the
application software, it is called the real-time
software. Basically, software that must perform its
processing within an exact period of time is called

<EEXEXY & User Guide

Multitasking

Tasks vs. Threads

Embedded Applications 21

real-time software. Embedded applications are
almost always real-time because of their inherent
interaction with external events.

As mentioned, embedded applications have a
dedicated purpose. To fulfill this purpose, the
software must perform a variety of tasks. A task is a
semi-independent portion of the application that
carries out a specific duty. It is also the case that
some tasks are more important than others. One of
the major difficulties in an embedded application is
the allocation of the processor between the various
application tasks. This allocation of processing
between competing tasks is the primary purpose of
ThreadX.

Another distinction about tasks must be made. The
term task is used in a variety of ways. It sometimes
means a separately loadable program. In other
instances, it may refer to an internal program
segment.

In contemporary operating system discussion, there
are two terms that more or less replace the use of
task: process and thread. A process is a completely
independent program that has its own address
space, while a thread is a semi-independent program
segment that executes within a process. Threads
share the same process address space. The
overhead associated with thread management is
minimal.

Most embedded applications cannot afford the
overhead (both memory and performance)
associated with a full-blown process-oriented
operating system. In addition, smaller
microprocessors don’t have the hardware
architecture to support a true process-oriented
operating system. For these reasons, ThreadX

Express Logic

22

Introduction to ThreadX

implements a thread model, which is both extremely
efficient and practical for most real-time embedded
applications.

To avoid confusion, ThreadX does not use the term
task. Instead, the more descriptive and contemporary
name thread is used.

ThreadX Benefits

Improved
Responsiveness

Using ThreadX provides many benefits to embedded
applications. Of course, the primary benefit rests in
how embedded application threads are allocated
processing time.

Prior to real-time kernels like ThreadX, most
embedded applications allocated processing time
with a simple control loop, usually from within the C
main function. This approach is still used in very
small or simple applications. However, in large or
complex applications, it is not practical because the
response time to any event is a function of the worst-
case processing time of one pass through the control
loop.

Making matters worse, the timing characteristics of
the application change whenever modifications are
made to the control loop. This makes the application
inherently unstable and difficult to maintain and
improve on.

ThreadX provides fast and deterministic response
times to important external events. ThreadX
accomplishes this through its preemptive, priority-
based scheduling algorithm, which allows a higher-
priority thread to preempt an executing lower-priority
thread. As a result, the worst-case response time
approaches the time required to perform a context

<EEXEXY & User Guide

Software
Maintenance

Increased
Throughput

ThreadX Benefits 23

switch. This is not only deterministic, but it is also
extremely fast.

The ThreadX kernel enables application developers
to concentrate on specific requirements of their
application threads without having to worry about
changing the timing of other areas of the application.
This feature also makes it much easier to repair or
enhance an application that utilizes ThreadX.

A possible work-around to the control loop response
time problem is to add more polling. This improves
the responsiveness, but it still doesn’t guarantee a
constant worst-case response time and does nothing
to enhance future modification of the application.
Also, the processor is now performing even more
unnecessary processing because of the extra polling.
All of this unnecessary processing reduces the
overall throughput of the system.

An interesting point regarding overhead is that many
developers assume that multithreaded environments
like ThreadX increase overhead and have a negative
impact on total system throughput. But in some
cases, multithreading actually reduces overhead by
eliminating all of the redundant polling that occurs in
control loop environments. The overhead associated
with multithreaded kernels is typically a function of
the time required for context switching. If the context
switch time is less than the polling process, ThreadX
provides a solution with the potential of less
overhead and more throughput. This makes ThreadX
an obvious choice for applications that have any
degree of complexity or size.

Express Logic

24

Processor
Isolation

Dividing the
Application

Ease of Use

Improve
Time-to-market

Introduction to ThreadX

ThreadX provides a robust processor-independent
interface between the application and the underlying
processor. This allows developers to concentrate on
the application rather than spending a significant
amount of time learning hardware details.

In control loop-based applications, each developer
must have an intimate knowledge of the entire
application’s run-time behavior and requirements.
This is because the processor allocation logic is
dispersed throughout the entire application. As an
application increases in size or complexity, it
becomes impossible for all developers to remember
the precise processing requirements of the entire
application.

ThreadX frees each developer from the worries
associated with processor allocation and allows them
to concentrate on their specific piece of the
embedded application. In addition, ThreadX forces
the application to be divided into clearly defined
threads. By itself, this division of the application into
threads makes development much simpler.

ThreadX is designed with the application developer
in mind. The ThreadX architecture and service call
interface are designed to be easily understood. As a
result, ThreadX developers can quickly use its
advanced features.

All of the benefits of ThreadX accelerate the software
development process. ThreadX takes care of most
processor issues and the most common safety
certifications, thereby removing this effort from the
development schedule. All of this results in a faster
time to market!

<EEXEXY & User Guide

ThreadX Benefits 25

Protecting the Because of its architecture, ThreadX is easily ported

Software to new processor and/or development tool

Investment environments. This, coupled with the fact that
ThreadX insulates applications from details of the
underlying processors, makes ThreadX applications
highly portable. As a result, the application’s
migration path is guaranteed, and the original
development investment is protected.

Express Logic

26 Introduction to ThreadX

<EEXEXY & User Guide

Installation and Use of ThreadX

This chapter contains a description of various issues
related to installation, setup, and usage of the high-
performance ThreadX kernel.

«» Host Considerations 28
«» Target Considerations 28
«» Product Distribution 29
«» ThreadX Installation 30
«» Using ThreadX 31

«» Small Example System 31
«» Troubleshooting 33

«» Configuration Options 33
Smallest Configuration 34
Fastest Configuration 34
Global Time Source 34
Detailed Configuration Options 35

«a» ThreadX Version ID 40

<AIEIF > User G

28 Installation and Use of ThreadX

Host Considerations

Embedded software is usually developed on
Windows or Linux (Unix) host computers. After the
application is compiled, linked, and located on the
host, it is downloaded to the target hardware for
execution.

Usually the target download is done from within the
development tool debugger. After download, the
debugger is responsible for providing target
execution control (go, halt, breakpoint, etc.) as well
as access to memory and processor registers.

Most development tool debuggers communicate with
the target hardware via on-chip debug (OCD)
connections such as JTAG (IEEE 1149.1) and
Background Debug Mode (BDM). Debuggers also
communicate with target hardware through In-Circuit
Emulation (ICE) connections. Both OCD and ICE
connections provide robust solutions with minimal
intrusion on the target resident software.

As for resources used on the host, the source code
for ThreadX is delivered in ASCII format and requires
approximately 1 MBytes of space on the host
computer’s hard disk.

Please review the supplied readme_threadx.txt file
I for additional host system considerations and
options.

Target Considerations

ThreadX requires between 2 KBytes and 20 KBytes
of Read Only Memory (ROM) on the target. Another
1 to 2 KBytes of the target's Random Access
Memory (RAM) are required for the ThreadX system
stack and other global data structures.

<EEXEXF® User Guide

Product Distribution 29

For timer-related functions like service call time-outs,
time-slicing, and application timers to function, the
underlying target hardware must provide a periodic
interrupt source. If the processor has this capability, it
is utilized by ThreadX. Otherwise, if the target
processor does not have the ability to generate a
periodic interrupt, the user’s hardware must provide
it. Setup and configuration of the timer interrupt is
typically located in the tx_initialize_low_level
assembly file in the ThreadX distribution.

ThreadX is still functional even if no periodic timer

I interrupt source is available. However, none of the
— timer-related services are functional. Please review
the supplied readme_threadx.txt file for any
additional host system considerations and/or options.

Product Distribution

The exact content of the distribution disk depends on
the target processor, development tools, and the
ThreadX package purchased. However, the following
is a list of several important files that are common to
most product distributions:

ThreadX_Express_Startup.pdf
This PDF provides a simple,
four-step procedure to get
ThreadX running on a specific
target processor/board and
specific development tools.

readme_threadx.txt
Text file containing specific
information about the ThreadX
port, including information about
the target processor and the
development tools.

Express Logic

30 Installation and Use of ThreadX

tx_api.h C header file containing all
system equates, data structures,
and service prototypes.

tx_port.h C header file containing all
development-tool and target-
specific data definitions and
structures.

demo_threadx.c C file containing a small demo
application.

tx.a (or tx.lib) Binary version of the ThreadX C
library that is distributed with the
standard package.

All file names are in lower-case. This naming
I convention makes it easier to convert the commands

to Linux (Unix) development platforms.

ThreadX Installation

Installation of ThreadX is straightforward. Refer to
the ThreadX_Express_Startup.pdffile and the
readme_threadx.txt file for specific information on
installing ThreadX for your specific environment.

. Be sure to back up the ThreadX distribution disk and
I store it in a safe location.

library file (usually tx.a or tx.lib) and the C include
files tx_api.h and tx_port.h. This is accomplished
either by setting the appropriate path for the
development tools or by copying these files into the
application development area.

. | Application software needs access to the ThreadX

<EEXEXF® User Guide

Using ThreadX 31

Using ThreadX

@ 6- 60

Using ThreadX is easy. Basically, the application
code must include tx_api.h during compilation and
link with the ThreadX run-time library tx.a (or tx.lib).

There are four steps required to build a ThreadX
application:

Include the tx_api.h file in all application files that
use ThreadX services or data structures.

Create the standard C main function. This function
must eventually call tx_kernel_enter to start
ThreadX. Application-specific initialization that does
not involve ThreadX may be added prior to entering
the kernel.

The ThreadX entry function tx_kernel_enter does
not return. So be sure not to place any processing or
function calls after it.

Create the tx_application_define function. This is
where the initial system resources are created.
Examples of system resources include threads,
queues, memory pools, event flags groups, mutexes,
and semaphores.

Compile application source and link with the ThreadX
run-time library tx.lib. The resulting image can be
downloaded to the target and executed!

Small Example System

The small example system in Figure 1 on page 32
shows the creation of a single thread with a priority of
3. The thread executes, increments a counter, then
sleeps for one clock tick. This process continues
forever.

Express Logic

32 Installation and Use of ThreadX

#include "tx api.h"

unsigned long my thread counter = 0;
TX THREAD my thread;

main()

{
/* Enter the ThreadX kernel. */
tx_kernel enter();

void tx_application_define (void *first unused memory)

/* Create my thread! */
tx_thread create (&¢my thread, "My Thread",
my thread entry, 0x1234, first unused memory, 1024,
3, 3, TX NO TIME SLICE, TX AUTO START);

void my thread entry (ULONG thread input)
/* Enter into a forever loop. */
while (1)

{

/* Increment thread counter. */
my thread counter++;

/* Sleep for 1 tick. */
tx_thread sleep(1);

FIGURE 1. Template for Application Development

Although this is a simple example, it provides a good
template for real application development. Once
again, please see the readme_threadx.txt file for
additional details.

<EEIEIT > 5o Guice

Troubleshooting 33

Troubleshooting

i

Each ThreadX port is delivered with a demonstration
application. It is always a good idea to first get the
demonstration system running—either on actual target
hardware or simulated environment.

See the readme_threadx.txt file supplied with the
distribution for more specific details regarding the
demonstration system.

If the demonstration system does not execute properly,
the following are some troubleshooting tips:

1. Determine how much of the demonstration is
running.

2. Increase stack sizes (this is more important in
actual application code than it is for the
demonstration).

3. Rebuild the ThreadX library with
TX_ENABLE_STACK_CHECKING defined. This
will enable the built-in ThreadX stack checking.

4. Temporarily bypass any recent changes to see if
the problem disappears or changes. Such
information should prove useful to Express Logic
support engineers.

Follow the procedures outlined in “What We Need
From You” on page 12 to send the information
gathered from the troubleshooting steps.

Configuration Options

There are several configuration options when building
the ThreadX library and the application using ThreadX.
The options below can be defined in the application
source, on the command line, or within the tx_user.h
include file.

Express Logic

34

Smallest
Configuration

Fastest
Configuration

Global Time
Source

Installation and Use of ThreadX

Options defined in tx_user.h are applied only if the
application and ThreadX library are built with
TX_INCLUDE_USER_DEFINE_FILE defined.

For the smallest code size, the following ThreadX
configuration options should be considered (in
absence of all other options):

TX DISABLE ERROR CHECKING

TX DISABLE PREEMPTION THRESHOLD
TX DISABLE NOTIFY CALLBACKS

TX DISABLE REDUNDANT CLEARING
TX DISABLE STACK FILLING

TX NOT INTERRUPTABLE

TX_TIMER PROCESS IN ISR

For the fastest execution, the same configuration
options used for the Smallest Configuration
previously, but with these options also considered:

TX REACTIVATE INLINE
TX INLINE THREAD RESUME SUSPEND

Review the readme_threadx.txt file for additional
options for your specific version of ThreadX. Detailed
configuration options are described beginning on
page 35.

For other Express Logic products (FileX, NetX,
GUIX, USBX, etc.), ThreadX defines the number of
ThreadX timer ticks that represents one second.
Others derive their time requirements based on this
constant. By default, the value is 100, assuming a
10ms periodic interrupt. The user may override this
value by defining

TX_TIMER_TICKS PER_SECOND with the desired
value in tx_port.h or within the IDE or command line.

<EEXEXF® User Guide

Configuration Options 35

Detailed Configuration Options

Define Meaning

TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on block pools. By
default, this option is not defined.

TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on byte pools. By
default, this option is not defined.

TX_DISABLE_ERROR_CHECKING Bypasses basic service call error
checking. When defined in the
application source, all basic
parameter error checking is
disabled. This may improve
performance by as much as 30%
and may also reduce the image
size. Of course, this option should
only be used after the application
is thoroughly debugged. By
default, this option is not defined.

ThreadX API return

values not affected by .
disabling error I
checking are listed in

bold in the “Return

Values” section of each API
description in Chapter 4. The non-
bold return values are void if error
checking is disabled by using the
TX_DISABLE_ERROR_CHECKING
option.

TX_DISABLE_NOTIFY_CALLBACKS When defined, disables the notify
callbacks for various ThreadX
objects. Using this option slightly
reduces code size and improves
performance. By default, this
option is not defined.

Express Logic

36 Installation and Use of ThreadX

Define Meaning

TX_DISABLE_PREEMPTION_THRESHOLD When defined, disables the
preemption-threshold feature and
slightly reduces code size and
improves performance. Of course,
the preemption-threshold
capabilities are no longer
available. By default, this option is
not defined.

TX_DISABLE_REDUNDANT_CLEARING When defined, removes the logic
for initializing ThreadX global C
data structures to zero. This
should only be used if the
compiler’s initialization code sets
all un-initialized C global data to
zero. Using this option slightly
reduces code size and improves
performance during initialization.
By default, this option is not
defined.

TX_DISABLE_STACK_FILLING When defined, disables placing
the OxEF value in each byte of
each thread’s stack when created.
By default, this option is not
defined.

TX_ENABLE_EVENT_TRACE When defined, ThreadX enables
the event gathering code for
creating a TraceX trace buffer.
See the TraceX User Guide for
more details.

<EEXEXF® User Guide

Configuration Options 37

Define Meaning

TX_ENABLE_STACK_CHECKING When defined, enables ThreadX
run-time stack checking, which
includes analysis of how much
stack has been used and
examination of data pattern
“fences” before and after the stack
area. If a stack error is detected,
the registered application stack
error handler is called. This option
does result in slightly increased
overhead and code size. Review
the
tx_thread_stack_error_notify
API for more information. By
default, this option is not defined.

TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO = When defined, enables the
gathering of performance
information on event flags groups.
By default, this option is not
defined.

TX_INLINE_THREAD_RESUME_SUSPEND When defined, ThreadX improves
the tx_thread_resume and
tx_thread_suspend API calls via
in-line code. This increases code
size but enhances performance of
these two API calls.

TX_MAX_PRIORITIES Defines the priority levels for
ThreadX. Legal values range from
32 through 1024 (inclusive) and
must be evenly divisible by 32.
Increasing the number of priority
levels supported increases the
RAM usage by 128 bytes for
every group of 32 priorities.
However, there is only a negligible
effect on performance. By default,
this value is set to 32 priority
levels.

Express Logic

38 Installation and Use of ThreadX

Define
TX_MINIMUM_STACK

TX_MISRA_ENABLE

TX_MUTEX_ENABLE_PERFORMANCE_INFO

TX_NO_TIMER

TX_NOT_INTERRUPTABLE

TX_QUEUE_ENABLE_PERFORMANCE_INFO

TX_REACTIVATE_INLINE

<EEXEXF® User Guide

Meaning

Defines the minimum stack size
(in bytes). It is used for error
checking when threads are
created. The default value is port-
specific and is found in tx_port.h.

When defined, ThreadX utilizes
MISRA C compliant conventions.
Refer to the
ThreadX_MISRA_Compliance.pdf
for details.

When defined, enables the
gathering of performance
information on mutexes. By
default, this option is not defined.

When defined, the ThreadX timer
logic is completely disabled. This
is useful in cases where the
ThreadX timer features (thread
sleep, API timeouts, time-slicing,
and application timers) are not
utilized. If TX_NO_TIMER is
specified, the option
TX_TIMER_PROCESS_IN_ISR
must also be defined.

When defined, ThreadX does not
attempt to minimize interrupt
lockout time. This results in faster
execution but does slightly
increase interrupt lockout time.

When defined, enables the
gathering of performance
information on queues. By default,
this option is not defined.

When defined, performs
reactivation of ThreadX timers in-
line instead of using a function
call. This improves performance
but slightly increases code size.
By default, this option is not
defined.

Configuration Options 39

Define Meaning

TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO = When defined, enables the
gathering of performance
information on semaphores. By
default, this option is not defined.

TX_THREAD_ENABLE_PERFORMANCE_INFO Defined, enables the gathering of
performance information on
threads. By default, this option is
not defined.

TX_TIMER_ENABLE_PERFORMANCE_INFO Defined, enables the gathering of
performance information on
timers. By default, this option is
not defined.

TX_TIMER_PROCESS_IN_ISR When defined, eliminates the
internal system timer thread for
ThreadX. This results in improved
performance on timer events and
smaller RAM requirements
because the timer stack and
control block are no longer
needed. However, using this
option moves all the timer
expiration processing to the timer
ISR level. By default, this option is
not defined.

Note that services
' allowed from timers
. 5 may not be allowed
from ISRs and thus

might not be allowed
when using this option.

Express Logic

40 Installation and Use of ThreadX

Define
TX_TIMER_THREAD_PRIORITY

TX_TIMER_THREAD_STACK_SIZE

ThreadX Version ID

Meaning

Defines the priority of the internal
ThreadX system timer thread. The
default value is priority 0—the
highest priority in ThreadX. The
default value is defined in
tx_port.h.

Defines the stack size (in bytes) of
the internal ThreadX system timer
thread. This thread processes all
thread sleep requests as well as
all service call timeouts. In
addition, all application timer
callback routines are invoked from
this context. The default value is
port-specific and is found in
tx_port.h.

The ThreadX version ID can be found in the
readme_threadx.txt file. This file also contains a
version history of the corresponding port. Application
software can obtain the ThreadX version by
examining the global string _tx_version_id.

<EEIEIT > 5o Guice

Functional Components of
ThreadX

This chapter contains a description of the high-
performance ThreadX kernel from a functional
perspective. Each functional component is presented
in an easy-to-understand manner.

a» Execution Overview 44
Initialization 44
Thread Execution 44
Interrupt Service Routines (ISR) 44
Initialization 45
Application Timers 46

«» Memory Usage 46
Static Memory Usage 46
Dynamic Memory Usage 48

«» Initialization 48
System Reset Vector 48
Development Tool Initialization 49
main Function 49
tx_kernel_enter 49
Application Definition Function 50
Interrupts 50

«» Thread Execution 50
Thread Execution States 52
Thread Entry/Exit Notification 54
Thread Priorities 54
Thread Scheduling 55
Round-robin Scheduling 55
Time-Slicing 55
Preemption 56
Preemption-Threshold™ 56
Priority Inheritance 57
Thread Creation 57

<EIIIF > 5o Guice

42 Functional Components of ThreadX

Thread Control Block TX_THREAD 57
Currently Executing Thread 59

Thread Stack Area 59

Memory Pitfalls 62

Optional Run-time Stack Checking 62
Reentrancy 62

Thread Priority Pitfalls 63

Priority Overhead 64

Run-time Thread Performance Information 65
Debugging Pitfalls 66

«» Message Queues 67
Creating Message Queues 68
Message Size 68
Message Queue Capacity 68
Queue Memory Area 69
Thread Suspension 69
Queue Send Notification 70
Queue Event-chaining™ 70
Run-time Queue Performance Information 71
Queue Control Block TX_QUEUE 72
Message Destination Pitfall 72

«» Counting Semaphores 72
Mutual Exclusion 73
Event Notification 73
Creating Counting Semaphores 74
Thread Suspension 74
Semaphore Put Notification 74
Semaphore Event-chaining™ 75
Run-time Semaphore Performance Information 75
Semaphore Control Block TX_SEMAPHORE 76
Deadly Embrace 76
Priority Inversion 78

«» Mutexes 78
Mutex Mutual Exclusion 79
Creating Mutexes 79
Thread Suspension 79
Run-time Mutex Performance Information 80
Mutex Control Block TX_MUTEX 81
Deadly Embrace 81
Priority Inversion 81

«» Event Flags 82

<EEXEXY & User Guide

43

Creating Event Flags Groups 83

Thread Suspension 83

Event Flags Set Notification 83

Event Flags Event-chaining™ 84

Run-time Event Flags Performance Information 84

Event Flags Group Control Block TX_EVENT_FLAGS_GROUP 85

«» Memory Block Pools 85
Creating Memory Block Pools 86
Memory Block Size 86
Pool Capacity 86
Pool’'s Memory Area 87
Thread Suspension 87
Run-time Block Pool Performance Information 87
Memory Block Pool Control Block TX BLOCK_ POOL 88
Overwriting Memory Blocks 89

«» Memory Byte Pools 89
Creating Memory Byte Pools 89
Pool Capacity 90
Pool’'s Memory Area 90
Thread Suspension 90
Run-time Byte Pool Performance Information 91
Memory Byte Pool Control Block TX_BYTE_POOL 92
Nondeterministic Behavior 92
Overwriting Memory Blocks 93

«» Application Timers 93
Timer Intervals 93
Timer Accuracy 94
Timer Execution 94
Creating Application Timers 94
Run-time Application Timer Performance Information 95
Application Timer Control Block TX_TIMER 95
Excessive Timers 96

«» Relative Time 96

«» Interrupts 96
Interrupt Control 97
ThreadX Managed Interrupts 97
ISR Template 99
High-frequency Interrupts 100
Interrupt Latency 100

Express Logic

44

Functional Components of ThreadX

Execution Overview

Initialization

Thread Execution

Interrupt Service
Routines (ISR)

There are four types of program execution within a
ThreadX application: Initialization, Thread Execution,
Interrupt Service Routines (ISRs), and Application
Timers.

Figure 2 on page 45 shows each different type of
program execution. More detailed information about
each of these types is found in subsequent sections
of this chapter.

As the name implies, this is the first type of program
execution in a ThreadX application. Initialization
includes all program execution between processor
reset and the entry point of the thread scheduling
loop.

After initialization is complete, ThreadX enters its
thread scheduling loop. The scheduling loop looks
for an application thread ready for execution. When a
ready thread is found, ThreadX transfers control to it.
After the thread is finished (or another higher-priority
thread becomes ready), execution transfers back to
the thread scheduling loop to find the next highest
priority ready thread.

This process of continually executing and scheduling
threads is the most common type of program
execution in ThreadX applications.

Interrupts are the cornerstone of real-time systems.
Without interrupts it would be extremely difficult to
respond to changes in the external world in a timely
manner. On detection of an interrupt, the processor
saves key information about the current program
execution (usually on the stack), then transfers

<EEXEXY & User Guide

Execution Overview 45

Execution Overview
Hardware

Reset

Initialization

Thread
Execution

gé?ﬁgg t Application
Routines Timers

FIGURE 2. Types of Program Execution

control to a predefined program area. This
predefined program area is commonly called an
Interrupt Service Routine.

In most cases, interrupts occur during thread
execution (or in the thread scheduling loop).
However, interrupts may also occur inside of an
executing ISR or an Application Timer.

Express Logic

46

Application Timers

Functional Components of ThreadX

Application Timers are similar to ISRs, except the
hardware implementation (usually a single periodic
hardware interrupt is used) is hidden from the
application. Such timers are used by applications to
perform time-outs, periodics, and/or watchdog
services. Just like ISRs, Application Timers most
often interrupt thread execution. Unlike ISRs,
however, Application Timers cannot interrupt each
other.

Memory Usage

Static Memory
Usage

ThreadX resides along with the application program.
As a result, the static memory (or fixed memory)
usage of ThreadX is determined by the development
tools; e.g., the compiler, linker, and locator. Dynamic
memory (or run-time memory) usage is under direct
control of the application.

Most of the development tools divide the application
program image into five basic areas: instruction,
constant, initialized data, uninitialized data, and
system stack. Figure 3 on page 47 shows an
example of these memory areas.

It is important to understand that this is only an
example. The actual static memory layout is specific
to the processor, development tools, and the
underlying hardware.

The instruction area contains all of the program’s
processor instructions. This area is typically the
largest and is often located in ROM.

The constant area contains various compiled
constants, including strings defined or referenced
within the program. In addition, this area contains the
“initial copy” of the initialized data area. During the

<EEXEXY & User Guide

H

addresses

0x00000000

0x80000000

Memory Usage 47

Static Memory Usage
(example)

Instruction Area
ROM

Constant Area
ROM

Initialized Data Area
RAM

Uninitialized Data Area
RAM

System Stack Area

Indicates ThreadX

Usage

FIGURE 3. Memory Area Example

compiler’s initialization process, this portion of the
constant area is used to set up the initialized data
area in RAM. The constant area usually follows the
instruction area and is often located in ROM.

The initialized data and uninitialized data areas
contain all of the global and static variables. These
areas are always located in RAM.

The system stack is generally set up immediately
following the initialized and uninitialized data areas.

Express Logic

48

Dynamic Memory
Usage

Initialization

System Reset
Vector

Functional Components of ThreadX

The system stack is used by the compiler during
initialization, then by ThreadX during initialization
and, subsequently, in ISR processing.

As mentioned before, dynamic memory usage is
under direct control of the application. Control blocks
and memory areas associated with stacks, queues,
and memory pools can be placed anywhere in the
target’s memory space. This is an important feature
because it facilitates easy utilization of different types
of physical memory.

For example, suppose a target hardware
environment has both fast memory and slow
memory. If the application needs extra performance
for a high-priority thread, its control block
(TX_THREAD) and stack can be placed in the fast
memory area, which may greatly enhance its
performance.

Understanding the initialization process is important.
The initial hardware environment is set up here. In
addition, this is where the application is given its
initial personality.

ThreadX attempts to utilize (whenever possible) the
complete development tool’s initialization process.
This makes it easier to upgrade to new versions of
the development tools in the future.

All microprocessors have reset logic. When a reset
occurs (either hardware or software), the address of
the application’s entry point is retrieved from a

<EEXEXY & User Guide

Development Tool
Initialization

main Function

i

tx_kernel_enter

Initialization 49

specific memory location. After the entry point is
retrieved, the processor transfers control to that
location.

The application entry point is quite often written in the
native assembly language and is usually supplied by
the development tools (at least in template form). In
some cases, a special version of the entry program is
supplied with ThreadX.

After the low-level initialization is complete, control
transfers to the development tool’s high-level
initialization. This is usually the place where
initialized global and static C variables are set up.
Remember their initial values are retrieved from the
constant area. Exact initialization processing is
development tool specific.

When the development tool initialization is complete,
control transfers to the user-supplied main function.
At this point, the application controls what happens
next. For most applications, the main function simply
calls tx_kernel_enter, which is the entry into
ThreadX. However, applications can perform
preliminary processing (usually for hardware
initialization) prior to entering ThreadX.

The call to tx_kernel_enter does not return, so do not
place any processing after it!

The entry function coordinates initialization of various
internal ThreadX data structures and then calls the
application’s definition function tx_application_define.

When tx_application_define returns, control is

transferred to the thread scheduling loop. This marks
the end of initialization!

Express Logic

50

Application
Definition
Function

Interrupts

Functional Components of ThreadX

The tx_application_define function defines all of the
initial application threads, queues, semaphores,
mutexes, event flags, memory pools, and timers. It is
also possible to create and delete system resources
from threads during the normal operation of the
application. However, all initial application resources
are defined here.

The tx_application_define function has a single input
parameter and it is certainly worth mentioning. The
first-available RAM address is the sole input
parameter to this function. It is typically used as a
starting point for initial run-time memory allocations
of thread stacks, queues, and memory pools.

After initialization is complete, only an executing
thread can create and delete system resources—
including other threads. Therefore, at least one
thread must be created during initialization.

Interrupts are left disabled during the entire
initialization process. If the application somehow
enables interrupts, unpredictable behavior may
occur. Figure 4 on page 51 shows the entire
initialization process, from system reset through
application-specific initialization.

Thread Execution

Scheduling and executing application threads is the
most important activity of ThreadX. A thread is
typically defined as a semi-independent program
segment with a dedicated purpose. The combined
processing of all threads makes an application.

Threads are created dynamically by calling
tx_thread_create during initialization or during thread
execution. Threads are created in either a ready or
suspended state.

<EEXEXY & User Guide

Thread Execution 51

System Reset Vector Initialization Process

v
entry point*

N
development tool initialization™

=1

ain()

>
“ tx_kernel enter()

€——> tx application define (mem ptr)

——— > Enter thread
scheduling loop
* denotes functions that are
development-tool specific

FIGURE 4. Initialization Process

Express Logic

52 Functional Components of ThreadX

Thread Execution Understanding the different processing states of

States threads is a key ingredient to understanding the
entire multithreaded environment. In ThreadX there
are five distinct thread states: ready, suspended,
executing, terminated, and completed. Figure 5
shows the thread state transition diagram for
ThreadX.

tx_thread_create

TX_DONT_START

Scheduling

Self
Suspend Terminate
Service

From Thread
Entry Function

FIGURE 5. Thread State Transition

<EEXEXY & User Guide

Thread Execution 53

A thread is in a ready state when it is ready for
execution. A ready thread is not executed until it is
the highest priority thread in ready state. When this
happens, ThreadX executes the thread, which then
changes its state to executing.

If a higher-priority thread becomes ready, the
executing thread reverts back to a ready state. The
newly ready high-priority thread is then executed,
which changes its logical state to executing. This
transition between ready and executing states occurs
every time thread preemption occurs.

At any given moment, only one thread is in an
executing state. This is because a thread in the
executing state has control of the underlying
processor.

Threads in a suspended state are not eligible for
execution. Reasons for being in a suspended state
include suspension for time, queue messages,
semaphores, mutexes, event flags, memory, and
basic thread suspension. After the cause for
suspension is removed, the thread is placed back in
a ready state.

A thread in a completed state is a thread that has
completed its processing and returned from its entry
function. The entry function is specified during thread
creation. A thread in a completed state cannot
execute again.

A thread is in a terminated state because another
thread or the thread itself called the
tx_thread_terminate service. A thread in a terminated
state cannot execute again.

If re-starting a completed or terminated thread is

desired, the application must first delete the thread. It
can then be re-created and re-started.

Express Logic

54

Thread Entry/Exit
Notification

Thread Priorities

Functional Components of ThreadX

Some applications may find it advantageous to be
notified when a specific thread is entered for the first
time, when it completes, or is terminated. ThreadX
provides this ability through the

tx_thread_entry _exit_notify service. This service
registers an application notification function for a
specific thread, which is called by ThreadX whenever
the thread starts running, completes, or is
terminated. After being invoked, the application
notification function can perform the application-
specific processing. This typically involves informing
another application thread of the event via a ThreadX
synchronization primitive.

As mentioned before, a thread is a semi-independent
program segment with a dedicated purpose.
However, all threads are not created equal! The
dedicated purpose of some threads is much more
important than others. This heterogeneous type of
thread importance is a hallmark of embedded real-
time applications.

ThreadX determines a thread’s importance when the
thread is created by assigning a numerical value
representing its priority. The maximum number of
ThreadX priorities is configurable from 32 through
1024 in increments of 32. The actual maximum
number of priorities is determined by the

TX _MAX_PRIORITIES constant during compilation
of the ThreadX library. Having a larger number of
priorities does not significantly increase processing
overhead. However, for each group of 32 priority
levels an additional 128 bytes of RAM is required to
manage them. For example, 32 priority levels require
128 bytes of RAM, 64 priority levels require 256
bytes of RAM, and 96 priority levels requires 384
bytes of RAM.

By default, ThreadX has 32 priority levels, ranging
from priority O through priority 31. Numerically

<EEXEXY & User Guide

Thread Scheduling

Round-robin
Scheduling

Time-Slicing

Thread Execution 55

smaller values imply higher priority. Hence, priority O
represents the highest priority, while priority
(TX_MAX_PRIORITIES-1) represents the lowest
priority.

Multiple threads can have the same priority relying
on cooperative scheduling or time-slicing. In addition,
thread priorities can be changed during run-time.

ThreadX schedules threads based on their priority.
The ready thread with the highest priority is executed
first. If multiple threads of the same priority are ready,
they are executed in a first-in-first-out (FIFO)
manner.

ThreadX supports round-robin scheduling of multiple
threads having the same priority. This is
accomplished through cooperative calls to
tx_thread_relinquish. This service gives all other
ready threads of the same priority a chance to
execute before the tx_thread_relinquish caller
executes again.

Time-slicing is another form of round-robin
scheduling. A time-slice specifies the maximum
number of timer ticks (timer interrupts) that a thread
can execute without giving up the processor. In
ThreadX, time-slicing is available on a per-thread
basis. The thread’s time-slice is assigned during
creation and can be modified during run-time. When
a time-slice expires, all other ready threads of the
same priority level are given a chance to execute
before the time-sliced thread executes again.

A fresh thread time-slice is given to a thread after it

suspends, relinquishes, makes a ThreadX service
call that causes preemption, or is itself time-sliced.

Express Logic

56

Preemption

Preemption-
Threshold™

Functional Components of ThreadX

When a time-sliced thread is preempted, it will
resume before other ready threads of equal priority
for the remainder of its time-slice.

Using time-slicing results in a slight amount of
system overhead. Because time-slicing is only useful
in cases in which multiple threads share the same
priority, threads having a unique priority should not
be assigned a time-slice.

Preemption is the process of temporarily interrupting
an executing thread in favor of a higher-priority
thread. This process is invisible to the executing
thread. When the higher-priority thread is finished,
control is transferred back to the exact place where
the preemption took place.

This is a very important feature in real-time systems
because it facilitates fast response to important
application events. Although a very important
feature, preemption can also be a source of a variety
of problems, including starvation, excessive
overhead, and priority inversion.

To ease some of the inherent problems of
preemption, ThreadX provides a unique and
advanced feature called preemption-threshold.

A preemption-threshold allows a thread to specify a

priority ceiling for disabling preemption. Threads that
have higher priorities than the ceiling are still allowed
to preempt, while those less than the ceiling are not

allowed to preempt.

For example, suppose a thread of priority 20 only
interacts with a group of threads that have priorities
between 15 and 20. During its critical sections, the
thread of priority 20 can set its preemption-threshold
to 15, thereby preventing preemption from all of the

<EEXEXY & User Guide

Priority

Inheritance

Thread Creation

Thread Control
Block TX_THREAD

Thread Execution 57

threads that it interacts with. This still permits really
important threads (priorities between 0 and 14) to
preempt this thread during its critical section
processing, which results in much more responsive
processing.

Of course, it is still possible for a thread to disable all
preemption by setting its preemption-threshold to 0.
In addition, preemption-threshold can be changed
during run-time.

Using preemption-threshold disables time-slicing for
the specified thread.

ThreadX also supports optional priority inheritance
within its mutex services described later in this
chapter. Priority inheritance allows a lower priority
thread to temporarily assume the priority of a high
priority thread that is waiting for a mutex owned by
the lower priority thread. This capability helps the
application to avoid nondeterministic priority
inversion by eliminating preemption of intermediate
thread priorities. Of course, preemption-threshold
may be used to achieve a similar result.

Application threads are created during initialization or
during the execution of other application threads.
There is no limit on the number of threads that can
be created by an application.

The characteristics of each thread are contained in
its control block. This structure is defined in the
tx_api.h file.

A thread’s control block can be located anywhere in
memory, but it is most common to make the control

Express Logic

58

Functional Components of ThreadX

block a global structure by defining it outside the
scope of any function.

Locating the control block in other areas requires a
bit more care, just like all dynamically allocated
memory. If a control block is allocated within a C
function, the memory associated with it is part of the
calling thread’s stack. In general, avoid using local
storage for control blocks because after the function
returns, all of its local variable stack space is
released—regardless of whether another thread is
using it for a control block!

In most cases, the application is oblivious to the
contents of the thread’s control block. However, there
are some situations, especially during debug, in
which looking at certain members is useful. The
following are some of the more useful control block
members:

tx_thread_run_count
contains a counter of the
number of many times the
thread has been scheduled. An
increasing counter indicates the
thread is being scheduled and
executed.

tx_thread_state contains the state of the
associated thread. The following
lists the possible thread states:

TX_READY (0x00)
TX_COMPLETED (0x01)
TX_ TERMINATED (0x02)
TX SUSPENDED (0x03)
TX SLEEP (0x04)
TX QUEUE_SUSP (0x05)
TX SEMAPHORE SUSP (0x06)
TX_EVENT FLAG (0x07)
TX BLOCK MEMORY (0x08)
TX BYTE MEMORY (0x09)
TX_MUTEX_ SUSP (0x0D)

<EEXEXY & User Guide

i
i

Currently
Executing Thread

Thread Stack Area

Thread Execution 59

Of course there are many other interesting fields in
the thread control block, including the stack pointer,
time-slice value, priorities, etc. Users are welcome to
review control block members, but modifications are
strictly prohibited!

There is no equate for the “executing” state
mentioned eatrlier in this section. It is not necessary
because there is only one executing thread at a
given time. The state of an executing thread is also
TX_READY.

As mentioned before, there is only one thread
executing at any given time. There are several ways
to identify the executing thread, depending on which
thread is making the request.

A program segment can get the control block
address of the executing thread by calling
tx_thread_identify. This is useful in shared portions
of application code that are executed from multiple
threads.

In debug sessions, users can examine the internal
ThreadX pointer _tx_thread_current_ptr. It contains
the control block address of the currently executing
thread. If this pointer is NULL, no application thread
is executing; i.e., ThreadX is waiting in its scheduling
loop for a thread to become ready.

Each thread must have its own stack for saving the
context of its last execution and compiler use. Most C
compilers use the stack for making function calls and
for temporarily allocating local variables. Figure 6 on
page 60 shows a typical thread’s stack.

Where a thread stack is located in memory is up to

the application. The stack area is specified during
thread creation and can be located anywhere in the

Express Logic

60 Functional Components of ThreadX

Stack Memory Area
(example)
physical
addresses
0x0000F200
Typical
run-tim
tx_stack_ptr
Thread’s last
v execution context
Local variables and
0x0000FCO00 C function nesting

FIGURE 6. Typical Thread Stack

target’s address space. This is an important feature
because it allows applications to improve
performance of important threads by placing their
stack in high-speed RAM.

How big a stack should be is one of the most
frequently asked questions about threads. A thread’s
stack area must be large enough to accommodate
worst-case function call nesting, local variable
allocation, and saving its last execution context.

The minimum stack size, TX_MINIMUM_STACK, is
defined by ThreadX. A stack of this size supports
saving a thread’s context and minimum amount of
function calls and local variable allocation.

For most threads, however, the minimum stack size

is too small, and the user must ascertain the worst-
case size requirement by examining function-call

<EEXEXY & User Guide

Thread Execution 61

nesting and local variable allocation. Of course, it is
always better to start with a larger stack area.

After the application is debugged, it is possible to
tune the thread stack sizes if memory is scarce. A
favorite trick is to preset all stack areas with an easily
identifiable data pattern like (OXEFEF) prior to
creating the threads. After the application has been
thoroughly put through its paces, the stack areas can
be examined to see how much stack was actually
used by finding the area of the stack where the data
pattern is still intact. Figure 7 shows a stack preset to
OxEFEF after thorough thread execution.

Stack Memory Area

(another example)
physical
addresses

0x0000F200

Unused
Stack
Area

Typical
run-time
stack
growth
tx_stack_ptr
Thread's last
v execution context
Local variables and
0x0000FCO00 C function nesting

FIGURE 7. Stack Preset to OXEFEF

thread stack with a value of OxEF.

. l By default, ThreadX initializes every byte of each

Express Logic

62

Memory Pitfalls

Optional Run-time
Stack Checking

Reentrancy

Functional Components of ThreadX

The stack requirements for threads can be large.
Therefore, it is important to design the application to
have a reasonable number of threads. Furthermore,
some care must be taken to avoid excessive stack
usage within threads. Recursive algorithms and large
local data structures should be avoided.

In most cases, an overflowed stack causes thread
execution to corrupt memory adjacent (usually
before) its stack area. The results are unpredictable,
but most often result in an un-natural change in the
program counter. This is often called “jumping into
the weeds.” Of course, the only way to prevent this is
to ensure all thread stacks are large enough.

ThreadX provides the ability to check each thread's
stack for corruption during run-time. By default,
ThreadX fills every byte of thread stacks with a OxEF
data pattern during creation. If the application builds
the ThreadX library with
TX_ENABLE_STACK_CHECKING defined,
ThreadX will examine each thread's stack for
corruption as it is suspended or resumed. If stack
corruption is detected, ThreadX will call the
application's stack error handling routine as specified
by the call to tx_thread stack_error_notify.
Otherwise, if no stack error handler was specified,
ThreadX will call the internal

_tx_thread_stack_error_handler routine.

One of the real beauties of multithreading is that the
same C function can be called from multiple threads.
This provides great power and also helps reduce
code space. However, it does require that C
functions called from multiple threads are reentrant.

Basically, a reentrant function stores the caller’s
return address on the current stack and does not rely
on global or static C variables that it previously set

<EEXEXY & User Guide

Thread Priority
Pitfalls

Thread Execution 63

up. Most compilers place the return address on the
stack. Hence, application developers must only worry
about the use of globals and statics.

An example of a non-reentrant function is the string
token function “strtok” found in the standard C library.
This function remembers the previous string pointer
on subsequent calls. It does this with a static string
pointer. If this function is called from multiple threads,
it would most likely return an invalid pointer.

Selecting thread priorities is one of the most
important aspects of multithreading. It is sometimes
very tempting to assign priorities based on a
perceived notion of thread importance rather than
determining what is exactly required during run-time.
Misuse of thread priorities can starve other threads,
create priority inversion, reduce processing
bandwidth, and make the application’s run-time
behavior difficult to understand.

As mentioned before, ThreadX provides a priority-
based, preemptive scheduling algorithm. Lower
priority threads do not execute until there are no
higher priority threads ready for execution. If a higher
priority thread is always ready, the lower priority
threads never execute. This condition is called
thread starvation.

Most thread starvation problems are detected early in
debug and can be solved by ensuring that higher
priority threads don’t execute continuously.
Alternatively, logic can be added to the application
that gradually raises the priority of starved threads
until they get a chance to execute.

Another pitfall associated with thread priorities is
priority inversion. Priority inversion takes place when
a higher priority thread is suspended because a
lower priority thread has a needed resource. Of

Express Logic

64

Priority Overhead

Functional Components of ThreadX

course, in some instances it is necessary for two
threads of different priority to share a common
resource. If these threads are the only ones active,
the priority inversion time is bounded by the time the
lower priority thread holds the resource. This
condition is both deterministic and quite normal.
However, if threads of intermediate priority become
active during this priority inversion condition, the
priority inversion time is no longer deterministic and
could cause an application failure.

There are principally three distinct methods of
preventing nondeterministic priority inversion in
ThreadX. First, the application priority selections and
run-time behavior can be designed in a manner that
prevents the priority inversion problem. Second,
lower priority threads can utilize preemption-
threshold to block preemption from intermediate
threads while they share resources with higher
priority threads. Finally, threads using ThreadX
mutex objects to protect system resources may
utilize the optional mutex priority inheritance to
eliminate nondeterministic priority inversion.

One of the most overlooked ways to reduce
overhead in multithreading is to reduce the number
of context switches. As previously mentioned, a
context switch occurs when execution of a higher
priority thread is favored over that of the executing
thread. It is worthwhile to mention that higher priority
threads can become ready as a result of both
external events (like interrupts) and from service calls
made by the executing thread.

To illustrate the effects thread priorities have on
context switch overhead, assume a three thread
environment with threads named thread 1, thread 2,
and thread_3. Assume further that all of the threads
are in a state of suspension waiting for a message.
When thread_1 receives a message, it immediately

<EEXEXY & User Guide

Run-time Thread
Performance
Information

Thread Execution 65

forwards it to thread_2. Thread_2 then forwards the
message to thread_3. Thread_3 just discards the
message. After each thread processes its message,
it goes back and waits for another message.

The processing required to execute these three
threads varies greatly depending on their priorities. If
all of the threads have the same priority, a single
context switch occurs before the execution of each
thread. The context switch occurs when each thread
suspends on an empty message queue.

However, if thread_2 is higher priority than thread_1
and thread_3 is higher priority than thread_2, the
number of context switches doubles. This is because
another context switch occurs inside of the
tx_queue_send service when it detects that a higher
priority thread is now ready.

The ThreadX preemption-threshold mechanism can
avoid these extra context switches and still allow the
previously mentioned priority selections. This is an
important feature because it allows several thread
priorities during scheduling, while at the same time
eliminating some of the unwanted context switching
between them during thread execution.

ThreadX provides optional run-time thread
performance information. If the ThreadX library and
application is built with
TX_THREAD_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information:

Total number for the overall system:

e thread resumptions
¢ thread suspensions
® service call preemptions

® interrupt preemptions

Express Logic

66

Debugging Pitfalls

Functional Components of ThreadX

e priority inversions
* time-slices

® relinquishes

¢ thread timeouts

® suspension aborts
¢ idle system returns

® non-idle system returns

Total number for each thread:

® resumptions

® suspensions

® service call preemptions
* interrupt preemptions

® priority inversions

® time-slices

e thread relinquishes

e thread timeouts

® suspension aborts

This information is available at run-time through the
services tx_thread performance_info_get and
tx_thread_performance_system_info_get. Thread
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of service call preemptions
might suggest the thread'’s priority and/or
preemption-threshold is too low. Furthermore, a
relatively low number of idle system returns might
suggest that lower priority threads are not
suspending enough.

Debugging multithreaded applications is a little more
difficult because the same program code can be
executed from multiple threads. In such cases, a
break-point alone may not be enough. The debugger

<EEXEXY & User Guide

Message Queues 67

must also view the current thread pointer
_tx_thread_current_ptr using a conditional
breakpoint to see if the calling thread is the one to
debug.

Much of this is being handled in multithreading
support packages offered through various
development tool vendors. Because of its simple
design, integrating ThreadX with different
development tools is relatively easy.

Stack size is always an important debug topic in
multithreading. Whenever unexplained behavior is
observed, it is usually a good first guess to increase
stack sizes for all threads—especially the stack size
of the last thread to execute!

TX_ENABLE_STACK_CHECKING defined. This will
help isolate stack corruption problems as early in the
processing as possible!

I It is also a good idea to build the ThreadX library with

Message Queues

Message queues are the primary means of inter-
thread communication in ThreadX. One or more
messages can reside in a message queue. A
message queue that holds a single message is
commonly called a mailbox.

Messages are copied to a queue by tx_queue_send
and are copied from a queue by tx_queue_receive.
The only exception to this is when a thread is
suspended while waiting for a message on an empty
queue. In this case, the next message sent to the
queue is placed directly into the thread’s destination
area.

Express Logic

68

Creating Message
Queues

Message Size

Message Queue
Capacity

Functional Components of ThreadX

Each message queue is a public resource. ThreadX
places no constraints on how message queues are
used.

Message queues are created either during
initialization or during run-time by application
threads. There is no limit on the number of message
queues in an application.

Each message queue supports a number of fixed-
sized messages. The available message sizes are 1
through 16 32-bit words inclusive. The message size
is specified when the queue is created.

Application messages greater than 16 words must be
passed by pointer. This is accomplished by creating
a queue with a message size of 1 word (enough to
hold a pointer) and then sending and receiving
message pointers instead of the entire message.

The number of messages a queue can hold is a
function of its message size and the size of the
memory area supplied during creation. The total
message capacity of the queue is calculated by
dividing the number of bytes in each message into
the total number of bytes in the supplied memory
area.

For example, if a message queue that supports a
message size of 1 32-bit word (4 bytes) is created
with a 100-byte memory area, its capacity is 25
messages.

<EEXEXY & User Guide

Queue Memory
Area

Thread
Suspension

Message Queues 69

As mentioned before, the memory area for buffering
messages is specified during queue creation. Like
other memory areas in ThreadX, it can be located
anywhere in the target’s address space.

This is an important feature because it gives the
application considerable flexibility. For example, an
application might locate the memory area of an
important queue in high-speed RAM to improve
performance.

Application threads can suspend while attempting to
send or receive a message from a queue. Typically,
thread suspension involves waiting for a message
from an empty queue. However, it is also possible for
a thread to suspend trying to send a message to a
full queue.

After the condition for suspension is resolved, the
service requested is completed and the waiting
thread is resumed. If multiple threads are suspended
on the same queue, they are resumed in the order
they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_queue_prioritize prior to the
queue service that lifts thread suspension. The
queue prioritize service places the highest priority
thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Time-outs are also available for all queue
suspensions. Basically, a time-out specifies the
maximum number of timer ticks the thread will stay
suspended. If a time-out occurs, the thread is
resumed and the service returns with the appropriate
error code.

Express Logic

70

Queue Send
Notification

Queue Event-
chaining™

Functional Components of ThreadX

Some applications may find it advantageous to be
notified whenever a message is placed on a queue.
ThreadX provides this ability through the
tx_queue_send_notify service. This service registers
the supplied application notification function with the
specified queue. ThreadX will subsequently invoke
this application notification function whenever a
message is sent to the queue. The exact processing
within the application notification function is
determined by the application; however, it typically
consists of resuming the appropriate thread for
processing the new message.

The notification capabilities in ThreadX can be used
to chain various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, suppose a single thread is responsible
for processing messages from five different queues
and must also suspend when no messages are
available. This is easily accomplished by registering
an application notification function for each queue
and introducing an additional counting semaphore.
Specifically, the application notification function
performs a tx_semaphore_put whenever it is called
(the semaphore count represents the total number of
messages in all five queues). The processing thread
suspends on this semaphore via the
tx_semaphore_get service. When the semaphore is
available (in this case, when a message is
available!), the processing thread is resumed. It then
interrogates each queue for a message, processes
the found message, and performs another
tx_semaphore_get to wait for the next message.
Accomplishing this without event-chaining is quite
difficult and likely would require more threads and/or
additional application code.

<EEXEXY & User Guide

Run-time Queue
Performance
Information

Message Queues 71

In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

ThreadX provides optional run-time queue
performance information. If the ThreadX library and
application is built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information:

Total number for the overall system:

®* messages sent

®* messages received

® queue empty suspensions

® queue full suspensions

e queue full error returns (suspension not specified)

® queue timeouts

Total number for each queue:

® messages sent

®* messages received

® queue empty suspensions

* queue full suspensions

e queue full error returns (suspension not specified)
® queue timeouts

This information is available at run-time through the
services tx_queue_performance_info_get and
tx_queue_performance_system_info_get. Queue
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “queue full suspensions”

Express Logic

72

Queue Control
Block TX_QUEUE

Message
Destination Pitfall

B\

Functional Components of ThreadX

suggests an increase in the queue size might be
beneficial.

The characteristics of each message queue are
found in its control block. It contains interesting
information such as the number of messages in the
queue. This structure is defined in the tx_api.h file.

Message queue control blocks can also be located
anywhere in memory, but it is most common to make
the control block a global structure by defining it
outside the scope of any function.

As mentioned previously, messages are copied
between the queue area and application data areas.
It is important to ensure the destination for a received
message is large enough to hold the entire message.
If not, the memory following the message destination
will likely be corrupted.

This is especially lethal when a too-small message
destination is on the stack—nothing like corrupting
the return address of a function!

Counting Semaphores

ThreadX provides 32-bit counting semaphores that
range in value between 0 and 4,294,967,295. There
are two operations for counting semaphores:
tx_semaphore_get and tx_semaphore_put. The get
operation decreases the semaphore by one. If the
semaphore is 0, the get operation is not successful.
The inverse of the get operation is the put operation.
It increases the semaphore by one.

<EEXEXY & User Guide

Mutual Exclusion

i

Event Notification

Counting Semaphores 73

Each counting semaphore is a public resource.
ThreadX places no constraints on how counting
semaphores are used.

Counting semaphores are typically used for mutual
exclusion. However, counting semaphores can also
be used as a method for event notification.

Mutual exclusion pertains to controlling the access of
threads to certain application areas (also called
critical sections or application resources). When
used for mutual exclusion, the “current count” of a
semaphore represents the total number of threads
that are allowed access. In most cases, counting
semaphores used for mutual exclusion will have an
initial value of 1, meaning that only one thread can
access the associated resource at a time. Counting
semaphores that only have values of 0 or 1 are
commonly called binary semaphores.

If a binary semaphore is being used, the user must
prevent the same thread from performing a get
operation on a semaphore it already owns. A second
get would be unsuccessful and could cause indefinite
suspension of the calling thread and permanent un-
availability of the resource.

It is also possible to use counting semaphores as
event notification, in a producer-consumer fashion.
The consumer attempts to get the counting
semaphore while the producer increases the
semaphore whenever something is available. Such
semaphores usually have an initial value of 0 and will
not increase until the producer has something ready
for the consumer. Semaphores used for event
notification may also benefit from use of the
tx_semaphore_ceiling_put service call. This service
ensures that the semaphore count never exceeds
the value supplied in the call.

Express Logic

74

Creating Counting
Semaphores

Thread
Suspension

Semaphore Put
Notification

Functional Components of ThreadX

Counting semaphores are created either during
initialization or during run-time by application
threads. The initial count of the semaphore is
specified during creation. There is no limit on the
number of counting semaphores in an application.

Application threads can suspend while attempting to
perform a get operation on a semaphore with a
current count of 0.

After a put operation is performed, the suspended
thread’s get operation is performed and the thread is
resumed. If multiple threads are suspended on the
same counting semaphore, they are resumed in the
same order they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_semaphore_prioritize prior to
the semaphore put call that lifts thread suspension.
The semaphore prioritize service places the highest
priority thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Some applications may find it advantageous to be
notified whenever a semaphore is put. ThreadX
provides this ability through the
tx_semaphore_put_notify service. This service
registers the supplied application notification function
with the specified semaphore. ThreadX will
subsequently invoke this application notification
function whenever the semaphore is put. The exact
processing within the application notification function
is determined by the application; however, it typically
consists of resuming the appropriate thread for
processing the new semaphore put event.

<EEXEXY & User Guide

Semaphore Event-
chaining™

Run-time
Semaphore
Performance
Information

Counting Semaphores 75

The notification capabilities in ThreadX can be used
to chain various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, instead of having separate threads
suspend for a queue message, event flags, and a
semaphore, the application can register a notification
routine for each object. When invoked, the
application notification routine can then resume a
single thread, which can interrogate each object to
find and process the new event.

In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

ThreadX provides optional run-time semaphore
performance information. If the ThreadX library and
application is built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

* semaphore puts

* semaphore gets

* semaphore get suspensions
* semaphore get timeouts

Total number for each semaphore:

* semaphore puts
®* semaphore gets
* semaphore get suspensions

* semaphore get timeouts

Express Logic

76

Semaphore
Control Block
TX_SEMAPHORE

Deadly Embrace

Functional Components of ThreadX

This information is available at run-time through the
services tx_semaphore_performance_info_get and
tx_semaphore_performance_system_info_get.
Semaphore performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application. For
example, a relatively high number of “semaphore get
timeouts” might suggest that other threads are
holding resources too long.

The characteristics of each counting semaphore are
found in its control block. It contains information such
as the current semaphore count. This structure is
defined in the tx_api.h file.

Semaphore control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

One of the most interesting and dangerous pitfalls
associated with semaphores used for mutual
exclusion is the deadly embrace. A deadly embrace,
or deadlock, is a condition in which two or more
threads are suspended indefinitely while attempting
to get semaphores already owned by each other.

This condition is best illustrated by a two thread, two
semaphore example. Suppose the first thread owns
the first semaphore and the second thread owns the
second semaphore. If the first thread attempts to get
the second semaphore and at the same time the
second thread attempts to get the first semaphore,
both threads enter a deadlock condition. In addition,
if these threads stay suspended forever, their
associated resources are locked-out forever as well.
Figure 8 on page 77 illustrates this example.

<EEXEXY & User Guide

Counting Semaphores

First
Semaphore

owned by

first thread attempt to

get second
semaphore,

First Thread

77

Deadly Embrace
(example)

Second
Semaphore

attempt to
get first
semaphore

Second Thread

owned by
second thread

FIGURE 8. Example of Suspended Threads

For real-time systems, deadly embraces can be
prevented by placing certain restrictions on how
threads obtain semaphores. Threads can only have
one semaphore at a time. Alternatively, threads can
own multiple semaphores if they gather them in the
same order. In the previous example, if the first and
second thread obtain the first and second
semaphore in order, the deadly embrace is

prevented.

i

deadly embrace.

It is also possible to use the suspension time-out
associated with the get operation to recover from a

Express Logic

78

Priority Inversion

Mutexes

Functional Components of ThreadX

Another pitfall associated with mutual exclusion
semaphores is priority inversion. This topic is
discussed more fully in “Thread Priority Pitfalls” on
page 63.

The basic problem results from a situation in which a
lower-priority thread has a semaphore that a higher
priority thread needs. This in itself is normal.
However, threads with priorities in between them
may cause the priority inversion to last a non-
deterministic amount of time. This can be handled
through careful selection of thread priorities, using
preemption-threshold, and temporarily raising the
priority of the thread that owns the resource to that of
the high priority thread.

In addition to semaphores, ThreadX also provides a
mutex object. A mutex is basically a binary
semaphore, which means that only one thread can
own a mutex at a time. In addition, the same thread
may perform a successful mutex get operation on an
owned mutex multiple times, 4,294,967,295 to be
exact. There are two operations on the mutex object:
tx_mutex_get and tx_mutex_put. The get
operation obtains a mutex not owned by another
thread, while the put operation releases a previously
obtained mutex. For a thread to release a mutex, the
number of put operations must equal the number of
prior get operations.

Each mutex is a public resource. ThreadX places no
constraints on how mutexes are used.

ThreadX mutexes are used solely for mutual
exclusion. Unlike counting semaphores, mutexes
have no use as a method for event notification.

<EEXEXY & User Guide

Mutex Mutual
Exclusion

Creating Mutexes

Thread
Suspension

Mutexes 79

Similar to the discussion in the counting semaphore
section, mutual exclusion pertains to controlling the
access of threads to certain application areas (also
called critical sections or application resources).
When available, a ThreadX mutex will have an
ownership count of 0. After the mutex is obtained by
a thread, the ownership count is incremented once
for every successful get operation performed on the
mutex and decremented for every successful put
operation.

ThreadX mutexes are created either during
initialization or during run-time by application
threads. The initial condition of a mutex is always
“available.” A mutex may also be created with priority
inheritance selected.

Application threads can suspend while attempting to
perform a get operation on a mutex already owned
by another thread.

After the same number of put operations are
performed by the owning thread, the suspended
thread’s get operation is performed, giving it
ownership of the mutex, and the thread is resumed. If
multiple threads are suspended on the same mutex,
they are resumed in the same order they were
suspended (FIFO).

However, priority resumption is done automatically if
the mutex priority inheritance was selected during
creation. Priority resumption is also possible if the
application calls tx_mutex_prioritize prior to the
mutex put call that lifts thread suspension. The mutex
prioritize service places the highest priority thread at
the front of the suspension list, while leaving all other
suspended threads in the same FIFO order.

Express Logic

80 Functional Components of ThreadX

Run-time Mutex ThreadX provides optional run-time mutex
Performance performance information. If the ThreadX library and

TX_MUTEX_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

* mutex puts

* mutex gets

* mutex get suspensions
* mutex get timeouts

* mutex priority inversions

* mutex priority inheritances

Total number for each mutex:

* mutex puts

* mutex gets

* mutex get suspensions

* mutex get timeouts

® mutex priority inversions

* mutex priority inheritances

This information is available at run-time through the
services tx_mutex_performance_info_get and
tx_mutex_performance_system_info_get. Mutex
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “mutex get timeouts” might
suggest that other threads are holding resources too
long.

<EEXEXY & User Guide

Mutex Control
Block TX_MUTEX

Deadly Embrace

Priority Inversion

Mutexes 81

The characteristics of each mutex are found in its
control block. It contains information such as the
current mutex ownership count along with the pointer
of the thread that owns the mutex. This structure is
defined in the tx_api.h file.

Mutex control blocks can be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

One of the most interesting and dangerous pitfalls
associated with mutex ownership is the deadly
embrace. A deadly embrace, or deadlock, is a
condition where two or more threads are suspended
indefinitely while attempting to get a mutex already
owned by the other threads. The discussion of
deadly embrace and its remedies found on page 76
is completely valid for the mutex object as well.

As mentioned previously, a major pitfall associated
with mutual exclusion is priority inversion. This topic
is discussed more fully in “Thread Priority Pitfalls” on
page 63.

The basic problem results from a situation in which a
lower priority thread has a semaphore that a higher
priority thread needs. This in itself is normal.
However, threads with priorities in between them
may cause the priority inversion to last a non-
deterministic amount of time. Unlike semaphores
discussed previously, the ThreadX mutex object has
optional priority inheritance. The basic idea behind
priority inheritance is that a lower priority thread has
its priority raised temporarily to the priority of a high
priority thread that wants the same mutex owned by
the lower priority thread. When the lower priority
thread releases the mutex, its original priority is then
restored and the higher priority thread is given

Express Logic

82

Event Flags

Functional Components of ThreadX

ownership of the mutex. This feature eliminates
nondeterministic priority inversion by bounding the
amount of inversion to the time the lower priority
thread holds the mutex. Of course, the techniques
discussed earlier in this chapter to handle
nondeterministic priority inversion are also valid with
mutexes as well.

Event flags provide a powerful tool for thread
synchronization. Each event flag is represented by a
single bit. Event flags are arranged in groups of 32.

Threads can operate on all 32 event flags in a group
at the same time. Events are set by

tx_event flags set and are retrieved by

tx_event flags get.

Setting event flags is done with a logical AND/OR
operation between the current event flags and the
new event flags. The type of logical operation (either
an AND or OR) is specified in the tx_event flags_set
call.

There are similar logical options for retrieval of event
flags. A get request can specify that all specified
event flags are required (a logical AND).
Alternatively, a get request can specify that any of the
specified event flags will satisfy the request (a logical
OR). The type of logical operation associated with
event flags retrieval is specified in the

tx_event flags get call.

Event flags that satisfy a get request are consumed,
i.e., setto zero, if TX_OR_CLEAR or
TX_AND_CLEAR are specified by the request.

<EEXEXY & User Guide

Creating Event
Flags Groups

Thread
Suspension

i

Event Flags Set
Notification

Event Flags 83

Each event flags group is a public resource. ThreadX
places no constraints on how event flags groups are
used.

Event flags groups are created either during
initialization or during run-time by application
threads. At the time of their creation, all event flags in
the group are set to zero. There is no limit on the
number of event flags groups in an application.

Application threads can suspend while attempting to
get any logical combination of event flags from a

group. After an event flag is set, the get requests of
all suspended threads are reviewed. All the threads
that now have the required event flags are resumed.

All suspended threads on an event flags group are
reviewed when its event flags are set. This, of
course, introduces additional overhead. Therefore, it
is good practice to limit the number of threads using
the same event flags group to a reasonable number.

Some applications may find it advantageous to be
notified whenever an event flag is set. ThreadX
provides this ability through the
tx_event flags set notify service. This service
registers the supplied application notification function
with the specified event flags group. ThreadX will
subsequently invoke this application notification
function whenever an event flag in the group is set.
The exact processing within the application
notification function is determined by the application,
but it typically consists of resuming the appropriate
thread for processing the new event flag.

Express Logic

84

Event Flags Event-
chaining™

Run-time Event
Flags Performance
Information

Functional Components of ThreadX

The notification capabilities in ThreadX can be used
to “chain” various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, instead of having separate threads
suspend for a queue message, event flags, and a
semaphore, the application can register a notification
routine for each object. When invoked, the
application notification routine can then resume a
single thread, which can interrogate each object to
find and process the new event.

In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

ThreadX provides optional run-time event flags
performance information. If the ThreadX library and
application is built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

e event flags sets

¢ event flags gets

* event flags get suspensions
¢ event flags get timeouts

Total number for each event flags group:

* event flags sets
® event flags gets
e event flags get suspensions

e event flags get timeouts

<EEXEXY & User Guide

Event Flags Group
Control Block

TX_EVENT_FLAGS_GROUP

Memory Block Pools 85

This information is available at run-time through the
services tx_event flags performance_info_get and
tx_event flags performance_system info_get.
Event Flags performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application. For
example, a relatively high number of timeouts on the
tx_event_flags_get service might suggest that the
event flags suspension timeout is too short.

The characteristics of each event flags group are
found in its control block. It contains information such
as the current event flags settings and the number of
threads suspended for events. This structure is
defined in the tx_api.h file.

Event group control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Memory Block Pools

Allocating memory in a fast and deterministic manner
is always a challenge in real-time applications. With
this in mind, ThreadX provides the ability to create
and manage multiple pools of fixed-size memory
blocks.

Because memory block pools consist of fixed-size
blocks, there are never any fragmentation problems.
Of course, fragmentation causes behavior that is
inherently nondeterministic. In addition, the time
required to allocate and free a fixed-size memory
block is comparable to that of simple linked-list
manipulation. Furthermore, memory block allocation
and de-allocation is done at the head of the available
list. This provides the fastest possible linked list

Express Logic

86

Creating Memory

Block Pools

Memory Block
Size

Pool Capacity

N

Functional Components of ThreadX

processing and might help keep the actual memory
block in cache.

Lack of flexibility is the main drawback of fixed-size
memory pools. The block size of a pool must be large
enough to handle the worst case memory
requirements of its users. Of course, memory may be
wasted if many different size memory requests are
made to the same pool. A possible solution is to
make several different memory block pools that
contain different sized memory blocks.

Each memory block pool is a public resource.
ThreadX places no constraints on how pools are
used.

Memory block pools are created either during
initialization or during run-time by application
threads. There is no limit on the number of memory
block pools in an application.

As mentioned earlier, memory block pools contain a
number of fixed-size blocks. The block size, in bytes,
is specified during creation of the pool.

ThreadX adds a small amount of overhead—the size
of a C pointer—to each memory block in the pool. In
addition, ThreadX might have to pad the block size to
keep the beginning of each memory block on proper
alignment.

The number of memory blocks in a pool is a function
of the block size and the total number of bytes in the
memory area supplied during creation. The capacity
of a pool is calculated by dividing the block size

<EEXEXY & User Guide

Pool’s Memory
Area

Thread
Suspension

Run-time Block
Pool Performance
Information

Memory Block Pools 87

(including padding and the pointer overhead bytes)
into the total number of bytes in the supplied memory
area.

As mentioned before, the memory area for the block
pool is specified during creation. Like other memory
areas in ThreadX, it can be located anywhere in the
target’s address space.

This is an important feature because of the
considerable flexibility it provides. For example,
suppose that a communication product has a high-
speed memory area for I/O. This memory area is
easily managed by making it into a ThreadX memory
block pool.

Application threads can suspend while waiting for a
memory block from an empty pool. When a block is
returned to the pool, the suspended thread is given
this block and the thread is resumed.

If multiple threads are suspended on the same
memory block pool, they are resumed in the order
they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_block_pool_prioritize prior to
the block release call that lifts thread suspension.
The block pool prioritize service places the highest
priority thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

ThreadX provides optional run-time block pool
performance information. If the ThreadX library and
application is built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO

Express Logic

88

Memory Block
Pool Control Block
TX BLOCK POOL

Functional Components of ThreadX

defined, ThreadX accumulates the following
information.

Total number for the overall system:
* blocks allocated

* blocks released

® allocation suspensions

* allocation timeouts

Total number for each block pool:

* blocks allocated
® blocks released

® allocation suspensions
¢ allocation timeouts

This information is available at run-time through the
services tx_block _pool_performance_info_get and
tx_block_pool_performance_system_info_get. Block
pool performance information is useful in determining
if the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “allocation suspensions”
might suggest that the block pool is too small.

The characteristics of each memory block pool are
found in its control block. It contains information such
as the number of memory blocks available and the
memory pool block size. This structure is defined in
the tx_api.h file.

Pool control blocks can also be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

<EEXEXY & User Guide

Overwriting
Memory Blocks

Memory Byte Pools

Creating Memory
Byte Pools

Memory Byte Pools 89

It is important to ensure that the user of an allocated
memory block does not write outside its boundaries.
If this happens, corruption occurs in an adjacent
(usually subsequent) memory area. The results are
unpredictable and often fatal!

ThreadX memory byte pools are similar to a standard
C heap. Unlike the standard C heap, it is possible to
have multiple memory byte pools. In addition,
threads can suspend on a pool until the requested
memory is available.

Allocations from memory byte pools are similar to
traditional malloc calls, which include the amount of
memory desired (in bytes). Memory is allocated from
the pool in a first-fit manner; i.e., the first free
memory block that satisfies the request is used.
Excess memory from this block is converted into a
new block and placed back in the free memory list.
This process is called fragmentation.

Adjacent free memory blocks are merged together
during a subsequent allocation search for a large
enough free memory block. This process is called
de-fragmentation.

Each memory byte pool is a public resource.
ThreadX places no constraints on how pools are
used, except that memory byte services cannot be
called from ISRs.

Memory byte pools are created either during
initialization or during run-time by application
threads. There is no limit on the number of memory
byte pools in an application.

Express Logic

90

Pool Capacity

Pool’s Memory
Area

Thread
Suspension

Functional Components of ThreadX

The number of allocatable bytes in a memory byte
pool is slightly less than what was specified during
creation. This is because management of the free
memory area introduces some overhead. Each free
memory block in the pool requires the equivalent of
two C pointers of overhead. In addition, the pool is
created with two blocks, a large free block and a
small permanently allocated block at the end of the
memory area. This allocated block is used to improve
performance of the allocation algorithm. It eliminates
the need to continuously check for the end of the
pool area during merging.

During run-time, the amount of overhead in the pool
typically increases. Allocations of an odd number of
bytes are padded to ensure proper alignment of the
next memory block. In addition, overhead increases
as the pool becomes more fragmented.

The memory area for a memory byte pool is specified
during creation. Like other memory areas in
ThreadX, it can be located anywhere in the target’s
address space.

This is an important feature because of the
considerable flexibility it provides. For example, if the
target hardware has a high-speed memory area and
a low-speed memory area, the user can manage
memory allocation for both areas by creating a pool
in each of them.

Application threads can suspend while waiting for
memory bytes from a pool. When sufficient
contiguous memory becomes available, the
suspended threads are given their requested
memory and the threads are resumed.

<EEXEXY & User Guide

Run-time Byte
Pool Performance
Information

Memory Byte Pools 91

If multiple threads are suspended on the same
memory byte pool, they are given memory (resumed)
in the order they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_byte_pool_prioritize prior to the
byte release call that lifts thread suspension. The
byte pool prioritize service places the highest priority
thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

ThreadX provides optional run-time byte pool
performance information. If the ThreadX library and
application is built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

* allocations

* releases

e fragments searched

e fragments merged

e fragments created

* allocation suspensions

e allocation timeouts

Total number for each byte pool:

* allocations

* releases

e fragments searched

¢ fragments merged

e fragments created

® allocation suspensions
* allocation timeouts

Express Logic

92

Memory Byte Pool
Control Block
TX_BYTE_POOL

Nondeterministic
Behavior

Functional Components of ThreadX

This information is available at run-time through the
services tx_byte_pool_performance_info_get and
tx_byte_pool_performance_system_info_get. Byte
pool performance information is useful in determining
if the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “allocation suspensions”
might suggest that the byte pool is too small.

The characteristics of each memory byte pool are
found in its control block. It contains useful
information such as the number of available bytes in
the pool. This structure is defined in the tx_api.h file.

Pool control blocks can also be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Although memory byte pools provide the most
flexible memory allocation, they also suffer from
somewhat nondeterministic behavior. For example, a
memory byte pool may have 2,000 bytes of memory
available but may not be able to satisfy an allocation
request of 1,000 bytes. This is because there are no
guarantees on how many of the free bytes are
contiguous. Even if a 1,000 byte free block exists,
there are no guarantees on how long it might take to
find the block. It is completely possible that the entire
memory pool would need to be searched to find the
1,000 byte block.

Because of this, it is generally good practice to avoid
using memory byte services in areas where
deterministic, real-time behavior is required. Many
applications pre-allocate their required memory
during initialization or run-time configuration.

<EEXEXY & User Guide

Overwriting
Memory Blocks

Application Timers

Timer Intervals

Application Timers 93

It is important to ensure that the user of allocated
memory does not write outside its boundaries. If this
happens, corruption occurs in an adjacent (usually
subsequent) memory area. The results are
unpredictable and often fatal!

Fast response to asynchronous external events is
the most important function of real-time, embedded
applications. However, many of these applications
must also perform certain activities at pre-determined
intervals of time.

ThreadX application timers provide applications with
the ability to execute application C functions at
specific intervals of time. It is also possible for an
application timer to expire only once. This type of
timer is called a one-shot timer, while repeating
interval timers are called periodic timers.

Each application timer is a public resource. ThreadX
places no constraints on how application timers are
used.

In ThreadX time intervals are measured by periodic
timer interrupts. Each timer interrupt is called a timer
tick. The actual time between timer ticks is specified
by the application, but 10ms is the norm for most
implementations. The periodic timer setup is typically
found in the tx_initialize_low_level assembly file.

It is worth mentioning that the underlying hardware
must have the ability to generate periodic interrupts
for application timers to function. In some cases, the
processor has a built-in periodic interrupt capability. If
the processor doesn’t have this ability, the user’s

Express Logic

94

Timer Accuracy

Timer Execution

Creating
Application Timers

Functional Components of ThreadX

board must have a peripheral device that can
generate periodic interrupts.

ThreadX can still function even without a periodic
interrupt source. However, all timer-related
processing is then disabled. This includes time-
slicing, suspension time-outs, and timer services.

Timer expirations are specified in terms of ticks. The
specified expiration value is decreased by one on
each timer tick. Because an application timer could
be enabled just prior to a timer interrupt (or timer
tick), the actual expiration time could be up to one
tick early.

If the timer tick rate is 10ms, application timers may
expire up to 10ms early. This is more significant for
10ms timers than 1 second timers. Of course,
increasing the timer interrupt frequency decreases
this margin of error.

Application timers execute in the order they become
active. For example, if three timers are created with
the same expiration value and activated, their
corresponding expiration functions are guaranteed to
execute in the order they were activated.

Application timers are created either during
initialization or during run-time by application
threads. There is no limit on the number of
application timers in an application.

<EEXEXY & User Guide

Run-time
Application Timer
Performance
Information

Application Timer
Control Block
TX_TIMER

Application Timers 95

ThreadX provides optional run-time application timer
performance information. If the ThreadX library and
application are built with
TX_TIMER_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

e Qactivations

e deactivations

* reactivations (periodic timers)
® expirations
® expiration adjustments

Total number for each application timer:

® Qactivations

® deactivations

® reactivations (periodic timers)
e expirations

® expiration adjustments

This information is available at run-time through the
services tx_timer_performance_info_get and
tx_timer_performance_system_info_get. Application
Timer performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application.

The characteristics of each application timer are
found in its control block. It contains useful
information such as the 32-bit expiration identification
value. This structure is defined in the tx_api.h file.

Application timer control blocks can be located
anywhere in memory, but it is most common to make
the control block a global structure by defining it
outside the scope of any function.

Express Logic

96

Excessive Timers

N

Relative Time

Interrupts

Functional Components of ThreadX

By default, application timers execute from within a
hidden system thread that runs at priority zero, which
is typically higher than any application thread.
Because of this, processing inside application timers
should be kept to a minimum.

It is also important to avoid, whenever possible,
timers that expire every timer tick. Such a situation
might induce excessive overhead in the application.

As mentioned previously, application timers are
executed from a hidden system thread. It is,
therefore, important not to select suspension on any
ThreadX service calls made from within the
application timer’s expiration function.

In addition to the application timers mentioned
previously, ThreadX provides a single continuously
incrementing 32-bit tick counter. The tick counter or
time is increased by one on each timer interrupt.

The application can read or set this 32-bit counter
through calls to tx_time get and tx_time_set,
respectively. The use of this tick counter is
determined completely by the application. It is not
used internally by ThreadX.

Fast response to asynchronous events is the
principal function of real-time, embedded
applications. The application knows such an event is
present through hardware interrupts.

An interrupt is an asynchronous change in processor
execution. Typically, when an interrupt occurs, the

<EEXEXY & User Guide

Interrupt Control

N

ThreadX Managed
Interrupts

Interrupts 97

processor saves a small portion of the current
execution on the stack and transfers control to the
appropriate interrupt vector. The interrupt vector is
basically just the address of the routine responsible
for handling the specific type interrupt. The exact
interrupt handling procedure is processor specific.

The tx_interrupt_control service allows applications
to enable and disable interrupts. The previous
interrupt enable/disable posture is returned by this
service. It is important to mention that interrupt
control only affects the currently executing program
segment. For example, if a thread disables interrupts,
they only remain disabled during execution of that
thread.

A Non-Maskable Interrupt (NMI) is an interrupt that
cannot be disabled by the hardware. Such an
interrupt may be used by ThreadX applications.
However, the application’s NMI handling routine is
not allowed to use ThreadX context management or
any API services.

ThreadX provides applications with complete
interrupt management. This management includes
saving and restoring the context of the interrupted
execution. In addition, ThreadX allows certain
services to be called from within Interrupt Service
Routines (ISRs). The following is a list of ThreadX
services allowed from application ISRs:

tx block allocate

tx block pool info get
tx_block pool prioritize

tx block pool performance info get

tx block pool performance system info get
tx_block release

tx byte pool info get

tx byte pool performance info get

tx byte pool performance system info get
tx byte pool prioritize

Express Logic

98 Functional Components of ThreadX

tx event flags info get

tx _event flags get

tx_event flags_set

tx event flags performance info get
tx event flags performance system info get
tx event flags set notify

tx _interrupt control

tx mutex performance info get

tx mutex performance system info get
tx queue front send

tx queue info get

tx queue performance info get

tx queue performance system info get
tx queue prioritize

tx queue_receive

tx queue send

tx semaphore get

tx queue_send notify

tx semaphore ceiling put

tx semaphore info get

tx semaphore performance info get

tx semaphore performance system info get

tx_semaphore prioritize

tx_ semaphore put

tx thread identify

tx semaphore put notify

tx thread entry exit notify

tx thread info get

tx_thread_ resume

tx thread performance info get

tx thread performance system info get
tx thread stack error notify

tx thread wait abort

tx time get

tx time set

tx timer activate

tx timer change

tx_timer_ deactivate

tx timer info get

tx timer performance_info_get

tx timer performance system info get

Suspension is not allowed from ISRs. Therefore, the
wait_option parameter for all ThreadX service calls
. made from an ISR must be set to TX_NO_WAIT.

<EEEXEY & Uscr Guide

ISR Template

Interrupts 99

To manage application interrupts, several ThreadX
utilities must be called in the beginning and end of
application ISRs. The exact format for interrupt
handling varies between ports. Review the
readme_threadx.txt file on the distribution disk for
specific instructions on managing ISRs.

The following small code segment is typical of most
ThreadX managed ISRs. In most cases, this
processing is in assembly language.

Express Logic

100

High-frequency
Interrupts

Interrupt Latency

Functional Components of ThreadX

application ISR vector_entry:

; Save context and prepare for

; ThreadX use by calling the ISR
; entry function.

CALL _tx thread context_save

; The ISR can now call ThreadX
; services and its own C functions

; When the ISR is finished, context
; 1s restored (or thread preemption)
; by calling the context restore
; function. Control does not return!
JUMP _tx thread context_restore

Some interrupts occur at such a high frequency that
saving and restoring full context upon each interrupt
would consume excessive processing bandwidth. In
such cases, it is common for the application to have
a small assembly language ISR that does a limited
amount of processing for a majority of these high-
frequency interrupts.

After a certain point in time, the small ISR may need
to interact with ThreadX. This is accomplished by
calling the entry and exit functions described in the
above template.

ThreadX locks out interrupts over brief periods of
time. The maximum amount of time interrupts are
disabled is on the order of the time required to save
or restore a thread’s context.

<EEXEXY & User Guide

CHAPTER 4

Description of ThreadX Services

This chapter contains a description of all ThreadX
services in alphabetic order. Their names are designed
so all similar services are grouped together. In the
“Return Values” section in the following descriptions,
values in BOLD are not affected by the
TX_DISABLE_ERROR_CHECKING define used to
disable API error checking; while values shown in non-
bold are completely disabled. In addition, a “Yes” listed
under the “Preemption Possible” heading indicates that
calling the service may resume a higher-priority thread,
thus preempting the calling thread.

tx_block_allocate 108
Allocate fixed-size block of memory

tx_block_pool_create 112
Create pool of fixed-size memory blocks

tx_block_pool_delete 114
Delete memory block pool

tx_block_pool_info_get 116
Retrieve information about block pool

tx_block_pool_performance_info_get 118
Get block pool performance information

tx_block_pool_performance_system_info_get 120
Get block pool system performance information

tx_block_pool_prioritize 122
Prioritize block pool suspension list

tx_block_release 124
Release fixed-size block of memory

tx_byte_allocate 126
Allocate bytes of memory

<EIIIF > 5o Guice

102

Description of ThreadX Services

tx_byte_pool_create 130
Create memory pool of bytes

tx_byte_pool_delete 132
Delete memory byte pool

tx_byte_pool_info_get 134
Retrieve information about byte pool

tx_byte_pool_performance_info_get
Get byte pool performance information 136

tx_byte_pool_performance_system_info_get 138
Get byte pool system performance information

tx_byte_pool_prioritize 140
Prioritize byte pool suspension list

tx_byte release 142
Release bytes back to memory pool

tx_event_flags_create 144
Create event flags group

tx_event_flags_delete 146
Delete event flags group

tx_event_flags_get 148
Get event flags from event flags group

tx_event_flags_info_get 152
Retrieve information about event flags group

tx_event_flags_performance info_get 154
Get event flags group performance information

tx_event_flags_performance_system_info_get 156
Retrieve performance system information

tx_event_flags_set 158
Set event flags in an event flags group

tx_event_flags_set notify 160
Notify application when event flags are set

tx_interrupt_control 162
Enable and disable interrupts

<SEEXZXF® User Guide

103

tx_mutex_create 164
Create mutual exclusion mutex

tx_mutex_delete 166
Delete mutual exclusion mutex

tx_mutex_get 168
Obtain ownership of mutex

tx_mutex_info_get 170
Retrieve information about mutex

tx_mutex_performance_info_get 172
Get mutex performance information

tx_mutex_performance_system_info_get 174
Get mutex system performance information

tx_mutex_prioritize 176
Prioritize mutex suspension list

tx_mutex_put 178
Release ownership of mutex

tx_queue_create 180
Create message queue

tx_queue_delete 182
Delete message queue

tx_queue_flush 184
Empty messages in message queue

tx_queue_front_send 186
Send message to the front of queue

tx_queue_info_get 188
Retrieve information about queue

tx_queue_performance_info_get 190
Get queue performance information

tx_queue_performance_system_info_get 192
Get queue system performance information

tx_queue_prioritize 194
Prioritize queue suspension list

Express Logic

104

Description of ThreadX Services

tx_queue_receive 196
Get message from message queue

tx_queue_send 200
Send message to message queue

tx_queue_send_notify 202
Notify application when message is sent to queue

tx_semaphore_ceiling_put 204
Place an instance in counting semaphore with ceiling

tx_semaphore_create 206
Create counting semaphore

tx_semaphore_delete 208
Delete counting semaphore

tx_semaphore_get 210
Get instance from counting semaphore

tx_semaphore_info_get 212
Retrieve information about semaphore

tx_semaphore_performance_info_get 214
Get semaphore performance information

tx_semaphore_performance_system_info_get 216
Get semaphore system performance information

tx_semaphore_prioritize 218
Prioritize semaphore suspension list

tx_semaphore_put 220
Place an instance in counting seaphore

tx_semaphore_put_notify 222
Notify application when semaphore is put

tx_thread_create 224
Create application thread

tx_thread_delete 228
Delete application thread

tx_thread_entry_exit_notify 230
Notify application upon thread entry and exit

<SEEXZXF® User Guide

105

tx_thread_identify 232
Retrieves pointer to currently executing thread

tx_thread_info_get 234
Retrieve information about thread

tx_thread_performance_info_get 238
Get thread performance information

tx_thread_performance_system_info_get 242
Get thread system performance information

tx_thread_preemption_change 246
Change preemption-threshold of application thread

tx_thread_priority_change 248
Change priority of application thread

tx_thread_relinquish 250
Relinquish control to other application threads

tx_thread_reset 252
Reset thread

tx_thread_resume 254
Resume suspended application thread

tx_thread_sleep 256
Suspend current thread for specified time

tx_thread_stack error_notify 258
Register thread stack error notification callback

tx_thread_suspend 260
Suspend application thread

tx_thread_terminate 262
Terminates application thread

tx_thread_time_slice_change 264
Changes time-slice of application thread

tx_thread_wait_abort 266
Abort suspension of specified thread

tx_time_get 268
Retrieves the current time

Express Logic

106 Description of ThreadX Services

tx_time_set 270
Sets the current time

tx_timer_activate 272
Activate application timer

tx_timer_change 274
Change application timer

tx_timer_create 276
Create application timer

tx_timer_deactivate 278
Deactivate application timer

tx_timer_delete 280
Delete application timer

tx_timer_info_get 282
Retrieve information about an application timer

tx_timer_performance_info_get 284
Get timer performance information

tx_timer_performance_system_info_get 286
Get timer system performance information

<EEERXEY & User Guide

107

Express Logic

108 Description of ThreadX Services

tx_block allocate

Allocate fixed-size block of memory

Prototype

UINT tx block_allocate (TX BLOCK_POOL *pool ptr, VOID **block_ptr,
ULONG wait_option)

Description

This service allocates a fixed-size memory block from the specified
memory pool. The actual size of the memory block is determined during
memory pool creation.

allocated memory block. If this happens, corruption occurs in an adjacent

It is important to ensure application code does not write outside the
. S (usually subsequent) memory block. The results are unpredictable and

often fatal!
Parameters

pool_ptr Pointer to a previously created memory block
pool.

block_ptr Pointer to a destination block pointer. On
successful allocation, the address of the
allocated memory block is placed where this
parameter points.

wait_option Defines how the service behaves if there are no

memory blocks available. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (OXFFFFFFFF)

timeout value (0x00000001 through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless if it was
successful or not. This is the only valid option if
the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

<EEERXEY & User Guide

Memory Blocks 109

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
memory block is available.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a memory

block.
Return Values
TX_SUCCESS (0x00) Successful memory block allocation.
TX_DELETED (0x01) Memory block pool was deleted while

thread was suspended.

TX_NO_MEMORY (0x10) Service was unable to allocate a block
of memory within the specified time to
wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer or ISR.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
TX_PTR_ERROR (0x03) Invalid pointer to destination pointer.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Express Logic

110 Description of ThreadX Services

Example

TX_BLOCK_POOL my pool;
unsigned char *memory ptr;
UINT status;

/* Allocate a memory block from my pool. Assume that the
pool has already been created with a call to
tx _block pool create. */
status = tx _block allocate (&my pool, (VOID **) &memory ptr,
TX NO WAIT);

/* If status equals TX SUCCESS, memory ptr contains the
address of the allocated block of memory. */

See Also

tx_block_pool_create, tx_block_pool_delete, tx_block_ pool_info_get,
tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block pool_prioritize,
tx_block_release

<SEEXZXF® User Guide

Memory Blocks 111

Express Logic

112 Description of ThreadX Services

tx_block _pool create
Create pool of fixed-size memory blocks

Prototype
UINT tx _block_pool create (TX BLOCK POOL *pool ptr,
CHAR *name_ptr, ULONG block_size,
VOID *pool_start, ULONG pool_size)
Description

This service creates a pool of fixed-size memory blocks. The memory
area specified is divided into as many fixed-size memory blocks as
possible using the formula:

total blocks = (total bytes) / (block size + sizeof(void *))

the user and is represented by the “sizeof(void *)” in the preceding

I Each memory block contains one pointer of overhead that is invisible to

formula.
Parameters

pool_ptr Pointer to a memory block pool control block.

name_ptr Pointer to the name of the memory block pool.

block_size Number of bytes in each memory block.

pool_start Starting address of the memory block pool. The
starting address must be aligned to the size of
the ULONG data type.

pool_size Total number of bytes available for the memory

block pool.

<EEERXEY & User Guide

Memory Blocks 113

Return Values

TX_SUCCESS (0x00) Successful memory block pool
creation.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
Either the pointer is NULL or the pool
is already created.

TX PTR_ERROR (0x03) Invalid starting address of the pool.
TX_SIZE_ERROR (0Ox05) Size of pool is invalid.
TX _CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible

No

Example
TX BLOCK_POOL my pool;
UINT status;

/* Create a memory pool whose total size is 1000 bytes
starting at address 0x100000. Each block in this
pool is defined to be 50 bytes long. */

status = tx_block pool create(&my pool, "my pool name",

50, (VOID *) 0x100000, 1000);

/* If status equals TX SUCCESS, my pool contains 18
memory blocks of 50 bytes each. The reason
there are not 20 blocks in the pool is
because of the one overhead pointer associated with each
block. */

See Also

tx_block_allocate, tx_block_pool_delete, tx_block_pool_info_get,
tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block _release

Express Logic

114 Description of ThreadX Services

tx_block _pool delete

Delete memory block pool

Prototype

UINT tx _block_pool_delete (TX BLOCK POOL *pool_ ptr)

Description

This service deletes the specified block-memory pool. All threads
suspended waiting for a memory block from this pool are resumed and
given a TX_DELETED return status.

associated with the pool, which is available after this service completes.

It is the application’s responsibility to manage the memory area
I I In addition, the application must prevent use of a deleted pool or its

former memory blocks.
Parameters
pool_ptr Pointer to a previously created memory block
pool.

Return Values

TX_SUCCESS (0x00) Successful memory block pool
deletion.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Memory Blocks 115

Example
TX BLOCK POOL my pool;
UINT status;
/* Delete entire memory block pool. Assume that the pool
has already been created with a call to
tx block pool create. */
status = tx _block pool_delete (&my pool);
/* If status equals TX SUCCESS, the memory block pool is
deleted. */
See Also

tx_block_allocate, tx_block_pool_create, tx_block pool_info_get,
tx_block pool_performance_info_get,

tx_block pool_performance_system_info_get, tx_block pool_prioritize,
tx_block_release

Express Logic

116 Description of ThreadX Services

tx_block _pool_info _get
Retrieve information about block pool

Prototype

UINT tx block_pool_info_get (TX BLOCK POOL *pool ptr, CHAR **name,
ULONG *available, ULONG *total blocks,
TX_THREAD **first_ suspended,
ULONG *suspended_count,
TX_BLOCK_POOL **next_pool)

Description
This service retrieves information about the specified block memory pool.

Parameters

pool_ptr Pointer to previously created memory block pool.

name Pointer to destination for the pointer to the block
pool’s name.

available Pointer to destination for the number of available
blocks in the block pool.

total_blocks Pointer to destination for the total number of
blocks in the block pool.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this block
pool.

suspended_count Pointer to destination for the number of threads
currently suspended on this block pool.

next_pool Pointer to destination for the pointer of the next

created block pool.

Supplying a TX_NULL for any parameter indicates the parameter is not
i I required.

<EEERXEY & User Guide

Memory Blocks 117

Return Values
TX_SUCCESS (0Ox00) Successful block pool information retrieve.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BLOCK_POOL my pool;
CHAR *name;
ULONG available;
ULONG total blocks;
TX THREAD *first suspended;
ULONG suspended count;
TX_BLOCK_POOL *next_pool;
UINT status;

/* Retrieve information about the previously created
block pool "my pool." */
status = tx _block pool_info_get (&my pool, &name,
&available, &total blocks,
&first suspended, &suspended count,
&next pool);

/* If status equals TX SUCCESS, the information requested is
valid. */

See Also

tx_block_allocate, tx_block_pool_create, tx_block pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block _release

Express Logic

118 Description of ThreadX Services

tx_block _pool_performance_info_get
Get block pool performance information

Prototype

UINT tx block pool performance_info_get (TX BLOCK_ POOL *pool ptr,
ULONG *allocates, ULONG *releases,
ULONG *suspensions, ULONG *timeouts))

Description

This service retrieves performance information about the specified
memory block pool.

The ThreadX library and application must be built with
i I TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters

pool_ptr Pointer to previously created memory block pool.

allocates Pointer to destination for the number of allocate
requests performed on this pool.

releases Pointer to destination for the number of release
requests performed on this pool.

suspensions Pointer to destination for the number of thread
allocation suspensions on this pool.

timeouts Pointer to destination for the number of allocate

suspension timeouts on this pool.

Supplying a TX_NULL for any parameter indicates that the parameter is
i | not required.

<EEERXEY & User Guide

Memory Blocks

Return Values
TX_SUCCESS (0x00)

TX_PTR_ERROR (0x03)
TX_FEATURE_NOT_ENABLED (0xFF)

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BLOCK_POOL my pool;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

119

Successful block pool
performance get.

Invalid block pool pointer.

The system was not
compiled with performance
information enabled.

/* Retrieve performance information on the previously created block

pool. */
status = tx_block pool_ performance_info_get (&my pool, &allocates,
&releases,
&suspensions,
&timeouts) ;

/* If status is TX_ SUCCESS the performance information was

successfully retrieved. */

See Also

tx_block_allocate, tx_block_pool_create, tx_block pool_delete,
tx_block_pool_info_get, tx_block pool_performance_info_get,
tx_block pool_performance_system_info_get, tx_block release

Express Logic

120 Description of ThreadX Services

tx_block pool performance_system info_get
Get block pool system performance information

Prototype

UINT tx block pool performance_system info get (ULONG *allocates,
ULONG *releases, ULONG *suspensions, ULONG *timeouts) ;

Description

This service retrieves performance information about all memory block
pools in the application.

The ThreadX library and application must be built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

|

Parameters

allocates Pointer to destination for the total number of
allocate requests performed on all block pools.

releases Pointer to destination for the total number of
release requests performed on all block pools.

suspensions Pointer to destination for the total number of
thread allocation suspensions on all block pools.

timeouts Pointer to destination for the total number of

allocate suspension timeouts on all block pools.

Supplying a TX_NULL for any parameter indicates that the parameter is
i I not required.

Return Values
TX_SUCCESS (0x00) Successful block pool
system performance get.

TX_FEATURE_NOT_ENABLED (0OxFF) The system was not
compiled with performance
information enabled.

<EEERXEY & User Guide

Memory Blocks 121

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all the block pools in
the system. */
status = tx_block_pool performance_system info_get (&allocates,
&releases, &suspensions, &timeouts);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block pool_info_get, tx_block pool_performance_info_get,
tx_block_pool_prioritize, tx_block_release

Express Logic

122 Description of ThreadX Services

tx_block _pool_prioritize
Prioritize block pool suspension list

Prototype

UINT tx _block_pool prioritize (TX BLOCK POOL *pool ptr)

Description

This service places the highest priority thread suspended for a block of
memory on this pool at the front of the suspension list. All other threads
remain in the same FIFO order they were suspended in.

Parameters
pool_ptr Pointer to a memory block pool control block.

Return Values
TX_SUCCESS (0x00) Successful block pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Memory Blocks 123

Example
TX BLOCK POOL my pool;
UINT status;

/* Ensure that the highest priority thread will receive
the next free block in this pool. */
status = tx_block pool prioritize (&my_pool);

/* If status equals TX SUCCESS, the highest priority
suspended thread is at the front of the list. The
next tx block release call will wake up this thread. */

See Also

tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block pool_info_get, tx_block pool_performance_info_get,
tx_block pool_performance_system_info_get, tx_block release

Express Logic

124 Description of ThreadX Services

tx_block_release

Release fixed-size block of memory

Prototype

UINT tx block_ release (VOID *block ptr)

Description

This service releases a previously allocated block back to its associated
memory pool. If there are one or more threads suspended waiting for
memory blocks from this pool, the first thread suspended is given this
memory block and resumed.

The application must prevent using a memory block area after it has been
i I released back to the pool.

Parameters

block_ptr Pointer to the previously allocated memory
block.

Return Values
TX_SUCCESS (0x00) Successful memory block release.

TX_PTR_ERROR (0x03) Invalid pointer to memory block.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Memory Blocks 125

Example

TX BLOCK_POOL my pool;

unsigned char *memory ptr;

UINT status;

/* Release a memory block back to my pool. Assume that the
pool has been created and the memory block has been
allocated. */

status = tx block release((VOID *) memory ptr);

/* If status equals TX SUCCESS, the block of memory pointed
to by memory ptr has been returned to the pool. */

See Also

tx_block _allocate, tx_block _pool_create, tx_block pool delete,
tx_block_pool_info_get, tx_block pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize

Express Logic

126 Description of ThreadX Services

tx_byte allocate

Allocate bytes of memory

Prototype

UINT tx byte_allocate (TX BYTE_POOL *pool ptr,
VOID **memory ptr, ULONG memory size,
ULONG wait_option)

Description

This service allocates the specified number of bytes from the specified
memory byte pool.

It is important to ensure application code does not write outside the
allocated memory block. If this happens, corruption occurs in an adjacent

. (usually subsequent) memory block. The results are unpredictable and
often fatal!

amount of fragmentation in the pool. Hence, this service should not be

The performance of this service is a function of the block size and the
I I used during time-critical threads of execution.

Parameters

pool_ptr Pointer to a previously created memory pool.

memory_ptr Pointer to a destination memory pointer. On
successful allocation, the address of the
allocated memory area is placed where this
parameter points to.

memory_size Number of bytes requested.

wait_option Defines how the service behaves if there is not

enough memory available. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (OXFFFFFFFF)

timeout value (0x00000001 through
OXFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or

<EEERXEY & User Guide

Memory Bytes 127

not it was successful. This is the only valid option
if the service is called from initialization.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until
enough memory is available.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the memory.

Return Values
TX_SUCCESS (0x00) Successful memory allocation.

TX_DELETED (0x01) Memory pool was deleted while thread
was suspended.

TX_NO_MEMORY (0x10) Service was unable to allocate the
memory within the specified time to
wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.
TX_PTR_ERROR (0x03) Invalid pointer to destination pointer.

TX_SIZE_ERROR (0X05) Requested size is zero or larger than
the pool.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes

Express Logic

128 Description of ThreadX Services

Example

TX BYTE POOL my pool;
unsigned char*memory ptr;
UINT status;

/* Allocate a 112 byte memory area from my pool. Assume
that the pool has already been created with a call to
tx_byte pool create. */

status = tx byte allocate(&my pool, (VOID **) &memory ptr,

112, TX_NO_WAIT);

/* If status equals TX SUCCESS, memory ptr contains the
address of the allocated memory area. */

See Also

tx_byte_pool_create, tx_byte pool_delete, tx_byte pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release

<SEEXZXF® User Guide

Memory Bytes 129

Express Logic

130 Description of ThreadX Services

tx_byte pool create

Create memory pool of bytes

Prototype

UINT tx _byte_pool create (TX BYTE POOL *pool ptr,
CHAR *name_ptr, VOID *pool_start,
ULONG pool_size)

Description

This service creates a memory byte pool in the area specified. Initially the
pool consists of basically one very large free block. However, the pool is
broken into smaller blocks as allocations are made.

Parameters
pool_ptr Pointer to a memory pool control block.
name_ptr Pointer to the name of the memory pool .
pool_start Starting address of the memory pool. The
starting address must be aligned to the size of
the ULONG data type.
pool_size Total number of bytes available for the memory

pool.

Return Values
TX_SUCCESS (0x00) Successful memory pool creation.

TX_POOL_ERROR (0x02) Invalid memory pool pointer. Either the
pointer is NULL or the pool is already
created.

TX _PTR_ERROR (0x03) Invalid starting address of the pool.
TX_SIZE_ERROR (Ox05) Size of pool is invalid.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

<EEERXEY & User Guide

Memory Bytes 131

Example

TX BYTE POOL my pool;
UINT status;

/* Create a memory pool whose total size is 2000 bytes
starting at address 0x500000. */
status = tx_byte pool_ create (&my pool, "my pool name",
(VOID *) 0x500000, 2000);

/* If status equals TX SUCCESS, my pool is available for
allocating memory. */

See Also

tx_byte_allocate, tx_byte pool_delete, tx_byte pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte pool_prioritize,
tx_byte _release

Express Logic

132 Description of ThreadX Services

tx_byte pool delete

Delete memory byte pool

Prototype

UINT tx _byte_pool delete (TX BYTE POOL *pool ptr)

Description

This service deletes the specified memory byte pool. All threads
suspended waiting for memory from this pool are resumed and given a
TX_DELETED return status.

associated with the pool, which is available after this service completes.
In addition, the application must prevent use of a deleted pool or memory
previously allocated from it.

I It is the application’s responsibility to manage the memory area

Parameters
pool_ptr Pointer to a previously created memory pool.

Return Values
TX_SUCCESS (0x00) Successful memory pool deletion.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Memory Bytes 133

Example

TX BYTE POOL my pool;

UINT status;

/* Delete entire memory pool. Assume that the pool has already

been created with a call to tx byte pool create. */

status = tx_byte pool_ delete (&my pool);

/* If status equals TX SUCCESS, memory pool is deleted. */
See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release

Express Logic

134 Description of ThreadX Services

tx_byte pool_info get

Retrieve information about byte pool

Prototype

UINT tx byte pool_ info_get (TX BYTE_POOL *pool ptr, CHAR **name,
ULONG *available, ULONG *fragments,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BYTE POOL **next_pool)

Description
This service retrieves information about the specified memory byte pool.

Parameters

pool_ptr Pointer to previously created memory pool.

name Pointer to destination for the pointer to the byte
pool’s name.

available Pointer to destination for the number of available
bytes in the pool.

fragments Pointer to destination for the total number of
memory fragments in the byte pool.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this byte
pool.

suspended_count Pointer to destination for the number of threads
currently suspended on this byte pool.

next_pool Pointer to destination for the pointer of the next

created byte pool.

Supplying a TX_NULL for any parameter indicates that the parameter is
i I not required.

<EEERXEY & User Guide

Memory Bytes 135

Return Values
TX_SUCCESS (0x00) Successful pool information retrieve.
TX_POOL_ERROR (0x02) Invalid memory pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX _BYTE POOL my_pool;
CHAR *name;
ULONG available;
ULONG fragments;
TX THREAD *first_ suspended;
ULONG suspended count;
TX_BYTE_POOL *next pool;
UINT status;

/* Retrieve information about the previously created
block pool "my pool." */
status = tx_byte pool info_get(&my pool, &name,
&available, &fragments,
&first suspended, &suspended count,
&next pool);

/* If status equals TX SUCCESS, the information requested is
valid. */

See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_delete,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release

Express Logic

136 Description of ThreadX Services

tx_byte pool performance_info_get
Get byte pool performance information

Prototype

UINT tx byte pool performance_info get (TX BYTE POOL *pool ptr,
ULONG *allocates, ULONG *releases,
ULONG *fragments_searched, ULONG *merges, ULONG *splits,
ULONG *suspensions, ULONG *timeouts) ;

Description

This service retrieves performance information about the specified
memory byte pool.

The ThreadX library and application must be built with
i I TX_BYTE_POOL_ENABLE _PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
pool_ptr Pointer to previously created memory byte pool.
allocates Pointer to destination for the number of allocate
requests performed on this pool.
releases Pointer to destination for the number of release

requests performed on this pool.

fragments_searched Pointer to destination for the number of internal
memory fragments searched during allocation
requests on this pool.

merges Pointer to destination for the number of internal
memory blocks merged during allocation
requests on this pool.

splits Pointer to destination for the number of internal
memory blocks split (fragments) created during
allocation requests on this pool.

suspensions Pointer to destination for the number of thread
allocation suspensions on this pool.

timeouts Pointer to destination for the number of allocate
suspension timeouts on this pool.

<EEERXEY & User Guide

Memory Bytes 137

Supplying a TX_NULL for any parameter indicates the parameter is not
i I required.

Return Values

TX_SUCCESS (0x00) Successful byte pool
performance get.
TX_PTR_ERROR (0x03) Invalid byte pool pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled

Allowed From

with performance information
enabled.

Initialization, threads, timers, and ISRs

Example

TX BYTE POOL
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

my_pool;

fragments searched;
merges;

splits;

allocates;
releases;
suspensions;
timeouts;

/* Retrieve performance information on the previously created byte

pool. */

status = tx_byte pool performance_info_get (&my pool,

&fragments searched,
smerges, &splits,
&allocates, &releases,
&suspensions, &timeouts) ;

/* If status is TX SUCCESS the performance information was
successfully retrieved. */

See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_delete,
tx_byte_pool_info_get, tx_byte_pool_performance_system_info_get,
tx_byte_pool_prioritize, tx_byte release

Express Logic

138 Description of ThreadX Services

tx_byte pool performance_system_info get
Get byte pool system performance information

Prototype

UINT tx byte pool performance_system info get (ULONG *allocates,
ULONG *releases, ULONG *fragments searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);;

Description

This service retrieves performance information about all memory byte
pools in the system.

The ThreadX library and application must be built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

/

Parameters
allocates Pointer to destination for the number of allocate
requests performed on this pool.
releases Pointer to destination for the number of release

requests performed on this pool.

fragments_searched Pointer to destination for the total number of
internal memory fragments searched during
allocation requests on all byte pools.

merges Pointer to destination for the total number of
internal memory blocks merged during allocation
requests on all byte pools.

splits Pointer to destination for the total number of
internal memory blocks split (fragments) created
during allocation requests on all byte pools.

suspensions Pointer to destination for the total number of
thread allocation suspensions on all byte pools.

timeouts Pointer to destination for the total number of
allocate suspension timeouts on all byte pools.

<EEERXEY & User Guide

Memory Bytes 139

Supplying a TX_NULL for any parameter indicates the parameter is not
i I required.

Return Values
TX_SUCCESS (0x00) Successful byte pool
performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG fragments_ searched;
ULONG merges;
ULONG splits;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all byte pools in the
system. */
status =
tx _byte pool performance_system info_get (&fragments_searched,
s&merges, &splits, &allocates, &releases,
&suspensions, &timeouts);

/* If status is TX SUCCESS the performance information was
successfully retrieved. */

See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_delete,
tx_byte_pool_info_get, tx_byte pool_performance_info_get,
tx_byte_pool_prioritize, tx_byte release

Express Logic

140 Description of ThreadX Services

tx_byte pool_prioritize
Prioritize byte pool suspension list

Prototype

UINT tx byte pool prioritize (TX BYTE POOL *pool_ ptr)

Description

This service places the highest priority thread suspended for memory on
this pool at the front of the suspension list. All other threads remain in the
same FIFO order they were suspended in.

Parameters
pool_ptr Pointer to a memory pool control block.

Return Values
TX_SUCCESS (0x00) Successful memory pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Memory Bytes 141

Example

TX BYTE POOL my pool;

UINT status;

/* Ensure that the highest priority thread will receive
the next free memory from this pool. */

status = tx_byte pool prioritize (&my_pool);

/* If status equals TX SUCCESS, the highest priority
suspended thread is at the front of the list. The
next tx byte release call will wake up this thread,
if there is enough memory to satisfy its request. */

See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_delete,
tx_byte_pool_info_get, tx_byte _pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_release

Express Logic

142 Description of ThreadX Services

tx_byte release

Release bytes back to memory pool

Prototype

UINT tx byte_release (VOID *memory ptr)

Description

This service releases a previously allocated memory area back to its
associated pool. If there are one or more threads suspended waiting for
memory from this pool, each suspended thread is given memory and
resumed until the memory is exhausted or until there are no more
suspended threads. This process of allocating memory to suspended
threads always begins with the first thread suspended.

i I The application must prevent using the memory area after it is released.

Parameters
memory_ptr Pointer to the previously allocated memory area.

Return Values
TX_SUCCESS (0x00) Successful memory release.

TX _PTR_ERROR (0x03) Invalid memory area pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes

<EEERXEY & User Guide

Memory Bytes 143

Example
unsigned char *memory ptr;
UINT status;

/* Release a memory back to my pool. Assume that the memory
area was previously allocated from my pool. */
status = tx_byte release ((VOID *) memory ptr);

/* If status equals TX SUCCESS, the memory pointed to by
memory ptr has been returned to the pool. */

See Also

tx_byte_allocate, tx_byte pool_create, tx_byte pool_delete,
tx_byte_pool_info_get, tx_byte pool _performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte pool_prioritize

Express Logic

144 Description of ThreadX Services

tx_event flags create

Create event flags group

Prototype

UINT tx_event_ flags_create (TX_EVENT_FLAGS_GROUP *group_ptr,
CHAR *name_ ptr)
Description

This service creates a group of 32 event flags. All 32 event flags in the
group are initialized to zero. Each event flag is represented by a single bit.

Parameters
group_ptr Pointer to an event flags group control block.
name_ptr Pointer to the name of the event flags group.

Return Values
TX_SUCCESS (0x00) Successful event group creation.

TX_GROUP_ERROR (0x06) Invalid event group pointer. Either the
pointer is NULL or the event group is
already created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

<EEERXEY & User Guide

Event Flags 145

Example
TX EVENT FLAGS GROUP my event group;
UINT status;
/* Create an event flags group. */
status = tx_event flags create(&my_ event group,

"my event group name");

/* If status equals TX SUCCESS, my event group is ready
for get and set services. */

See Also

tx_event_flags_delete, tx_event_flags_get, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set notify

Express Logic

146 Description of ThreadX Services

tx_event flags delete

Delete event flags group

Prototype

UINT tx_event flags_delete (TX EVENT_ FLAGS GROUP *group_ ptr)

Description

This service deletes the specified event flags group. All threads
suspended waiting for events from this group are resumed and given a
TX_DELETED return status.

The application must ensure that a set notify callback for this event flags
» | group is completed (or disabled) before deleting the event flags group. In
I addition, the application must prevent all future use of a deleted event
flags group.

Parameters
group_ptr Pointer to a previously created event flags group.

Return Values
TX_SUCCESS (0Ox00) Successful event flags group deletion.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Event Flags 147

Example

TX EVENT FLAGS GROUP my event flags group;
UINT status;

/* Delete event flags group. Assume that the group has
already been created with a call to
tx_event flags create. */

status = tx_event flags delete (&my_ event flags_group);

/* If status equals TX SUCCESS, the event flags group is
deleted. */

See Also

tx_event_flags_create, tx_event_flags_get, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set notify

Express Logic

148 Description of ThreadX Services

tx_event flags get
Get event flags from event flags group

Prototype

UINT tx_event_ flags_get (TX EVENT FLAGS GROUP *group_ptr,
ULONG requested_flags, UINT get_option,
ULONG *actual_flags_ptr, ULONG wait_option)

Description

This service retrieves event flags from the specified event flags group.
Each event flags group contains 32 event flags. Each flag is represented
by a single bit. This service can retrieve a variety of event flag
combinations, as selected by the input parameters.

Parameters
group_ptr Pointer to a previously created event flags group.

requested_flags 32-bit unsigned variable that represents the
requested event flags.

get_option Specifies whether all or any of the requested
event flags are required. The following are valid
selections:

TX_AND (0x02)
TX_AND_CLEAR (0x03)
TX_OR (0x00)
TX_OR_CLEAR (0x01)

Selecting TX_AND or TX_AND CLEAR
specifies that all event flags must be present in
the group. Selecting TX_OR or TX_OR_CLEAR
specifies that any event flag is satisfactory. Event
flags that satisfy the request are cleared (set to
zero) if TX_AND_CLEAR or TX_OR_CLEAR are
specified.

actual_flags_ptr Pointer to destination of where the retrieved
event flags are placed. Note that the actual flags
obtained may contain flags that were not
requested.

<EEERXEY & User Guide

Event Flags 149

wait_option

Return Values
TX_SUCCESS

TX_DELETED

TX_NO_EVENTS

TX_WAIT_ABORTED

TX_GROUP_ERROR
TX_PTR_ERROR
TX_WAIT_ERROR

TX_OPTION_ERROR

Defines how the service behaves if the selected
event flags are not set. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (OXFFFFFFFF)

timeout value (0x00000001
through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until the
event flags are available.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the event flags.

(0x00) Successful event flags get.

(0x01) Event flags group was deleted while
thread was suspended.

(0x07) Service was unable to get the
specified events within the specified
time to wait.

(Ox1A) Suspension was aborted by another
thread, timer, or ISR.

(0x06) Invalid event flags group pointer.
(0x03) Invalid pointer for actual event flags.

(0Ox04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

(0x08) Invalid get-option was specified.

Express Logic

150 Description of ThreadX Services

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

Yes
Example
TX EVENT FLAGS GROUP my event flags group;
ULONG actual events;
UINT status;

/* Request that event flags 0, 4, and 8 are all set. Also,
if they are set they should be cleared. If the event
flags are not set, this service suspends for a maximum of
20 timer-ticks. */

status = tx_event_flags_get (smy_event flags group, 0x111,

TX_AND CLEAR, &actual_events, 20);

/* If status equals TX SUCCESS, actual events contains the
actual events obtained. */

See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set notify

<SEEXZXF® User Guide

Event Flags 151

Express Logic

152 Description of ThreadX Services

tx_event flags info get
Retrieve information about event flags group

Prototype

UINT tx_event_ flags_info_get (TX EVENT_FLAGS_GROUP *group_ptr,
CHAR **name, ULONG *current flags,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_EVENT_FLAGS_GROUP **next group)

Description
This service retrieves information about the specified event flags group.

Parameters

group_ptr Pointer to an event flags group control block.

name Pointer to destination for the pointer to the event
flags group’s name.

current_flags Pointer to destination for the current set flags in
the event flags group.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this event
flags group.

suspended_count Pointer to destination for the number of threads
currently suspended on this event flags group.

next_group Pointer to destination for the pointer of the next

created event flags group.

Supplying a TX_NULL for any parameter indicates that the parameter is
i I not required.

<EEERXEY & User Guide

Event Flags 153

Return Values

TX_SUCCESS (0x00) Successful event group information
retrieval.

TX_GROUP_ERROR (0x06) Invalid event group pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX_EVENT_FLAGS_GROUP my_ event group;
CHAR *name;
ULONG current flags;
TX_THREAD *first suspended;
ULONG suspended count;
TX EVENT FLAGS GROUP *next group;
UINT status;
/* Retrieve information about the previously created
event flags group "my event group." */
status = tx_event_flags_info_get(&my_event group, &name,
¤t flags,
&first suspended, &suspended count,
&next group) ;
/* If status equals TX SUCCESS, the information requested is
valid. */
See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set notify

Express Logic

154 Description of ThreadX Services

tx_event flags performance info_get
Get event flags group performance information

Prototype

UINT tx event flags_performance_info_get (TX EVENT FLAGS_GROUP
*group_ptr, ULONG *sets, ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

Description

This service retrieves performance information about the specified event
flags group.

ThreadX library and application must be built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

/

Parameters

group_ptr Pointer to previously created event flags group.

sets Pointer to destination for the number of event
flags set requests performed on this group.

gets Pointer to destination for the number of event
flags get requests performed on this group.

suspensions Pointer to destination for the number of thread
event flags get suspensions on this group.

timeouts Pointer to destination for the number of event

flags get suspension timeouts on this group.

Supplying a TX_NULL for any parameter indicates that the parameter is
I I not required.

<EEERXEY & User Guide

Event Flags 155

Return Values

TX_SUCCESS (0x00) Successful event flags group
performance get.
TX_PTR_ERROR (0x03) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled
with performance information

enabled.

Allowed From

Initialization, threads, timers, and ISRs
Example

TX_EVENT FLAGS GROUP my event flag group;

ULONG sets;

ULONG gets;

ULONG suspensions;

ULONG timeouts;

/* Retrieve performance information on the previously created event
flag group. */

status = tx_event flags performance_info_get (&my_ event flag group,
&sets, &gets, &suspensions,
&timeouts);

/* If status is TX SUCCESS the performance information was successfully
retrieved. */

See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags get,
tx_event_flags_info_get, tx_event_flags performance_system_info_get,
tx_event_flags_set, tx_event_flags_set_notify

Express Logic

156 Description of ThreadX Services

tx_event flags performance_system info_get
Retrieve performance system information

Prototype

UINT tx event_ flags_performance_system info_get (ULONG *sets,
ULONG *gets, ULONG *suspensions, ULONG *timeouts) ;

Description

This service retrieves performance information about all event flags
groups in the system.

TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this

ThreadX library and application must be built with
I | service to return performance information.

Parameters

sets Pointer to destination for the total number of
event flags set requests performed on all groups.

gets Pointer to destination for the total number of
event flags get requests performed on all groups.

suspensions Pointer to destination for the total number of
thread event flags get suspensions on all groups.

timeouts Pointer to destination for the total number of
event flags get suspension timeouts on all
groups.

Supplying a TX_NULL for any parameter indicates that the parameter is
i I not required.

Return Values
TX_SUCCESS (0x00) Successful event flags
system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

<EEERXEY & User Guide

Event Flags 157

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG sets;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all previously created event
flag groups. */
status = tx_event_flags_performance_system info_get (&sets, &gets,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags get,
tx_event_flags_info_get, tx_event_flags performance_info_get,
tx_event_flags_set, tx_event_flags_set notify

Express Logic

158 Description of ThreadX Services

tx_event flags_ set
Set event flags in an event flags group

Prototype

UINT tx_event_ flags_set (TX EVENT FLAGS GROUP *group_ptr,
ULONG flags_to_set,UINT set_option)

Description

This service sets or clears event flags in an event flags group, depending
5 upon the specified set-option. All suspended threads whose event flags

request is now satisfied are resumed.

Parameters
group_ptr Pointer to the previously created event flags
group control block.
flags_to_set Specifies the event flags to set or clear based
upon the set option selected.
set_option Specifies whether the event flags specified are

ANDed or ORed into the current event flags of
the group. The following are valid selections:

TX_AND (0x02)
TX_OR (0x00)

Selecting TX_AND specifies that the specified
event flags are ANDed into the current event
flags in the group. This option is often used to
clear event flags in a group. Otherwise, if TX_OR
is specified, the specified event flags are ORed
with the current event in the group.

Return Values
TX_SUCCESS (0Ox00) Successful event flags set.

TX_GROUP_ERROR (0x06) Invalid pointer to event flags group.
TX_OPTION_ERROR (0x08) Invalid set-option specified.

<EEERXEY & User Guide

Event Flags 159

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example

TX EVENT FLAGS GROUP my event flags group;
UINT status;

/* Set event flags 0, 4, and 8. */
status = tx_event flags_ set (&my_event flags_group,
0x111, TX OR);

/* If status equals TX SUCCESS, the event flags have been
set and any suspended thread whose request was satisfied
has been resumed. */

See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags get,
tx_event_flags_info_get, tx_event_flags performance_info_get,
tx_event_flags performance_system_info_get, tx_event flags set notify

Express Logic

160 Description of ThreadX Services

tx_event flags set notify
Notify application when event flags are set

Prototype

UINT tx_event_ flags_set notify(TX_ EVENT_ FLAGS_GROUP *group_ptr,
VOID (*events_set notify) (TX EVENT_ FLAGS GROUP *));

Description

This service registers a notification callback function that is called
whenever one or more event flags are set in the specified event flags
group. The processing of the notification callback is defined by the
application.

Note: the application’s event flags set notification callback is
not allowed to call any ThreadX API with a suspension

option.

Parameters
group_ptr Pointer to previously created event flags group.
events_set_notify Pointer to application’s event flags set

notification function. If this value is TX_NULL,
notification is disabled.

Return Values

TX_SUCCESS (0x00) Successful registration of event
flags set notification.
TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with
notification capabilities disabled.

<EEERXEY & User Guide

Event Flags 161

Allowed From
Initialization, threads, timers, and ISRs

Example
TX EVENT_ FLAGS_ GROUP my_group;

/* Register the "my event flags set notify" function for monitoring
event flags set in the event flags group "my group." */
status = tx_event_flags_set notify(&my_ group,
my event flags set notify);

/* 1f status is TX_SUCCESS the event flags set notification function
was successfully registered. */

void my event flags set notify(TX EVENT FLAGS GROUP *group ptr)

/* One or more event flags was set in this group! */

See Also

tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_info_get, tx_event_flags performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags set

Express Logic

162 Description of ThreadX Services

tx_interrupt_control

Enable and disable interrupts

Prototype

UINT tx_interrupt_control (UINT new_posture)

Description

This service enables or disables interrupts as specified by the input
parameter new_posture.

remains part of that thread’s context. For example, if the thread calls this
routine to disable interrupts and then suspends, when it is resumed,
interrupts are disabled again.

I If this service is called from an application thread, the interrupt posture

This service should not be used to enable interrupts during initialization!
' Doing so could cause unpredictable results.

Parameters

new_posture This parameter specifies whether interrupts are
disabled or enabled. Legal values include
TX_INT_DISABLE and TX_INT_ENABLE. The
actual values for these parameters are port
specific. In addition, some processing
architectures might support additional interrupt
disable postures. Please see the
readme_threadx.txt information supplied on the
distribution disk for more details.

Return Values

previous posture This service returns the previous interrupt
posture to the caller. This allows users of the
service to restore the previous posture after
interrupts are disabled.

<EEERXEY & User Guide

Interrupt Control 163

Allowed From
Threads, timers, and ISRs

Preemption Possible
No

Example

UINT my_ old posture;

/* Lockout interrupts */
my_old posture = tx_interrupt control (TX INT_ DISABLE) ;

/* Perform critical operations that need interrupts
locked-out.... */

/* Restore previous interrupt lockout posture. */
tx_interrupt_control (my old posture);

See Also
None

Express Logic

164 Description of ThreadX Services

tx_mutex_create

Create mutual exclusion mutex

Prototype

UINT tx mutex create (TX_MUTEX *mutex ptr,
CHAR *name_ptr, UINT priority_ inherit)
Description

This service creates a mutex for inter-thread mutual exclusion for
resource protection.

Parameters
mutex_ptr Pointer to a mutex control block.
name_ptr Pointer to the name of the mutex.
priority_inherit Specifies whether or not this mutex supports

priority inheritance. If this value is TX_INHERIT,
then priority inheritance is supported. However, if
TX_NO_INHERIT is specified, priority
inheritance is not supported by this mutex.
Return Values
TX_SUCCESS (0x00) Successful mutex creation.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer. Either the
pointer is NULL or the mutex is already
created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.
TX_INHERIT_ERROR (0x1F) Invalid priority inherit parameter.

Allowed From
Initialization and threads

Preemption Possible
No

<EEERXEY & User Guide

Mutex 165

Example

TX MUTEX my_mutex;
UINT status;

/* Create a mutex to provide protection over a
common resource. */
status = tx_mutex create (&my mutex, "my mutex name",
TX NO INHERIT);

/* If status equals TX SUCCESS, my mutex is ready for
use. */

See Also

tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put

Express Logic

166 Description of ThreadX Services

tx_mutex_delete

Delete mutual exclusion mutex

Prototype

UINT tx mutex delete (TX MUTEX *mutex ptr)

Description

This service deletes the specified mutex. All threads suspended waiting
for the mutex are resumed and given a TX_DELETED return status.

i I It is the application’s responsibility to prevent use of a deleted mutex.

Parameters
mutex_ptr Pointer to a previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex deletion.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Mutex 167

Example

TX MUTEX my_mutex;
UINT status;

/* Delete a mutex. Assume that the mutex
has already been created. */
status = tx mutex delete (&my mutex) ;

/* If status equals TX SUCCESS, the mutex is
deleted. */

See Also

tx_mutex_create, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put

Express Logic

168 Description of ThreadX Services

tx_mutex_get

Obtain ownership of mutex

Prototype

UINT tx mutex get (TX MUTEX *mutex ptr, ULONG wait_option)

Description

This service attempts to obtain exclusive ownership of the specified
mutex. If the calling thread already owns the mutex, an internal counter is
incremented and a successful status is returned.

If the mutex is owned by another thread and this thread is higher priority
and priority inheritance was specified at mutex create, the lower priority
thread’s priority will be temporarily raised to that of the calling thread.

The priority of the lower priority thread owning a mutex with priority-
i I inheritance should never be modified by an external thread during mutex

ownership.

Parameters
mutex_ptr Pointer to a previously created mutex.
wait_option Defines how the service behaves if the mutex is

already owned by another thread. The wait
options are defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (OXFFFFFFFF)

timeout value (0x00000001 through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from Initialization.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until the
mutex is available.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the mutex.

<EEERXEY & User Guide

Mutex 169

Return Values

TX_SUCCESS (0x00) Successful mutex get operation.
TX_DELETED (0x01) Mutex was deleted while thread was
suspended.

TX_NOT_AVAILABLE (0x1D) Service was unable to get ownership
of the mutex within the specified time
to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_MUTEX ERROR (0x1C) Invalid mutex pointer.

TX_WAIT_ERROR (0Ox04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads and timers

Preemption Possible
Yes

Example

TX MUTEX my_mutex;
UINT status;

/* Obtain exclusive ownership of the mutex "my mutex".
If the mutex "my mutex" is not available, suspend until it
becomes available. */

status = tx mutex get (&my mutex, TX WAIT_ FOREVER) ;

See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put

Express Logic

170 Description of ThreadX Services

tx_mutex_info_get

Retrieve information about mutex

Prototype

UINT tx mutex_ info_get (TX MUTEX *mutex ptr, CHAR **name,
ULONG *count, TX THREAD **owner,
TX_THREAD **first_ suspended,
ULONG *suspended_count, TX MUTEX **next mutex)

Description
This service retrieves information from the specified mutex.

Parameters

mutex_ptr Pointer to mutex control block.

name Pointer to destination for the pointer to the
mutex’s name.

count Pointer to destination for the ownership count of
the mutex.

owner Pointer to destination for the owning thread’s
pointer.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this mutex.

suspended_count Pointer to destination for the number of threads
currently suspended on this mutex.

next_mutex Pointer to destination for the pointer of the next

created mutex.

Supplying a TX_NULL for any parameter indicates that the parameter is
i not required.

Return Values

TX_SUCCESS (0x00) Successful mutex information
retrieval.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

<EEERXEY & User Guide

Mutex 171

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX_MUTEX my_mutex;
CHAR *name;
ULONG count;
TX THREAD *owner;
TX_ THREAD *first suspended;
ULONG suspended count;
TX MUTEX *next mutex;
UINT status;
/* Retrieve information about the previously created
mutex "my mutex." */
status = tx_mutex_info_get(&my_mutex, &name,
&count, &owner,
&first suspended, &suspended count,
&next mutex);
/* If status equals TX SUCCESS, the information requested is
valid. */
See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put

Express Logic

172 Description of ThreadX Services

tx_mutex_performance_info get
Get mutex performance information

Prototype

UINT tx mutex performance_info_get (TX MUTEX *mutex_ ptr, ULONG *puts,
ULONG *gets, ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

Description
This service retrieves performance information about the specified mutex.

. The ThreadX library and application must be built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters

mutex_ptr Pointer to previously created mutex.

puts Pointer to destination for the number of put
requests performed on this mutex.

gets Pointer to destination for the number of get
requests performed on this mutex.

suspensions Pointer to destination for the number of thread
mutex get suspensions on this mutex.

timeouts Pointer to destination for the number of mutex
get suspension timeouts on this mutex.

inversions Pointer to destination for the number of thread
priority inversions on this mutex.

inheritances Pointer to destination for the number of thread

priority inheritance operations on this mutex.

i Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Mutex 173

Return Values

TX_SUCCESS (0Ox00) Successful mutex
performance get.
TX_PTR_ERROR (0x03) Invalid mutex pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX MUTEX my mutex;
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;
ULONG inversions;
ULONG inheritances;

/* Retrieve performance information on the previously created
mutex. */

status = tx mutex performance info_ get (&my mutex ptr, &puts, &gets,
&suspensions, &timeouts, &inversions,
&inheritances) ;

/* If status is TX SUCCESS the performance information was
successfully retrieved. */

See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put

Express Logic

174 Description of ThreadX Services

tx_mutex_performance_system_info_get
Get mutex system performance information

Prototype

UINT tx mutex performance system info get (ULONG *puts, ULONG *gets,
ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

Description

This service retrieves performance information about all the mutexes in
the system.

. The ThreadX library and application must be built with
[TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters

puts Pointer to destination for the total number of put
requests performed on all mutexes.

gets Pointer to destination for the total number of get
requests performed on all mutexes.

suspensions Pointer to destination for the total number of
thread mutex get suspensions on all mutexes.

timeouts Pointer to destination for the total number of
mutex get suspension timeouts on all mutexes.

inversions Pointer to destination for the total number of
thread priority inversions on all mutexes.

inheritances Pointer to destination for the total number of
thread priority inheritance operations on all
mutexes.

i Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Mutex

Return Values

175

TX_SUCCESS (Ox00) Successful mutex system
performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;
ULONG inversions;
ULONG inheritances;

/* Retrieve performance information on all previously
mutexes. */
status = tx_mutex_performance_system info_get (&puts,
&suspensions, &timeouts,
&inversions, &inheritances);

created

&gets,

/* If status is TX SUCCESS the performance information was

successfully retrieved. */

See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get, tx_mutex_prioritize, tx_mutex_put

Express Logic

176 Description of ThreadX Services

tx_mutex_prioritize

Prioritize mutex suspension list

Prototype

UINT tx mutex prioritize (TX MUTEX *mutex ptr)

Description

This service places the highest priority thread suspended for ownership of
the mutex at the front of the suspension list. All other threads remain in
the same FIFO order they were suspended in.

Parameters
mutex_ptr Pointer to the previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex prioritize.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Mutex 177

Example

TX MUTEX my_mutex;
UINT status;

/* Ensure that the highest priority thread will receive
ownership of the mutex when it becomes available. */
status = tx mutex prioritize (&my mutex);

/* If status equals TX SUCCESS, the highest priority
suspended thread is at the front of the list. The
next tx mutex put call that releases ownership of the
mutex will give ownership to this thread and wake it
up. */

See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_put

Express Logic

178 Description of ThreadX Services

tx_mutex_put

Release ownership of mutex

Prototype

UINT tx mutex put(TX MUTEX *mutex ptr)

Description

This service decrements the ownership count of the specified mutex. If
the ownership count is zero, the mutex is made available.

the releasing thread will be restored to the priority it had when it originally
obtained ownership of the mutex. Any other priority changes made to the
releasing thread during ownership of the mutex may be undone.

I If priority inheritance was selected during mutex creation, the priority of

Parameters
mutex_ptr Pointer to the previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex release.

TX_NOT_OWNED (Ox1E) Mutex is not owned by caller.
TX_MUTEX_ERROR (0x1C) Invalid pointer to mutex.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads and timers

Preemption Possible
Yes

<EEERXEY & User Guide

Mutex 179

Example

TX MUTEX my_mutex;

UINT status;

/* Release ownership of "my mutex." */

status = tx mutex put (&my mutex);

/* If status equals TX SUCCESS, the mutex ownership

count has been decremented and if zero, released. */

See Also

tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize

Express Logic

180 Description of ThreadX Services

tx_queue create

Create message queue

Prototype

UINT tx queue_create (TX_QUEUE *queue_ptr, CHAR *name_ptr,
UINT message_size,
VOID *queue_ start, ULONG queue_size)

Description

This service creates a message queue that is typically used for inter-
thread communication. The total number of messages is calculated from
the specified message size and the total number of bytes in the queue.

evenly divisible by the specified message size, the remaining bytes in the

If the total number of bytes specified in the queue’s memory area is not
I I memory area are not used.

Parameters

queue_ptr Pointer to a message queue control block.

name_ptr Pointer to the name of the message queue.

message_size Specifies the size of each message in the queue.
Message sizes range from 1 32-bit word to 16
32-bit words. Valid message size options are
numerical values from 1 through 16, inclusive.

queue_start Starting address of the message queue. The
starting address must be aligned to the size of
the ULONG data type.

queue_size Total number of bytes available for the message

queue.

<EEERXEY & User Guide

Message Queues 181

Return Values
TX_SUCCESS (0x00) Successful message queue creation.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer. Either
the pointer is NULL or the queue is
already created.

TX PTR_ERROR (0x03) Invalid starting address of the
message queue.

TX_SIZE_ERROR (Ox05) Size of message queue is invalid.
TX _CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example

TX_ QUEUE my_queue;
UINT status;

/* Create a message queue whose total size is 2000 bytes
starting at address 0x300000. Each message in this
queue is defined to be 4 32-bit words long. */

status = tx_queue create (&my queue, "my queue name",

4, (VOID *) 0x300000, 2000);

/* If status equals TX SUCCESS, my queue contains room
for storing 125 messages (2000 bytes/ 16 bytes per
message) . */

See Also

tx_queue_delete, tx_queue_flush, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

182 Description of ThreadX Services

tx_queue_delete

Delete message queue

Prototype

UINT tx_queue_delete (TX_ QUEUE *queue ptr)

Description

This service deletes the specified message queue. All threads suspended
waiting for a message from this queue are resumed and given a
TX_DELETED return status.

is completed (or disabled) before deleting the queue. In addition, the

The application must ensure that any send notify callback for this queue
Ll application must prevent any future use of a deleted queue.

It is also the application's responsibility to manage the memory area
associated with the queue, which is available after this service
completes.

Parameters
queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful message queue deletion.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Message Queues 183

Example
TX QUEUE my_ queue;
UINT status;
/* Delete entire message queue. Assume that the queue
has already been created with a call to
tx_queue create. */
status = tx_queue delete (&my queue);
/* If status equals TX SUCCESS, the message queue is
deleted. */
See Also

tx_queue_create, tx_queue_flush, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

184 Description of ThreadX Services

tx_queue flush

Empty messages in message queue

Prototype

UINT tx_queue_flush (TX QUEUE *queue ptr)

Description

This service deletes all messages stored in the specified message queue.
If the queue is full, messages of all suspended threads are discarded.
Each suspended thread is then resumed with a return status that
indicates the message send was successful. If the queue is empty, this
service does nothing.

Parameters

queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful message queue flush.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Message Queues 185

Example

TX QUEUE my_ queue;

UINT status;

/* Flush out all pending messages in the specified message
queue. Assume that the queue has already been created
with a call to tx queue create. */

status = tx_queue_ flush (&my queue);

/* If status equals TX SUCCESS, the message queue is
empty. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

186 Description of ThreadX Services

tx_queue_front_send
Send message to the front of queue

Prototype

UINT tx queue_front_send (TX QUEUE *queue_ptr,
VOID *source ptr, ULONG wait_option)

Description

This service sends a message to the front location of the specified
message queue. The message is copied to the front of the queue from
the memory area specified by the source pointer.

Parameters
queue_ptr Pointer to a message queue control block.
source_ptr Pointer to the message.
wait_option Defines how the service behaves if the message
queue is full. The wait options are defined as
follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (OXFFFFFFFF)
timeout value (0x00000001 through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.q.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until there is
room in the queue.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for room in the
queue.

Return Values
TX_SUCCESS (0Ox00) Successful sending of message.

<EEERXEY & User Guide

Message Queues 187

TX_DELETED (0x01) Message queue was deleted while
thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message
because the queue was full for the
duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

Yes
Example
TX QUEUE my_queue;
UINT status;
ULONG my message([4];

/* Send a message to the front of "my queue." Return
immediately, regardless of success. This wait
option is used for calls from initialization, timers,
and ISRs. */
status = tx_queue_front_send (&my_queue, my message,
TX NO_WAIT);

/* If status equals TX SUCCESS, the message is at the front
of the specified queue. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

188 Description of ThreadX Services

tx_queue_info_get

Retrieve information about queue

Prototype

UINT tx_queue_info_get (TX QUEUE *queue_ptr, CHAR **name,
ULONG *enqueued, ULONG *available storage
TX_THREAD **first suspended, ULONG *suspended_count,
TX_QUEUE **next_queue)

Description
This service retrieves information about the specified message queue.

Parameters

queue_ptr Pointer to a previously created message queue.

name Pointer to destination for the pointer to the
queue’s name.

enqueued Pointer to destination for the number of
messages currently in the queue.

available_storage Pointer to destination for the number of
messages the queue currently has space for.

first_suspended Pointer to destination for the pointer to the thread

that is first on the suspension list of this queue.

suspended_count Pointer to destination for the number of threads
currently suspended on this queue.

next_queue Pointer to destination for the pointer of the next
created queue.

Supplying a TX_NULL for any parameter indicates that the parameter is
i | not required.

Return Values
TX_SUCCESS (0x00) Successful queue information get.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

<EEERXEY & User Guide

Message Queues 189

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX QUEUE my_ queue;
CHAR *name;
ULONG enqueued;
ULONG available storage;
TX_ THREAD *first suspended;
ULONG suspended count;
TX QUEUE *next queue;
UINT status;

/* Retrieve information about the previously created
message queue "my queue." */
status = tx_queue_info_get(&my_ queue, &name,

&enqueued, &available storage,
&first suspended, &suspended count,
&next queue) ;

/* If status equals TX SUCCESS, the information requested is
valid. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

190 Description of ThreadX Services

tx_queue_performance_info_get
Get queue performance information

Prototype

UINT tx queue performance_info_get (TX QUEUE *queue_ptr,
ULONG *messages_sent, ULONG *messages_received,
ULONG *empty suspensions, ULONG *full_suspensions,
ULONG *full errors, ULONG *timeouts);

Description
This service retrieves performance information about the specified queue.

TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service

i | The ThreadX library and application must be built with
to return performance information.

Parameters
queue_ptr Pointer to previously created queue.
messages_sent Pointer to destination for the number of send

requests performed on this queue.

messages_received Pointer to destination for the number of receive
requests performed on this queue.

empty_suspensions Pointer to destination for the number of queue
empty suspensions on this queue.

full_suspensions Pointer to destination for the number of queue
full suspensions on this queue.

full_errors Pointer to destination for the number of queue
full errors on this queue.

timeouts Pointer to destination for the number of thread
suspension timeouts on this queue.

i Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Message Queues 191

Return Values

TX_SUCCESS (0x00) Successful queue performance
get.
TX_PTR_ERROR (0x03) Invalid queue pointer.

TX_FEATURE_NOT_ENABLED(0OxFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX QUEUE my_ dqueue;
ULONG messages_sent;
ULONG messages_received;
ULONG empty suspensions;
ULONG full suspensions;
ULONG full errors;
ULONG timeouts;

/* Retrieve performance information on the previously created
queue. */
status = tx_queue_ performance info_get (&my queue, &messages_sent,
&messages_received, &empty suspensions,
&full suspensions, &full errors, &timeouts);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify

Express Logic

192 Description of ThreadX Services

tx_queue_ performance_system info get
Get queue system performance information

Prototype

UINT tx _queue performance_system_ info_get (ULONG *messages_sent,
ULONG *messages_received, ULONG *empty suspensions,
ULONG *full_suspensions, ULONG *full errors,
ULONG *timeouts) ;

Description

This service retrieves performance information about all the queues in the
system.

TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service

. | The ThreadX library and application must be built with
to return performance information.

Parameters

messages_sent Pointer to destination for the total number of
send requests performed on all queues.

messages_received Pointer to destination for the total number of
receive requests performed on all queues.

empty_suspensions Pointer to destination for the total number of
queue empty suspensions on all queues.

full_suspensions Pointer to destination for the total number of
queue full suspensions on all queues.

full_errors Pointer to destination for the total number of
queue full errors on all queues.

timeouts Pointer to destination for the total number of
thread suspension timeouts on all queues.

i Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Message Queues 193

Return Values

TX_SUCCESS (0x00) Successful queue system
performance get.

TX_FEATURE_NOT_ENABLED (OxFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG messages_sent;
ULONG messages_received;
ULONG empty suspensions;
ULONG full suspensions;
ULONG full errors;
ULONG timeouts;
/* Retrieve performance information on all previously created
queues. */
status = tx_queue performance system info_ get (&messages_sent,

&messages_received, &empty suspensions,
&full suspensions, &full errors, &timeouts);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get, tx_queue_prioritize, tx_queue_receive,
tx_queue_send, tx_queue_send_notify

Express Logic

194 Description of ThreadX Services

tx_queue_prioritize

Prioritize queue suspension list

Prototype

UINT tx_queue_prioritize (TX QUEUE *queue_ ptr)

Description

This service places the highest priority thread suspended for a message
(or to place a message) on this queue at the front of the suspension list.
All other threads remain in the same FIFO order they were suspended in.

Parameters
queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful queue prioritize.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Message Queues 195

Example

TX QUEUE my_ queue;
UINT status;

/* Ensure that the highest priority thread will receive
the next message placed on this queue. */
status = tx_queue prioritize (&my_queue);

/* If status equals TX SUCCESS, the highest priority
suspended thread is at the front of the list. The
next tx queue send or tx queue front send call made
to this queue will wake up this thread. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_receive,
tx_queue_send, tx_queue_send_notify

Express Logic

196 Description of ThreadX Services

tx_queue_receive

Get message from message queue

Prototype

UINT tx_queue_receive (TX QUEUE *queue_ptr,
VOID *destination ptr, ULONG wait_option)

Description

This service retrieves a message from the specified message queue. The
retrieved message is copied from the queue into the memory area
specified by the destination pointer. That message is then removed from
the queue.

message; i.e., the message destination pointed to by destination_ptr
must be at least as large as the message size for this queue. Otherwise,
if the destination is not large enough, memory corruption occurs in the
following memory area.

f The specified destination memory area must be large enough to hold the

Parameters
queue_ptr Pointer to a previously created message queue.
destination_ptr Location of where to copy the message.
wait_option Defines how the service behaves if the message
queue is empty. The wait options are defined as
follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (OxFFFFFFFF)
timeout value (0x00000001
through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
message is available.

<EEERXEY & User Guide

Message Queues 197

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a message.

Return Values
TX_SUCCESS (0Ox00) Successful retrieval of message.

TX_DELETED (0Ox01) Message queue was deleted while
thread was suspended.

TX_QUEUE_EMPTY (0x0A) Service was unable to retrieve a
message because the queue was
empty for the duration of the specified
time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid destination pointer for
message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Express Logic

198 Description of ThreadX Services

Example
TX QUEUE my_ queue;
UINT status;
ULONG my message[4];

/* Retrieve a message from "my queue." If the queue is
empty, suspend until a message is present. Note that
this suspension is only possible from application
threads. */

status = tx_queue_receive (&my_queue, my message,

TX WAIT FOREVER) ;

/* If status equals TX SUCCESS, the message is in
"my message." */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_send, tx_queue_send_notify

<SEEXZXF® User Guide

Message Queues 199

Express Logic

200 Description of ThreadX Services

tx_queue_send

Send message to message queue

Prototype

UINT tx_queue_send (TX QUEUE *queue ptr,
VOID *source ptr, ULONG wait_option)

Description

This service sends a message to the specified message queue. The sent
message is copied to the queue from the memory area specified by the
source pointer.

Parameters
queue_ptr Pointer to a previously created message queue.
source_ptr Pointer to the message.
wait_option Defines how the service behaves if the message
queue is full. The wait options are defined as
follows:
TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (OxFFFFFFFF)
timeout value (0x00000001 through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until there is
room in the queue.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for room in the
queue.

Return Values
TX_SUCCESS (0x00) Successful sending of message.

<EEERXEY & User Guide

Message Queues 201

TX_DELETED (0x01) Message queue was deleted while
thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message
because the queue was full for the
duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.
TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

Yes
Example
TX QUEUE my_queue;
UINT status;
ULONG my messagel[4];

/* Send a message to "my queue." Return immediately,
regardless of success. This wait option is used for
calls from initialization, timers, and ISRs. */

status = tx_queue_send (&my_queue, my message, TX NO_WAIT);

/* If status equals TX SUCCESS, the message is in the
queue. */

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send_notify

Express Logic

202 Description of ThreadX Services

tx_queue_send_notify
Notify application when message is sent to queue

Prototype

UINT tx queue_send notify(TX QUEUE *queue ptr,
VOID (*queue_send notify) (TX QUEUE *));

Description

This service registers a notification callback function that is called
whenever a message is sent to the specified queue. The processing of
the notification callback is defined by the application.

Note: the application’s queue send notification callback is not
| allowed to call any ThreadX API with a suspension option.

Parameters
queue_ptr Pointer to previously created queue.

queue_send_notify Pointer to application’s queue send notification
function. If this value is TX_NULL, notification is

disabled.
Return Values
TX_SUCCESS (0x00) Successful registration of
queue send notification.
TX_QUEUE_ERROR (0x09) Invalid queue pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was compiled
with notification capabilities
disabled.

Allowed From
Initialization, threads, timers, and ISRs

<EEERXEY & User Guide

Message Queues 203

Example

TX_ QUEUE my_ dqueue;

/* Register the "my queue send notify" function for monitoring
messages sent to the queue "my queue." */
status = tx_queue_send notify (&my queue, my_queue_ send notify);

/* If status is TX_SUCCESS the queue send notification function was
successfully registered. */

void my queue send notify(TX QUEUE *queue ptr)
{

/* A message was just sent to this queue! */

}

See Also

tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send

Express Logic

204 Description of ThreadX Services

tx_semaphore_ceiling_put
Place an instance in counting semaphore with ceiling

Prototype

UINT tx semaphore_ceiling put (TX_ SEMAPHORE *semaphore_ptr,
ULONG ceiling) ;

Description

This service puts an instance into the specified counting semaphore,
which in reality increments the counting semaphore by one. If the
counting semaphore’s current value is greater than or equal to the
specified ceiling, the instance will not be put and a
TX_CEILING_EXCEEDED error will be returned.

Parameters
semaphore_ptr Pointer to previously created semaphore.
ceiling Maximum limit allowed for the semaphore (valid

values range from 1 through OxFFFFFFFF).

Return Values

TX_SUCCESS (0x00) Successful semaphore ceiling
put.

TX_CEILING_EXCEEDED (0x21) Put request exceeds ceiling.

TX_INVALID_CEILING (0x22) Aninvalid value of zero was

supplied for ceiling.
TX_SEMAPHORE_ERROR (0Ox0C) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs

<EEERXEY & User Guide

Counting Semaphores 205

Example

TX SEMAPHORE my semaphore;

/* Increment the counting semaphore "my semaphore" but make sure
that it never exceeds 7 as specified in the call. */
status = tx_semaphore ceiling put (&my_ semaphore, 7);

/* If status is TX SUCCESS the semaphore count has been
incremented. */

See Also

tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

206 Description of ThreadX Services

tx_semaphore_create

Create counting semaphore

Prototype

UINT tx_ semaphore_create (TX_ SEMAPHORE *semaphore ptr,
CHAR *name_ptr, ULONG initial_ count)
Description

This service creates a counting semaphore for inter-thread
synchronization. The initial semaphore count is specified as an input

parameter.
Parameters
semaphore_ptr Pointer to a semaphore control block.
name_ptr Pointer to the name of the semaphore.
initial_count Specifies the initial count for this semaphore.
Legal values range from 0x00000000 through
OxFFFFFFFF.
Return Values
TX_SUCCESS (0x00) Successful semaphore
creation.
TX_SEMAPHORE_ERROR (0Ox0C) Invalid semaphore pointer.

Either the pointer is NULL or
the semaphore is already
created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

<EEERXEY & User Guide

Counting Semaphores 207

Example

TX SEMAPHORE my semaphore;
UINT status;

/* Create a counting semaphore whose initial value is 1.
This is typically the technique used to make a binary
semaphore. Binary semaphores are used to provide

protection over a common resource. */
status = tx_semaphore_create (¢my_ semaphore,
"my semaphore name", 1);

/* If status equals TX SUCCESS, my semaphore is ready for
use. */

See Also

tx_semaphore_ceiling_put, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

208 Description of ThreadX Services

tx_semaphore_delete

Delete counting semaphore

Prototype

UINT tx semaphore_delete (TX_ SEMAPHORE *semaphore_ptr)

Description

This service deletes the specified counting semaphore. All threads
suspended waiting for a semaphore instance are resumed and given a
TX_DELETED return status.

is completed (or disabled) before deleting the semaphore. In addition, the

. | The application must ensure that a put notify callback for this semaphore
application must prevent all future use of a deleted semaphore.

Parameters
semaphore_ptr Pointer to a previously created semaphore.

Return Values

TX_SUCCESS (0x00) Successful counting
semaphore deletion.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Counting Semaphores 209

Example
TX SEMAPHORE my semaphore;
UINT status;
/* Delete counting semaphore. Assume that the counting
semaphore has already been created. */
status = tx_semaphore_delete (&¢my_semaphore) ;
/* If status equals TX SUCCESS, the counting semaphore is
deleted. */
See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

210 Description of ThreadX Services

tx_semaphore_ get
Get instance from counting semaphore

Prototype

UINT tx_ semaphore_get (TX_ SEMAPHORE *semaphore_ptr,
ULONG wait_option)

Description

This service retrieves an instance (a single count) from the specified
counting semaphore. As a result, the specified semaphore’s count is
decreased by one.

Parameters
semaphore_ptr Pointer to a previously created counting
semaphore.
wait_option Defines how the service behaves if there are no

instances of the semaphore available; i.e., the
semaphore count is zero. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)

TX_WAIT_FOREVER (OXFFFFFFFF)

timeout value (0x00000001 through
OxFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.q.,
initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
semaphore instance is available.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a semaphore
instance.

Return Values

TX_SUCCESS (0Ox00) Successful retrieval of a
semaphore instance.

<EEERXEY & User Guide

Counting Semaphores 211

TX_DELETED (0x01) Counting semaphore was
deleted while thread was
suspended.

TX_NO_INSTANCE (OxOD) Service was unable to

retrieve an instance of the
counting semaphore
(semaphore count is zero
within the specified time to

wait).
TX_WAIT_ABORTED (0x1A) Suspension was aborted by
another thread, timer, or
ISR.
TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.
TX_WAIT_ERROR (0x04) A wait option other than

TX_NO_WAIT was specified
on a call from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example

TX_ SEMAPHORE my semaphore;
UINT status;

/* Get a semaphore instance from the semaphore
"my semaphore." If the semaphore count is zero,
suspend until an instance becomes available.
Note that this suspension is only possible from
application threads. */
status = tx_semaphore_get(&my_semaphore, TX _WAIT FOREVER) ;

/* If status equals TX SUCCESS, the thread has obtained
an instance of the semaphore. */

See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semahore_delete,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_prioritize, tx_semaphore_put, tx_semaphore_put_notify

Express Logic

212 Description of ThreadX Services

tx_semaphore_info_get
Retrieve information about semaphore

Prototype

UINT tx_ semaphore_info_get (TX_ SEMAPHORE *semaphore_ ptr,
CHAR **name, ULONG *current value,
TX_THREAD **first_ suspended,
ULONG *suspended_count,
TX_SEMAPHORE **next_semaphore)

Description
This service retrieves information about the specified semaphore.

Parameters

semaphore_ptr Pointer to semaphore control block.

name Pointer to destination for the pointer to the
semaphore’s name.

current_value Pointer to destination for the current
semaphore’s count.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this
semaphore.

suspended_count Pointer to destination for the number of threads
currently suspended on this semaphore.

next_semaphore Pointer to destination for the pointer of the next

created semaphore.

Supplying a TX_NULL for any parameter indicates that the parameter is
i I not required.

<EEERXEY & User Guide

Counting Semaphores 213

Return Values

TX_SUCCESS (0Ox00) Successful semaphore
information retrieval.
TX_SEMAPHORE_ERROR (Ox0C) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX_ SEMAPHORE my semaphore;
CHAR *name;
ULONG current value;
TX_THREAD *first suspended;
ULONG suspended count;
TX SEMAPHORE *next semaphore;
UINT status;
/* Retrieve information about the previously created
semaphore "my semaphore." */
status = tx_semaphore_info_get (&my_semaphore, &name,
¤t value,
&first suspended, &suspended count,
&next semaphore) ;
/* If status equals TX SUCCESS, the information requested is
valid. */
See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

214 Description of ThreadX Services

tx_semaphore performance_info get
Get semaphore performance information

Prototype

UINT tx semaphore_ performance_info_get (TX_ SEMAPHORE *semaphore_ptr,
ULONG *puts, ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

Description

This service retrieves performance information about the specified
semaphore.

TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this

Note: The ThreadX library and application must be built with
I I service to return performance information.

Parameters

semaphore_ptr Pointer to previously created semaphore.

puts Pointer to destination for the number of put
requests performed on this semaphore.

gets Pointer to destination for the number of get
requests performed on this semaphore.

suspensions Pointer to destination for the number of thread
suspensions on this semaphore.

timeouts Pointer to destination for the number of thread

suspension timeouts on this semaphore.

I' Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Counting Semaphores 215

Return Values

TX_SUCCESS (0Ox00) Successful semaphore
performance get.
TX_PTR_ERROR (0x03) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX SEMAPHORE my semaphore;
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on the previously created
semaphore. */
status = tx_semaphore_performance_info_get (&my_semaphore, &puts,
&gets, &suspensions, &timeouts);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

216 Description of ThreadX Services

tx_semaphore performance_system_info_get
Get semaphore system performance information

Prototype

UINT tx semaphore_ performance_system info_get (ULONG *puts,
ULONG *gets, ULONG *suspensions, ULONG *timeouts);

Description

This service retrieves performance information about all the semaphores
in the system.

TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this

The ThreadX library and application must be built with
I | service to return performance information

Parameters

puts Pointer to destination for the total number of put
requests performed on all semaphores.

gets Pointer to destination for the total number of get
requests performed on all semaphores.

suspensions Pointer to destination for the total number of
thread suspensions on all semaphores.

timeouts Pointer to destination for the total number of

thread suspension timeouts on all semaphores.

i Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

<EEERXEY & User Guide

Counting Semaphores 217

Return Values

TX_SUCCESS (0Ox00) Successful semaphore
system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all previously created
semaphores. */
status = tx_semaphore_ performance_system info_get (&puts, &gets,
&suspensions, &timeouts);

/* If status is TX SUCCESS the performance information was
successfully retrieved. */

See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify

Express Logic

218 Description of ThreadX Services

tx_semaphore_prioritize
Prioritize semaphore suspension list

Prototype

UINT tx_ semaphore_ prioritize (TX_ SEMAPHORE *semaphore ptr)

Description

This service places the highest priority thread suspended for an instance
of the semaphore at the front of the suspension list. All other threads
remain in the same FIFO order they were suspended in.

Parameters
semaphore_ptr Pointer to a previously created semaphore.

Return Values

TX_SUCCESS (0Ox00) Successful semaphore
prioritize.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Counting Semaphores 219

Example

TX_SEMAPHORE my_ semaphore;
UINT status;

/* Ensure that the highest priority thread will receive
the next instance of this semaphore. */
status = tx_semaphore_prioritize (&my_semaphore) ;

/* If status equals TX SUCCESS, the highest priority
suspended thread is at the front of the list. The
next tx semaphore put call made to this semaphore will
wake up this thread. */

See Also

tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_put

Express Logic

220 Description of ThreadX Services

tx_semaphore put
Place an instance in counting semaphore

Prototype

UINT tx_ semaphore_put (TX_ SEMAPHORE *semaphore_ptr)

Description

This service puts an instance into the specified counting semaphore,
which in reality increments the counting semaphore by one.

. | /fthis service is called when the semaphore is all ones (OxFFFFFFFF),
I the new put operation will cause the semaphore to be reset to zero.

Parameters

semaphore_ptr Pointer to the previously created counting
semaphore control block.

Return Values

TX_SUCCESS (0Ox00) Successful semaphore put.
TX_SEMAPHORE_ERROR (Ox0C) Invalid pointer to counting
semaphore.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Counting Semaphores 221

Example
TX_SEMAPHORE my_ semaphore;
UINT status;
/* Increment the counting semaphore "my semaphore." */
status = tx_semaphore put (&my_semaphore) ;

/* If status equals TX SUCCESS, the semaphore count has
been incremented. Of course, if a thread was waiting,
it was given the semaphore instance and resumed. */

See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_get, tx_semaphore_put_notify

Express Logic

222 Description of ThreadX Services

tx_semaphore_put_notify
Notify application when semaphore is put

Prototype

UINT tx semaphore_ put notify (TX SEMAPHORE *semaphore_ptr,
VOID (*semaphore_ put notify) (TX SEMAPHORE *));
Description

This service registers a notification callback function that is called
whenever the specified semaphore is put. The processing of the
notification callback is defined by the application.

Note: the application’s semaphore notification callback is not
allowed to call any ThreadX API with a suspension option.

Parameters
semaphore_ptr Pointer to previously created semaphore.

semaphore_put_notify Pointer to application’s semaphore put
notification function. If this value is TX_NULL,
notification is disabled.

Return Values

TX_SUCCESS (0Ox00) Successful registration of
semaphore put notification.
TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled
with notification capabilities
disabled.

Allowed From
Initialization, threads, timers, and ISRs

<EEERXEY & User Guide

Counting Semaphores 223

Example

TX SEMAPHORE my semaphore;

/* Register the "my semaphore put notify" function for monitoring
the put operations on the semaphore "my semaphore." */
status = tx_semaphore_put notify (&my semaphore,
my semaphore put notify);

/* If status is TX SUCCESS the semaphore put notification function
was successfully registered. */

void my semaphore put notify(TX SEMAPHORE *semaphore ptr)
{

/* The semaphore was just put! */

}

See Also

tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put

Express Logic

224 Description of ThreadX Services

tx_thread_create

Create application thread

Prototype

UINT tx_ thread create (TX THREAD *thread ptr,
CHAR *name_ptr, VOID (*entry function) (ULONG),
ULONG entry input, VOID *stack_start,
ULONG stack size, UINT priority,
UINT preempt_ threshold, ULONG time_ slice,
UINT auto_start)

Description

This service creates an application thread that starts execution at the
specified task entry function. The stack, priority, preemption-threshold,
and time-slice are among the attributes specified by the input parameters.
In addition, the initial execution state of the thread is also specified.

Parameters

thread_ptr Pointer to a thread control block.

name_ptr Pointer to the name of the thread.

entry_function Specifies the initial C function for thread
execution. When a thread returns from this entry
function, it is placed in a completed state and
suspended indefinitely.

entry_input A 32-bit value that is passed to the thread’s
entry function when it first executes. The use for
this input is determined exclusively by the
application.

stack_start Starting address of the stack’s memory area.

stack_size Number bytes in the stack memory area. The
thread’s stack area must be large enough to
handle its worst-case function call nesting and
local variable usage.

priority Numerical priority of thread. Legal values range

from 0 through (TX_MAX_PRIORITES-1), where
a value of 0 represents the highest priority.

<EEERXEY & User Guide

Thread Control 225

preempt_threshold

time_slice

auto_start

i)

Highest priority level (0 through
(TX_MAX_PRIORITIES-1)) of disabled
preemption. Only priorities higher than this level
are allowed to preempt this thread. This value
must be less than or equal to the specified
priority. A value equal to the thread priority
disables preemption-threshold.

Number of timer-ticks this thread is allowed to
run before other ready threads of the same
priority are given a chance to run. Note that
using preemption-threshold disables time-slicing.
Legal time-slice values range from 1 to
OxFFFFFFFF (inclusive). A value of
TX_NO_TIME_SLICE (a value of 0) disables
time-slicing of this thread.

Using time-slicing results in a slight amount of
system overhead. Since time-slicing is only
useful in cases where multiple threads share the
same priority, threads having a unique priority
should not be assigned a time-slice.

Specifies whether the thread starts immediately
oris placed in a suspended state. Legal options
are TX_AUTO_START (0x01) and
TX_DONT_START (0x00). If TX_DONT_START
is specified, the application must later call
tx_thread_resume in order for the thread to run.

Express Logic

226 Description of ThreadX Services

Return Values
TX_SUCCESS

TX_THREAD_ERROR

TX_PTR_ERROR

TX_SIZE_ERROR

TX_PRIORITY_ERROR

TX_THRESH_ERROR

TX_START_ERROR
TX_CALLER_ERROR

Allowed From
Initialization and threads

Preemption Possible
Yes

<EEERXEY & User Guide

(0x00)
(OXOE)

(0x03)

(0x05)

(OXOF)

(0x18)

(0x10)
(0x13)

Successful thread creation.

Invalid thread control
pointer. Either the pointer is
NULL or the thread is
already created.

Invalid starting address of
the entry point or the stack
area is invalid, usually
NULL.

Size of stack area is invalid.
Threads must have at least
TX_MINIMUM_STACK
bytes to execute.

Invalid thread priority, which
is a value outside the range
of (0 through

(TX_MAX_PRIORITIES-1)).

Invalid preemption-
threshold specified. This
value must be a valid priority
less than or equal to the
initial priority of the thread.

Invalid auto-start selection.

Invalid caller of this service.

Thread Control 227

Example
TX THREAD my thread;
UINT status;

/* Create a thread of priority 15 whose entry point is
"my thread entry". This thread’s stack area is 1000
bytes in size, starting at address 0x400000. The
preemption-threshold is setup to allow preemption of threads
with priorities ranging from O through 14. Time-slicing 1is
disabled. This thread is automatically put into a ready
condition. */
status = tx_thread create (&¢my_ thread, "my thread name",
my thread entry, 0x1234,
(VOID *) 0x400000, 1000,
15, 15, TX NO TIME SLICE,
TX_AUTO_START) ;

/* If status equals TX SUCCESS, my thread is ready
for execution! */

/* Thread’s entry function. When "my thread" actually
begins execution, control is transferred to this
function. */

VOID my_thread entry (ULONG initial input)

{

/* When we get here, the value of initial input is
0x1234. See how this was specified during
creation. */

/* The real work of the thread, including calls to
other function should be called from here! */

/* When this function returns, the corresponding
thread is placed into a "completed" state. */

}

See Also

tx_thread_delete, tx_thread_entry_exit_notify, tx_thread_identify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

228 Description of ThreadX Services

tx_thread_delete

Delete application thread

Prototype

UINT tx_thread delete (TX THREAD *thread ptr)

Description

This service deletes the specified application thread. Since the specified
thread must be in a terminated or completed state, this service cannot be
called from a thread attempting to delete itself.

associated with the thread’s stack, which is available after this service
completes. In addition, the application must prevent use of a deleted
thread.

I It is the application’s responsibility to manage the memory area

Parameters
thread_ptr Pointer to a previously created application
thread.

Return Values
TX_SUCCESS (0x00) Successful thread deletion.

TX_THREAD_ERROR (0xOE) Invalid application thread pointer.

TX_DELETE_ERROR (0x11) Specified thread is not in a terminated
or completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
No

<EEERXEY & User Guide

Thread Control 229

Example

TX THREAD my thread;
UINT status;

/* Delete an application thread whose control block is
"my_ thread". Assume that the thread has already been
created with a call to tx thread create. */

status = tx_thread delete (&my thread);

/* If status equals TX SUCCESS, the application thread is
deleted. */

See Also

tx_thread_create, tx_thread_entry_exit_notify, tx_thread_identify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

230 Description of ThreadX Services

tx_thread_entry exit notify
Notify application upon thread entry and exit

Prototype

UINT tx thread entry exit notify (TX THREAD *thread ptr,
VOID (*entry exit notify) (TX THREAD *, UINT))

Description

This service registers a notification callback function that is called
whenever the specified thread is entered or exits. The processing of the
notification callback is defined by the application.

Note: the application’s thread entry/exit notification callback
| is not allowed to call any ThreadX API with a suspension

option.

Parameters
thread_ptr Pointer to previously created thread.
entry_exit_notify Pointer to application’s thread entry/exit

notification function. The second parameter to the
entry/exit notification function designates if an
entry or exit is present. The value
TX_THREAD_ENTRY (0x00) indicates the thread
was entered, while the value TX_THREAD_ EXIT
(0x01) indicates the thread was exited. If this value
is TX_NULL, notification is disabled.

Return Values

TX_SUCCESS (0x00) Successful registration of the
thread entry/exit notification
function.

TX_THREAD_ERROR (OxOE) Invalid thread pointer.

TX_FEATURE_NOT_ENABLED (OxFF) The system was compiled with
notification capabilities disabled.

Allowed From
Initialization, threads, timers, and ISRs

<EEERXEY & User Guide

Thread Control 231

Example

TX THREAD my thread;

/* Register the "my entry exit notify" function for monitoring
the entry/exit of the thread "my thread." */
status = tx_thread _entry exit notify (&my thread,
my entry exit notify);

/* If status is TX SUCCESS the entry/exit notification function was
successfully registered. */
void my entry exit notify(TX THREAD *thread ptr, UINT condition)

{

/* Determine if the thread was entered or exited. */
if (condition == TX THREAD ENTRY)

/* Thread entry! */
else if (condition == TX THREAD EXIT)

/* Thread exit! */

}

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

232 Description of ThreadX Services

tx_thread_identify

Retrieves pointer to currently executing thread

Prototype

TX_THREAD* tx thread identify (VOID)

Description

This service returns a pointer to the currently executing thread. If no
thread is executing, this service returns a null pointer.

. [Ifthis service is called from an ISR, the return value represents the thread
I running prior to the executing interrupt handler.

Parameters
None

Return Values

thread pointer Pointer to the currently executing thread. If no
thread is executing, the return value is
TX_NULL.

Allowed From
Threads and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Thread Control 233

Example

TX THREAD *my thread ptr;

/* Find out who we are! */
my thread ptr = tx_thread identify();

/* If my thread ptr is non-null, we are currently executing
from that thread or an ISR that interrupted that thread.
Otherwise, this service was called
from an ISR when no thread was running when the
interrupt occurred. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

234 Description of ThreadX Services

tx_thread_info get

Retrieve information about thread

Prototype

UINT tx_thread info_get (TX_ THREAD *thread ptr, CHAR **name,
UINT *state, ULONG *run_count,
UINT *priority,
UINT *preemption_threshold,
ULONG *time_slice,
TX_THREAD **next thread,
TX_THREAD **suspended_ thread)

Description
This service retrieves information about the specified thread.

Parameters
thread_ptr Pointer to thread control block.
name Pointer to destination for the pointer to the
thread’s name.
state Pointer to destination for the thread’s current
execution state. Possible values are as follows:
TX_READY (0x00)
TX_COMPLETED (0x01)
TX_TERMINATED (0x02)
TX_SUSPENDED (0x03)
TX_SLEEP (0x04)
TX_QUEUE_SUSP (0x05)
TX_SEMAPHORE_SUSP (0x086)
TX_EVENT_FLAG (0x07)
TX_BLOCK_MEMORY (0x08)
TX_BYTE_MEMORY (0x09)
TX_MUTEX_SUSP (0x0D)
run_count Pointer to destination for the thread’s run count.
priority Pointer to destination for the thread’s priority.

preemption_threshold Pointer to destination for the thread’s
preemption-threshold.

time_slice Pointer to destination for the thread’s time-slice.

<EEERXEY & User Guide

Thread Control 235

next_thread Pointer to destination for next created thread
pointer.

suspended_thread Pointer to destination for pointer to next thread in
suspension list.

. [Supplying a TX_NULL for any parameter indicates that the parameter is
I not required.

Return Values

TX_SUCCESS (0x00) Successful thread information
retrieval.

TX_THREAD_ERROR (0xOE) Invalid thread control pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX THREAD my thread;
CHAR *name;
UINT state;
ULONG run_count;
UINT priority;
UINT preemption threshold;
UINT time slice;
TX THREAD *next thread;
TX_ THREAD *suspended_thread;
UINT status;

/* Retrieve information about the previously created
thread "my thread." */
status = tx_thread_info_get(&my thread, &name,
&state, &run count,
&priority, &preemption threshold,
&time slice, &next thread, ésuspended thread);

/* If status equals TX SUCCESS, the information requested is
valid. */

Express Logic

236 Description of ThreadX Services

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry exit_notify,
tx_thread_identify, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

<EEERXEY & User Guide

Thread Control 237

Express Logic

238 Description of ThreadX Services

tx_thread_performance_info get
Get thread performance information

Prototype

UINT tx thread performance_info_get (TX THREAD *thread ptr,
ULONG *resumptions, ULONG *suspensions,
ULONG *solicited_preemptions, ULONG *interrupt preemptions,
ULONG *priority_ inversions, ULONG *time slices,
ULONG *relinquishes, ULONG *timeouts, ULONG *wait_aborts,
TX_THREAD **last preempted by) ;

Description
This service retrieves performance information about the specified thread.

TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for

. | The ThreadX library and application must be built with
this service to return performance information.

Parameters
thread_ptr Pointer to previously created thread.
resumptions Pointer to destination for the number of
resumptions of this thread.
suspensions Pointer to destination for the number of

suspensions of this thread.

solicited_preemptions Pointer to destination for the number of
preemptions as a result of a ThreadX API
service call made by this thread.

interrupt_preemptions Pointer to destination for the number of
preemptions of this thread as a result of
interrupt processing.

priority_inversions Pointer to destination for the number of priority
inversions of this thread.

time_slices Pointer to destination for the number of time-
slices of this thread.

relinquishes Pointer to destination for the number of thread
relinquishes performed by this thread.

<EEERXEY & User Guide

Thread Control 239

timeouts Pointer to destination for the number of
suspension timeouts on this thread.

wait_aborts Pointer to destination for the number of wait
aborts performed on this thread.

last_preempted_by Pointer to destination for the thread pointer that
last preempted this thread.

i | Supplying a TX_NULL for any parameter indicates that the
parameter is not required.

Return Values

TX_SUCCESS (0Ox00) Successful thread
performance get.
TX_PTR_ERROR (0x03) Invalid thread pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not

compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Express Logic

240 Description of ThreadX Services

Example
TX THREAD my thread;
ULONG resumptions;
ULONG suspensions;
ULONG solicited preemptions;
ULONG interrupt preemptions;
ULONG priority inversions;
ULONG time slices;
ULONG relinquishes;
ULONG timeouts;
ULONG wait aborts;
TX THREAD *last preempted by;

/* Retrieve performance information on the previously created
thread. */

status = tx_thread_ performance_info_ get (&my_thread, &resumptions,
&suspensions,
&solicited preemptions, &interrupt preemptions,
&priority inversions, &time slices,
&relinquishes, &timeouts,
&wait aborts, &last preempted by);

/* If status is TX SUCCESS the performance information was
successfully retrieved. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry exit_notify,
tx_thread_identify, tx_thread_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

<SEEXZXF® User Guide

Thread Control 241

Express Logic

242 Description of ThreadX Services

tx_thread performance_system_info get
Get thread system performance information

Prototype

UINT tx thread performance_ system info_get (ULONG *resumptions,
ULONG *suspensions, ULONG *solicited_ preemptions,
ULONG *interrupt_preemptions, ULONG *priority inversions,
ULONG *time_slices, ULONG *relinquishes, ULONG *timeouts,
ULONG *wait_aborts, ULONG *non_idle returns,
ULONG *idle_returns);

Description

This service retrieves performance information about all the threads in the
system.

TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for

. | The ThreadX library and application must be built with
this service to return performance information.

Parameters
resumptions Pointer to destination for the total number of
thread resumptions.
suspensions Pointer to destination for the total number of

thread suspensions.

solicited_preemptions Pointer to destination for the total number of
thread preemptions as a result of a thread
calling a ThreadX API service.

interrupt_preemptions Pointer to destination for the total number of
thread preemptions as a result of interrupt
processing.

priority_inversions Pointer to destination for the total number of
thread priority inversions.

time_slices Pointer to destination for the total number of
thread time-slices.

relinquishes Pointer to destination for the total number of
thread relinquishes.

<EEERXEY & User Guide

Thread Control 243

timeouts Pointer to destination for the total number of
thread suspension timeouts.

wait_aborts Pointer to destination for the total number of
thread wait aborts.

non_idle_returns Pointer to destination for the number of times a
thread returns to the system when another
thread is ready to execute.

idle_returns Pointer to destination for the number of times a
thread returns to the system when no other
thread is ready to execute (idle system).

i | Supplying a TX_NULL for any parameter indicates that the
parameter is not required.

Return Values

TX_SUCCESS (Ox00) Successful thread system
performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Express Logic

244 Description of ThreadX Services

Example
ULONG resumptions;
ULONG suspensions;
ULONG solicited preemptions;
ULONG interrupt preemptions;
ULONG priority inversions;
ULONG time slices;
ULONG relinquishes;
ULONG timeouts;
ULONG wait aborts;
ULONG non idle returns;
ULONG idle_returns;

/* Retrieve performance information on all previously created
thread. */

status = tx_thread performance system info_ get (&resumptions,
&suspensions,
&solicited preemptions, &interrupt preemptions,
&priority inversions, &time slices, &relinquishes,
&timeouts, &wait aborts, &non_idle returns,
&idle returns);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

<SEEXZXF® User Guide

Thread Control 245

Express Logic

246 Description of ThreadX Services

tx_thread preemption_change
Change preemption-threshold of application thread

Prototype

UINT tx_thread preemption_change (TX THREAD *thread ptr,
UINT new_threshold, UINT *old_threshold)
Description

This service changes the preemption-threshold of the specified thread.
The preemption-threshold prevents preemption of the specified thread by
threads equal to or less than the preemption-threshold value.

i I Using preemption-threshold disables time-slicing for the specified thread.

Parameters
thread_ptr Pointer to a previously created application
thread.
new_threshold New preemption-threshold priority level (0
through (TX_MAX_PRIORITIES-1)).
old_threshold Pointer to a location to return the previous

preemption-threshold.

Return Values
TX_SUCCESS (0x00) Successful preemption-threshold
change.
TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_THRESH_ERROR (0x18) Specified new preemption-threshold is
not a valid thread priority (a value other
than (0 through
(TX_MAX_PRIORITIES-1)) or is
greater than (lower priority) than the
current thread priority.

TX _PTR_ERROR (0x03) Invalid pointer to previous preemption-
threshold storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

<EEERXEY & User Guide

Thread Control 247

Allowed From
Threads and timers

Preemption Possible

Yes
Example
TX THREAD my thread;
UINT my old threshold;
UINT status;

/* Disable all preemption of the specified thread. The
current preemption-threshold is returned in
"my old threshold". Assume that "my thread" has
already been created. */
status = tx_thread_preemption_change (&my_ thread,
0, &my_old threshold);

/* If status equals TX SUCCESS, the application thread is
non-preemptable by another thread. Note that ISRs are
not prevented by preemption disabling. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

248 Description of ThreadX Services

tx_thread_priority _change
Change priority of application thread

Prototype

UINT tx_thread priority_ change (TX THREAD *thread ptr,
UINT new_priority, UINT *old_priority)

Description

This service changes the priority of the specified thread. Valid priorities
range from 0 through (TX_MAX_PRIORITES-1), where 0 represents the
highest priority level.

the new priority. If a new threshold is desired, the

The preemption-threshold of the specified thread is automatically set to
I | tx_thread_preemption_change service must be used after this call.

Parameters
thread_ptr Pointer to a previously created application
thread.
new_priority New thread priority level (0 through
(TX_MAX_PRIORITIES-1)).
old_priority Pointer to a location to return the thread’s

previous priority.
Return Values
TX_SUCCESS (0x00) Successful priority change.
TX_THREAD_ERROR (0x0OE) Invalid application thread pointer.

TX_PRIORITY_ERROR (0x0F) Specified new priority is not valid (a
value other than (0 through
(TX_MAX_PRIORITIES-1)).

TX _PTR_ERROR (0x03) Invalid pointer to previous priority
storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

<EEERXEY & User Guide

Thread Control 249

Allowed From
Threads and timers

Preemption Possible

Yes
Example
TX THREAD my thread;
UINT my old priority;
UINT status;

/* Change the thread represented by "my thread" to priority
0. */
status = tx_thread priority change (¢my thread,
0, &my old priority);

/* If status equals TX SUCCESS, the application thread is
now at the highest priority level in the system. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_relinquish, tx_thread_reset,
tx_thread_resume, tx_thread_sleep, tx_thread_stack_error_notify,
tx_thread_suspend, tx_thread_terminate, tx_thread_time_slice_change,
tx_thread_wait_abort

Express Logic

250 Description of ThreadX Services

tx_thread_relinquish
Relinquish control to other application threads

Prototype

VOID tx_thread_relinquish (VOID)

Description

This service relinquishes processor control to other ready-to-run threads
at the same or higher priority.

service also relinquishes control to the highest-priority thread prevented
from execution because of the current thread's preemption-threshold
setting.

I In addition to relinquishing control to threads of the same priority, this

Parameters
None

Return Values
None

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Thread Control 251

Example

ULONG run counter 1 = 0;
ULONG run_counter 2 0;

/* Example of two threads relinquishing control to
each other in an infinite loop. Assume that
both of these threads are ready and have the same
priority. The run counters will always stay within one
of each other. */

VOID my first thread(ULONG thread input)
{

/* Endless loop of relinquish. */
while (1)
{

/* Increment the run counter. */
run_counter 1++;

/* Relinquish control to other thread. */
tx_thread_relinquish();

VOID my second thread(ULONG thread input)
{

/* Endless loop of relinquish. */
while (1)
{

/* Increment the run counter. */
run_counter 2++;

/* Relinquish control to other thread. */
tx_thread_relinquish();

}
See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_reset, tx_thread_resume, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

252 Description of ThreadX Services

tx_thread reset

Reset thread

Prototype

UINT tx thread reset (TX THREAD *thread ptr);

Description

This service resets the specified thread to execute at the entry point
defined at thread creation. The thread must be in either a
TX_COMPLETED or TX_TERMINATED state for it to be reset

i | The thread must be resumed for it to execute again.

Parameters
thread_ptr Pointer to a previously created thread.

Return Values
TX_SUCCESS (0x00) Successful thread reset.

TX_NOT_DONE (0x20) Specified thread is not in a
TX_COMPLETED or
TX_TERMINATED state.

TX_THREAD_ERROR (0xOE) Invalid thread pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

<EEERXEY & User Guide

Thread Control 253

Example

TX THREAD my thread;

/* Reset the previously created thread "my thread." */
status = tx_thread_reset (&my thread);

/* If status is TX SUCCESS the thread is reset. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preformance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

254 Description of ThreadX Services

tx_thread _resume
Resume suspended application thread

Prototype

UINT tx_thread resume (TX THREAD *thread ptr)

Description

This service resumes or prepares for execution a thread that was
previously suspended by a tx_thread_suspend call. In addition, this
service resumes threads that were created without an automatic start.

Parameters
thread_ptr Pointer to a suspended application thread.

Return Values

TX_SUCCESS (0x00) Successful thread resume.
TX_SUSPEND_LIFTED(0x19) Previously set delayed suspension
was lifted.

TX_THREAD_ERROR (0xOE) Invalid application thread pointer.

TX_RESUME_ERROR (0x12) Specified thread is not suspended or
was previously suspended by a
service other than
tx_thread_suspend.
Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Thread Control 255

Example

TX THREAD my thread;
UINT status;

/* Resume the thread represented by "my thread". */
status = tx_thread_resume (&émy_ thread);

/* If status equals TX SUCCESS, the application thread is
now ready to execute. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

256

tx_thread_sleep

Description of ThreadX Services

Suspend current thread for specified time

Prototype

UINT tx_thread sleep (ULONG timer_ ticks)

Description

This service causes the calling thread to suspend for the specified
number of timer ticks. The amount of physical time associated with a
timer tick is application specific. This service can be called only from an

application thread.

Parameters
timer_ticks

The number of timer ticks to suspend the calling

application thread, ranging from 0 through
OxFFFFFFFF. If O is specified, the service returns
immediately.

Return Values
TX_SUCCESS (0x00)

TX_WAIT_ABORTED (0x1A)
TX_CALLER_ERROR (0x13)

Allowed From
Threads

Preemption Possible
Yes

<EEERXEY & User Guide

Successful thread sleep.

Suspension was aborted by another
thread, timer, or ISR.

Service called from a non-thread.

Thread Control 257

Example

UINT status;

/* Make the calling thread sleep for 100
timer-ticks. */
status = tx_thread_sleep (100);

/* If status equals TX SUCCESS, the currently running
application thread slept for the specified number of
timer-ticks. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

258 Description of ThreadX Services

tx_thread_stack error_notify

Register thread stack error notification callback

Prototype

UINT tx_thread stack_error notify (VOID (*error_handler) (TX THREAD *));

Description

This service registers a notification callback function for handling thread
stack errors. When ThreadX detects a thread stack error during
execution, it will call this notification function to process the error.
Processing of the error is completely defined by the application. Anything

from suspending the violating thread to resetting the entire system may
be done.

The ThreadX library must be built with

TX_ENABLE_STACK_CHECKING defined in order for this service to
return performance information.

Parameters
error_handler Pointer to application’s stack error handling
function. If this value is TX_NULL, the notification
is disabled.
Return Values
TX_SUCCESS (0x00) Successful thread reset.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled

with performance information
enabled.

Allowed From

Initialization, threads, timers, and ISRs

<EEERXEY & User Guide

Thread Control 259

Example

void my_stack_error_handler (TX THREAD *thread ptr);

/* Register the "my stack error handler" function with ThreadX
so that thread stack errors can be handled by the application. */
status = tx_thread_stack_error notify(my stack error_handler) ;

/* If status is TX SUCCESS the stack error handler is registered.*/

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preformance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

260 Description of ThreadX Services

tx_thread_suspend

Suspend application thread

Prototype

UINT tx_thread suspend (TX THREAD *thread ptr)

Description

This service suspends the specified application thread. A thread may call
this service to suspend itself.

suspension is held internally until the prior suspension is lifted. When that
happens, this unconditional suspension of the specified thread is
performed. Further unconditional suspension requests have no effect.

I If the specified thread is already suspended for another reason, this

After being suspended, the thread must be resumed by
tx_thread_resume to execute again.

Parameters
thread_ptr Pointer to an application thread.

Return Values

TX_SUCCESS (0x00) Successful thread suspend.

TX_THREAD_ERROR (OxOE) Invalid application thread
pointer.

TX_SUSPEND_ERROR (0x14) Specified thread is in a

terminated or
completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Thread Control 261

Example

TX THREAD my thread;
UINT status;

/* Suspend the thread represented by "my thread". */
status = tx_thread_suspend (&¢my_ thread);

/* If status equals TX SUCCESS, the application thread is
unconditionally suspended. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

262 Description of ThreadX Services

tx_thread_terminate

Terminates application thread

Prototype

UINT tx_thread terminate (TX THREAD *thread ptr)

Description

This service terminates the specified application thread regardless of
whether the thread is suspended or not. A thread may call this service to
terminate itself.

suitable for termination. For example, a thread should not be terminated
during critical application processing or inside of other middleware
components where it could leave such processing in an unknown state.

f It is the application’s responsibility to ensure that the thread is in a state

/

Parameters
thread_ptr Pointer to application thread.

. l After being terminated, the thread must be reset for it to execute again.

Return Values
TX_SUCCESS (0x00) Successful thread terminate.

TX_THREAD_ERROR (0xOE) Invalid application thread pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
Yes

<EEERXEY & User Guide

Thread Control 263

Example

TX THREAD my thread;
UINT status;

/* Terminate the thread represented by "my thread". */
status = tx_thread_terminate (&my thread) ;

/* If status equals TX SUCCESS, the thread is terminated
and cannot execute again until it is reset. */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_time_slice_change, tx_thread_wait_abort

Express Logic

264 Description of ThreadX Services

tx_thread time_slice_change
Changes time-slice of application thread

Prototype

UINT tx_thread time_slice_change (TX THREAD *thread ptr,
ULONG new_time_slice, ULONG *old time_slice)

Description

This service changes the time-slice of the specified application thread.
Selecting a time-slice for a thread insures that it won’t execute more than
the specified number of timer ticks before other threads of the same or
higher priorities have a chance to execute.

. | Using preemption-threshold disables time-slicing for the specified thread.

Parameters
thread_ptr Pointer to application thread.
new_time_slice New time slice value. Legal values include
TX_NO_TIME_SLICE and numeric values from
1 through OxFFFFFFFF.
old_time_slice Pointer to location for storing the previous time-

slice value of the specified thread.

Return Values
TX_SUCCESS (0x00) Successful time-slice chance.

TX_THREAD_ERROR (0xOE) Invalid application thread pointer.

TX_PTR_ERROR (0x03) Invalid pointer to previous time-slice
storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

<EEERXEY & User Guide

Thread Control 265

Allowed From
Threads and timers

Preemption Possible

No
Example
TX THREAD my thread;
ULONG my old time slice;
UINT status;

/* Change the time-slice of the thread associated with
"my thread" to 20. This will mean that "my thread"
can only run for 20 timer-ticks consecutively before
other threads of equal or higher priority get a chance
to run. */
status = tx_thread_time_slice_ change (&my_ thread, 20,
&my old time slice);

/* If status equals TX SUCCESS, the thread’s time-slice
has been changed to 20 and the previous time-slice is
in "my old time slice." */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_wait_abort

Express Logic

266 Description of ThreadX Services

tx_thread_wait_abort
Abort suspension of specified thread

Prototype

UINT tx_thread wait_abort (TX THREAD *thread ptr)

Description

This service aborts sleep or any other object suspension of the specified
thread. If the wait is aborted, a TX_WAIT_ABORTED value is returned
from the service that the thread was waiting on.

. This service does not release explicit suspension that is made by the
I tx_thread_suspend service.

Parameters
thread_ptr Pointer to a previously created application
thread.
Return Values
TX_SUCCESS (0Ox00) Successful thread wait
abort.
TX_THREAD_ERROR (OxOE) Invalid application thread
pointer.

TX_WAIT_ABORT_ERROR (Ox1B) Specified thread is not in a
waiting state.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

<EEERXEY & User Guide

Thread Control 267

Example
TX THREAD my thread;
UINT status;

/* Abort the suspension condition of "my thread." */
status = tx_thread wait abort (&my_ thread) ;

/* If status equals TX SUCCESS, the thread is now ready
again, with a return value showing its suspension
was aborted (TX WAIT ABORTED) . */

See Also

tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change

Express Logic

268 Description of ThreadX Services

tx_time get

Retrieves the current time

Prototype

ULONG tx_time_get (VOID)

Description

This service returns the contents of the internal system clock. Each timer-
tick increases the internal system clock by one. The system clock is set to
zero during initialization and can be changed to a specific value by the
service tx_time_set.

i I The actual time each timer-tick represents is application specific.

Parameters
None

Return Values
system clock ticks Value of the internal, free running, system clock.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Application Timers 269

Example

ULONG current time;

/* Pickup the current system time, in timer-ticks. */
current_time = tx time get();

/* Current time now contains a copy of the internal system
clock. */

See Also
tx_time_set

Express Logic

270 Description of ThreadX Services

tx_time_set

Sets the current time

Prototype

VOID tx_time_ set (ULONG new_time)

Description

This service sets the internal system clock to the specified value. Each
timer-tick increases the internal system clock by one.

i I The actual time each timer-tick represents is application specific.

Parameters

new_time New time to put in the system clock, legal values
range from 0 through OxFFFFFFFF.

Return Values
None

Allowed From
Threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Application Timers 271

Example

/* Set the internal system time to 0x1234. */
tx_time_set (0x1234);

/* Current time now contains 0x1234 until the next timer
interrupt. */

See Also
tx_time_get

Express Logic

272 Description of ThreadX Services

tx_timer_activate

Activate application timer

Prototype

UINT tx_ timer_ activate (TX TIMER *timer_ ptr)

Description

This service activates the specified application timer. The expiration
routines of timers that expire at the same time are executed in the order
they were activated.

= [Note that an expired one-shot timer must be reset via
tx_timer_change before it can be activated again.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values

TX_SUCCESS (0x00) Successful application timer
activation.

TX_TIMER_ERROR (0x15) Invalid application timer
pointer.

TX_ACTIVATE_ERROR (0x17) Timer was already active or

is a one-shot timer that has
already expired.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Application Timers 273

Example
TX TIMER my timer;
UINT status;

/* Activate an application timer. Assume that the
application timer has already been created. */
status = tx_timer_ activate (&my_timer);

/* If status equals TX SUCCESS, the application timer is
now active. */

See Also

tx_timer_change, tx_timer_create, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

274 Description of ThreadX Services

tx_timer_change

Change application timer

Prototype

UINT tx_timer change (TX TIMER *timer ptr,
ULONG initial_ ticks, ULONG reschedule_ticks)

Description
This service changes the expiration characteristics of the specified

application timer. The timer must be deactivated prior to calling this
service.

A call to the tx_timer_activate service is required after this service in
i I order to start the timer again.

Parameters
timer_ptr Pointer to a timer control block.
initial_ticks Specifies the initial number of ticks for timer
expiration. Legal values range from 1 through
OxFFFFFFFF.
reschedule_ticks Specifies the number of ticks for all timer

expirations after the first. A zero for this
parameter makes the timer a one-shot timer.
Otherwise, for periodic timers, legal values range
from 1 through OxFFFFFFFF.

Note that an expired one-shot timer
| must be reset via tx_timer_change
I before it can be activated again.

Return Values
TX_SUCCESS (0x00) Successful application timer change.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

TX_TICK_ERROR (0x16) Invalid value (a zero) supplied for initial
ticks.

TX _CALLER_ERROR (0x13) Invalid caller of this service.

<EEERXEY & User Guide

Application Timers 275

Allowed From
Threads, timers, and ISRs

Preemption Possible

No

Example
TX TIMER my timer;
UINT status;

/* Change a previously created and now deactivated timer
to expire every 50 timer ticks, including the initial
expiration. */

status = tx_timer_ change (&émy timer, 50, 50);

/* If status equals TX SUCCESS, the specified timer is
changed to expire every 50 ticks. */

/* Activate the specified timer to get it started again. */
status = tx timer activate (&my_timer);

See Also

tx_timer_activate, tx_timer_create, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

276 Description of ThreadX Services

tx_timer_create

Create application timer

Prototype

UINT tx_timer create (TX TIMER *timer ptr, CHAR *name_ ptr,
VOID (*expiration_ function) (ULONG),
ULONG expiration_input, ULONG initial_ticks,
ULONG reschedule_ ticks, UINT auto_activate)

Description

This service creates an application timer with the specified expiration
function and periodic.

Parameters

timer_ptr Pointer to a timer control block

name_ptr Pointer to the name of the timer.

expiration_function Application function to call when the timer
expires.

expiration_input Input to pass to expiration function when timer
expires.

initial_ticks Specifies the initial number of ticks for timer
expiration. Legal values range from 1 through
OxFFFFFFFF.

reschedule_ticks Specifies the number of ticks for all timer

expirations after the first. A zero for this
parameter makes the timer a one-shot timer.
Otherwise, for periodic timers, legal values range
from 1 through OxFFFFFFFF.

Note after a one-shot timer expires, it
i must be reset via tx_timer_change
before it can be activated again.

auto_activate Determines if the timer is automatically activated
during creation. If this value is
TX_AUTO_ACTIVATE (0x01) the timer is made
active. Otherwise, if the value
TX_NO_ACTIVATE (0x00) is selected, the timer
is created in a non-active state. In this case, a

<EEERXEY & User Guide

Application Timers 277

subsequent tx_timer_activate service call is
necessary to get the timer actually started.

Return Values
TX_SUCCESS (0x00)

TX_TIMER_ERROR (0x15)

TX_TICK_ERROR (0x16)
TX_ACTIVATE_ERROR (0x17)
TX_CALLER_ERROR (0x13)

Allowed From
Initialization and threads

Preemption Possible

No

Example
TX TIMER my timer;
UINT status;

Successful application timer
creation.

Invalid application timer pointer.
Either the pointer is NULL or the
timer is already created.

Invalid value (a zero) supplied for
initial ticks.

Invalid activation selected.

Invalid caller of this service.

/* Create an application timer that executes
"my timer function" after 100 ticks initially and then
after every 25 ticks. This timer is specified to start

immediately! */

status = tx_timer create(s&my timer,"my timer name",
my timer function, 0x1234, 100, 25,
TX_ AUTO_ACTIVATE) ;

/* If status equals TX SUCCESS, my timer function will
be called 100 timer ticks later and then called every
25 timer ticks. Note that the value 0x1234 is passed to
my timer function every time it is called. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

278 Description of ThreadX Services

tx_timer_deactivate

Deactivate application timer

Prototype

UINT tx_timer deactivate (TX TIMER *timer ptr)

Description

This service deactivates the specified application timer. If the timer is
already deactivated, this service has no effect.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values

TX_SUCCESS (0x00) Successful application timer
deactivation.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

<EEERXEY & User Guide

Application Timers 279

Example
TX TIMER my timer;
UINT status;

/* Deactivate an application timer. Assume that the
application timer has already been created. */
status = tx_timer deactivate (&my_timer);

/* If status equals TX SUCCESS, the application timer is
now deactivated. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

280 Description of ThreadX Services

tx_timer_delete

Delete application timer

Prototype

UINT tx_timer delete (TX TIMER *timer ptr)

Description
This service deletes the specified application timer.

i I It is the application’s responsibility to prevent use of a deleted timer.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values
TX_SUCCESS (0x00) Successful application timer deletion.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.
TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

<EEERXEY & User Guide

Application Timers 281

Example
TX TIMER my timer;
UINT status;

/* Delete application timer. Assume that the application
timer has already been created. */
status = tx_timer delete (&my_ timer) ;

/* If status equals TX SUCCESS, the application timer is
deleted. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_deactivate,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

282 Description of ThreadX Services

tx_timer_info_get
Retrieve information about an application timer

Prototype

UINT tx_timer info_get (TX TIMER *timer ptr, CHAR **name,
UINT *active, ULONG *remaining_ ticks,
ULONG *reschedule_ticks,
TX_TIMER **next timer)

Description
This service retrieves information about the specified application timer.

Parameters
timer_ptr Pointer to a previously created application timer.

name Pointer to destination for the pointer to the
timer’s name.

active Pointer to destination for the timer active
indication. If the timer is inactive or this service
is called from the timer itself, a TX_FALSE value
is returned. Otherwise, if the timer is active, a
TX_TRUE value is returned.

remaining_ticks Pointer to destination for the number of timer
ticks left before the timer expires.

reschedule_ticks Pointer to destination for the number of timer
ticks that will be used to automatically
reschedule this timer. If the value is zero, then
the timer is a one-shot and won’t be
rescheduled.

next_timer Pointer to destination for the pointer of the next
created application timer.

Note: Supplying a TX_NULL for any parameter indicates that the
I' I parameter is not required.

<EEERXEY & User Guide

Application Timers 283

Return Values
TX_SUCCESS (0x00) Successful timer information retrieval.
TX_TIMER_ERROR (0x15) Invalid application timer pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible

No
Example
TX_ TIMER my timer;
CHAR *name;
UINT active;
ULONG remaining ticks;
ULONG reschedule ticks;
TX_TIMER *next timer;
UINT status;

/* Retrieve information about the previously created
application timer "my timer." */
status = tx_timer_info_get(smy timer, &name,
&active, &remaining ticks,
&reschedule_ticks,
&next timer);

/* If status equals TX SUCCESS, the information requested is
valid. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_deactivate,
tx_timer_delete, tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get

Express Logic

284 Description of ThreadX Services

tx_timer_performance_info_get
Get timer performance information

Prototype

UINT tx timer performance_info_get (TX TIMER *timer_ ptr,
ULONG *activates, ULONG *reactivates,
ULONG *deactivates, ULONG *expirations,
ULONG *expiration_adjusts);

Description

This service retrieves performance information about the specified
application timer.

i I The ThreadX library and application must be built with
TX_TIMER_ENABLE PERFORMANCE_INFO defined for this service to

return performance information.

Parameters

timer_ptr Pointer to previously created timer.

activates Pointer to destination for the number of activation
requests performed on this timer.

reactivates Pointer to destination for the number of
automatic reactivations performed on this
periodic timer.

deactivates Pointer to destination for the number of
deactivation requests performed on this timer.

expirations Pointer to destination for the number of

expirations of this timer.

expiration_adjusts Pointer to destination for the number of internal
expiration adjustments performed on this timer.
These adjustments are done in the timer
interrupt processing for timers that are larger
than the default timer list size (by default timers
with expirations greater than 32 ticks).

<EEERXEY & User Guide

Application Timers 285

i Supplying a TX_NULL for any parameter indicates the parameter is
not required.

Return Values

TX_SUCCESS (0x00) Successful timer performance
get.
TX_PTR_ERROR (0x03) Invalid timer pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX TIMER my_ timer;
ULONG activates;
ULONG reactivates;
ULONG deactivates;
ULONG expirations;
ULONG expiration adjusts;

/* Retrieve performance information on the previously created
timer. */
status = tx_timer performance info_get (&my timer, s&activates,
&reactivates, &deactivates, &expirations,
&expiration_ adjusts);

/* If status is TX_ SUCCESS the performance information was
successfully retrieved. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_create,
tx_timer_deactivate, tx_timer_delete, tx_timer_info_get,
tx_timer_performance_system_info_get

Express Logic

286 Description of ThreadX Services

tx_timer_performance_system_info_get
Get timer system performance information

Prototype

UINT tx timer performance_system_ info_get (ULONG *activates,
ULONG *reactivates, ULONG *deactivates,
ULONG *expirations, ULONG *expiration adjusts);

Description

This service retrieves performance information about all the application
timers in the system.

I The ThreadX library and application must be built with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined for this service to
return performance information.

Parameters

activates Pointer to destination for the total number of
activation requests performed on all timers.

reactivates Pointer to destination for the total number of
automatic reactivation performed on all periodic
timers.

deactivates Pointer to destination for the total number of
deactivation requests performed on all timers.

expirations Pointer to destination for the total number of

expirations on all timers.

expiration_adjusts Pointer to destination for the total number of
internal expiration adjustments performed on all
timers. These adjustments are done in the timer
interrupt processing for timers that are larger
than the default timer list size (by default timers
with expirations greater than 32 ticks).

I Supplying a TX_NULL for any parameter indicates that the parameter
is not required.

<EEERXEY & User Guide

Application Timers 287

Return Values

TX_SUCCESS (0Ox00) Successful timer system
performance get.

TX_FEATURE_NOT_ENABLED(OxFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG activates;
ULONG reactivates;
ULONG deactivates;
ULONG expirations;
ULONG expiration adjusts;

/* Retrieve performance information on all previously created
timers. */
status = tx_timer performance system info_get (&activates,
&reactivates, &deactivates, &expirations,
&expiration adjusts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also

tx_timer_activate, tx_timer_change, tx_timer_create,
tx_timer_deactivate, tx_timer_delete, tx_timer_info_get,
tx_timer_performance_info_get

Express Logic

288 Description of ThreadX Services

<EEXEXY & User Guide

Device Drivers for ThreadX

This chapter contains a description of device drivers
for ThreadX. The information presented in this
chapter is designed to help developers write
application specific drivers. The following lists the
device driver topics covered in this chapter:

a» Device Driver Introduction 290

«» Driver Functions 290
Driver Initialization 291
Driver Control 291
Driver Access 291
Driver Input 291
Driver Output 292
Driver Interrupts 292
Driver Status 292
Driver Termination 292

«» Simple Driver Example 292
Simple Driver Initialization 293
Simple Driver Input 294
Simple Driver Output 295
Simple Driver Shortcomings 296

«» Advanced Driver Issues 297
I/O Buffering 297
Circular Byte Buffers 297
Circular Buffer Input 297
Circular Output Buffer 299
Buffer I/O Management 300
TX_IO_BUFFER 300
Buffered 1/0 Advantage 301
Buffered Driver Responsibilities 301
Interrupt Management 303
Thread Suspension 303

<EIIIF > 5o Guice

290 Device Drivers for ThreadX

Device Driver Introduction

Communication with the external environment is an
important component of most embedded
applications. This communication is accomplished
through hardware devices that are accessible to the
embedded application software. The software
components responsible for managing such devices
are commonly called Device Drivers.

Device drivers in embedded, real-time systems are
inherently application dependent. This is true for two
principal reasons: the vast diversity of target
hardware and the equally vast performance
requirements imposed on real-time applications.
Because of this, it is virtually impossible to provide a
common set of drivers that will meet the
requirements of every application. For these
reasons, the information in this chapter is designed
to help users customize off-the-shelf ThreadX device
drivers and write their own specific drivers.

Driver Functions

ThreadX device drivers are composed of eight basic
functional areas, as follows:

Driver Initialization
Driver Control
Driver Access
Driver Input

Driver Output
Driver Interrupts
Driver Status
Driver Termination

With the exception of initialization, each driver
functional area is optional. Furthermore, the exact

<EEEXEXY & Uscr Guide

Driver Functions 291

processing in each area is specific to the device
driver.

Driver Initialization This functional area is responsible for initialization of
the actual hardware device and the internal data
structures of the driver. Calling other driver services
is not allowed until initialization is complete.

The driver’s initialization function component is
I typically called from the tx_application_define
function or from an initialization thread.

Driver Control After the driver is initialized and ready for operation,
this functional area is responsible for run-time
control. Typically, run-time control consists of making
changes to the underlying hardware device.
Examples include changing the baud rate of a serial
device or seeking a new sector on a disk.

Driver Access Some device drivers are called only from a single
application thread. In such cases, this functional area
is not needed. However, in applications where
multiple threads need simultaneous driver access,
their interaction must be controlled by adding assign/
release facilities in the device driver. Alternatively, the
application may use a semaphore to control driver
access and avoid extra overhead and complication
inside the driver.

Driver Input This functional area is responsible for all device
input. The principal issues associated with driver
input usually involve how the input is buffered and
how threads wait for such input.

Express Logic

292

Driver Output

Driver Interrupts

Driver Status

Driver Termination

Device Drivers for ThreadX

This functional area is responsible for all device
output. The principal issues associated with driver
output usually involve how the output is buffered and
how threads wait to perform output.

Most real-time systems rely on hardware interrupts to
notify the driver of device input, output, control, and
error events. Interrupts provide a guaranteed
response time to such external events. Instead of
interrupts, the driver software may periodically check
the external hardware for such events. This
technique is called polling. It is less real-time than
interrupts, but polling may make sense for some less
real-time applications.

This function area is responsible for providing run-
time status and statistics associated with the driver
operation. Information managed by this function area
typically includes the following:

Current device status
Input bytes

Output bytes

Device error counts

This functional area is optional. It is only required if
the driver and/or the physical hardware device need
to be shut down. After being terminated, the driver
must not be called again until it is re-initialized.

Simple Driver Example

An example is the best way to describe a device
driver. In this example, the driver assumes a simple
serial hardware device with a configuration register,

<EEEXEXY & Uscr Guide

Simple Driver
Initialization

Simple Driver Example 293

an input register, and an output register. This simple
driver example illustrates the initialization, input,
output, and interrupt functional areas.

The tx_sdriver_initialize function of the simple
driver creates two counting semaphores that are
used to manage the driver’s input and output
operation. The input semaphore is set by the input
ISR when a character is received by the serial
hardware device. Because of this, the input
semaphore is created with an initial count of zero.

Conversely, the output semaphore indicates the
availability of the serial hardware transmit register. It
is created with a value of one to indicate the transmit
register is initially available.

The initialization function is also responsible for
installing the low-level interrupt vector handlers for
input and output notifications. Like other ThreadX
interrupt service routines, the low-level handler must
call _tx_thread_context_save before calling the
simple driver ISR. After the driver ISR returns, the
low-level handler must call
_tx_thread_context_restore.

It is important that initialization is called before any of
the other driver functions. Typically, driver
initialization is called from tx_application_define.

See Figure 9 on page 294 for the initialization source
code of the simple driver.

Express Logic

294 Device Drivers for ThreadX

VOID tx sdriver initialize (VOID)

/* Initialize the two counting semaphores used to control
the simple driver I/O0. */
tx semaphore create (&tx sdriver input semaphore,
"simple driver input semaphore", 0);
tx semaphore create (&tx sdriver output semaphore,
"simple driver output semaphore", 1);

/* Setup interrupt vectors for input and output ISRs.
The initial vector handling should call the ISRs
defined in this file. */

/* Configure serial device hardware for RX/TX interrupt
generation, baud rate, stop bits, etc. */

FIGURE 9. Simple Driver Initialization

Simple Driver Input for the simple driver centers around the input

Input semaphore. When a serial device input interrupt is
received, the input semaphore is set. If one or more
threads are waiting for a character from the driver,
the thread waiting the longest is resumed. If no
threads are waiting, the semaphore simply remains
set until a thread calls the drive input function.

There are several limitations to the simple driver
input handling. The most significant is the potential
for dropping input characters. This is possible
because there is no ability to buffer input characters
that arrive before the previous character is
processed. This is easily handled by adding an input
character buffer.

. Only threads are allowed to call the
| | tx_sdriver_input function.

<EEEXEXY & Uscr Guide

Simple Driver Example 295

Figure 10 shows the source code associated with
simple driver input.

UCHAR tx sdriver input (VOID)
{

/* Determine if there is a character waiting. If not,
suspend. */
tx semaphore get (&tx sdriver input semaphore,
TX WAIT FOREVER;
/* Return character from serial RX hardware register. */
return (*serial hardware input ptr);

VOID tx sdriver input ISR (VOID)
{
/* See if an input character notification is pending. */
if (!tx sdriver input semaphore.tx semaphore count)
{
/* If not, notify thread of an input character. */

tx semaphore put (&tx sdriver input semaphore) ;

FIGURE 10. Simple Driver Input

Simple Driver Output processing utilizes the output semaphore to

Output signal when the serial device’s transmit register is
free. Before an output character is actually written to
the device, the output semaphore is obtained. If it is
not available, the previous transmit is not yet
complete.

The output ISR is responsible for handling the
transmit complete interrupt. Processing of the output
ISR amounts to setting the output semaphore,
thereby allowing output of another character.

Express Logic

296 Device Drivers for ThreadX

Only threads are allowed to call the

I tx_sdriver_output function.
Figure 11 shows the source code associated with
simple driver output.

VOID tx sdriver output (UCHAR alpha)

/* Determine if the hardware is ready to transmit a
character. If not, suspend until the previous output
completes. */
tx semaphore get (&tx sdriver output semaphore,
TX WAIT FOREVER) ;
/* Send the character through the hardware. */
*serial hardware output ptr = alpha;

VOID tx sdriver output ISR (VOID)
{

/* Notify thread last character transmit is
complete. */
tx semaphore put (&tx sdriver output semaphore);

FIGURE 11. Simple Driver Output

Simple Driver This simple device driver example illustrates the

Shortcomings basic idea of a ThreadX device driver. However,
because the simple device driver does not address
data buffering or any overhead issues, it does not
fully represent real-world ThreadX drivers. The
following section describes some of the more
advanced issues associated with device drivers.

<EEEXEXY & Uscr Guide

Advanced Driver Issues 297

Advanced Driver Issues

As mentioned previously, device drivers have
requirements as unique as their applications. Some
applications may require an enormous amount of
data buffering while another application may require
optimized driver ISRs because of high-frequency
device interrupts.

1/0 Buffering Data buffering in real-time embedded applications
requires considerable planning. Some of the design
is dictated by the underlying hardware device. If the
device provides basic byte 1/0, a simple circular
buffer is probably in order. However, if the device
provides block, DMA, or packet I/O, a buffer
management scheme is probably warranted.

Circular Byte Circular byte buffers are typically used in drivers that

Buffers manage a simple serial hardware device like a
UART. Two circular buffers are most often used in
such situations—one for input and one for output.

Each circular byte buffer is comprised of a byte
memory area (typically an array of UCHARS), a read
pointer, and a write pointer. A buffer is considered
empty when the read pointer and the write pointers
reference the same memory location in the buffer.
Driver initialization sets both the read and write buffer
pointers to the beginning address of the buffer.

Circular Buffer The input buffer is used to hold characters that arrive

Input before the application is ready for them. When an
input character is received (usually in an interrupt
service routine), the new character is retrieved from
the hardware device and placed into the input buffer
at the location pointed to by the write pointer. The
write pointer is then advanced to the next position in

Express Logic

298

Device Drivers for ThreadX

the buffer. If the next position is past the end of the
buffer, the write pointer is set to the beginning of the
buffer. The queue full condition is handled by
canceling the write pointer advancement if the new
write pointer is the same as the read pointer.

Application input byte requests to the driver first
examine the read and write pointers of the input
buffer. If the read and write pointers are identical, the
buffer is empty. Otherwise, if the read pointer is not
the same, the byte pointed to by the read pointer is
copied from the input buffer and the read pointer is
advanced to the next buffer location. If the new read
pointer is past the end of the buffer, it is reset to the
beginning. Figure 12 shows the logic for the circular

input buffer.
UCHAR tx_input buffer [MAX SIZE];
UCHAR tx input write ptr;
UCHAR tx input read ptr;
/* Initialization. */
tx input write ptr = &tx input buffer[0];
tx input read ptr = &tx input buffer[0];
/* Input byte ISR... UCHAR alpha has character from device. */
save ptr = tx input write ptr;
*tx input write ptr++ = alpha;
if (tx input write ptr > &tx input buffer[MAX SIZE-1])
tx _input write ptr = &tx input buffer[0]; /* Wrap */
if (tx input write ptr == tx input read ptr)

tx input write ptr

save ptr; /* Buffer full */

/* Retrieve input byte from buffer... */
if (tx input read ptr != tx input write ptr)
{
alpha = *tx input read ptr++;
if (tx input read ptr > &tx input buffer[MAX SIZE-1])

tx input read ptr = &tx input buffer[0];

FIGURE 12. Logic for Circular Input Buffer

<EEEXEXY & Uscr Guide

Advanced Driver Issues 299

For reliable operation, it may be necessary to lockout
I interrupts when manipulating the read and write
— ¥ pointers of both the input and output circular buffers.

Circular Output The output buffer is used to hold characters that have

Buffer arrived for output before the hardware device
finished sending the previous byte. Output buffer
processing is similar to input buffer processing,
except the transmit complete interrupt processing
manipulates the output read pointer, while the
application output request utilizes the output write
pointer. Otherwise, the output buffer processing is
the same. Figure 13 shows the logic for the circular
output buffer.

UCHAR tx_output buffer [MAX SIZE];
UCHAR tx output write ptr;
UCHAR tx output read ptr;
/* Initialization. */
tx output write ptr = &tx output buffer([0];
tx output read ptr = &tx output buffer[0];
/* Transmit complete ISR... Device ready to send. */
if (tx output read ptr != tx output write ptr)
{
*device reg = *tx output read ptr++;
if (tx output read reg > &tx output buffer[MAX SIZE-1])
tx output read ptr = &tx output buffer[0];
}
/* Output byte driver service. If device busy, buffer! */
save ptr = tx output write ptr;
*tx output write ptr++ = alpha;
if (tx output write ptr > &tx output buffer[MAX SIZE-1])
tx output write ptr = &tx output buffer[0]; /* Wrap */
if (tx output write ptr == tx output read ptr)

tx output write ptr = save ptr; /* Buffer full! */

FIGURE 13. Logic for Circular Output Buffer

Express Logic

300 Device Drivers for ThreadX

Buffer 1/0 To improve the performance of embedded

Management microprocessors, many peripheral device devices
transmit and receive data with buffers supplied by
software. In some implementations, multiple buffers
may be used to transmit or receive individual packets
of data.

The size and location of I/O buffers is determined by
the application and/or driver software. Typically,
buffers are fixed in size and managed within a
ThreadX block memory pool. Figure 14 describes a
typical I/O buffer and a ThreadX block memory pool
that manages their allocation.

typedef struct TX IO BUFFER STRUCT
{
struct TX IO BUFFER STRUCT *tx next packet;
struct TX IO BUFFER STRUCT *tx next buffer;
UCHAR tx buffer area[TX MAX BUFFER SIZE];
} TX IO BUFFER;

TX BLOCK POOL tx io block pool;

/* Create a pool of I/0O buffers. Assume that the pointer
"free memory ptr"points to an available memory area that
is 64 KBytes in size. */

tx block pool create(&tx io block pool,

"Sample IO Driver Buffer Pool",
free memory ptr, 0x10000,
sizeof (TX IO BUFFER)) ;

FIGURE 14. 1/O Buffer

TX_10_BUFFER The typedef TX_10_BUFFER consists of two
pointers. The tx_next_packet pointer is used to link
multiple packets on either the input or output list. The

<EEEXEXY & Uscr Guide

Buffered 1/O
Advantage

Buffered Driver
Responsibilities

Advanced Driver Issues 301

tx_next_buffer pointer is used to link together
buffers that make up an individual packet of data
from the device. Both of these pointers are set to
NULL when the buffer is allocated from the pool. In
addition, some devices may require another field to
indicate how much of the buffer area actually
contains data.

What are the advantages of a buffer I/O scheme?
The biggest advantage is that data is not copied
between the device registers and the application’s
memory. Instead, the driver provides the device with
a series of buffer pointers. Physical device 1/0
utilizes the supplied buffer memory directly.

Using the processor to copy input or output packets
of information is extremely costly and should be
avoided in any high throughput I/O situation.

Another advantage to the buffered I/O approach is
that the input and output lists do not have full
conditions. All of the available buffers can be on
either list at any one time. This contrasts with the
simple byte circular buffers presented earlier in the
chapter. Each had a fixed size determined at
compilation.

Buffered device drivers are only concerned with
managing linked lists of I/O buffers. An input buffer
list is maintained for packets that are received before
the application software is ready. Conversely, an
output buffer list is maintained for packets being sent
faster than the hardware device can handle them.
Figure 15 on page 302 shows simple input and

Express Logic

302 Device Drivers for ThreadX

output linked lists of data packets and the buffer(s)
that make up each packet.

Input List
Input Head Pointer Input Tail Pointer
Packet 1 Packet 2 Packet n
tx_next_packet tx_next_packet tx_next_packet —p NULL
tx_next_buffer tx_next_buffer tx_next_buffer
tx_buffer_area 1 tx_buffer_area tx_buffer_area
more buffers
in packet or
NULL
Output List
Output Head Pointer Output Tail Pointer
Packet 1 Packet 2 Packet n
tx_next_packet tx_next_packet tx_next_packet —p NULL
tx_next_buffer tx_next_buffer tx_next_buffer
tx_buffer_area 1 tx_buffer_area tx_buffer_area
more buffers
in packet or
NULL

FIGURE 15. Input-Output Lists

Applications interface with buffered drivers with the
same 1/O buffers. On transmit, application software
provides the driver with one or more buffers to
transmit. When the application software requests
input, the driver returns the input data in I/O buffers.

<EEEXEXY & Uscr Guide

Interrupt
Management

Thread
Suspension

i

Advanced Driver Issues 303

In some applications, it may be useful to build a
driver input interface that requires the application to
exchange a free buffer for an input buffer from the
driver. This might alleviate some buffer allocation
processing inside of the driver.

In some applications, the device interrupt frequency
may prohibit writing the ISR in C or to interact with
ThreadX on each interrupt. For example, if it takes
25us to save and restore the interrupted context, it
would not be advisable to perform a full context save
if the interrupt frequency was 50us. In such cases, a
small assembly language ISR is used to handle most
of the device interrupts. This low-overhead ISR
would only interact with ThreadX when necessary.

A similar discussion can be found in the interrupt
management discussion at the end of Chapter 3.

In the simple driver example presented earlier in this
chapter, the caller of the input service suspends if a

character is not available. In some applications, this
might not be acceptable.

For example, if the thread responsible for processing
input from a driver also has other duties, suspending
on just the driver input is probably not going to work.
Instead, the driver needs to be customized to request
processing similar to the way other processing
requests are made to the thread.

In most cases, the input buffer is placed on a linked

list and an input event message is sent to the
thread’s input queue.

Express Logic

304 Device Drivers for ThreadX

<EEIEIT > 5o Guice

CHAPTER 6

Demonstration System for
ThreadX

This chapter contains a description of the
demonstration system that is delivered with all
ThreadX processor support packages. The following
lists specific demonstration areas that are covered in
this chapter:

«a» Overview 306

«» Application Define 306
Initial Execution 307

«» Thread 0 308

«» Thread 1 308

«» Thread 2 308

«» Threads 3 and 4 309

«» Thread 5 309

«» Threads 6 and 7 310

«» Observing the Demonstration 310

«» Distribution file: demo_threadx.c 311

<EEXIIF > Use: Guice

306 Demonstration System for ThreadX

Overview

Each ThreadX product distribution contains a
demonstration system that runs on all supported
microprocessors.

This example system is defined in the distribution file
demo_threadx.c and is designed to illustrate how
ThreadX is used in an embedded multithread
environment. The demonstration consists of
initialization, eight threads, one byte pool, one block
pool, one queue, one semaphore, one mutex, and
one event flags group.

Except for the thread’s stack size, the demonstration
. application is identical on all ThreadX supported
l processors.
The complete listing of demo_threadx.c, including
the line numbers referenced throughout the
remainder of this chapter, is displayed on page 312
and following.

Application Define

The tx_application_define function executes after
the basic ThreadX initialization is complete. It is
responsible for setting up all of the initial system
resources, including threads, queues, semaphores,
mutexes, event flags, and memory pools.

The demonstration system'’s tx_application_define
(line numbers 60-164) creates the demonstration
objects in the following order:

byte pool 0
thread O
thread 1
thread 2
thread_ 3

<EEIXRXEY & Uscr Guide

Initial Execution

Application Define 307

thread_4
thread 5
thread 6
thread 7
queue_ 0
semaphore 0
event flags 0
mutex 0

block pool 0

The demonstration system does not create any other
additional ThreadX objects. However, an actual
application may create system objects during run-
time inside of executing threads.

All threads are created with the TX_AUTO_START
option. This makes them initially ready for execution.
After tx_application_define completes, control is
transferred to the thread scheduler and from there to
each individual thread.

The order in which the threads execute is determined
by their priority and the order that they were created.
In the demonstration system, thread_0 executes first
because it has the highest priority (it was created
with a priority of 1). After thread_0 suspends,
thread_35 is executed, followed by the execution of
thread_3, thread_4, thread_6, thread_7, thread_1,
and finally thread_2.

Even though thread_3 and thread_4 have the same
priority (both created with a priority of 8), thread_3
executes first. This is because thread_3 was created
and became ready before thread_4. Threads of
equal priority execute in a FIFO fashion.

Express Logic

308

Thread 0

Thread 1

Thread 2

Demonstration System for ThreadX

The function thread_0_entry marks the entry point
of the thread (lines 167-190). Thread_0 is the first
thread in the demonstration system to execute. Its
processing is simple: it increments its counter, sleeps
for 10 timer ticks, sets an event flag to wake up
thread_35, then repeats the sequence.

Thread_0 is the highest priority thread in the system.
When its requested sleep expires, it will preempt any
other executing thread in the demonstration.

The function thread_1_entry marks the entry point
of the thread (lines 193-216). Thread_1 is the
second-to-last thread in the demonstration system to
execute. Its processing consists of incrementing its
counter, sending a message to thread_2 (through
queue_0), and repeating the sequence. Notice that
thread_1 suspends whenever queue_0 becomes
full (line 207).

The function thread_2_entry marks the entry point
of the thread (lines 219-243). Thread_2 is the last
thread in the demonstration system to execute. Its
processing consists of incrementing its counter,
getting a message from thread_1 (through
queue_0), and repeating the sequence. Notice that
thread_2 suspends whenever queue_0 becomes
empty (line 233).

Although thread_1 and thread_2 share the lowest
priority in the demonstration system (priority 16), they

<EEIXRXEY & Uscr Guide

Threads 3 and 4 309

are also the only threads that are ready for execution
most of the time. They are also the only threads
created with time-slicing (lines 87 and 93). Each
thread is allowed to execute for a maximum of 4
timer ticks before the other thread is executed.

Threads 3 and 4

Thread 5

i

The function thread_3_and_4_entry marks the
entry point of both thread_3 and thread_4 (lines
246-280). Both threads have a priority of 8, which
makes them the third and fourth threads in the
demonstration system to execute. The processing for
each thread is the same: incrementing its counter,
getting semaphore_0, sleeping for 2 timer ticks,
releasing semaphore_0, and repeating the
sequence. Notice that each thread suspends
whenever semaphore_0 is unavailable (line 264).

Also both threads use the same function for their
main processing. This presents no problems
because they both have their own unique stack, and
C is naturally reentrant. Each thread determines
which one it is by examination of the thread input
parameter (line 258), which is setup when they are
created (lines 102 and 109).

It is also reasonable to obtain the current thread point
during thread execution and compare it with the
control block’s address to determine thread identity.

The function thread_5_entry marks the entry point
of the thread (lines 283-305). Thread_5 is the
second thread in the demonstration system to
execute. Its processing consists of incrementing its

Express Logic

310 Demonstration System for ThreadX

counter, getting an event flag from thread_0 (through
event_flags_0), and repeating the sequence. Notice
that thread_5 suspends whenever the event flag in
event_flags_0 is not available (line 298).

Threads 6 and 7

The function thread_6_and_7_entry marks the
entry point of both thread_6 and thread_7 (lines
307-358). Both threads have a priority of 8, which
makes them the fifth and sixth threads in the
demonstration system to execute. The processing for
each thread is the same: incrementing its counter,
getting mutex_0 twice, sleeping for 2 timer ticks,
releasing mutex_0 twice, and repeating the
sequence. Notice that each thread suspends
whenever mutex_0 is unavailable (line 325).

Also both threads use the same function for their
main processing. This presents no problems
because they both have their own unique stack, and
C is naturally reentrant. Each thread determines
which one it is by examination of the thread input
parameter (line 319), which is setup when they are
created (lines 126 and 133).

Observing the Demonstration

Each of the demonstration threads increments its
own unique counter. The following counters may be
examined to check on the demo’s operation:

thread 0 counter
thread 1 counter
thread 2 counter
thread 3 counter
thread 4 counter
thread 5 counter
thread 6 counter
thread 7 counter

<EEIXRXEY & Uscr Guide

Distribution file: demo_threadx.c 311

Each of these counters should continue to increase
as the demonstration executes, with
thread_1_counter and thread_2_counter
increasing at the fastest rate.

Distribution file: demo_threadx.c

This section displays the complete listing of
demo_threadx.c, including the line numbers
referenced throughout this chapter.

Express Logic

312 Demonstration System for ThreadX

000 /* This is a small demo of the high-performance ThreadX kernel. It includes examples of eight

001 threads of different priorities, using a message queue, semaphore, mutex, event flags group,
002 byte pool, and block pool. */

003

004 #include "tx_api.h"

005

006 #define DEMO_STACK SIZE 1024

007 #define DEMO_BYTE_POOL_SIZE 9120

008 #define DEMO_BLOCK_POOL_SIZE 100

009 #define DEMO_QUEUE_SIZE 100

010

011 /* Define the ThreadX object control blocks... */
012

013 TX_THREAD thread 0;

014 TX THREAD thread 1;

015 TX_THREAD thread 2;

016 TX_THREAD thread 3;

017 TX THREAD thread 4;

018 TX_ THREAD thread_5;

019 TX_THREAD thread_6;

020 TX THREAD thread 7;

021 TX_QUEUE queue_0;

022 TX_SEMAPHORE semaphore_0;

023 TX_MUTEX mutex_0;

024 TX_EVENT_FLAGS_GROUP event_flags_0;

025 TX BYTE_POOL byte_pool 0;

026 TX BLOCK_POOL block pool 0;

027

028 /* Define the counters used in the demo application... */
029

030 ULONG thread 0_counter;

031 ULONG thread 1 _counter;

032 ULONG thread 1 _messages_sent;
033 ULONG thread 2_counter;

034 ULONG thread 2 messages_received;
035 ULONG thread 3_counter;

036 ULONG thread 4_counter;

037 ULONG thread 5_counter;

038 ULONG thread 6_counter;

039 ULONG thread 7_counter;

040

041 /* Define thread prototypes. */

042

043 wvoid thread 0_entry(ULONG thread_ input);

044 wvoid thread 1_entry(ULONG thread_input);

045 wvoid thread 2_entry(ULONG thread_input);

046 wvoid thread 3_and 4 entry(ULONG thread_input) ;
047 wvoid thread 5_entry(ULONG thread_input);

048 wvoid thread 6_and_7_entry(ULONG thread_input) ;
049

050

051 /* Define main entry point. */

052

053 int main()

054 {

055

056 /* Enter the ThreadX kernel. */

057 tx_kernel_enter();

058 '}

059

060 /* Define what the initial system looks like. */
061 wvoid tx_application define(void *first unused memory)
062 {

063

064 CHAR *pointer;

065

066 /* Create a byte memory pool from which to allocate the thread stacks. */
067 tx_byte_pool_create (&byte pool 0, "byte pool 0", first unused memory,
068 DEMO BYTE POOL_SIZE);
069

070 /* Put system definition stuff in here, e.g., thread creates and other assorted
071 create information. */

<EEIEIT ™ User Guce

/*

Distribution file: demo_threadx.c 313

Allocate the stack for thread 0. */

tx_byte_allocate (&byte pool 0, &pointer, DEMO_STACK SIZE, TX_NO_WAIT);

/*

Create the main thread. */

tx_thread create(s&thread 0, "thread 0", thread 0_entry, 0,

/*

pointer, DEMO_STACK SIZE,
1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);

Allocate the stack for thread 1. */

tx_byte_allocate (sbyte pool 0, &pointer, DEMO_STACK SIZE, TX_NO_WAIT);

/*

/*

Create threads 1 and 2. These threads pass information through a ThreadX
message queue. It is also interesting to note that these threads have a time
slice. */

thread create (&thread 1, "thread 1", thread 1 _entry, 1,

pointer, DEMO STACK SIZE,
16, 16, 4, TX_AUTO_ START) ;

Allocate the stack for thread 2. */

tx_byte_allocate (&byte pool 0, &pointer, DEMO_STACK SIZE, TX_NO_WAIT);
tx_thread create(sthread 2, "thread 2", thread 2_entry, 2,

/*

pointer, DEMO STACK SIZE,
16, 16, 4, TX_AUTO_ START) ;

Allocate the stack for thread 3. */

tx_byte_allocate (&byte pool 0, &pointer, DEMO_STACK SIZE, TX_NO_WAIT);

/*

Create threads 3 and 4. These threads compete for a ThreadX counting semaphore.
An interesting thing here is that both threads share the same instruction area. */

tx_thread create(s&thread 3, "thread 3", thread 3 and 4_entry, 3,

/*

pointer, DEMO_STACK_SIZE,
8, 8, TX_NO_TIME_SLICE, TX AUTO_START);

Allocate the stack for thread 4. */

tx_byte_allocate (s&byte pool 0, &pointer, DEMO_STACK SIZE, TX NO WAIT);

tx_thread create(sthread 4, "thread 4", thread 3 and 4_entry, 4,

/*

tx_byte_allocate (&byte pool 0, &pointer, DEMO_STACK SIZE, TX_NO WAIT);

/x

tx_thread create(sthread 5, "thread 5", thread 5 entry, 5,

/x

pointer, DEMO_STACK_SIZE,
8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);

Allocate the stack for thread 5. */
Create thread 5. This thread simply pends on an event flag, which will be set
by thread 0. */

pointer, DEMO_STACK SIZE,
4, 4, TX_NO_TIME SLICE, TX_AUTO_START);

Allocate the stack for thread 6. */

tx_byte_allocate (sbyte pool 0, &pointer, DEMO_STACK SIZE, TX_NO_WAIT);

/*

Create threads 6 and 7. These threads compete for a ThreadX mutex. */

tx_thread create(s&thread 6, "thread 6", thread 6 _and 7_entry, 6,

/*

pointer, DEMO_STACK_SIZE,
8, 8, TX_NO_TIME_SLICE, TX AUTO_START);

Allocate the stack for thread 7. */

tx_byte_allocate(s&byte pool 0, &pointer, DEMO_STACK SIZE, TX NO WAIT);

tx_thread create(s&thread 7, "thread 7", thread 6 _and 7_entry, 7,

/*

pointer, DEMO_STACK_SIZE,
8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);

Allocate the message queue. */

tx_byte_allocate (&byte pool 0, &pointer, DEMO_QUEUE_SIZE*sizeof (ULONG), TX_NO WAIT);

/x

Create the message queue shared by threads 1 and 2. */

tx_queue create (&queue_0, "queue 0", TX_1 ULONG, pointer, DEMO_QUEUE_SIZE*sizeof (ULONG)) ;

/*

Create the semaphore used by threads 3 and 4. */

Express Logic

314 Demonstration System for ThreadX

144 tx_semaphore_create (&semaphore 0, "semaphore 0", 1);

145

146 /* Create the event flags group used by threads 1 and 5. */

147 tx_event flags_create(sevent_ flags_0, "event flags 0");

148

149 /* Create the mutex used by thread 6 and 7 without priority inheritance. */
150 tx_mutex create (&mutex 0, "mutex 0", TX_NO INHERIT);

151

152 /* Allocate the memory for a small block pool. */

153 tx_byte_allocate (sbyte pool 0, &pointer, DEMO_BLOCK POOL_SIZE, TX_NO_WAIT);
154

155 /* Create a block memory pool to allocate a message buffer from. */

156 tx_block_pool create (&block pool 0, "block pool 0", sizeof (ULONG), pointer,
157 DEMO_BLOCK_POOL_SIZE) ;

158

159 /* Allocate a block and release the block memory. */

160 tx_block_allocate (&block pool 0, &pointer, TX NO WAIT);

161

162 /* Release the block back to the pool. */

163 tx_block_release (pointer);

164 1}

165

166 /* Define the test threads. */
167 wvoid thread_0_entry (ULONG thread_input)

168 {

169

170 UINT status;

171

172

173 /* This thread simply sits in while-forever-sleep loop. */
174 while (1)

175 {

176

177 /* Increment the thread counter. */

178 thread 0_counter++;

179

180 /* Sleep for 10 ticks. */

181 tx_thread_sleep (10);

182

183 /* Set event flag 0 to wakeup thread 5. */
184 status = tx_event flags_set(sevent flags 0, 0xl, TX OR);
185

186 /* Check status. */

187 if (status != TX_ SUCCESS)

188 break;

189 }

190 1}

191

192

193 wvoid thread 1 _entry (ULONG thread input)

194 {

195

196 UINT status;

197

198

199 /* This thread simply sends messages to a queue shared by thread 2. */
200 while (1)

201 {

202

203 /* Increment the thread counter. */

204 thread_1_counter++;

205

206 /* Send message to queue 0. */

207 status = tx_queue_send(&queue 0, &thread 1 messages_sent, TX WAIT FOREVER);
208

209 /* Check completion status. */

210 if (status != TX_ SUCCESS)

211 break;

212

213 /* Increment the message sent. */

214 thread 1 messages_sent++;

215 }

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

Distribution file: demo_threadx.c 315

}
void thread 2_entry (ULONG thread input)

ULONG received_message;

UINT status;
/* This thread retrieves messages placed on the queue by thread 1. */
while (1)
{
/* Increment the thread counter. */
thread 2 counter++;
/* Retrieve a message from the queue. */
status = tx_queue_receive (&queue 0, &received message, TX WAIT FOREVER);
/* Check completion status and make sure the message is what we
expected. */
if ((status != TX_ SUCCESS) || (received message != thread 2 messages_received)
break;
/* Otherwise, all is okay. Increment the received message count. */
thread 2 messages_received++;
}
}
void thread 3 _and_4_entry (ULONG thread_input)
{
UINT status;
/* This function is executed from thread 3 and thread 4. As the loop
below shows, these function compete for ownership of semaphore 0. */
while (1)
{
/* Increment the thread counter. */
if (thread_input == 3)
thread_3_counter++;
else
thread 4 counter++;
/* Get the semaphore with suspension. */
status = tx_semaphore_get (&ésemaphore 0, TX_ WAIT_ FOREVER);
/* Check status. */
if (status != TX_ SUCCESS)
break;
/* Sleep for 2 ticks to hold the semaphore. */
tx_thread_sleep(2);
/* Release the semaphore. */
status = tx_semaphore_put (&semaphore 0);
/* Check status. */
if (status != TX_ SUCCESS)
break;
}
}
void thread 5_entry (ULONG thread input)
{
UINT status;
ULONG actual_ flags;

Express Logic

316 Demonstration System for ThreadX

288

289

290 /* This thread simply waits for an event in a forever loop. */
291 while (1)

292 {

293

294 /* Increment the thread counter. */

295 thread_5_counter++;

296

297 /* Wait for event flag 0. */

298 status = tx_event flags_get(sevent flags 0, 0xl, TX OR CLEAR,
299 &actual_flags, TX WAIT_ FOREVER);
300

301 /* Check status. */

302 if ((status != TX_ SUCCESS) || (actual_flags != 0x1)
303 break;

304 }

305 1}

306

307 wvoid thread 6 _and_7_entry (ULONG thread_input)

308 {

309

310 UINT status;

311

312

313 /* This function is executed from thread 6 and thread 7. As the loop
314 below shows, these function compete for ownership of mutex 0. */
315 while (1)

316 {

317

318 /* Increment the thread counter. */

319 if (thread_input == 6)

320 thread 6_counter++;

321 else

322 thread 7_counter++;

323

324 /* Get the mutex with suspension. */

325 status = tx_mutex_get (smutex 0, TX WAIT FOREVER);
326

327 /* Check status. */

328 if (status != TX_ SUCCESS)

329 break;

330

331 /* Get the mutex again with suspension. This shows
332 that an owning thread may retrieve the mutex it
333 owns multiple times. */

334 status = tx_mutex_get (&mutex 0, TX WAIT FOREVER);
335

336 /* Check status. */

337 if (status != TX_ SUCCESS)

338 break;

339

340 /* Sleep for 2 ticks to hold the mutex. */

341 tx_thread_sleep(2);

342

343 /* Release the mutex. */

344 status = tx_mutex_put(&mutexio);

345

346 /* Check status. */

347 if (status != TX_ SUCCESS)

348 break;

349

350 /* Release the mutex again. This will actually
351 release ownership since it was obtained twice. */
352 status = tx_mutex_put (sémutex_ 0);

353

354 /* Check status. */

355 if (status != TX SUCCESS

356 break;

357 }

358 }

<SEEXZXF® User Guide

APPENDIXA

ThreadX API Services

«» Entry Function 318

«» Block Memory Services 318
«» Byte Memory Services 318
«» Event Flags Services 319
«» Interrupt Control 319

«» Mutex Services 319

«» Queue Services 320

«» Semaphore Services 320
«» Thread Control Services 321
«» Time Services 322

«» Timer Services 322

<EIIIF > 5o Guice

318

Entry
Function

Block
Memory
Services

Byte
Memory
Services

VOID

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

ThreadX API Services

tx_kernel_enter (VOID);

tx_block_allocate (TX_BLOCK_POOL *pool ptr,
VOID **block ptr, ULONG wait_option);

tx_block_pool_ create (TX_BLOCK_POOL *pool ptr,
CHAR *name_ptr, ULONG block_size,
VOID *pool start, ULONG pool size);

tx_block_pool_delete (TX_BLOCK_POOL *pool ptr);

tx_block_pool_info_get (TX_BLOCK_POOL *pool ptr,
CHAR **name,
ULONG *available blocks, ULONG *total blocks,
TX _THREAD **first suspended,
ULONG *suspended_count,
TX_BLOCK_POOL **next pool);

tx_block_pool performance_info_get (TX BLOCK_POOL *pool_ptr,
ULONG *allocates, ULONG *releases, ULONG *suspensions,
ULONG *timeouts) ;

tx_block_pool performance_system info_ get (ULONG *allocates,
ULONG *releases, ULONG *suspensions, ULONG *timeouts);

tx_block_pool prioritize (TX_BLOCK_POOL *pool ptr);

tx_block_release (VOID *block_ptr);

tx_byte_allocate (TX_BYTE_POOL *pool ptr,
VOID **memory ptr,
ULONG memory_size, ULONG wait_option);

tx_byte_pool_create (TX_BYTE_POOL *pool ptr,
CHAR *name_ptr,
VOID *pool_start, ULONG pool_size);

tx_byte_pool_delete (TX_BYTE_POOL *pool ptr);

tx_byte_pool_info_get (TX_BYTE_POOL *pool ptr,
CHAR **name, ULONG *available bytes,
ULONG *fragments, TX THREAD **first suspended,
ULONG *suspended_count,
TX_BYTE_POOL **next_pool);

tx_byte_pool performance_info_get (TX_ BYTE_ POOL *pool ptr,
ULONG *allocates,
ULONG *releases, ULONG *fragments searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);

tx_byte_pool_ performance_system info_get (ULONG *allocates,
ULONG *releases, ULONG *fragments searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);

tx_byte_pool_prioritize (TX_BYTE_POOL *pool ptr);

tx_byte_release(VOID *memory_ptr);

XXX & User Guide

Event
Flags
Services

Interrupt
Control

Mutex
Services

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

UINT

ThreadX APl Services 319

tx_event_ flags_create (TX_EVENT_FLAGS_GROUP *group_ptr,
CHAR *name_ptr);

tx_event_ flags_delete (TX_EVENT_FLAGS_GROUP *group_ptr);

tx_event_flags_get (TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG requested flags, UINT get option,
ULONG *actual_flags_ptr, ULONG wait_option);

tx_event_ flags_info_get (TX_EVENT_FLAGS_GROUP *group_ptr,
CHAR **name, ULONG *current_flags,
TX_THREAD **first suspended,
ULONG *suspended_count,
TX_EVENT_FLAGS_GROUP **next_group) ;

tx_event_ flags_performance_info_get (TX_EVENT_FLAGS_GROUP
*group_ptr, ULONG *sets, ULONG *gets, ULONG *suspensions,
ULONG *timeouts) ;

tx_event_ flags_performance_system info_get (ULONG *sets,
ULONG *gets,
ULONG *suspensions, ULONG *timeouts) ;

tx_event_flags_set (TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG flags_to_set, UINT set_option);

tx_event_flags_set notify (TX EVENT_FLAGS_GROUP *group_ptr,
VOID (*events_set notify) (TX_EVENT_FLAGS_GROUP *));

tx_interrupt_control (UINT new_posture);

tx_mutex create (TX MUTEX *mutex ptr, CHAR *name_ptr,
UINT inherit);

tx mutex delete (TX MUTEX *mutex_ptr);
tx_mutex_get (TX_MUTEX *mutex ptr, ULONG wait_option);

tx mutex info_get (TX_MUTEX *mutex_ptr, CHAR **name,
ULONG *count, TX_ THREAD **owner,
TX_THREAD **first suspended,
ULONG *suspended_count,
TX_MUTEX **next mutex) ;

tx_mutex_performance_info_get(TXiMUTEX *mutex_ptr, ULONG
*puts, ULONG *gets, ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

tx mutex performance_system info_get (ULONG *puts, ULONG
*gets,
ULONG *suspensions, ULONG *timeouts, ULONG *inversions,
ULONG *inheritances);

tx mutex prioritize (TX_MUTEX *mutex_ptr);

tx _mutex put (TX_MUTEX *mutex_ptr);

Express Logic

320 ThreadX API Services

Queue UINT tx_queue_create (TX_QUEUE *queue_ptr, CHAR *name_ptr,
- 1 *
Seerces giggGmZiZiZigi;;e; VOID *queue_start,
UINT tx_queue_delete (TX_QUEUE *queue_ptr);
UINT tx_queue_flush(TX_QUEUE *queue_ptr);
UINT tx_queue_front_send (TX_ QUEUE *queue_ptr, VOID *source_ptr,

ULONG wait_option);

UINT tx_queue_info_get (TX_QUEUE *queue_ptr, CHAR **name,
ULONG *enqueued, ULONG *available_storage,
TX_THREAD **first suspended,
ULONG *suspended_count, TX QUEUE **next queue);

UINT tx_queue_performance_info_get (TX QUEUE *queue_ptr,
ULONG *messages_sent, ULONG *messages_received,
ULONG *empty suspensions, ULONG *full suspensions,
ULONG *full_errors, ULONG *timeouts) ;

UINT tx_queue_performance_system info_get (ULONG *messages_sent,
ULONG *messages_received, ULONG *empty suspensions,
ULONG *full suspensions, ULONG *full errors,
ULONG *timeouts);

UINT tx_queue_prioritize (TX_QUEUE *queue_ptr);

UINT tx_queue_receive (TX_QUEUE *queue_ptr,
VOID *destination_ptr, ULONG wait_option);

UINT tx_queue_send (TX_QUEUE *queue_ptr, VOID *source_ptr,
ULONG wait option);

UINT tx_queue_send_notify (TX QUEUE *queue_ptr, VOID
(*queue_send notify) (TX_QUEUE *));

mm UINT tx_semaphore_ceiling put (TX_SEMAPHORE *semaphore_ptr,
= ULONG ceiling);
Services

UINT tx_semaphore_create (TX_ SEMAPHORE *semaphore_ ptr,
CHAR *name ptr, ULONG initial count);

UINT tx_semaphore_delete (TX_ SEMAPHORE *semaphore_ ptr);

UINT tx_semaphore_get (TX_SEMAPHORE *semaphore_ptr,
ULONG wait_option);

UINT tx_semaphore_info_get (TX_SEMAPHORE *semaphore_ptr, CHAR **name,
ULONG *current value,
TX_THREAD **first suspended,
ULONG *suspended_count,
TX SEMAPHORE **next semaphore);

UINT tx_semaphore_performance_info_get (TX_SEMAPHORE *semaphore ptr,
ULONG *puts, ULONG *gets, ULONG *suspensions,
ULONG *timeouts);

UINT tx_semaphore_performance_system_ info_get (ULONG *puts,
ULONG *gets, ULONG *suspensions, ULONG *timeouts) ;

UINT tx_semaphore_prioritize (TX_SEMAPHORE *semaphore_ptr);

XXX & User Guide

Thread
Control
Services

UINT

UINT

UINT

UINT

UINT

TX_THREAD

UINT

UINT

UINT

UINT

UINT

VOID
UINT
UINT
UINT

UINT

UINT

ThreadX APl Services 321

tx_semaphore_put (TX_SEMAPHORE *semaphore_ptr);

tx_semaphore_put_notify (TX_SEMAPHORE *semaphore_ptr,
VOID (*semaphore put notify) (TX SEMAPHORE *));

tx_thread create (TX_THREAD *thread_ptr,
CHAR *name_ptr,
VOID (*entry function) (ULONG), ULONG entry_ input,
VOID *stack start, ULONG stack size,
UINT priority, UINT preempt_threshold,
ULONG time_slice, UINT auto_start);

tx_thread delete (TX_THREAD *thread ptr);

tx_thread entry exit_notify (TX_THREAD *thread ptr,
VOID (*thread entry exit notify) (TX_THREAD *, UINT));

*tx_thread_identify (VOID) ;

tx_thread info_get (TX_THREAD *thread ptr, CHAR **name,
UINT *state, ULONG *run_count, UINT *priority,
UINT *preemption threshold, ULONG *time slice,
TX_THREAD **next_thread,
TX_THREAD **next suspended_thread) ;

tx_thread performance_info_get (TX_THREAD *thread ptr,
ULONG *resumptions, ULONG *suspensions,
ULONG *solicited preemptions,
ULONG *interrupt preemptions,
ULONG *priority inversions,ULONG *time_slices, ULONG
*relinquishes, ULONG *timeouts,
ULONG *wait aborts, TX THREAD **last preempted by);
tx_thread performance system info_get (ULONG *resumptions,
ULONG *suspensions,
ULONG *solicited preemptions,
ULONG *interrupt preemptions,
ULONG *priority inversions,ULONG *time slices, ULONG
*relinquishes, ULONG *timeouts,
ULONG *wait_aborts, ULONG *non_idle_ returns,
ULONG *idle returns);

tx_thread preemption_change (TX_THREAD *thread ptr,
UINT new_threshold, UINT *old_threshold);

tx_thread priority_change (TX_THREAD *thread_ptr,
UINT new_priority, UINT *old priority);

tx_thread relinquish (VOID);
tx_thread_reset(TX_THREAD *thread_ptr);
tx_thread resume (TX_THREAD *thread ptr);
tx_thread_sleep(ULONG timer ticks);

tx_thread stack_error_notify
VOID(*stack_error_handler) (TX_THREAD *));

tx_thread suspend (TX_THREAD *thread_ptr);

Express Logic

322 ThreadX API Services

UINT

UINT

UINT

Time Services ULONG
VOID

Timer Services UTNT

UINT

UINT

UINT
UINT

UINT

UINT

UINT

XXX & User Guide

tx_thread terminate (TX_THREAD *thread ptr);

tx_thread time_slice_change (TX_THREAD *thread_ptr,
ULONG new_time slice, ULONG *old time slice);

tx_thread wait_abort (TX THREAD *thread ptr);

tx_time_get (VOID) ;
tx_time_set (ULONG new_time);

tx_timer_activate (TX_TIMER *timer ptr);

tx_timer_change (TX_TIMER *timer ptr,
ULONG initial_ticks,
ULONG reschedule_ticks);

tx_timer create (TX_TIMER *timer ptr,
CHAR *name_ptr,
VOID (*expiration function) (ULONG),
ULONG expiration_input, ULONG initial_ ticks,
ULONG reschedule_ticks, UINT auto_activate);

tx_timer_ deactivate (TX_TIMER *timer ptr);
tx_timer_ delete (TX_TIMER *timer ptr);

tx_timer_info_get (TX_TIMER *timer ptr, CHAR **name,
UINT *active, ULONG *remaining ticks,
ULONG *reschedule_ ticks,
TX_TIMER **next_timer);

tx_timer performance_info_get (TX_TIMER *timer ptr,
ULONG *activates,
ULONG *reactivates, ULONG *deactivates,
ULONG *expirations,
ULONG *expiration adjusts);

tx_timer_ performance system info_ get
ULONG *activates, ULONG *reactivates,
ULONG *deactivates, ULONG *expirations,
ULONG *expiration_adjusts);

ThreadX Constants

«» Alphabetic Listings 324
«» Listing by Value 326

<EIIIF > 5o Guice

324 ThreadX User Guide

Alphabetic TX_1_ULONG 1

Listings TX_2_ULONG 2
TX_4_ULONG 4
TX_8 ULONG 8
TX_16_ULONG 16
TX_ACTIVATE_ERROR 0x17
TX_AND 2
TX_AND_CLEAR 3
TX_AUTO_ACTIVATE 1
TX_AUTO_START 1
TX_BLOCK_MEMORY 8
TX_BYTE_MEMORY 9
TX_CALLER_ERROR 0x13
TX_CEILING_EXCEEDED 0x21
TX_COMPLETED 1
TX_DELETE_ERROR 0x11
TX_DELETED 0x01
TX_DONT_START 0
TX_EVENT_FLAG 7
TX_FALSE 0
TX_FEATURE_NOT _ENABLED OxFF
TX_FILE 11
TX_GROUP_ERROR 0x06
TX_INHERIT 1
TX_INHERIT _ERROR Ox1F
TX_INVALID_CEILING 0x22
TX_I0_DRIVER 10
TX_LOOP_FOREVER 1
TX_MUTEX_ERROR 0x1C
TX_MUTEX_SUSP 13
TX_NO_ACTIVATE 0

<EEXEXF® User Guide

ThreadX Constants

TX_NO_EVENTS
TX_NO_INHERIT
TX_NO_INSTANCE
TX_NO_MEMORY
TX_NO_TIME_SLICE
TX_NO_WAIT
TX_NOT_AVAILABLE
TX_NOT_DONE
TX_NOT_OWNED
TX_NULL
TX_OPTION_ERROR
TX_OR
TX_OR_CLEAR
TX_POOL_ERROR
TX_PRIORITY_ERROR
TX_PTR_ERROR
TX_QUEUE_EMPTY
TX_QUEUE_ERROR
TX_QUEUE_FULL
TX_QUEUE_SUSP
TX_READY
TX_RESUME_ERROR
TX_SEMAPHORE_ERROR
TX_SEMAPHORE_SUSP
TX_SIZE_ERROR
TX_SLEEP
TX_STACK_FILL
TX_START_ERROR
TX_SUCCESS
TX_SUSPEND_ERROR
TX_SUSPEND_LIFTED

325

0x07

0x0D
0x10

0x1D
0x20
Ox1E

0x08

0x02
OxOF
0x03
0x0A
0x09
0x0B
5

0
0x12
0x0C
6
0x05
4
OXxEFEFEFEFUL
0x10
0x00
0x14
0x19

Express Logic

326

Listing by Value

ThreadX User Guide

TX_SUSPENDED
TX_TCP_IP
TX_TERMINATED
TX_THREAD_ENTRY
TX_THREAD_ERROR
TX_THREAD_EXIT
TX_THRESH_ERROR
TX_TICK_ERROR
TX_TIMER_ERROR
TX_TRUE
TX_WAIT_ABORT_ERROR
TX_WAIT_ABORTED
TX_WAIT_ERROR
TX_WAIT_FOREVER

TX_DONT_START
TX_FALSE
TX_NO_ACTIVATE
TX_NO_INHERIT
TX_NO_TIME_SLICE
TX_NO_WAIT
TX_NULL

TX_OR

TX_READY
TX_SUCCESS
TX_THREAD_ENTRY
TX_1_ULONG
TX_AUTO_ACTIVATE
TX_AUTO_START
TX_COMPLETED
TX_INHERIT

<EEXEXF® User Guide

3

12

2

0
Ox0E
1
0x18
0x16
0x15
1
0x1B
Ox1A
0x04
OxFFFFFFFFUL

O O O O O O o o o

(=]
x

o
o

[UL U U O - |

ThreadX Constants 327

TX_LOOP_FOREVER 1
TX_DELETED 0x01
TX_OR_CLEAR 1
TX_THREAD_EXIT 1
TX_TRUE 1
TX_2_ULONG 2
TX_AND 2
TX_POOL_ERROR 0x02
TX_TERMINATED 2
TX_AND_CLEAR 3
TX_PTR_ERROR 0x03
TX_SUSPENDED 3
TX_4_ULONG 4
TX_SLEEP 4
TX_WAIT_ERROR 0x04
TX_QUEUE_SUSP 5
TX_SIZE_ERROR 0x05
TX_GROUP_ERROR 0x06
TX_SEMAPHORE_SUSP 6
TX_EVENT_FLAG 7
TX_NO_EVENTS 0x07
TX_8_ULONG 8
TX_BLOCK_MEMORY 8
TX_OPTION_ERROR 0x08
TX_BYTE_MEMORY 9
TX_QUEUE_ERROR 0x09
TX_IO_DRIVER 10
TX_QUEUE_EMPTY 0x0A
TX_FILE 11
TX_QUEUE_FULL 0x0B
TX_TCP_IP 12

Express Logic

328 ThreadX User Guide

TX_SEMAPHORE_ERROR 0x0C
TX_MUTEX_SUSP 13
TX_NO_INSTANCE 0x0D
TX_THREAD_ERROR OXOE
TX_PRIORITY_ERROR OXOF
TX_16_ULONG 16
TX_NO_MEMORY 0x10
TX_START_ERROR 0x10
TX_DELETE_ERROR 0x11
TX_RESUME_ERROR 0x12
TX_CALLER_ERROR 0x13
TX_SUSPEND_ERROR 0x14
TX_TIMER_ERROR 0x15
TX_TICK_ERROR 0x16
TX_ACTIVATE_ERROR 0x17
TX_THRESH_ERROR 0x18
TX_SUSPEND_LIFTED 0x19
TX_WAIT_ABORTED Ox1A
TX_WAIT_ABORT_ERROR 0x1B
TX_MUTEX_ERROR 0x1C
TX_NOT_AVAILABLE 0x1D
TX_NOT_OWNED OX1E
TX_INHERIT_ERROR Ox1F
TX_NOT_DONE 0x20
TX_CEILING_EXCEEDED 0x21
TX_INVALID_CEILING 0x22
TX_FEATURE_NOT ENABLED OxFF
TX_STACK_FILL OXEFEFEFEFUL
TX_WAIT_FOREVER OXxFFFFFFFFUL

<EEXEXF® User Guide

APPENDIXC

ThreadX Data Types

« TX_BLOCK_POOL 330

« TX_BYTE_POOL 330

« TX_EVENT_FLAGS_GROUP 331
« TX_MUTEX 331

« TX_QUEUE 332

«» TX_SEMAPHORE 333

«» TX_THREAD 333

« TX_TIMER 335

« TX_TIMER_INTERNAL 336

<EIIIF > 5o Guice

330 ThreadX Data Types

typedef struct TX BLOCK POOL_STRUCT
{
ULONG tx block pool id;
CHAR *tx block pool name;
ULONG tx block pool available;
ULONG tx block pool total;
UCHAR *tx block pool available list;
UCHAR *tx block pool start;
ULONG tx block pool size;
ULONG tx block pool block size;
struct TX THREAD_ STRUCT
*tx block pool suspension list;
ULONG tx block pool suspended count;
struct TX BLOCK POOL_STRUCT
*tx block pool created next,
*tx block pool created previous;

#ifdef TX BLOCK POOL ENABLE PERFORMANCE INFO
ULONG tx block pool performance allocate count;
ULONG tx block pool performance release count;
ULONG tx block pool performance suspension count;
ULONG tx block pool performance timeout count;
#endif

TX BLOCK POOL EXTENSION /* Port defined */

} TX_BLOCK_POOL;

typedef struct TX BYTE_ POOL_STRUCT
{
ULONG tx byte pool id;
CHAR *tx byte pool name;
ULONG tx byte pool available;
ULONG tx byte pool fragments;
UCHAR *tx byte pool list;
UCHAR *tx byte pool search;
UCHAR *tx byte pool start;
ULONG tx byte pool size;
struct TX THREAD STRUCT
*tx byte pool owner;
struct TX THREAD STRUCT
*tx byte pool suspension list;
ULONG tx_byte pool suspended count;
struct TX BYTE POOL STRUCT
*tx byte pool created next,
*tx byte pool created previous;

#ifdef TX BYTE POOL ENABLE PERFORMANCE INFO

<EEIEIT® Us-r cuice

TX_EVENT_FLAGS_GROUP 331

ULONG tx byte pool performance allocate count;
ULONG tx byte pool performance release count;
ULONG tx byte pool performance merge count;
ULONG tx byte pool performance split count;
ULONG tx byte pool performance search count;
ULONG tx byte pool performance suspension count;
ULONG tx byte pool performance timeout count;
#endif

TX BYTE POOL EXTENSION /* Port defined */

} TX BYTE_POOL;

typedef struct TX EVENT FLAGS GROUP STRUCT
{
ULONG tx event flags group id;
CHAR *tx event flags group name;
ULONG tx event flags group current;
UINT tx event flags group reset search;
struct TX THREAD STRUCT
*tx event flags group suspension list;
ULONG tx event flags group suspended count;
struct TX EVENT FLAGS GROUP_STRUCT
*tx event flags group created next,
*tx event flags group created previous;
ULONG tx_event flags group delayed clear;

#ifdef TX EVENT FLAGS ENABLE PERFORMANCE INFO
ULONG tx_event flags group performance set count;
ULONG tx event flags group performance get count;
ULONG tx_event flags_group performance_ suspension_count;
ULONG tx event flags group performance timeout count;
#endif

#ifndef TX DISABLE NOTIFY CALLBACKS

VOID (*tx_event flags_group_ set notify) (struct TX EVENT FLAGS_ GROUP_STRUCT
*) i

#endif

TX EVENT FLAGS GROUP EXTENSION /* Port defined */
} TX_EVENT FLAGS_GROUP;

typedef struct TX MUTEX STRUCT
{
ULONG tx mutex id;
CHAR *tx mutex name;
ULONG tx mutex ownership count;

Express Logic

332

ThreadX Data Types

TX_THREAD *tx mutex_ owner;

UINT tx mutex inherit;

UINT tx mutex original priority;
struct TX THREAD STRUCT

ULONG

*tx mutex suspension list;
tx mutex suspended count;

struct TX MUTEX STRUCT

ULONG

*tx mutex created next,
*tx mutex created previous;
tx_mutex highest priority waiting;

struct TX MUTEX STRUCT

#ifdef TX |

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
#endif

*tx mutex owned next,
*tx mutex owned previous;

MUTEX_ENABLE_PERFORMANCE_INFO

tx mutex performance put count;

tx mutex performance get count;
tx_mutex_performance_suspension_count;

tx mutex performance_timeout count;

tx mutex performance priority inversion count;

tx mutex performance priority inheritance count;

TX_MUTEX_EXTENSION /* Port defined */

} TX_MUTEX;

typedef struct TX QUEUE STRUCT

{
ULONG

tx queue id;

CHAR *tx queue name;
UINT tx queue message_size;

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

tx queue capacity;

tx queue_ enqueued;

tx queue_available storage;
*tx queue start;

*tx queue_ end;

*tx queue read;

*tx queue write;

struct TX THREAD STRUCT

ULONG

*tx queue_ suspension list;
tx queue suspended count;

struct TX QUEUE STRUCT

$ifdef TX

ULONG
ULONG

*tx queue created next,
*tx queue created previous;

QUEUE_ENABLE_PERFORMANCE_INFO
tx queue performance messages_sent count;
tx queue performance messages_received count;

<EEIEIT® Us-r cuice

TX_SEMAPHORE

ULONG tx queue performance empty suspension count;
ULONG tx queue performance full suspension_ count;
ULONG tx_ queue performance full error count;
ULONG tx queue performance timeout count;

#endif

#ifndef TX DISABLE NOTIFY CALLBACKS
VOID *tx queue send notify) (struct TX QUEUE STRUCT *);
#endif

TX_QUEUE_EXTENSION /* Port defined */

} TX QUEUE;

typedef struct TX SEMAPHORE_ STRUCT
{
ULONG tx_semaphore id;
CHAR *tx semaphore name;
ULONG tx semaphore count;
struct TX THREAD STRUCT
*tx semaphore suspension list;
ULONG tx semaphore suspended count;
struct TX SEMAPHORE STRUCT
*tx semaphore created next,
*tx semaphore created previous;

#ifdef TX SEMAPHORE ENABLE PERFORMANCE INFO
ULONG tx semaphore performance put count;
ULONG tx_ semaphore performance get count;
ULONG tx_ semaphore performance_suspension_count;
ULONG tx semaphore performance timeout count;
#endif

#ifndef TX DISABLE NOTIFY CALLBACKS
VOID (*tx semaphore put notify) (struct TX SEMAPHORE STRUCT
#endif

TX SEMAPHORE EXTENSION /* Port defined */

} TX_SEMAPHORE;

typedef struct TX THREAD STRUCT
{
ULONG tx thread id;
ULONG tx thread run count;
VOID *tx thread stack ptr;
VOID *tx thread stack start;
VOID *tx thread stack end;

333

Express Logic

334 ThreadX Data Types

ULONG tx thread stack size;
ULONG tx thread time slice;
ULONG tx_ thread new time slice;
struct TX THREAD STRUCT
*tx thread ready next,
*tx thread ready previous;

TX_THREAD_EXTENSION_ O /* Port defined */

CHAR *tx thread name;
UINT tx thread priority;
UINT tx_ thread state;
UINT tx thread delayed suspend;
UINT tx thread suspending;
UINT tx thread preempt threshold;
VOID (*tx_thread_ schedule_hook) (struct TX_ THREAD STRUCT *, ULONG) ;
VOID (*tx_ thread entry) (ULONG) ;
ULONG tx thread entry parameter;
TX TIMER INTERNAL tx thread timer;
VOID (*tx_thread suspend_cleanup) (struct TX THREAD STRUCT *);
VOID *tx thread suspend control block;
struct TX THREAD STRUCT
*tx thread suspended next,
*tx thread suspended previous;
ULONG tx thread suspend info;
VOID *tx thread additional suspend info;
UINT tx thread suspend option;
UINT tx thread suspend status;

TX_THREAD_EXTENSION_1 /* Port defined */

struct TX THREAD STRUCT
*tx thread created next,
*tx thread created previous;

TX_THREAD_EXTENSION_2 /* Port defined */
VOID *tx_thread filex ptr;

UINT tx thread user priority;

UINT tx thread user preempt threshold;

UINT tx thread inherit priority;

ULONG tx thread owned mutex count;

struct TX MUTEX STRUCT*tx thread owned mutex list;

#ifdef TX THREAD ENABLE PERFORMANCE INFO
ULONG tx thread performance resume count;
ULONG tx_ thread performance_ suspend count;
ULONG tx thread performance solicited preemption count;
ULONG tx thread performance interrupt preemption count;

<EEIEIT® Us-r cuice

TX_TIMER 335

ULONG tx thread performance priority inversion count;
struct TX THREAD STRUCT
*tx thread performance last preempting thread;
ULONG tx thread performance time slice count;
ULONG tx thread performance relinquish count;
ULONG tx_ thread performance timeout count;
ULONG tx thread performance wait abort count;
#endif
VOID *tx thread stack highest ptr;
#ifndef TX DISABLE NOTIFY CALLBACKS
VOID (*tx_ thread entry exit notify)
(struct TX_THREAD_STRUCT *, UINT);
#endif

TX_THREAD EXTENSION_3 /* Port defined */
ULONG tx thread suspension sequence;

TX_ THREAD_USER EXTENSION

} TX_THREAD;

typedef struct TX_ TIMER STRUCT
{
ULONG tx_ timer id;
CHAR *tx timer name;
TX_TIMER INTERNAL tx timer internal;
struct TX TIMER STRUCT
*tx timer created next,
*tx timer created previous;

TX_TIMER EXTENSION /* Port defined */

#ifdef TX TIMER ENABLE PERFORMANCE INFO

ULONG tx_timer performance activate count;

ULONG tx_ timer performance reactivate count;

ULONG tx timer performance_deactivate count;

ULONG tx_timer performance_ expiration_count;

ULONG tx_ timer performance expiration adjust count;
#endif

Express Logic

336 ThreadX Data Types

} TX_TIMER;

typedef struct TX TIMER INTERNAL STRUCT
{
ULONG tx_timer internal remaining ticks;
ULONG tx timer internal re initialize ticks;
VOID (*tx_ timer internal timeout function) (ULONG) ;
ULONG tx_ timer internal timeout param;
struct TX TIMER INTERNAL STRUCT
*tx timer internal active next,
*tx timer internal active previous;
struct TX TIMER INTERNAL STRUCT
*tx timer internal list head;

TX TIMER INTERNAL EXTENSION /* Port defined */

} TX TIMER_INTERNAL;

<EIXRXEY & User Guide

ASCII Character Codes

a» ASCI| Character Codes in HEX 338

<EIIIF > 5o Guice

ASCII Character Codes

338

ASCII Character Codes in HEX

most significant nibble

DEL

. |lolo|lo|o|0|lw-|O|lc|-|.olX|_|E|lc]|o
a0l w - D> /X > N|—e|— —<
OQ«m|oow/w|loT _|s|xla/S z|0
Ol~|N|m |t vw|o|~]|o | v A e
P o

N |- |= H A | |F |- ||~ |+ | | -
Wi - N | X Z m|Z m O
JO00|00 LI >F|IC|Z2 D0 | |N |0 n
Ao Z|njuwoju|v|wu|w|o|x|>D
| (x | X |E=|C|X |4
D|0F|F|O|Z|lO/W |V |- |L|F|w X |0 =
ZO|nuwuww <<com| T a>w on|wun
© = N ™ < m O O W w

0 @ N @ o

2/qqIu Juesyubys jses|

User Guide

Index

Symbols

_application_ISR_entry 100
_tx_thread_context_restore 100, 293
_tx_thread_context_save 100, 293
_tx_thread_stack error_handler 62

A

abort suspension of specified thread 266
accelerated development
benefit of ThreadX 24
activate an application timer 272
activations
number of 95
total number of 95
adding assign/release facilities in the
device driver 291
advanced driver issue 297
alleviating some buffer allocation
processing 303
allocate bytes of memory 126
allocate fixed-size block of memory 108
allocation algorithm 90
allocation of processing 21
allocation suspensions
high number of 88, 92
number of 88, 91

total number of 88, 91
allocation timeouts

number of 88, 91

total number of 88, 91
allocations

number of 91

total number of 91

ANSI C 16

application define 306

application definition function 50
application downloaded to target 28
application entry point 48
application linked 28

application located on host 28
application notification registration 70
application output request 299
application resources 73, 79
application run-time behavior 63
application specific modifications 17
application timer control block 95
application timers 29, 46, 93, 94
application-specific modifications 17
application-specific processing 54
architecture

non-layering picokernel 16
ASCII character codes in HEX 338

assembly language 16
asynchronous events 96

B

Background Debug Mode (BDM) 28
basic service call error checking

disable 35
basic thread suspension 53

BDM (Background Debug Mode) 28
binary semaphores 73, 78
black-box problem elimination 17
block memory services 318

block size 86

340 ThreadX User Guide

Block TX_MUTEX 81 configuration options 33
Block TX_THREAD 57 fastest execution 34
blocks allocated smallest code size 34

number of 88 constant 46

total number of 88 constant area 46

blocks released context of last execution 59
number of 88 context switch overhead 64
total number of 88 context switches 22, 64, 65

buffer I/O management 300
buffered device drivers 301

context switching and polling 23

control-loop based applications 24
buffered driver responsibilities 301

buffered I/O advantage 301

corrupt memory 62
counting semaphore

buffered output 292 delete 208

buffering messages 69 get instance from 210

byte memory area 297 get performance information 214

byte memory services 318 get system performance

information 216

Cc notify application when put 222
place instance in 220

C library 16 place instance with ceiling 204

C main function 31 prioritize suspension list 218

C pointers 86, 90 retrieve information about 212

counting semaphores 72, 73, 76, 79, 293
create a memory pool of bytes 130

C source code 16

change an application timer 274

change priority of an application create a message queue 180

thread 248 create an application thread 224
changes time-slice of application create an application timer 276

thread 264 create an event flags group 144
changing the baud rate of a serial create mutual exclusion mutex 164

device 291 create pool of fixed-size memory
circular buffer input 297 blocks 112
circular buffers 297, 299 creating application timers 94
circular byte buffers 297 creating counting semaphores 74
circular output buffer 299 creating event flags groups 83
clock tick 31 creating memory block pools 86
compiled application 28 creating memory byte pools 89
compiler tool 46 creating message queues 68
completed state 52, 53 creating mutexes 79

Index

critical sections 73, 79
current device status 292
current thread point 309
currently executing thread 59
Customer Support Center 12

D

data buffering 296, 297
deactivate an application timer 278
deactivations

number of 95
total number of 95
deadlock 76, 81

deadlock condition 76
deadly embrace 76, 81
debugger 28

debugger communication 28

debugging multithreaded applications 66

debugging pitfalls 66
de-fragmentation

definition of 89
delete a message queue 182

delete an application timer 280
delete counting semaphore 208
delete memory block pool 114
delete mutual exclusion mutex 166
demo_threadx.c 30, 306, 311
demo.threadx.c 306
demonstration application 33
demonstration system 306
deterministic 85

deterministic real-time behavior 92
deterministic response times 22
development tool

compiler 46
linker 46

Express Logic

341

locator 46
development tool initialization 48, 49

development tools 46

device drivers 297

device error counts 292

device interrupt frequency 303

device interrupts 297, 303

disable ThreadX timer logic 38

disabling OXEF value in byte of thread stack
defining 36

disabling basic service call error
checking 35

disabling notify callbacks for ThreadX
objects 35

disabling the preemption-threshold feature
defining 36

distribution file 311

demo.threadx.c 311
dividing the application 24
division of application into threads 24
DMA 297
does not minimize interrupt lockout time 38
driver access 290, 291
driver control 290, 291
driver example 292, 293
driver functions 290
driver initialization 290, 291
driver input 290, 291
driver input interface 303
driver interrupts 290, 292
driver output 290, 292
driver status 290, 292
driver termination 290, 292
dynamic memory 46, 48
dynamic memory usage 48

342 ThreadX User Guide

E

ease of use
ThreadX 24

elimination of internal system timer thread

defining 39
embedded applications 20
allocation of processor between
tasks 21
definition 20
definition of 20
multitasking 21
embraces avoided 77

empty messages in a message queue 184

EN 50128 19

enable and disable interrupts 162

enable the event gathering code for
creating a TraceX trace buffer 36

enabling performance gathering
information on mutexes 38

enabling performance information
gathering on block pools 35

enabling performance information
gathering on byte pools 35

enabling performance information
gathering on event flags groups 37

enabling performance information
gathering on queues 38

enabling performance information
gathering on timers 39

entry function 318

entry point 51

entry point of the thread 308

entry point of thread 308

event flag services 319

event flags 50, 53, 82

get event flags from group 148
get performance information 154

notify application when set 160

retrieve information about group 152

retrieve performance system
information 156

set flags in group 158
event flags get suspensions

number of 84
total number of 84
event flags get timeouts

number of 84
total number of 84
event flags gets

number of 84
total number of 84
event flags group

create 144
event flags group control block 85

event flags groups 31
event flags set notification 83
event flags sets

number of 84
total number of 84
event notification 73, 78

event_flags_0 310
event-chaining 70

advantages of 71, 75, 84
example of suspended threads 77

example system 31
excessive timers 96

exchanging a free buffer for an input
buffer 303
executing state 52, 53
execution
initialization 45
interrupt service routines (ISR) 44
execution context 60

execution overview 44
expiration adjustments

Index

number of 95

total number of 95
expirations

number of 95

total number of 95
external events 64

F

fast memory 48
faster time to market

benefit of ThreadX 24
FIFO order 69, 74, 79, 87, 91

first_unused_memory 32
first-available RAM 50
first-fit memory allocation 89
first-in-first-out (FIFO) 55
fixed-size block of memory

allocation of 108
fixed-size blocks 86

fixed-size memory 85
fixed-size memory blocks
create pool of 112
fixed-sized messages 68
fragmentation 85
definition of 89
fragmented pool 90
fragments created

number of 91

total number of 91
fragments merged

number of 91

total number of 91
fragments searched

number of 91

total number of 91
function call nesting 60

function calls 59

Express Logic

343

G

gathering of performance information on
semaphores 39
get a message from message queue 196
get block pool performance
information 118

get block pool system performance
information 120
get byte pool performance information 136
get byte pool system performance
information 138
get event flags from event flags group 148
get event flags group performance
information 154
get instance from counting semaphore 210
get mutex performance information 172
get mutex system performance
information 174
get queue performance information 190
get queue system performance
information 192
get semaphore performance
information 214
get semaphore system performance
information 216
get thread performance information 238
get thread system performance
information 242
get timer performance information 284
get timer system performance
information 286

getting started 27

global data structures 28
global variables 47
globals 63

344 ThreadX User Guide

H initialization process 48
initialized data 46, 47

input and output notifications 293
input buffer 297, 298

input buffer list 301

input byte requests 298

input bytes 292

input characters 297

input semaphore 294

hardware devices 290
hardware interrupt 46
hardware interrupts 292
heterogeneous 54

hidden system thread 96
high throughput 1/0 301
highest priority thread 308
high-frequency interrupts 100

host computers 28 input-output lists 302

host considerations 28 installation

troubleshooting 33
I installation of ThreadX 30

instruction 46
1/0 buffer 300

1/0O buffering 297

/O drivers 290 International Electrotechnical Commission

ICE (In-Circuit Emulation) 28 (IEC) 61508 and IEC 62304 18
idle system returns

instruction area 46
instruction image of ThreadX 16

International Electrotechnical Commission

low number of 66 (IEC) 62304 18
number of 66

IEC 60335-1 19

IEC 60730 Annex H 19
IEC 61508 18

IEC 62304 18

IEC/UL 60730-1 19 interrupt preemptions

IEEE 1149.1 28

) number of 65, 66

improve the tx_thread_resume and interrupt service routines 44, 45
tx_thread_suspend API calls 37

interrupt control 97, 319

enable and disable 162
interrupt frequency 303

interrupt latency 100
interrupt management 303

interrupt vector handlers 293
interrupting 56

interrupts 44, 50, 96

invalid pointer 63

improved responsiveness

ThreadX benefit 22
In-Circuit Emulation (ICE) 28

increased throughput 23

ISO 26262 18
in-house kernels 17 ISR
!n!tfal Cond't'fm of a mutex 79 handling transmit complete interrupt 295
initial execution 307 ISR template 99
initialization 44, 45, 48 ISRs 44

Index

memory cannot be called from 89

J
JTAG 28

L

large local data 62

linker tool 46

linking multiple packets 300
Linux 28

Linux development platform 30
local storage 58

local variable allocation 60

local variables 59

locator tool 46

locking out interrupts 299

logic for circular input buffer 298
logic for circular output buffer 299
logical AND/OR operation 82
lower-priority threads

not suspending 66
low-level initialization 49

main 32, 49, 51

main function 49

malloc calls 89

memory 53

memory areas 46
memory block in cache 86
memory block pool 85

delete 114

get performance information about 118
get system performance for 120
prioritize suspension list 122

release fixed size block 124

Express Logic

345

retrieve information about 116
memory block pool control block 88

memory block pools 85
memory block size 86
memory byte pool 89, 92

allocate 126
create 130
get performance information 136
get system performance
information 138
prioritize suspension list 140
release bytes to pool 142
memory byte pool control block 92
memory pitfalls 62
memory pools 31, 48, 50
memory usage 46
merging of adjacent memory blocks 89
message destination pitfall 72
message queue 67
create 180
delete 182
empty messages from 184
get message from queue 196
get queue performance information 190
get system performance
information 192
notify application when message is sent
to queue 202
prioritize suspension list 194
retrieve information about 188
send message to front of queue 186
send message to queue 200
message queue capacity 68
message size 68
messages received
total number of 71
messages sent
total number of 71
microkernel vs. picokernel architecture 16

346 ThreadX User Guide

minimum stack size 60
defining 38
MISRA C Compliant 19
MISRA-C
2004 19
2012 19
misuse of thread priorities 63
multiple buffers 300
multiple synchronization events 70
multitasking 21
multithreaded 52
multithreaded environment 23
multithreading 63, 64, 67
mutex
create 164
delete 166
get information about 170
get ownership of 168
get performance information 172

get system performance
information 174

prioritize suspension list 176
release ownership of 178
mutex get suspensions
number of 80
total number of 80
mutex get timeouts
high number of 80
number of 80
total number of 80
mutex gets
number of 80
total number of 80
mutex mutual exclusion 79
mutex priority inheritances
number of 80
total number of 80
mutex priority inversions
number of 80

total number of 80
mutex puts

number of 80
total number of 80
mutex services 319

mutex_0 310

mutexes 31, 50, 53, 57, 64, 78, 79
mutual exclusion 73, 76, 78, 81
my_thread_entry 32

N

nondeterministic behavior 85, 92
nondeterministic priority inversion 82
non-idle system returns

number of 66
non-reentrant 63

notify application upon thread entry and
exit 230

notify application when event flags are
set 160

notify application when message is sent to
queue 202

notify application when semaphore is
put 222

number of threads 57

(0

observing the demonstration 310
obtain ownership of mutex 168
OCD 28

OCD (on chip debug) 28

on-chip debug 28

one-shot timer 93

optimized driver ISRs 297
optimizing applications 71

order of thread execution 307

Index

output buffer 299
output buffer list 301
output bytes 292
output semaphore 293
overhead 90

associated with multithreaded
kernels 23
reduction due to multithreading 23
overhead impact of multithreaded
environments 23
overview 306

ThreadX 16
overwriting memory blocks 89, 93

ownership count 79

P

packet /0 297

performance of embedded
microprocessors 300

periodic interrupt 29

periodic timers 93

periodics 46

physical memory 48

picokernel 16

picokernel architecture 16

pitfall 78, 81

place an instance in counting
semaphore 220

place an instance in counting semaphore

with ceiling 204

polling
definition of 292

polling as work around to control loop
response time 23

pool capacity 86, 90

pool memory area 87, 90

portability of ThreadX 16, 25

Express Logic

347

preemption 55, 56
preemption-threshold 56, 57, 64, 65, 78
changing during run-time 57
too low 66
preemptive scheduling 22

priorities
thread control block field 59
prioritize block pool suspension list 122
prioritize byte pool suspension list 140
prioritize mutex suspension list 176
prioritize queue suspension list 194
prioritize semaphore suspension list 218
priority 54
priority ceiling 56
priority inheritance 57, 64, 81
priority inversion 56, 63, 78, 81
priority inversions
number of 66
priority levels for ThreadX
defining 37
priority of internal ThreadX timer thread
defining 40
priority overhead 64
priority zero 96
priority-based scheduling 22
process

definition of 21
process oriented operating system 21

processing bandwidth 63, 100

processing time allocation prior to real-time
kernels 22

processor allocation 24

processor allocation logic 24

processor isolation 24

processor reset 44

processor-independent interface provided
by ThreadX 24

348 ThreadX User Guide

producer-consumer 73
product distribution 29
program execution

types of 44
protecting the software investment

ThreadX guarantees migration path 25

public resource 68, 73, 78, 93

memory blocks 86
memory byte pool 89

Q

queue control 72
queue empty suspensions

total number of 71
queue event-chaining 70

queue full error returns

total number of 71
queue full suspensions 71

total number of 71
queue memory area 69

queue messages 53

queue performance information 71
queue send notification 70

queue services 320

queue timeouts

total number of 71
queue_0 308

queues 31, 48, 50

R

RAM

first available 50
initialized data area 47
placing stack in 60
queue memory area in 69
requirements 28
reactivation of ThreadX timers in-line

defining 38
reactivations (periodic timers)

number of 95
total number of 95
read and write pointers 298

read pointer 298
readme_threadx.txt 28, 29, 32, 33, 34, 99
ready state 52, 53
ready thread 44
real-time 85

definition of 20
real-time software

definition of 20
real-time systems 44, 56

device drivers embedded in 290
re-creating thread 53

recursive algorithms 62

redundant polling 23

reentrancy of threads 62

reentrant 62

reentrant function 62

register thread stack error notification
callback 258

relative time 96

release a fixed-size block of memory 124

release bytes back to memory pool 142

release ownership of mutex 178

releases
number of 91
total number of 91

Relinquish control to other application
threads 250

removing logic for initializing ThreadX
global C data structures 36

reset 48, 50

reset thread 252

responsive processing 57

Index

re-starting thread 53
resume suspended application thread 254
retrieve information about an application
timer 282
retrieve information about block pool 116
retrieve information about event flags
group 152
retrieve information about mutex 170
retrieve information about queue 188
retrieve information about semaphore 212
retrieve information about thread 234
retrieve performance system information
about event flags group 156
retrieves current time
time
retrieve 268
retrieves pointer to currently executing

thread 232
ROM

instruction area location 46
location of instruction area 47
ROM requirements for target 28

round-robin scheduling 55
RTOS standard 18
run-time

preemption-threshold changing

during 57

run-time application timer performance 95
run-time behavior 24, 63
run-time block pool performance 87
run-time byte pool performance 91
run-time configuration 92
run-time control. 291
run-time event flags performance 84
run-time image 16
run-time mutex performance 80
run-time queue performance 71

Express Logic

349

run-time semaphore performance 75
run-time stack checking 37, 62
run-time statistics 292

run-time status 292

run-time thread performance 65

S

Safety Certifications 18

ThreadX Certification Pack 20
UL Certification 19
scalability 16

scaling among micro-controller-based
applications 16
scheduling 50
scheduling loop 59
scheduling threads 44
seeking a new sector on a disk 291
semaphore control block 76, 81
semaphore event-chaining 75
semaphore get suspensions
number of 75
total number of 75
semaphore get timeouts
high number of 76
number of 75
total number of 75
semaphore gets
number of 75
total number of 75
semaphore put notification 74
semaphore puts
number of 75
total number of 75
semaphore services 320
semaphore_0 309
semaphores 31, 50, 53, 78
semi-independent program segment 50

350 ThreadX User Guide

send a message to message queue 200
send message to the front of queue 186
service call preemptions 66

number of 65, 66
service call time-outs 29

set event flags in an event flag group 158

sets the current time 270

setting both the read and write buffer
pointers to beginning address of
buffer 297

setting the output semaphore 295

simple 296

simple driver initialization 293, 294

simple driver input 294

simple driver output 295, 296

simple driver shortcomings 296

simplifying development with threads 24

size and location of 1/O buffers 300

size of ThreadX 16

slow memory 48

software maintenance 23

stack 44

stack areas

preset with data pattern prior to creating
threads 61

stack corruption 62

stack error handler 37

stack error handling routine 62

stack memory area 61

stack pointer 59

stack preset 61

stack size 67, 306

stack size of internal ThreadX timer thread
defining 40

stack space 58

stacks 48, 50

starvation 56

of threads 63
starving threads 63

static memory 46

static memory usage 46

static variables 47

statics 63

suspend an application thread 260

suspended current thread for specified
time 256

suspended state 52, 53

suspension 98

suspension aborts

number of 66
system reset 48, 51

system stack 28, 46, 47
system throughput
impact on 23

T

tailoring kernel with assembly language 16
target

address space of 69
interrupt source requirements 29
ROM requirements 28

target address space 87

target considerations 28
target download 28

target’s address space 60, 90
task

definition of 21
ThreadX does not use term 22
tasks vs. threads 21

terminated state 52, 53
terminates an application thread 262
Thread 309
thread
abort suspension of 266

Index

change priority of 248
changes time slice of 264
control block of 57
create 224
critical sections 56
definition of 21
get performance information 238
get system performance 242
highest priority 308
notify application when entering and
exiting 230
register stack error notification 258
relinquish control to other threads 250
reset 252
resume suspended 254
retrieve information about 234
retrieves pointer to executing thread 232
stack area 60
stack for saving context of execution 59
stack of 58, 59
suspend 260
suspend for specified time 256
term that replaces task 22
terminate 262
thread 0 308

thread 1 308

thread 2 308

Thread 3 309

Thread 4 309

thread 5 309

thread 6 310

thread 7 310

thread control 57

thread control block fields 59
thread control services 321
thread counters 310

thread creation 57

Thread Entry/Exit Notification 54
thread execution 44, 50, 309

Express Logic

351

thread execution states 52
thread identity 309

thread model 22

thread preemption 53
thread priorities 54, 63
thread priority pitfalls 63
thread relinquishes

number of 66
thread resumptions

number of 65
thread scheduling 55

thread scheduling loops 44, 49

thread stack area 59

thread stack sizes 61

thread starvation 63

thread state transition 52

thread states 52

thread suspension 69, 74, 83, 87, 90, 303
thread suspensions

number of 65
thread timeouts

number of 66
Thread_0 308

thread_0 308, 310
thread_0_entry 308
Thread_1 308
thread_1_counter 311
thread_1_entry 308
thread_2 308
thread_2_counter 311
thread_2_entry 308
thread_3 309
thread_3_and_4_entry 309
thread_4 309
thread_5 308, 309, 310
thread_5_entry 309

352 ThreadX User Guide

thread_6 310
thread_6_and_7_entry 310
thread_7 310
threads 31, 50, 54, 57

number of 57

simplifying development with 24
threads 3 and 4 309
ThreadX

block memory pool 300
constants 323

data types 11

demo application 33
deployed in two-billion devices 18
distribution contents 29
ease of use 24
initialization 306
installation 30
instruction image of 16
managed interrupts 97
overview 16

portability 16
portability of 25
primary purpose of 21

processor-independent interface 24
RTOS standard for deeply embedded

applications 18
services 101
size of 16
supported processors 306
synchronization primitive 54
using 31
ThreadX benefit 22
accelerated development 24
faster time to market 24
improve time-to-market 24
improved responsiveness 22
ThreadX_Express_Startup.pdf 29

throughput reduction 23
tick counter 96
time

set 270
suspension for 53
time services 322
time slicing 55
service call function 29
time-outs 46, 69
service call 29
timer
activate 272
change 274
create 276
deactivate 278
delete 280
get performance information 284
get system performance
information 286
retrieve information about 282
timer accuracy 94
timer execution 94
timer intervals 93
timer related functions 29
timer services 94, 322
timer setup 93
timer ticks 55, 93, 94, 96
timers 50
time-slice 55, 59
number of 66
time-slices
number of 66
time-slicing 94
transmitting and receiving data with
buffers 300

transmitting or receiving individual packets

of data 300
troubleshooting 33

installation 33

tips 33

where to send information 33
TUV Certification 18

Index

TX_AND_CLEAR 82
tx_api.h 30, 31, 32, 57, 72, 76, 81, 85, 88,
92, 95
tx_application_define 31, 32, 49, 50, 51,
291, 293, 306, 307
TX_AUTO_START 307
tx_block_allocate 97, 108
TX_BLOCK_MEMORY (0x08) 58
TX_BLOCK_POOL 88, 330
tx_block_pool_create 112, 122
tx_block_pool _delete 114
TX_BLOCK_POOL_ENABLE_PERFORM
ANCE_INFO 35, 87
tx_block_pool_info_get 97, 116
tx_block_pool_performance_info_get 88,
97,118
tx_block_pool_performance_system_info__
get 88, 97, 120
tx_block_pool_prioritize 87, 97, 122
tx_block_release 97, 124
tx_byte_allocate 126, 134
TX_BYTE_MEMORY (0x09) 58
TX_BYTE_POOL 92, 330, 331
tx_byte_pool_create 130, 140
tx_byte_pool_delete 132
TX_BYTE_POOL_ENABLE_PERFORMA
NCE_INFO 91
tx_byte_pool_info_get 97
tx_byte_pool_performance_info_get 92,
97, 136
tx_byte_pool_performance_system_info_g
et 92, 97,138
tx_byte_pool_prioritize 91, 97, 140
tx_byte_release 142
TX_COMPLETED (0x01) 58

Express Logic

353

TX_DISABLE_ERROR_CHECKING 35,101
TX_DISABLE_NOTIFY_CALLBACKS 35
TX_DISABLE_PREEMPTION_THRESHOLD
36
TX_DISABLE_REDUNDANT_CLEARING 36
TX_DISABLE_STACK_FILLING 36
TX_ENABLE_EVENT_TRACE 36
TX_ENABLE_STACK_CHECKING 37, 62
TX_EVENT_FLAG (0x07) 58
tx_event_flags_create 144, 152
tx_event_flags_delete 146
TX_EVENT_FLAGS_ENABLE_PERFOR
MANCE_INFO 37, 84
tx_event_flags_get 82, 98, 148
TX_EVENT_FLAGS_GROUP 85, 331
tx_event_flags_info_get 98, 152
tx_event_flags_performance 154
tx_event_flags_performance_info_get 85,
98
tx_event_flags_performance_system_info
_get 85, 98, 156
tx_event_flags_set 82, 98, 158
tx_event_flags_set notify 83, 98, 160 tx_ill
assembly file 93
TX_INCLUDE_USER_DEFINE_FILE 34
tx_initialize_low_level 29
TX_INLINE_THREAD_RESUME_SUSPE
ND 37
tx_interrupt_control 97, 98, 162
TX_IO0_BUFFER 300
tx_kernel_enter 31, 32, 49, 51
TX_MAX_PRIORITIES 37
TX_MINIMUM_STACK 38, 60
TX_MISRA_ENABLE 38
TX_MUTEX 331, 332

354 ThreadX User Guide

tx_mutex_create 164

tx_mutex_delete 166

TX_MUTEX_ENABLE_PERFORMANCE_|
NFO 38, 80

tx_mutex_get 78, 168

tx_mutex_info_get 170

tx_mutex_performance_info_get 80, 98,
172

tx_mutex_performance_system_info_get
80, 98, 174

tx_mutex_prioritize 79, 176

tx_mutex_put 78, 178

TX_MUTEX_SUSP (0x0D) 58

tx_next_buffer 301

tx_next_packet 300

TX_NO_TIMER 38

TX_NOT_INTERRUPTABLE 38

TX_OR_CONSUME 82

tx_port.h 11, 30, 38

TX_QUEUE 72, 332, 333

tx_queue_create 180

tx_queue_delete 182

TX_QUEUE_ENABLE_PERFORMANCE_
INFO 38, 71

tx_queue_flush 184

tx_queue_front_send 98, 186

tx_queue_info_get 98, 188

tx_queue_performance_info_get 71, 98,
190

tx_queue_performance_system_info_get
71, 98, 192

tx_queue_prioritize 69, 98, 194

tx_queue_receive 67, 98, 196

tx_queue_send 65, 67, 98, 200

tx_queue_send_notify 70, 98, 202

TX_QUEUE_SUSP (0x05) 58

TX_REACTIVATE_INLINE 38
TX_READY (0x00) 58
tx_sdriver _initialize 293
tx_sdriver_input 294
tx_sdriver_output 296
TX_SEMAPHORE 76, 333
tx_semaphore_ceiling_put 73, 98, 204
tx_semaphore_create 206
tx_semaphore_delete 208
TX_SEMAPHORE_ENABLE_PERFORMA
NCE_INFO 39, 75
tx_semaphore_get 70, 72, 98, 210
tx_semaphore_info_get 98, 212
tx_semaphore_performance_info_get 76,
98, 214
tx_semaphore_performance_system_info_
get 76, 98, 216
tx_semaphore_prioritize 74, 98, 218
tx_semaphore_put 70, 72, 98, 220
tx_semaphore_put_notify 74, 98, 222
TX_SEMAPHORE_SUSP (0x06) 58
TX_SLEEP (0x04) 58
TX_SUSPENDED (0x03) 58
TX_TERMINATED (0x02) 58
TX_THREAD 48, 333, 335
tx_thread_create 32, 50, 224, 234
tx_thread_current_ptr 59, 67
tx_thread_delete 228, 266
TX_THREAD_ENABLE_PERFORMANCE
_INFO 39, 65
tx_thread_entry_exit_notify 54, 98, 230
tx_thread_identify 59, 98, 232
tx_thread_info_get 98, 234
tx_thread_performance_info_get 66, 98,
238

Index

tx_thread_performance_system_info_get
66, 98, 242
tx_thread_preemption_change 246
tx_thread_priority_change 248
tx_thread_relinquish 55, 250
tx_thread_reset 252
tx_thread_resume 98, 254
tx_thread_run_count 58
tx_thread_sleep 32, 256
tx_thread_stack_error_notify 37, 62, 98,
258
tx_thread_state 58
tx_thread_suspend 260
tx_thread_terminate 53, 262
tx_thread_time_slice_change 264
tx_thread_wait_abort 98, 266
tx_time_get 96, 98, 268
tx_time_se 96
tx_time_set 96, 98, 270
TX_TIMER 95, 335, 336
tx_timer_activate 98, 272, 282
tx_timer_change 98, 274
tx_timer_create 276
tx_timer_deactivate 98, 278
tx_timer_delete 280
TX_TIMER_ENABLE_PERFORMANCE_|I
NFO 39, 95
tx_timer_info_get 98, 282
TX_TIMER_INTERNAL 336
tx_timer_performance_info_get 95, 98,
284
tx_timer_performance_system_info_get 9
5, 98, 286
TX_TIMER_PROCESS_IN_ISR 39
TX_TIMER_THREAD_PRIORITY 40
TX_TIMER_THREAD_STACK_SIZE 40

Express Logic

355

tx_user.h 33, 34

tx.a 30, 31

tx.lib 30, 31

types of program execution 44
typical thread stack 60

U

UART 297

UL 1998 20

UL/IEC 60335 20

UL/IEC 60730 20

un-deterministic priority inversion 57, 64

uninitialized data 46, 47

Unix 28

Unix development platform 30

unnecessary processing due to extra
poling 23

unpredictable behavior 50

user-supplied main function 49

using a semaphore to control driver
access 291

using ThreadX 31

w

watchdog services 46
Windows 28
write pointer 297, 298

356

	ThreadX User Guide
	Contents
	Figures
	About This Guide
	Organization
	Guide Conventions
	ThreadX Data Types
	Customer Support Center
	Latest Product Information
	What We Need From You
	Where to Send Comments About This Guide

	1 Introduction to ThreadX
	ThreadX Unique Features
	picokernel™ Architecture
	ANSI C Source Code
	Advanced Technology
	Not A Black Box
	The RTOS Standard

	Safety Certifications
	TÜV Certification
	MISRA C Compliant
	UL Certification
	Certification Pack

	Embedded Applications
	Real-time Software
	Multitasking
	Tasks vs. Threads

	ThreadX Benefits
	Improved Responsiveness
	Software Maintenance
	Increased Throughput
	Processor Isolation
	Dividing the Application
	Ease of Use
	Improve Time-to-market
	Protecting the Software Investment

	2 Installation and Use of ThreadX
	Host Considerations
	Target Considerations
	Product Distribution
	ThreadX Installation
	Using ThreadX
	Small Example System
	Troubleshooting
	Configuration Options
	Smallest Configuration
	Fastest Configuration
	Global Time Source
	Detailed Configuration Options

	ThreadX Version ID

	3 Functional Components of ThreadX
	Execution Overview
	Initialization
	Initialization
	Thread Execution
	Interrupt Service Routines (ISR)
	Application Timers

	Memory Usage
	Static Memory Usage
	Dynamic Memory Usage

	Initialization
	System Reset Vector
	Development Tool Initialization
	main Function
	tx_kernel_enter
	Application Definition Function
	Interrupts

	Thread Execution
	Thread Execution States
	Thread Entry/Exit Notification
	Thread Priorities
	Thread Scheduling
	Round-robin Scheduling
	Time-Slicing
	Preemption
	Preemption- Threshold™
	Priority Inheritance
	Thread Creation
	Thread Control Block TX_THREAD
	Currently Executing Thread
	Thread Stack Area
	Memory Pitfalls
	Optional Run-time Stack Checking
	Reentrancy
	Thread Priority Pitfalls
	Priority Overhead
	Run-time Thread Performance Information
	Debugging Pitfalls

	Message Queues
	Creating Message Queues
	Message Size
	Message Queue Capacity
	Queue Memory Area
	Thread Suspension
	Queue Send Notification
	Queue Event- chaining™
	Run-time Queue Performance Information
	Queue Control Block TX_QUEUE
	Message Destination Pitfall

	Counting Semaphores
	Mutual Exclusion
	Event Notification
	Creating Counting Semaphores
	Thread Suspension
	Semaphore Put Notification
	Semaphore Event- chaining™
	Run-time Semaphore Performance Information
	Semaphore Control Block TX_SEMAPHORE
	Deadly Embrace
	Priority Inversion

	Mutexes
	Mutex Mutual Exclusion
	Creating Mutexes
	Thread Suspension
	Run-time Mutex Performance Information
	Mutex Control Block TX_MUTEX
	Deadly Embrace
	Priority Inversion

	Event Flags
	Creating Event Flags Groups
	Thread Suspension
	Event Flags Set Notification
	Event Flags Event- chaining™
	Run-time Event Flags Performance Information
	Event Flags Group Control Block TX_EVENT_FLAGS_GROUP

	Memory Block Pools
	Creating Memory Block Pools
	Memory Block Size
	Pool Capacity
	Pool’s Memory Area
	Thread Suspension
	Run-time Block Pool Performance Information
	Memory Block Pool Control Block TX_BLOCK_POOL
	Overwriting Memory Blocks

	Memory Byte Pools
	Creating Memory Byte Pools
	Pool Capacity
	Pool’s Memory Area
	Thread Suspension
	Run-time Byte Pool Performance Information
	Memory Byte Pool Control Block TX_BYTE_POOL
	Nondeterministic Behavior
	Overwriting Memory Blocks

	Application Timers
	Timer Intervals
	Timer Accuracy
	Timer Execution
	Creating Application Timers
	Run-time Application Timer Performance Information
	Application Timer Control Block TX_TIMER
	Excessive Timers

	Relative Time
	Interrupts
	Interrupt Control
	ThreadX Managed Interrupts
	ISR Template
	High-frequency Interrupts
	Interrupt Latency

	4 Description of ThreadX Services
	5 Device Drivers for ThreadX
	Device Driver Introduction
	Driver Functions
	Driver Initialization
	Driver Control
	Driver Access
	Driver Input
	Driver Output
	Driver Interrupts
	Driver Status
	Driver Termination

	Simple Driver Example
	Simple Driver Initialization
	Simple Driver Input
	Simple Driver Output
	Simple Driver Shortcomings

	Advanced Driver Issues
	I/O Buffering
	Circular Byte Buffers
	Circular Buffer Input
	Circular Output Buffer
	Buffer I/O Management
	TX_IO_BUFFER
	Buffered I/O Advantage
	Buffered Driver Responsibilities
	Interrupt Management
	Thread Suspension

	6 Demonstration System for ThreadX
	Overview
	Application Define
	Initial Execution

	Thread 0
	Thread 1
	Thread 2
	Threads 3 and 4
	Thread 5
	Threads 6 and 7
	Observing the Demonstration
	Distribution file: demo_threadx.c

	A ThreadX API Services
	Entry Function
	Block Memory Services
	Byte Memory Services
	Event Flags Services
	Interrupt Control
	Mutex Services
	Queue Services
	Semaphore Services
	Thread Control Services
	Time Services
	Timer Services

	B ThreadX Constants
	Alphabetic Listings
	Listing by Value

	C ThreadX Data Types
	TX_BLOCK_POOL
	TX_BYTE_POOL
	TX_EVENT_FLAGS_GROUP
	TX_MUTEX
	TX_QUEUE
	TX_SEMAPHORE
	TX_THREAD
	TX_TIMER
	TX_TIMER_INTERNAL
	ASCII Character Codes in HEX

	D ASCII Character Codes
	Index

