
the high-performance embedded kernel

User Guide

Express Logic
858.613.6640

Toll Free 888.THREADX

FAX 858.521.4259

http://www.expresslogic.com

Version 5

Express Logic

©1997-2019 by Express Logic

All rights reserved. This document and the associated ThreadX software are the sole property of
Express Logic. Each contains proprietary information of Express Logic. Reproduction or duplication by
any means of any portion of this document without the prior written consent of Express Logic is
expressly forbidden.

Express Logic reserves the right to make changes to the specifications described herein at any time
and without notice in order to improve design or reliability of ThreadX. The information in this
document has been carefully checked for accuracy; however, Express Logic makes no warranty
pertaining to the correctness of this document.

Trademarks

ThreadX is a registered trademark of Express Logic, and picokernel, preemption-threshold, and event-
chaining are trademarks of Express Logic.

All other product and company names are trademarks or registered trademarks of their respective
holders.

Warranty Limitations

Express Logic makes no warranty of any kind that the ThreadX products will meet the USER’s
requirements, or will operate in the manner specified by the USER, or that the operation of the
ThreadX products will operate uninterrupted or error free, or that any defects that may exist in the
ThreadX products will be corrected after the warranty period. Express Logic makes no warranties of
any kind, either expressed or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose, with respect to the ThreadX products. No oral or
written information or advice given by Express Logic, its dealers, distributors, agents, or employees
shall create any other warranty or in any way increase the scope of this warranty, and licensee may not
rely on any such information or advice.

Safety Certifications

Part Number: 000-1001
Revision 5.9

IEC 61508 up to SIL 4
IEC 62304 up to SW safety Class C
ISO 26262 ASIL D
EN 50128 SW-SIL 4

UL/IEC 60730, UL/IEC 60335, UL 1998

MISRA-C:2004 Compliant
MISRA C:2012 Compliant

Contents

About This Guide 9
1 Organization 9

1 Guide Conventions 10

1 ThreadX Data Types 11

1 Customer Support Center 12

1 Introduction to ThreadX 15
1 ThreadX Unique Features 16

1 Safety Certifications 18

1 Embedded Applications 20

1 ThreadX Benefits 22

2 Installation and Use of ThreadX 27
1 Host Considerations 28

1 Target Considerations 28

1 Product Distribution 29

1 ThreadX Installation 30

1 Using ThreadX 31

1 Small Example System 31

1 Troubleshooting 33

1 Configuration Options 33

1 ThreadX Version ID 40
User Guide

4 ThreadX
3 Functional Components of ThreadX 41
1 Execution Overview 44

1 Memory Usage 46

1 Initialization 48

1 Thread Execution 50

1 Message Queues 67

1 Counting Semaphores 72

1 Mutexes 78

1 Event Flags 82

1 Memory Block Pools 85

1 Memory Byte Pools 89

1 Application Timers 93

1 Relative Time 96

1 Interrupts 96

4 Description of ThreadX Services 101

5 Device Drivers for ThreadX 289
1

1

1

1

Device Driver Introduction 290

Driver Functions 290

Simple Driver Example 292

Advanced Driver Issues 297

6 Demonstration System for ThreadX 305
1

1

1

1

1

Overview 306

Application Define 306

Thread 0 308

Thread 1 308

Thread 2 308
User Guide

Contents 5
1

1

1

1

1

Threads 3 and 4 309

Thread 5 309

Threads 6 and 7 310

Observing the Demonstration 310

Distribution file: demo_threadx.c 311

Appendices

A ThreadX API Services 317

B ThreadX Constants 323

C ThreadX Data Types 329

D ASCII Character Codes 337

Index 339
Express Logic, Inc.

6 ThreadX
User Guide

Figures
Figure 1 Template for Application Development 32

Figure 2 Types of Program Execution 45

Figure 3 Memory Area Example 47

Figure 4 Initialization Process 51

Figure 5 Thread State Transition 52

Figure 6 Typical Thread Stack 60

Figure 7 Stack Preset to 0xEFEF 61

Figure 8 Example of Suspended Threads 77

Figure 9 Simple Driver Initialization 294

Figure 10 Simple Driver Input 295

Figure 11 Simple Driver Output 296

Figure 12 Logic for Circular Input Buffer 299

Figure 13 Logic for Circular Output Buffer 300

Figure 14 I/O Buffer 300

Figure 15 Input-Output Lists 302
User Guide

8 ThreadX
User Guide

About This Guide
This guide provides comprehensive information
about ThreadX, the high-performance real-time
kernel from Express Logic.

It is intended for the embedded real-time software
developer. The developer should be familiar with
standard real-time operating system functions and
the C programming language.

Organization
Chapter 1 Provides a basic overview of

ThreadX and its relationship to
real-time embedded
development.

Chapter 2 Gives the basic steps to install
and use ThreadX in your
application right out of the box.

Chapter 3 Describes in detail the functional
operation of ThreadX, the high-
performance real-time kernel.

Chapter 4 Details the application’s interface
to ThreadX.

Chapter 5 Describes writing I/O drivers for
ThreadX applications.

Chapter 6 Describes the demonstration
application that is supplied with
every ThreadX processor
support package.
User Guide

10 ThreadX
Appendix A ThreadX API

Appendix B ThreadX constants

Appendix C ThreadX data types

Appendix D ASCII chart

Index Topic cross reference

Guide Conventions

Italics typeface denotes book titles,
emphasizes important words,
and indicates variables.

Boldface typeface denotes file names,
key words, and further
emphasizes important words
and variables.

Information symbols draw
attention to important or
additional information that could
affect performance or function.

Warning symbols draw attention
to situations in which developers
should take care to avoid
because they could cause fatal
errors.

i

!

User Guide

About This Guide 11
ThreadX Data Types
In addition to the custom ThreadX control structure
data types, there are a series of special data types
that are used in ThreadX service call interfaces.
These special data types map directly to data types
of the underlying C compiler. This is done to insure
portability between different C compilers. The exact
implementation can be found in the tx_port.h file
included on the distribution disk.

The following is a list of ThreadX service call data
types and their associated meanings:

UINT Basic unsigned integer. This
type must support 8-bit unsigned
data; however, it is mapped to
the most convenient unsigned
data type.

ULONG Unsigned long type. This type
must support 32-bit unsigned
data.

VOID Almost always equivalent to the
compiler’s void type.

CHAR Most often a standard 8-bit
character type.

Additional data types are used within the ThreadX
source. They are also located in the tx_port.h file.
Express Logic

12 ThreadX
Customer Support Center

Latest Product
Information

Visit the Express Logic web site and select the
“Support” menu option to find the latest online
support information, including information about the
latest ThreadX product releases.

What We Need
From You

Please supply us with the following information in an
email message so we can more efficiently resolve
your support request:

1. A detailed description of the problem, including
frequency of occurrence and whether it can be
reliably reproduced.

2. A detailed description of any changes to the
application and/or ThreadX that preceded the
problem.

3. The contents of the _tx_version_id string found
in the tx_port.h file of your distribution. This string
will provide us valuable information regarding
your run-time environment.

4. The contents in RAM of the _tx_build_options
ULONG variable. This variable will give us
information on how your ThreadX library was built.

Support engineers 858.613.6640

Support fax 858.521.4259

Support email support@expresslogic.com

Web page http://www.expresslogic.com
User Guide

About This Guide 13
Where to Send
Comments About
This Guide

The staff at Express Logic is always striving to
provide you with better products. To help us achieve
this goal, email any comments and suggestions to
the Customer Support Center at

support@expresslogic.com

Enter “ThreadX User Guide” in the subject line.
Express Logic

14 ThreadX
User Guide

User Guide

C H A P T E R 1

Introduction to ThreadX

ThreadX is a high-performance real-time kernel
designed specifically for embedded applications. This
chapter contains an introduction to the product and a
description of its applications and benefits.

1 ThreadX Unique Features 16
picokernel™ Architecture 16
ANSI C Source Code 16
Advanced Technology 16
Not A Black Box 17
The RTOS Standard 18

1 Safety Certifications 18
TÜV Certification 18
MISRA C Compliant 19
UL Certification 19
Certification Pack 20

1 Embedded Applications 20
Real-time Software 20
Multitasking 21
Tasks vs. Threads 21

1 ThreadX Benefits 22
Improved Responsiveness 22
Software Maintenance 23
Increased Throughput 23
Processor Isolation 24
Dividing the Application 24
Ease of Use 24
Improve
Time-to-market 24
Protecting the Software Investment 25

16 Introduction to ThreadX
ThreadX Unique Features
Unlike other real-time kernels, ThreadX is designed
to be versatile—easily scaling among small micro-
controller-based applications through those that use
powerful CISC, RISC, and DSP processors.

ThreadX is scalable based on its underlying
architecture. Because ThreadX services are
implemented as a C library, only those services
actually used by the application are brought into the
run-time image. Hence, the actual size of ThreadX is
completely determined by the application. For most
applications, the instruction image of ThreadX
ranges between 2 KBytes and 15 KBytes in size.

picokernel™
Architecture

Instead of layering kernel functions on top of each
other like traditional microkernel architectures,
ThreadX services plug directly into its core. This
results in the fastest possible context switching and
service call performance. We call this non-layering
design a picokernel architecture.

ANSI C Source
Code

ThreadX is written primarily in ANSI C. A small
amount of assembly language is needed to tailor the
kernel to the underlying target processor. This design
makes it possible to port ThreadX to a new processor
family in a very short time—usually within weeks!

Advanced
Technology

The following are highlights of the ThreadX
advanced technology:

• Simple picokernel architecture

• Automatic scaling (small footprint)

• Deterministic processing

• Fast real-time performance
User Guide

ThreadX Unique Features 17
• Preemptive and cooperative scheduling

• Flexible thread priority support (32-1024)

• Dynamic system object creation

• Unlimited number of system objects

• Optimized interrupt handling

• Preemption-threshold™

• Priority inheritance

• Event-chaining™

• Fast software timers

• Run-time memory management

• Run-time performance monitoring

• Run-time stack analysis

• Built-in system trace

• Vast processor support

• Vast development tool support

• Completely endian neutral

Not A Black Box Most distributions of ThreadX include the complete C
source code as well as the processor-specific
assembly language. This eliminates the “black-box”
problems that occur with many commercial kernels.
With ThreadX, application developers can see
exactly what the kernel is doing—there are no
mysteries!

The source code also allows for application specific
modifications. Although not recommended, it is
certainly beneficial to have the ability to modify the
kernel if it is absolutely required.

These features are especially comforting to
developers accustomed to working with their own in-
house kernels. They expect to have source code and
the ability to modify the kernel. ThreadX is the
ultimate kernel for such developers.
Express Logic

18 Introduction to ThreadX
The RTOS
Standard

Because of its versatility, high-performance
picokernel architecture, advanced technology, and
demonstrated portability, ThreadX is deployed in
more than two-billion devices today. This effectively
makes ThreadX the RTOS standard for deeply
embedded applications.

Safety Certifications

TÜV Certification ThreadX has been certified by SGS-TÜV Saar for
use in safety-critical systems, according to IEC-
61508 and IEC-62304. The certification confirms that
ThreadX can be used in the development of safety-
related software for the highest safety integrity levels
of the International Electrotechnical Commission
(IEC) 61508 and IEC 62304, for the “Functional
Safety of electrical, electronic, and programmable
electronic safety-related systems.” SGS-TÜV Saar,
formed through a joint venture of Germany’s SGS-
Group and TÜV Saarland, has become the leading
accredited, independent company for testing,
auditing, verifying, and certifying embedded software
for safety-related systems worldwide. The industrial
safety standard IEC 61508, and all standards that
are derived from it, including IEC 62304, are used to
assure the functional safety of electrical, electronic,
and programmable electronic safety-related medical
devices, process control systems, industrial
machinery, and railway control systems.

SGS-TÜV Saar has certified ThreadX to be used in
safety-critical automotive systems, according to the
ISO 26262 standard. Furthermore, ThreadX is
certified to Automotive Safety Integrity Level (ASIL)
D, which represents the highest level of ISO 26262
certification.
User Guide

Safety Certifications 19
In addition, SGS-TÜV Saar has certified ThreadX to
be used in safety-critical railway applications,
meeting to the EN 50128 standard up to SW-SIL 4.

IEC 61508 up to SIL 4
IEC 62304 up to SW safety Class C
ISO 26262 ASIL D
EN 50128 SW-SIL 4

Please contact sales@expresslogic.com for more
information on which version(s) of ThreadX have
been certified by TÜV or for the availability of test
reports, certificates, and associated documentation.

MISRA C
Compliant

MISRA C is a set of programming guidelines for
critical systems using the C programming language.
The original MISRA C guidelines were primarily
targeted toward automotive applications; however,
MISRA C is now widely recognized as being
applicable to any safety critical application. ThreadX
is compliant with all “required” and “mandatory” rules
of MISRA-C:2004 and MISRA C:2012. ThreadX is
also compliant with all but three “advisory” rules.
Refer to the ThreadX_MISRA_Compliance.pdf
document for more details.

UL Certification ThreadX has been certified by UL for compliance
with UL 60730-1 Annex H, CSA E60730-1 Annex H,
IEC 60730-1 Annex H, UL 60335-1 Annex R, IEC
60335-1 Annex R, and UL 1998 safety standards for
software in programmable components. Along with
IEC/UL 60730-1, which has requirements for
“Controls Using Software” in its Annex H, the IEC
60335-1 standard describes the requirements for
“Programmable Electronic Circuits” in its Annex R.
IEC 60730 Annex H and IEC 60335-1 Annex R
address the safety of MCU hardware and software

i

Express Logic

20 Introduction to ThreadX
used in appliances such as washing machines,
dishwashers, dryers, refrigerators, freezers, and
ovens.

UL/IEC 60730, UL/IEC 60335, UL 1998

Please contact sales@expresslogic.com for more
information on which version(s) of ThreadX have
been certified by TÜV or for the availability of test
reports, certificates, and associated documentation.

Certification Pack The ThreadX Certification Pack™ is a 100%
complete, turnkey, industry-specific, stand-alone
package that provides all of the ThreadX evidence
needed to certify or successfully submit the ThreadX-
based product to the highest reliability and criticality
levels required for safety-critical Aviation, Medical,
and Industrial systems. Certifications supported
include DO-178B, ED-12B, DO-278, FDA510(k), IEC-
62304, IEC-60601, ISO-14971, UL-1998, IEC-61508,
CENELEC EN50128, BS50128, and 49CFR236. Please
contact sales@expresslogic.com for more
information on Certification Pack.

Embedded Applications
Embedded applications execute on microprocessors
buried within products such as wireless
communication devices, automobile engines, laser
printers, medical devices, etc. Another distinction of
embedded applications is that their software and
hardware have a dedicated purpose.

Real-time Software When time constraints are imposed on the
application software, it is called the real-time
software. Basically, software that must perform its
processing within an exact period of time is called

i

User Guide

Embedded Applications 21
real-time software. Embedded applications are
almost always real-time because of their inherent
interaction with external events.

Multitasking As mentioned, embedded applications have a
dedicated purpose. To fulfill this purpose, the
software must perform a variety of tasks. A task is a
semi-independent portion of the application that
carries out a specific duty. It is also the case that
some tasks are more important than others. One of
the major difficulties in an embedded application is
the allocation of the processor between the various
application tasks. This allocation of processing
between competing tasks is the primary purpose of
ThreadX.

Tasks vs. Threads Another distinction about tasks must be made. The
term task is used in a variety of ways. It sometimes
means a separately loadable program. In other
instances, it may refer to an internal program
segment.

In contemporary operating system discussion, there
are two terms that more or less replace the use of
task: process and thread. A process is a completely
independent program that has its own address
space, while a thread is a semi-independent program
segment that executes within a process. Threads
share the same process address space. The
overhead associated with thread management is
minimal.

Most embedded applications cannot afford the
overhead (both memory and performance)
associated with a full-blown process-oriented
operating system. In addition, smaller
microprocessors don’t have the hardware
architecture to support a true process-oriented
operating system. For these reasons, ThreadX
Express Logic

22 Introduction to ThreadX
implements a thread model, which is both extremely
efficient and practical for most real-time embedded
applications.

To avoid confusion, ThreadX does not use the term
task. Instead, the more descriptive and contemporary
name thread is used.

ThreadX Benefits
Using ThreadX provides many benefits to embedded
applications. Of course, the primary benefit rests in
how embedded application threads are allocated
processing time.

Improved
Responsiveness

Prior to real-time kernels like ThreadX, most
embedded applications allocated processing time
with a simple control loop, usually from within the C
main function. This approach is still used in very
small or simple applications. However, in large or
complex applications, it is not practical because the
response time to any event is a function of the worst-
case processing time of one pass through the control
loop.

Making matters worse, the timing characteristics of
the application change whenever modifications are
made to the control loop. This makes the application
inherently unstable and difficult to maintain and
improve on.

ThreadX provides fast and deterministic response
times to important external events. ThreadX
accomplishes this through its preemptive, priority-
based scheduling algorithm, which allows a higher-
priority thread to preempt an executing lower-priority
thread. As a result, the worst-case response time
approaches the time required to perform a context
User Guide

ThreadX Benefits 23
switch. This is not only deterministic, but it is also
extremely fast.

Software
Maintenance

The ThreadX kernel enables application developers
to concentrate on specific requirements of their
application threads without having to worry about
changing the timing of other areas of the application.
This feature also makes it much easier to repair or
enhance an application that utilizes ThreadX.

Increased
Throughput

A possible work-around to the control loop response
time problem is to add more polling. This improves
the responsiveness, but it still doesn’t guarantee a
constant worst-case response time and does nothing
to enhance future modification of the application.
Also, the processor is now performing even more
unnecessary processing because of the extra polling.
All of this unnecessary processing reduces the
overall throughput of the system.

An interesting point regarding overhead is that many
developers assume that multithreaded environments
like ThreadX increase overhead and have a negative
impact on total system throughput. But in some
cases, multithreading actually reduces overhead by
eliminating all of the redundant polling that occurs in
control loop environments. The overhead associated
with multithreaded kernels is typically a function of
the time required for context switching. If the context
switch time is less than the polling process, ThreadX
provides a solution with the potential of less
overhead and more throughput. This makes ThreadX
an obvious choice for applications that have any
degree of complexity or size.
Express Logic

24 Introduction to ThreadX
Processor
Isolation

ThreadX provides a robust processor-independent
interface between the application and the underlying
processor. This allows developers to concentrate on
the application rather than spending a significant
amount of time learning hardware details.

Dividing the
Application

In control loop-based applications, each developer
must have an intimate knowledge of the entire
application’s run-time behavior and requirements.
This is because the processor allocation logic is
dispersed throughout the entire application. As an
application increases in size or complexity, it
becomes impossible for all developers to remember
the precise processing requirements of the entire
application.

ThreadX frees each developer from the worries
associated with processor allocation and allows them
to concentrate on their specific piece of the
embedded application. In addition, ThreadX forces
the application to be divided into clearly defined
threads. By itself, this division of the application into
threads makes development much simpler.

Ease of Use ThreadX is designed with the application developer
in mind. The ThreadX architecture and service call
interface are designed to be easily understood. As a
result, ThreadX developers can quickly use its
advanced features.

Improve
Time-to-market

All of the benefits of ThreadX accelerate the software
development process. ThreadX takes care of most
processor issues and the most common safety
certifications, thereby removing this effort from the
development schedule. All of this results in a faster
time to market!
User Guide

ThreadX Benefits 25
Protecting the
Software
Investment

Because of its architecture, ThreadX is easily ported
to new processor and/or development tool
environments. This, coupled with the fact that
ThreadX insulates applications from details of the
underlying processors, makes ThreadX applications
highly portable. As a result, the application’s
migration path is guaranteed, and the original
development investment is protected.
Express Logic

26 Introduction to ThreadX
User Guide

C H A P T E R 2
Installation and Use of ThreadX

This chapter contains a description of various issues
related to installation, setup, and usage of the high-
performance ThreadX kernel.

1 Host Considerations 28

1 Target Considerations 28

1 Product Distribution 29

1 ThreadX Installation 30

1 Using ThreadX 31

1 Small Example System 31

1 Troubleshooting 33

1 Configuration Options 33
Smallest Configuration 34
Fastest Configuration 34
Global Time Source 34
Detailed Configuration Options 35

1 ThreadX Version ID 40
User Guide

28 Installation and Use of ThreadX
Host Considerations
Embedded software is usually developed on
Windows or Linux (Unix) host computers. After the
application is compiled, linked, and located on the
host, it is downloaded to the target hardware for
execution.

Usually the target download is done from within the
development tool debugger. After download, the
debugger is responsible for providing target
execution control (go, halt, breakpoint, etc.) as well
as access to memory and processor registers.

Most development tool debuggers communicate with
the target hardware via on-chip debug (OCD)
connections such as JTAG (IEEE 1149.1) and
Background Debug Mode (BDM). Debuggers also
communicate with target hardware through In-Circuit
Emulation (ICE) connections. Both OCD and ICE
connections provide robust solutions with minimal
intrusion on the target resident software.

As for resources used on the host, the source code
for ThreadX is delivered in ASCII format and requires
approximately 1 MBytes of space on the host
computer’s hard disk.

Please review the supplied readme_threadx.txt file
for additional host system considerations and
options.

Target Considerations
ThreadX requires between 2 KBytes and 20 KBytes
of Read Only Memory (ROM) on the target. Another
1 to 2 KBytes of the target’s Random Access
Memory (RAM) are required for the ThreadX system
stack and other global data structures.

i

User Guide

Product Distribution 29
For timer-related functions like service call time-outs,
time-slicing, and application timers to function, the
underlying target hardware must provide a periodic
interrupt source. If the processor has this capability, it
is utilized by ThreadX. Otherwise, if the target
processor does not have the ability to generate a
periodic interrupt, the user’s hardware must provide
it. Setup and configuration of the timer interrupt is
typically located in the tx_initialize_low_level
assembly file in the ThreadX distribution.

ThreadX is still functional even if no periodic timer
interrupt source is available. However, none of the
timer-related services are functional. Please review
the supplied readme_threadx.txt file for any
additional host system considerations and/or options.

Product Distribution

The exact content of the distribution disk depends on
the target processor, development tools, and the
ThreadX package purchased. However, the following
is a list of several important files that are common to
most product distributions:

ThreadX_Express_Startup.pdf
This PDF provides a simple,
four-step procedure to get
ThreadX running on a specific
target processor/board and
specific development tools.

readme_threadx.txt
Text file containing specific
information about the ThreadX
port, including information about
the target processor and the
development tools.

i

Express Logic

30 Installation and Use of ThreadX
tx_api.h C header file containing all
system equates, data structures,
and service prototypes.

tx_port.h C header file containing all
development-tool and target-
specific data definitions and
structures.

demo_threadx.c C file containing a small demo
application.

tx.a (or tx.lib) Binary version of the ThreadX C
library that is distributed with the
standard package.

All file names are in lower-case. This naming
convention makes it easier to convert the commands
to Linux (Unix) development platforms.

ThreadX Installation

Installation of ThreadX is straightforward. Refer to
the ThreadX_Express_Startup.pdf file and the
readme_threadx.txt file for specific information on
installing ThreadX for your specific environment.

Be sure to back up the ThreadX distribution disk and
store it in a safe location.

Application software needs access to the ThreadX
library file (usually tx.a or tx.lib) and the C include
files tx_api.h and tx_port.h. This is accomplished
either by setting the appropriate path for the
development tools or by copying these files into the
application development area.

i

i

i

User Guide

Using ThreadX 31
Using ThreadX
Using ThreadX is easy. Basically, the application
code must include tx_api.h during compilation and
link with the ThreadX run-time library tx.a (or tx.lib).

There are four steps required to build a ThreadX
application:

Include the tx_api.h file in all application files that
use ThreadX services or data structures.

Create the standard C main function. This function
must eventually call tx_kernel_enter to start
ThreadX. Application-specific initialization that does
not involve ThreadX may be added prior to entering
the kernel.

The ThreadX entry function tx_kernel_enter does
not return. So be sure not to place any processing or
function calls after it.

Create the tx_application_define function. This is
where the initial system resources are created.
Examples of system resources include threads,
queues, memory pools, event flags groups, mutexes,
and semaphores.

Compile application source and link with the ThreadX
run-time library tx.lib. The resulting image can be
downloaded to the target and executed!

Small Example System
The small example system in Figure 1 on page 32
shows the creation of a single thread with a priority of
3. The thread executes, increments a counter, then
sleeps for one clock tick. This process continues
forever.

Step 1:

Step 2:

i

Step 3:

Step 4:
Express Logic

32 Installation and Use of ThreadX
FIGURE 1. Template for Application Development

Although this is a simple example, it provides a good
template for real application development. Once
again, please see the readme_threadx.txt file for
additional details.

#include "tx_api.h"

unsigned long my_thread_counter = 0;
TX_THREAD my_thread;

main()
{

/* Enter the ThreadX kernel. */
tx_kernel_enter();

}

void tx_application_define(void *first_unused_memory)
{

/* Create my_thread! */
tx_thread_create(&my_thread, "My Thread",
 my_thread_entry, 0x1234, first_unused_memory, 1024,

3, 3, TX_NO_TIME_SLICE, TX_AUTO_START);
}

void my_thread_entry(ULONG thread_input)
{

/* Enter into a forever loop. */
while(1)
{

/* Increment thread counter. */
 my_thread_counter++;

/* Sleep for 1 tick. */
tx_thread_sleep(1);

}
}

User Guide

Troubleshooting 33
Troubleshooting
Each ThreadX port is delivered with a demonstration
application. It is always a good idea to first get the
demonstration system running—either on actual target
hardware or simulated environment.

See the readme_threadx.txt file supplied with the
distribution for more specific details regarding the
demonstration system.

If the demonstration system does not execute properly,
the following are some troubleshooting tips:

1. Determine how much of the demonstration is
running.

2. Increase stack sizes (this is more important in
actual application code than it is for the
demonstration).

3. Rebuild the ThreadX library with
TX_ENABLE_STACK_CHECKING defined. This
will enable the built-in ThreadX stack checking.

4. Temporarily bypass any recent changes to see if
the problem disappears or changes. Such
information should prove useful to Express Logic
support engineers.

Follow the procedures outlined in “What We Need
From You” on page 12 to send the information
gathered from the troubleshooting steps.

Configuration Options

There are several configuration options when building
the ThreadX library and the application using ThreadX.
The options below can be defined in the application
source, on the command line, or within the tx_user.h
include file.

i

Express Logic

34 Installation and Use of ThreadX
Options defined in tx_user.h are applied only if the
application and ThreadX library are built with
TX_INCLUDE_USER_DEFINE_FILE defined.

Smallest
Configuration

For the smallest code size, the following ThreadX
configuration options should be considered (in
absence of all other options):

TX_DISABLE_ERROR_CHECKING

TX_DISABLE_PREEMPTION_THRESHOLD

TX_DISABLE_NOTIFY_CALLBACKS

TX_DISABLE_REDUNDANT_CLEARING

TX_DISABLE_STACK_FILLING

TX_NOT_INTERRUPTABLE

TX_TIMER_PROCESS_IN_ISR

Fastest
Configuration

For the fastest execution, the same configuration
options used for the Smallest Configuration
previously, but with these options also considered:

TX_REACTIVATE_INLINE

TX_INLINE_THREAD_RESUME_SUSPEND

Review the readme_threadx.txt file for additional
options for your specific version of ThreadX. Detailed
configuration options are described beginning on
page 35.

Global Time
Source

For other Express Logic products (FileX, NetX,
GUIX, USBX, etc.), ThreadX defines the number of
ThreadX timer ticks that represents one second.
Others derive their time requirements based on this
constant. By default, the value is 100, assuming a
10ms periodic interrupt. The user may override this
value by defining
TX_TIMER_TICKS_PER_SECOND with the desired
value in tx_port.h or within the IDE or command line.

i

User Guide

Configuration Options 35
Detailed Configuration Options

Define Meaning

TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on block pools. By
default, this option is not defined.

TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on byte pools. By
default, this option is not defined.

TX_DISABLE_ERROR_CHECKING Bypasses basic service call error
checking. When defined in the
application source, all basic
parameter error checking is
disabled. This may improve
performance by as much as 30%
and may also reduce the image
size. Of course, this option should
only be used after the application
is thoroughly debugged. By
default, this option is not defined.

ThreadX API return
values not affected by
disabling error
checking are listed in
bold in the “Return
Values” section of each API
description in Chapter 4. The non-
bold return values are void if error
checking is disabled by using the
TX_DISABLE_ERROR_CHECKING
option.

TX_DISABLE_NOTIFY_CALLBACKS When defined, disables the notify
callbacks for various ThreadX
objects. Using this option slightly
reduces code size and improves
performance. By default, this
option is not defined.

i

Express Logic

36 Installation and Use of ThreadX
TX_DISABLE_PREEMPTION_THRESHOLD When defined, disables the
preemption-threshold feature and
slightly reduces code size and
improves performance. Of course,
the preemption-threshold
capabilities are no longer
available. By default, this option is
not defined.

TX_DISABLE_REDUNDANT_CLEARING When defined, removes the logic
for initializing ThreadX global C
data structures to zero. This
should only be used if the
compiler’s initialization code sets
all un-initialized C global data to
zero. Using this option slightly
reduces code size and improves
performance during initialization.
By default, this option is not
defined.

TX_DISABLE_STACK_FILLING When defined, disables placing
the 0xEF value in each byte of
each thread’s stack when created.
By default, this option is not
defined.

TX_ENABLE_EVENT_TRACE When defined, ThreadX enables
the event gathering code for
creating a TraceX trace buffer.
See the TraceX User Guide for
more details.

Define Meaning
User Guide

Configuration Options 37
TX_ENABLE_STACK_CHECKING When defined, enables ThreadX
run-time stack checking, which
includes analysis of how much
stack has been used and
examination of data pattern
“fences” before and after the stack
area. If a stack error is detected,
the registered application stack
error handler is called. This option
does result in slightly increased
overhead and code size. Review
the
tx_thread_stack_error_notify
API for more information. By
default, this option is not defined.

TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on event flags groups.
By default, this option is not
defined.

TX_INLINE_THREAD_RESUME_SUSPEND When defined, ThreadX improves
the tx_thread_resume and
tx_thread_suspend API calls via
in-line code. This increases code
size but enhances performance of
these two API calls.

TX_MAX_PRIORITIES Defines the priority levels for
ThreadX. Legal values range from
32 through 1024 (inclusive) and
must be evenly divisible by 32.
Increasing the number of priority
levels supported increases the
RAM usage by 128 bytes for
every group of 32 priorities.
However, there is only a negligible
effect on performance. By default,
this value is set to 32 priority
levels.

Define Meaning
Express Logic

38 Installation and Use of ThreadX
TX_MINIMUM_STACK Defines the minimum stack size
(in bytes). It is used for error
checking when threads are
created. The default value is port-
specific and is found in tx_port.h.

TX_MISRA_ENABLE When defined, ThreadX utilizes
MISRA C compliant conventions.
Refer to the
ThreadX_MISRA_Compliance.pdf
for details.

TX_MUTEX_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on mutexes. By
default, this option is not defined.

TX_NO_TIMER When defined, the ThreadX timer
logic is completely disabled. This
is useful in cases where the
ThreadX timer features (thread
sleep, API timeouts, time-slicing,
and application timers) are not
utilized. If TX_NO_TIMER is
specified, the option
TX_TIMER_PROCESS_IN_ISR
must also be defined.

TX_NOT_INTERRUPTABLE When defined, ThreadX does not
attempt to minimize interrupt
lockout time. This results in faster
execution but does slightly
increase interrupt lockout time.

TX_QUEUE_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on queues. By default,
this option is not defined.

TX_REACTIVATE_INLINE When defined, performs
reactivation of ThreadX timers in-
line instead of using a function
call. This improves performance
but slightly increases code size.
By default, this option is not
defined.

Define Meaning
User Guide

Configuration Options 39
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO When defined, enables the
gathering of performance
information on semaphores. By
default, this option is not defined.

TX_THREAD_ENABLE_PERFORMANCE_INFO Defined, enables the gathering of
performance information on
threads. By default, this option is
not defined.

TX_TIMER_ENABLE_PERFORMANCE_INFO Defined, enables the gathering of
performance information on
timers. By default, this option is
not defined.

TX_TIMER_PROCESS_IN_ISR When defined, eliminates the
internal system timer thread for
ThreadX. This results in improved
performance on timer events and
smaller RAM requirements
because the timer stack and
control block are no longer
needed. However, using this
option moves all the timer
expiration processing to the timer
ISR level. By default, this option is
not defined.

Note that services
allowed from timers
may not be allowed
from ISRs and thus
might not be allowed

when using this option.

Define Meaning

!

Express Logic

40 Installation and Use of ThreadX
ThreadX Version ID

The ThreadX version ID can be found in the
readme_threadx.txt file. This file also contains a
version history of the corresponding port. Application
software can obtain the ThreadX version by
examining the global string _tx_version_id.

TX_TIMER_THREAD_PRIORITY Defines the priority of the internal
ThreadX system timer thread. The
default value is priority 0—the
highest priority in ThreadX. The
default value is defined in
tx_port.h.

TX_TIMER_THREAD_STACK_SIZE Defines the stack size (in bytes) of
the internal ThreadX system timer
thread. This thread processes all
thread sleep requests as well as
all service call timeouts. In
addition, all application timer
callback routines are invoked from
this context. The default value is
port-specific and is found in
tx_port.h.

Define Meaning
User Guide

C H A P T E R 3
Functional Components of
ThreadX

This chapter contains a description of the high-
performance ThreadX kernel from a functional
perspective. Each functional component is presented
in an easy-to-understand manner.

1 Execution Overview 44
Initialization 44
Thread Execution 44
Interrupt Service Routines (ISR) 44
Initialization 45
Application Timers 46

1 Memory Usage 46
Static Memory Usage 46
Dynamic Memory Usage 48

1 Initialization 48
System Reset Vector 48
Development Tool Initialization 49
main Function 49
tx_kernel_enter 49
Application Definition Function 50
Interrupts 50

1 Thread Execution 50
Thread Execution States 52
Thread Entry/Exit Notification 54
Thread Priorities 54
Thread Scheduling 55
Round-robin Scheduling 55
Time-Slicing 55
Preemption 56
Preemption-Threshold™ 56
Priority Inheritance 57
Thread Creation 57
User Guide

42 Functional Components of ThreadX
Thread Control Block TX_THREAD 57
Currently Executing Thread 59
Thread Stack Area 59
Memory Pitfalls 62
Optional Run-time Stack Checking 62
Reentrancy 62
Thread Priority Pitfalls 63
Priority Overhead 64
Run-time Thread Performance Information 65
Debugging Pitfalls 66

1 Message Queues 67
Creating Message Queues 68
Message Size 68
Message Queue Capacity 68
Queue Memory Area 69
Thread Suspension 69
Queue Send Notification 70
Queue Event-chaining™ 70
Run-time Queue Performance Information 71
Queue Control Block TX_QUEUE 72
Message Destination Pitfall 72

1 Counting Semaphores 72
Mutual Exclusion 73
Event Notification 73
Creating Counting Semaphores 74
Thread Suspension 74
Semaphore Put Notification 74
Semaphore Event-chaining™ 75
Run-time Semaphore Performance Information 75
Semaphore Control Block TX_SEMAPHORE 76
Deadly Embrace 76
Priority Inversion 78

1 Mutexes 78
Mutex Mutual Exclusion 79
Creating Mutexes 79
Thread Suspension 79
Run-time Mutex Performance Information 80
Mutex Control Block TX_MUTEX 81
Deadly Embrace 81
Priority Inversion 81

1 Event Flags 82
User Guide

43
Creating Event Flags Groups 83
Thread Suspension 83
Event Flags Set Notification 83
Event Flags Event-chaining™ 84
Run-time Event Flags Performance Information 84
Event Flags Group Control Block TX_EVENT_FLAGS_GROUP 85

1 Memory Block Pools 85
Creating Memory Block Pools 86
Memory Block Size 86
Pool Capacity 86
Pool’s Memory Area 87
Thread Suspension 87
Run-time Block Pool Performance Information 87
Memory Block Pool Control Block TX_BLOCK_POOL 88
Overwriting Memory Blocks 89

1 Memory Byte Pools 89
Creating Memory Byte Pools 89
Pool Capacity 90
Pool’s Memory Area 90
Thread Suspension 90
Run-time Byte Pool Performance Information 91
Memory Byte Pool Control Block TX_BYTE_POOL 92
Nondeterministic Behavior 92
Overwriting Memory Blocks 93

1 Application Timers 93
Timer Intervals 93
Timer Accuracy 94
Timer Execution 94
Creating Application Timers 94
Run-time Application Timer Performance Information 95
Application Timer Control Block TX_TIMER 95
Excessive Timers 96

1 Relative Time 96

1 Interrupts 96
Interrupt Control 97
ThreadX Managed Interrupts 97
ISR Template 99
High-frequency Interrupts 100
Interrupt Latency 100
Express Logic

44 Functional Components of ThreadX
Execution Overview
There are four types of program execution within a
ThreadX application: Initialization, Thread Execution,
Interrupt Service Routines (ISRs), and Application
Timers.

Figure 2 on page 45 shows each different type of
program execution. More detailed information about
each of these types is found in subsequent sections
of this chapter.

Initialization As the name implies, this is the first type of program
execution in a ThreadX application. Initialization
includes all program execution between processor
reset and the entry point of the thread scheduling
loop.

Thread Execution After initialization is complete, ThreadX enters its
thread scheduling loop. The scheduling loop looks
for an application thread ready for execution. When a
ready thread is found, ThreadX transfers control to it.
After the thread is finished (or another higher-priority
thread becomes ready), execution transfers back to
the thread scheduling loop to find the next highest
priority ready thread.

This process of continually executing and scheduling
threads is the most common type of program
execution in ThreadX applications.

Interrupt Service
Routines (ISR)

Interrupts are the cornerstone of real-time systems.
Without interrupts it would be extremely difficult to
respond to changes in the external world in a timely
manner. On detection of an interrupt, the processor
saves key information about the current program
execution (usually on the stack), then transfers
User Guide

Execution Overview 45
control to a predefined program area. This
predefined program area is commonly called an
Interrupt Service Routine.

In most cases, interrupts occur during thread
execution (or in the thread scheduling loop).
However, interrupts may also occur inside of an
executing ISR or an Application Timer.

Hardware
Reset

Initialization

Thread
Execution

Interrupt
Service
Routines

Application
Timers

Execution Overview

FIGURE 2. Types of Program Execution
Express Logic

46 Functional Components of ThreadX
Application Timers Application Timers are similar to ISRs, except the
hardware implementation (usually a single periodic
hardware interrupt is used) is hidden from the
application. Such timers are used by applications to
perform time-outs, periodics, and/or watchdog
services. Just like ISRs, Application Timers most
often interrupt thread execution. Unlike ISRs,
however, Application Timers cannot interrupt each
other.

Memory Usage
ThreadX resides along with the application program.
As a result, the static memory (or fixed memory)
usage of ThreadX is determined by the development
tools; e.g., the compiler, linker, and locator. Dynamic
memory (or run-time memory) usage is under direct
control of the application.

Static Memory
Usage

Most of the development tools divide the application
program image into five basic areas: instruction,
constant, initialized data, uninitialized data, and
system stack. Figure 3 on page 47 shows an
example of these memory areas.

It is important to understand that this is only an
example. The actual static memory layout is specific
to the processor, development tools, and the
underlying hardware.

The instruction area contains all of the program’s
processor instructions. This area is typically the
largest and is often located in ROM.

The constant area contains various compiled
constants, including strings defined or referenced
within the program. In addition, this area contains the
“initial copy” of the initialized data area. During the
User Guide

Memory Usage 47
compiler’s initialization process, this portion of the
constant area is used to set up the initialized data
area in RAM. The constant area usually follows the
instruction area and is often located in ROM.

The initialized data and uninitialized data areas
contain all of the global and static variables. These
areas are always located in RAM.

The system stack is generally set up immediately
following the initialized and uninitialized data areas.

Instruction Area

Static Memory Usage
(example)

0x00000000

ROM

Constant Area
ROM

0x80000000 Initialized Data Area
RAM

Uninitialized Data Area
RAM

System Stack Area

Indicates ThreadX
Usage

addresses

FIGURE 3. Memory Area Example
Express Logic

48 Functional Components of ThreadX
The system stack is used by the compiler during
initialization, then by ThreadX during initialization
and, subsequently, in ISR processing.

Dynamic Memory
Usage

As mentioned before, dynamic memory usage is
under direct control of the application. Control blocks
and memory areas associated with stacks, queues,
and memory pools can be placed anywhere in the
target’s memory space. This is an important feature
because it facilitates easy utilization of different types
of physical memory.

For example, suppose a target hardware
environment has both fast memory and slow
memory. If the application needs extra performance
for a high-priority thread, its control block
(TX_THREAD) and stack can be placed in the fast
memory area, which may greatly enhance its
performance.

Initialization
Understanding the initialization process is important.
The initial hardware environment is set up here. In
addition, this is where the application is given its
initial personality.

ThreadX attempts to utilize (whenever possible) the
complete development tool’s initialization process.
This makes it easier to upgrade to new versions of
the development tools in the future.

System Reset
Vector

All microprocessors have reset logic. When a reset
occurs (either hardware or software), the address of
the application’s entry point is retrieved from a

i

User Guide

Initialization 49
specific memory location. After the entry point is
retrieved, the processor transfers control to that
location.

The application entry point is quite often written in the
native assembly language and is usually supplied by
the development tools (at least in template form). In
some cases, a special version of the entry program is
supplied with ThreadX.

Development Tool
Initialization

After the low-level initialization is complete, control
transfers to the development tool’s high-level
initialization. This is usually the place where
initialized global and static C variables are set up.
Remember their initial values are retrieved from the
constant area. Exact initialization processing is
development tool specific.

main Function When the development tool initialization is complete,
control transfers to the user-supplied main function.
At this point, the application controls what happens
next. For most applications, the main function simply
calls tx_kernel_enter, which is the entry into
ThreadX. However, applications can perform
preliminary processing (usually for hardware
initialization) prior to entering ThreadX.

The call to tx_kernel_enter does not return, so do not
place any processing after it!

tx_kernel_enter The entry function coordinates initialization of various
internal ThreadX data structures and then calls the
application’s definition function tx_application_define.

When tx_application_define returns, control is
transferred to the thread scheduling loop. This marks
the end of initialization!

i

Express Logic

50 Functional Components of ThreadX
Application
Definition
Function

The tx_application_define function defines all of the
initial application threads, queues, semaphores,
mutexes, event flags, memory pools, and timers. It is
also possible to create and delete system resources
from threads during the normal operation of the
application. However, all initial application resources
are defined here.

The tx_application_define function has a single input
parameter and it is certainly worth mentioning. The
first-available RAM address is the sole input
parameter to this function. It is typically used as a
starting point for initial run-time memory allocations
of thread stacks, queues, and memory pools.

After initialization is complete, only an executing
thread can create and delete system resources—
including other threads. Therefore, at least one
thread must be created during initialization.

Interrupts Interrupts are left disabled during the entire
initialization process. If the application somehow
enables interrupts, unpredictable behavior may
occur. Figure 4 on page 51 shows the entire
initialization process, from system reset through
application-specific initialization.

Thread Execution
Scheduling and executing application threads is the
most important activity of ThreadX. A thread is
typically defined as a semi-independent program
segment with a dedicated purpose. The combined
processing of all threads makes an application.

Threads are created dynamically by calling
tx_thread_create during initialization or during thread
execution. Threads are created in either a ready or
suspended state.

i

User Guide

Thread Execution 51
Initialization Process

entry point*

development tool initialization*

System Reset Vector

main()

tx_kernel_enter()

tx_application_define(mem_ptr)

Enter thread
scheduling loop

* denotes functions that are
development-tool specific

FIGURE 4. Initialization Process
Express Logic

52 Functional Components of ThreadX
Thread Execution
States

Understanding the different processing states of
threads is a key ingredient to understanding the
entire multithreaded environment. In ThreadX there
are five distinct thread states: ready, suspended,
executing, terminated, and completed. Figure 5
shows the thread state transition diagram for
ThreadX.

Ready

Executing

State
Suspended

State

State

Completed Terminated
State State

tx_thread_create

Terminate
Service

Thread
Scheduling

Services
with Suspension

Self
Suspend

Self
Terminate

Return
From Thread
Entry Function

TX_AUTO_START TX_DONT_START

FIGURE 5. Thread State Transition
User Guide

Thread Execution 53
A thread is in a ready state when it is ready for
execution. A ready thread is not executed until it is
the highest priority thread in ready state. When this
happens, ThreadX executes the thread, which then
changes its state to executing.

If a higher-priority thread becomes ready, the
executing thread reverts back to a ready state. The
newly ready high-priority thread is then executed,
which changes its logical state to executing. This
transition between ready and executing states occurs
every time thread preemption occurs.

At any given moment, only one thread is in an
executing state. This is because a thread in the
executing state has control of the underlying
processor.

Threads in a suspended state are not eligible for
execution. Reasons for being in a suspended state
include suspension for time, queue messages,
semaphores, mutexes, event flags, memory, and
basic thread suspension. After the cause for
suspension is removed, the thread is placed back in
a ready state.

A thread in a completed state is a thread that has
completed its processing and returned from its entry
function. The entry function is specified during thread
creation. A thread in a completed state cannot
execute again.

A thread is in a terminated state because another
thread or the thread itself called the
tx_thread_terminate service. A thread in a terminated
state cannot execute again.

If re-starting a completed or terminated thread is
desired, the application must first delete the thread. It
can then be re-created and re-started.i
Express Logic

54 Functional Components of ThreadX
Thread Entry/Exit
Notification

Some applications may find it advantageous to be
notified when a specific thread is entered for the first
time, when it completes, or is terminated. ThreadX
provides this ability through the
tx_thread_entry_exit_notify service. This service
registers an application notification function for a
specific thread, which is called by ThreadX whenever
the thread starts running, completes, or is
terminated. After being invoked, the application
notification function can perform the application-
specific processing. This typically involves informing
another application thread of the event via a ThreadX
synchronization primitive.

Thread Priorities As mentioned before, a thread is a semi-independent
program segment with a dedicated purpose.
However, all threads are not created equal! The
dedicated purpose of some threads is much more
important than others. This heterogeneous type of
thread importance is a hallmark of embedded real-
time applications.

ThreadX determines a thread’s importance when the
thread is created by assigning a numerical value
representing its priority. The maximum number of
ThreadX priorities is configurable from 32 through
1024 in increments of 32. The actual maximum
number of priorities is determined by the
TX_MAX_PRIORITIES constant during compilation
of the ThreadX library. Having a larger number of
priorities does not significantly increase processing
overhead. However, for each group of 32 priority
levels an additional 128 bytes of RAM is required to
manage them. For example, 32 priority levels require
128 bytes of RAM, 64 priority levels require 256
bytes of RAM, and 96 priority levels requires 384
bytes of RAM.

By default, ThreadX has 32 priority levels, ranging
from priority 0 through priority 31. Numerically
User Guide

Thread Execution 55
smaller values imply higher priority. Hence, priority 0
represents the highest priority, while priority
(TX_MAX_PRIORITIES-1) represents the lowest
priority.

Multiple threads can have the same priority relying
on cooperative scheduling or time-slicing. In addition,
thread priorities can be changed during run-time.

Thread Scheduling ThreadX schedules threads based on their priority.
The ready thread with the highest priority is executed
first. If multiple threads of the same priority are ready,
they are executed in a first-in-first-out (FIFO)
manner.

Round-robin
Scheduling

ThreadX supports round-robin scheduling of multiple
threads having the same priority. This is
accomplished through cooperative calls to
tx_thread_relinquish. This service gives all other
ready threads of the same priority a chance to
execute before the tx_thread_relinquish caller
executes again.

Time-Slicing Time-slicing is another form of round-robin
scheduling. A time-slice specifies the maximum
number of timer ticks (timer interrupts) that a thread
can execute without giving up the processor. In
ThreadX, time-slicing is available on a per-thread
basis. The thread’s time-slice is assigned during
creation and can be modified during run-time. When
a time-slice expires, all other ready threads of the
same priority level are given a chance to execute
before the time-sliced thread executes again.

A fresh thread time-slice is given to a thread after it
suspends, relinquishes, makes a ThreadX service
call that causes preemption, or is itself time-sliced.
Express Logic

56 Functional Components of ThreadX
When a time-sliced thread is preempted, it will
resume before other ready threads of equal priority
for the remainder of its time-slice.

Using time-slicing results in a slight amount of
system overhead. Because time-slicing is only useful
in cases in which multiple threads share the same
priority, threads having a unique priority should not
be assigned a time-slice.

Preemption Preemption is the process of temporarily interrupting
an executing thread in favor of a higher-priority
thread. This process is invisible to the executing
thread. When the higher-priority thread is finished,
control is transferred back to the exact place where
the preemption took place.

This is a very important feature in real-time systems
because it facilitates fast response to important
application events. Although a very important
feature, preemption can also be a source of a variety
of problems, including starvation, excessive
overhead, and priority inversion.

Preemption-
Threshold™

To ease some of the inherent problems of
preemption, ThreadX provides a unique and
advanced feature called preemption-threshold.

A preemption-threshold allows a thread to specify a
priority ceiling for disabling preemption. Threads that
have higher priorities than the ceiling are still allowed
to preempt, while those less than the ceiling are not
allowed to preempt.

For example, suppose a thread of priority 20 only
interacts with a group of threads that have priorities
between 15 and 20. During its critical sections, the
thread of priority 20 can set its preemption-threshold
to 15, thereby preventing preemption from all of the

i

User Guide

Thread Execution 57
threads that it interacts with. This still permits really
important threads (priorities between 0 and 14) to
preempt this thread during its critical section
processing, which results in much more responsive
processing.

Of course, it is still possible for a thread to disable all
preemption by setting its preemption-threshold to 0.
In addition, preemption-threshold can be changed
during run-time.

Using preemption-threshold disables time-slicing for
the specified thread.

Priority
Inheritance

ThreadX also supports optional priority inheritance
within its mutex services described later in this
chapter. Priority inheritance allows a lower priority
thread to temporarily assume the priority of a high
priority thread that is waiting for a mutex owned by
the lower priority thread. This capability helps the
application to avoid nondeterministic priority
inversion by eliminating preemption of intermediate
thread priorities. Of course, preemption-threshold
may be used to achieve a similar result.

Thread Creation Application threads are created during initialization or
during the execution of other application threads.
There is no limit on the number of threads that can
be created by an application.

Thread Control
Block TX_THREAD

The characteristics of each thread are contained in
its control block. This structure is defined in the
tx_api.h file.

A thread’s control block can be located anywhere in
memory, but it is most common to make the control

i

Express Logic

58 Functional Components of ThreadX
block a global structure by defining it outside the
scope of any function.

Locating the control block in other areas requires a
bit more care, just like all dynamically allocated
memory. If a control block is allocated within a C
function, the memory associated with it is part of the
calling thread’s stack. In general, avoid using local
storage for control blocks because after the function
returns, all of its local variable stack space is
released—regardless of whether another thread is
using it for a control block!

In most cases, the application is oblivious to the
contents of the thread’s control block. However, there
are some situations, especially during debug, in
which looking at certain members is useful. The
following are some of the more useful control block
members:

tx_thread_run_count
contains a counter of the
number of many times the
thread has been scheduled. An
increasing counter indicates the
thread is being scheduled and
executed.

tx_thread_state contains the state of the
associated thread. The following
lists the possible thread states:

TX_READY (0x00)
TX_COMPLETED (0x01)
TX_TERMINATED (0x02)
TX_SUSPENDED (0x03)
TX_SLEEP (0x04)
TX_QUEUE_SUSP (0x05)
TX_SEMAPHORE_SUSP (0x06)
TX_EVENT_FLAG (0x07)
TX_BLOCK_MEMORY (0x08)
TX_BYTE_MEMORY (0x09)
TX_MUTEX_SUSP (0x0D)
User Guide

Thread Execution 59
Of course there are many other interesting fields in
the thread control block, including the stack pointer,
time-slice value, priorities, etc. Users are welcome to
review control block members, but modifications are
strictly prohibited!

There is no equate for the “executing” state
mentioned earlier in this section. It is not necessary
because there is only one executing thread at a
given time. The state of an executing thread is also
TX_READY.

Currently
Executing Thread

As mentioned before, there is only one thread
executing at any given time. There are several ways
to identify the executing thread, depending on which
thread is making the request.

A program segment can get the control block
address of the executing thread by calling
tx_thread_identify. This is useful in shared portions
of application code that are executed from multiple
threads.

In debug sessions, users can examine the internal
ThreadX pointer _tx_thread_current_ptr. It contains
the control block address of the currently executing
thread. If this pointer is NULL, no application thread
is executing; i.e., ThreadX is waiting in its scheduling
loop for a thread to become ready.

Thread Stack Area Each thread must have its own stack for saving the
context of its last execution and compiler use. Most C
compilers use the stack for making function calls and
for temporarily allocating local variables. Figure 6 on
page 60 shows a typical thread’s stack.

Where a thread stack is located in memory is up to
the application. The stack area is specified during
thread creation and can be located anywhere in the

i

i

Express Logic

60 Functional Components of ThreadX
target’s address space. This is an important feature
because it allows applications to improve
performance of important threads by placing their
stack in high-speed RAM.

How big a stack should be is one of the most
frequently asked questions about threads. A thread’s
stack area must be large enough to accommodate
worst-case function call nesting, local variable
allocation, and saving its last execution context.

The minimum stack size, TX_MINIMUM_STACK, is
defined by ThreadX. A stack of this size supports
saving a thread’s context and minimum amount of
function calls and local variable allocation.

For most threads, however, the minimum stack size
is too small, and the user must ascertain the worst-
case size requirement by examining function-call

FIGURE 6. Typical Thread Stack

Stack Memory Area

0x0000F200

physical
(example)

0x0000FC00

addresses

tx_stack_ptr

Thread’s last
execution context

Local variables and
C function nesting

Typical
run-time
stack
growth
User Guide

Thread Execution 61
nesting and local variable allocation. Of course, it is
always better to start with a larger stack area.

After the application is debugged, it is possible to
tune the thread stack sizes if memory is scarce. A
favorite trick is to preset all stack areas with an easily
identifiable data pattern like (0xEFEF) prior to
creating the threads. After the application has been
thoroughly put through its paces, the stack areas can
be examined to see how much stack was actually
used by finding the area of the stack where the data
pattern is still intact. Figure 7 shows a stack preset to
0xEFEF after thorough thread execution.

By default, ThreadX initializes every byte of each
thread stack with a value of 0xEF.

Stack Memory Area

0x0000F200

physical
(another example)

0x0000FC00

addresses

tx_stack_ptr

Thread’s last
execution context

Local variables and
C function nesting

Typical
run-time
stack
growth

EFEF
EFEF
EFEF
EFEF
EFEF
0000
0001
0002

Unused
Stack
Area

FIGURE 7. Stack Preset to 0xEFEF

i

Express Logic

62 Functional Components of ThreadX
Memory Pitfalls The stack requirements for threads can be large.
Therefore, it is important to design the application to
have a reasonable number of threads. Furthermore,
some care must be taken to avoid excessive stack
usage within threads. Recursive algorithms and large
local data structures should be avoided.

In most cases, an overflowed stack causes thread
execution to corrupt memory adjacent (usually
before) its stack area. The results are unpredictable,
but most often result in an un-natural change in the
program counter. This is often called “jumping into
the weeds.” Of course, the only way to prevent this is
to ensure all thread stacks are large enough.

Optional Run-time
Stack Checking

ThreadX provides the ability to check each thread's
stack for corruption during run-time. By default,
ThreadX fills every byte of thread stacks with a 0xEF
data pattern during creation. If the application builds
the ThreadX library with
TX_ENABLE_STACK_CHECKING defined,
ThreadX will examine each thread's stack for
corruption as it is suspended or resumed. If stack
corruption is detected, ThreadX will call the
application's stack error handling routine as specified
by the call to tx_thread_stack_error_notify.
Otherwise, if no stack error handler was specified,
ThreadX will call the internal
_tx_thread_stack_error_handler routine.

Reentrancy One of the real beauties of multithreading is that the
same C function can be called from multiple threads.
This provides great power and also helps reduce
code space. However, it does require that C
functions called from multiple threads are reentrant.

Basically, a reentrant function stores the caller’s
return address on the current stack and does not rely
on global or static C variables that it previously set
User Guide

Thread Execution 63
up. Most compilers place the return address on the
stack. Hence, application developers must only worry
about the use of globals and statics.

An example of a non-reentrant function is the string
token function “strtok” found in the standard C library.
This function remembers the previous string pointer
on subsequent calls. It does this with a static string
pointer. If this function is called from multiple threads,
it would most likely return an invalid pointer.

Thread Priority
Pitfalls

Selecting thread priorities is one of the most
important aspects of multithreading. It is sometimes
very tempting to assign priorities based on a
perceived notion of thread importance rather than
determining what is exactly required during run-time.
Misuse of thread priorities can starve other threads,
create priority inversion, reduce processing
bandwidth, and make the application’s run-time
behavior difficult to understand.

As mentioned before, ThreadX provides a priority-
based, preemptive scheduling algorithm. Lower
priority threads do not execute until there are no
higher priority threads ready for execution. If a higher
priority thread is always ready, the lower priority
threads never execute. This condition is called
thread starvation.

Most thread starvation problems are detected early in
debug and can be solved by ensuring that higher
priority threads don’t execute continuously.
Alternatively, logic can be added to the application
that gradually raises the priority of starved threads
until they get a chance to execute.

Another pitfall associated with thread priorities is
priority inversion. Priority inversion takes place when
a higher priority thread is suspended because a
lower priority thread has a needed resource. Of
Express Logic

64 Functional Components of ThreadX
course, in some instances it is necessary for two
threads of different priority to share a common
resource. If these threads are the only ones active,
the priority inversion time is bounded by the time the
lower priority thread holds the resource. This
condition is both deterministic and quite normal.
However, if threads of intermediate priority become
active during this priority inversion condition, the
priority inversion time is no longer deterministic and
could cause an application failure.

There are principally three distinct methods of
preventing nondeterministic priority inversion in
ThreadX. First, the application priority selections and
run-time behavior can be designed in a manner that
prevents the priority inversion problem. Second,
lower priority threads can utilize preemption-
threshold to block preemption from intermediate
threads while they share resources with higher
priority threads. Finally, threads using ThreadX
mutex objects to protect system resources may
utilize the optional mutex priority inheritance to
eliminate nondeterministic priority inversion.

Priority Overhead One of the most overlooked ways to reduce
overhead in multithreading is to reduce the number
of context switches. As previously mentioned, a
context switch occurs when execution of a higher
priority thread is favored over that of the executing
thread. It is worthwhile to mention that higher priority
threads can become ready as a result of both
external events (like interrupts) and from service calls
made by the executing thread.

To illustrate the effects thread priorities have on
context switch overhead, assume a three thread
environment with threads named thread_1, thread_2,
and thread_3. Assume further that all of the threads
are in a state of suspension waiting for a message.
When thread_1 receives a message, it immediately
User Guide

Thread Execution 65
forwards it to thread_2. Thread_2 then forwards the
message to thread_3. Thread_3 just discards the
message. After each thread processes its message,
it goes back and waits for another message.

The processing required to execute these three
threads varies greatly depending on their priorities. If
all of the threads have the same priority, a single
context switch occurs before the execution of each
thread. The context switch occurs when each thread
suspends on an empty message queue.

However, if thread_2 is higher priority than thread_1
and thread_3 is higher priority than thread_2, the
number of context switches doubles. This is because
another context switch occurs inside of the
tx_queue_send service when it detects that a higher
priority thread is now ready.

The ThreadX preemption-threshold mechanism can
avoid these extra context switches and still allow the
previously mentioned priority selections. This is an
important feature because it allows several thread
priorities during scheduling, while at the same time
eliminating some of the unwanted context switching
between them during thread execution.

Run-time Thread
Performance
Information

ThreadX provides optional run-time thread
performance information. If the ThreadX library and
application is built with
TX_THREAD_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information:

Total number for the overall system:

• thread resumptions

• thread suspensions

• service call preemptions

• interrupt preemptions
Express Logic

66 Functional Components of ThreadX
• priority inversions

• time-slices

• relinquishes

• thread timeouts

• suspension aborts

• idle system returns

• non-idle system returns

Total number for each thread:

• resumptions

• suspensions

• service call preemptions

• interrupt preemptions

• priority inversions

• time-slices

• thread relinquishes

• thread timeouts

• suspension aborts

This information is available at run-time through the
services tx_thread_performance_info_get and
tx_thread_performance_system_info_get. Thread
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of service call preemptions
might suggest the thread’s priority and/or
preemption-threshold is too low. Furthermore, a
relatively low number of idle system returns might
suggest that lower priority threads are not
suspending enough.

Debugging Pitfalls Debugging multithreaded applications is a little more
difficult because the same program code can be
executed from multiple threads. In such cases, a
break-point alone may not be enough. The debugger
User Guide

Message Queues 67
must also view the current thread pointer
_tx_thread_current_ptr using a conditional
breakpoint to see if the calling thread is the one to
debug.

Much of this is being handled in multithreading
support packages offered through various
development tool vendors. Because of its simple
design, integrating ThreadX with different
development tools is relatively easy.

Stack size is always an important debug topic in
multithreading. Whenever unexplained behavior is
observed, it is usually a good first guess to increase
stack sizes for all threads—especially the stack size
of the last thread to execute!

It is also a good idea to build the ThreadX library with
TX_ENABLE_STACK_CHECKING defined. This will
help isolate stack corruption problems as early in the
processing as possible!

Message Queues
Message queues are the primary means of inter-
thread communication in ThreadX. One or more
messages can reside in a message queue. A
message queue that holds a single message is
commonly called a mailbox.

Messages are copied to a queue by tx_queue_send
and are copied from a queue by tx_queue_receive.
The only exception to this is when a thread is
suspended while waiting for a message on an empty
queue. In this case, the next message sent to the
queue is placed directly into the thread’s destination
area.

i

Express Logic

68 Functional Components of ThreadX
Each message queue is a public resource. ThreadX
places no constraints on how message queues are
used.

Creating Message
Queues

Message queues are created either during
initialization or during run-time by application
threads. There is no limit on the number of message
queues in an application.

Message Size Each message queue supports a number of fixed-
sized messages. The available message sizes are 1
through 16 32-bit words inclusive. The message size
is specified when the queue is created.

Application messages greater than 16 words must be
passed by pointer. This is accomplished by creating
a queue with a message size of 1 word (enough to
hold a pointer) and then sending and receiving
message pointers instead of the entire message.

Message Queue
Capacity

The number of messages a queue can hold is a
function of its message size and the size of the
memory area supplied during creation. The total
message capacity of the queue is calculated by
dividing the number of bytes in each message into
the total number of bytes in the supplied memory
area.

For example, if a message queue that supports a
message size of 1 32-bit word (4 bytes) is created
with a 100-byte memory area, its capacity is 25
messages.
User Guide

Message Queues 69
Queue Memory
Area

As mentioned before, the memory area for buffering
messages is specified during queue creation. Like
other memory areas in ThreadX, it can be located
anywhere in the target’s address space.

This is an important feature because it gives the
application considerable flexibility. For example, an
application might locate the memory area of an
important queue in high-speed RAM to improve
performance.

Thread
Suspension

Application threads can suspend while attempting to
send or receive a message from a queue. Typically,
thread suspension involves waiting for a message
from an empty queue. However, it is also possible for
a thread to suspend trying to send a message to a
full queue.

After the condition for suspension is resolved, the
service requested is completed and the waiting
thread is resumed. If multiple threads are suspended
on the same queue, they are resumed in the order
they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_queue_prioritize prior to the
queue service that lifts thread suspension. The
queue prioritize service places the highest priority
thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Time-outs are also available for all queue
suspensions. Basically, a time-out specifies the
maximum number of timer ticks the thread will stay
suspended. If a time-out occurs, the thread is
resumed and the service returns with the appropriate
error code.
Express Logic

70 Functional Components of ThreadX
Queue Send
Notification

Some applications may find it advantageous to be
notified whenever a message is placed on a queue.
ThreadX provides this ability through the
tx_queue_send_notify service. This service registers
the supplied application notification function with the
specified queue. ThreadX will subsequently invoke
this application notification function whenever a
message is sent to the queue. The exact processing
within the application notification function is
determined by the application; however, it typically
consists of resuming the appropriate thread for
processing the new message.

Queue Event-
chaining™

The notification capabilities in ThreadX can be used
to chain various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, suppose a single thread is responsible
for processing messages from five different queues
and must also suspend when no messages are
available. This is easily accomplished by registering
an application notification function for each queue
and introducing an additional counting semaphore.
Specifically, the application notification function
performs a tx_semaphore_put whenever it is called
(the semaphore count represents the total number of
messages in all five queues). The processing thread
suspends on this semaphore via the
tx_semaphore_get service. When the semaphore is
available (in this case, when a message is
available!), the processing thread is resumed. It then
interrogates each queue for a message, processes
the found message, and performs another
tx_semaphore_get to wait for the next message.
Accomplishing this without event-chaining is quite
difficult and likely would require more threads and/or
additional application code.
User Guide

Message Queues 71
In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

Run-time Queue
Performance
Information

ThreadX provides optional run-time queue
performance information. If the ThreadX library and
application is built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information:

Total number for the overall system:

• messages sent

• messages received

• queue empty suspensions

• queue full suspensions

• queue full error returns (suspension not specified)

• queue timeouts

Total number for each queue:

• messages sent

• messages received

• queue empty suspensions

• queue full suspensions

• queue full error returns (suspension not specified)

• queue timeouts

This information is available at run-time through the
services tx_queue_performance_info_get and
tx_queue_performance_system_info_get. Queue
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “queue full suspensions”
Express Logic

72 Functional Components of ThreadX
suggests an increase in the queue size might be
beneficial.

Queue Control
Block TX_QUEUE

The characteristics of each message queue are
found in its control block. It contains interesting
information such as the number of messages in the
queue. This structure is defined in the tx_api.h file.

Message queue control blocks can also be located
anywhere in memory, but it is most common to make
the control block a global structure by defining it
outside the scope of any function.

Message
Destination Pitfall

As mentioned previously, messages are copied
between the queue area and application data areas.
It is important to ensure the destination for a received
message is large enough to hold the entire message.
If not, the memory following the message destination
will likely be corrupted.

This is especially lethal when a too-small message
destination is on the stack—nothing like corrupting
the return address of a function!

Counting Semaphores
ThreadX provides 32-bit counting semaphores that
range in value between 0 and 4,294,967,295. There
are two operations for counting semaphores:
tx_semaphore_get and tx_semaphore_put. The get
operation decreases the semaphore by one. If the
semaphore is 0, the get operation is not successful.
The inverse of the get operation is the put operation.
It increases the semaphore by one.

!

User Guide

Counting Semaphores 73
Each counting semaphore is a public resource.
ThreadX places no constraints on how counting
semaphores are used.

Counting semaphores are typically used for mutual
exclusion. However, counting semaphores can also
be used as a method for event notification.

Mutual Exclusion Mutual exclusion pertains to controlling the access of
threads to certain application areas (also called
critical sections or application resources). When
used for mutual exclusion, the “current count” of a
semaphore represents the total number of threads
that are allowed access. In most cases, counting
semaphores used for mutual exclusion will have an
initial value of 1, meaning that only one thread can
access the associated resource at a time. Counting
semaphores that only have values of 0 or 1 are
commonly called binary semaphores.

If a binary semaphore is being used, the user must
prevent the same thread from performing a get
operation on a semaphore it already owns. A second
get would be unsuccessful and could cause indefinite
suspension of the calling thread and permanent un-
availability of the resource.

Event Notification It is also possible to use counting semaphores as
event notification, in a producer-consumer fashion.
The consumer attempts to get the counting
semaphore while the producer increases the
semaphore whenever something is available. Such
semaphores usually have an initial value of 0 and will
not increase until the producer has something ready
for the consumer. Semaphores used for event
notification may also benefit from use of the
tx_semaphore_ceiling_put service call. This service
ensures that the semaphore count never exceeds
the value supplied in the call.

i

Express Logic

74 Functional Components of ThreadX
Creating Counting
Semaphores

Counting semaphores are created either during
initialization or during run-time by application
threads. The initial count of the semaphore is
specified during creation. There is no limit on the
number of counting semaphores in an application.

Thread
Suspension

Application threads can suspend while attempting to
perform a get operation on a semaphore with a
current count of 0.

After a put operation is performed, the suspended
thread’s get operation is performed and the thread is
resumed. If multiple threads are suspended on the
same counting semaphore, they are resumed in the
same order they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_semaphore_prioritize prior to
the semaphore put call that lifts thread suspension.
The semaphore prioritize service places the highest
priority thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Semaphore Put
Notification

Some applications may find it advantageous to be
notified whenever a semaphore is put. ThreadX
provides this ability through the
tx_semaphore_put_notify service. This service
registers the supplied application notification function
with the specified semaphore. ThreadX will
subsequently invoke this application notification
function whenever the semaphore is put. The exact
processing within the application notification function
is determined by the application; however, it typically
consists of resuming the appropriate thread for
processing the new semaphore put event.
User Guide

Counting Semaphores 75
Semaphore Event-
chaining™

The notification capabilities in ThreadX can be used
to chain various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, instead of having separate threads
suspend for a queue message, event flags, and a
semaphore, the application can register a notification
routine for each object. When invoked, the
application notification routine can then resume a
single thread, which can interrogate each object to
find and process the new event.

In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

Run-time
Semaphore
Performance
Information

ThreadX provides optional run-time semaphore
performance information. If the ThreadX library and
application is built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• semaphore puts

• semaphore gets

• semaphore get suspensions

• semaphore get timeouts

Total number for each semaphore:

• semaphore puts

• semaphore gets

• semaphore get suspensions

• semaphore get timeouts
Express Logic

76 Functional Components of ThreadX
This information is available at run-time through the
services tx_semaphore_performance_info_get and
tx_semaphore_performance_system_info_get.
Semaphore performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application. For
example, a relatively high number of “semaphore get
timeouts” might suggest that other threads are
holding resources too long.

Semaphore
Control Block
TX_SEMAPHORE

The characteristics of each counting semaphore are
found in its control block. It contains information such
as the current semaphore count. This structure is
defined in the tx_api.h file.

Semaphore control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Deadly Embrace One of the most interesting and dangerous pitfalls
associated with semaphores used for mutual
exclusion is the deadly embrace. A deadly embrace,
or deadlock, is a condition in which two or more
threads are suspended indefinitely while attempting
to get semaphores already owned by each other.

This condition is best illustrated by a two thread, two
semaphore example. Suppose the first thread owns
the first semaphore and the second thread owns the
second semaphore. If the first thread attempts to get
the second semaphore and at the same time the
second thread attempts to get the first semaphore,
both threads enter a deadlock condition. In addition,
if these threads stay suspended forever, their
associated resources are locked-out forever as well.
Figure 8 on page 77 illustrates this example.
User Guide

Counting Semaphores 77
For real-time systems, deadly embraces can be
prevented by placing certain restrictions on how
threads obtain semaphores. Threads can only have
one semaphore at a time. Alternatively, threads can
own multiple semaphores if they gather them in the
same order. In the previous example, if the first and
second thread obtain the first and second
semaphore in order, the deadly embrace is
prevented.

It is also possible to use the suspension time-out
associated with the get operation to recover from a
deadly embrace.

Deadly Embrace
(example)

First Thread Second Thread

First
Semaphore

Second
Semaphore

owned by
first thread

owned by
second thread

attempt to
get second
semaphore

attempt to
get first
semaphore

FIGURE 8. Example of Suspended Threads

i

Express Logic

78 Functional Components of ThreadX
Priority Inversion Another pitfall associated with mutual exclusion
semaphores is priority inversion. This topic is
discussed more fully in “Thread Priority Pitfalls” on
page 63.

The basic problem results from a situation in which a
lower-priority thread has a semaphore that a higher
priority thread needs. This in itself is normal.
However, threads with priorities in between them
may cause the priority inversion to last a non-
deterministic amount of time. This can be handled
through careful selection of thread priorities, using
preemption-threshold, and temporarily raising the
priority of the thread that owns the resource to that of
the high priority thread.

Mutexes
In addition to semaphores, ThreadX also provides a
mutex object. A mutex is basically a binary
semaphore, which means that only one thread can
own a mutex at a time. In addition, the same thread
may perform a successful mutex get operation on an
owned mutex multiple times, 4,294,967,295 to be
exact. There are two operations on the mutex object:
tx_mutex_get and tx_mutex_put. The get
operation obtains a mutex not owned by another
thread, while the put operation releases a previously
obtained mutex. For a thread to release a mutex, the
number of put operations must equal the number of
prior get operations.

Each mutex is a public resource. ThreadX places no
constraints on how mutexes are used.

ThreadX mutexes are used solely for mutual
exclusion. Unlike counting semaphores, mutexes
have no use as a method for event notification.
User Guide

Mutexes 79
Mutex Mutual
Exclusion

Similar to the discussion in the counting semaphore
section, mutual exclusion pertains to controlling the
access of threads to certain application areas (also
called critical sections or application resources).
When available, a ThreadX mutex will have an
ownership count of 0. After the mutex is obtained by
a thread, the ownership count is incremented once
for every successful get operation performed on the
mutex and decremented for every successful put
operation.

Creating Mutexes ThreadX mutexes are created either during
initialization or during run-time by application
threads. The initial condition of a mutex is always
“available.” A mutex may also be created with priority
inheritance selected.

Thread
Suspension

Application threads can suspend while attempting to
perform a get operation on a mutex already owned
by another thread.

After the same number of put operations are
performed by the owning thread, the suspended
thread’s get operation is performed, giving it
ownership of the mutex, and the thread is resumed. If
multiple threads are suspended on the same mutex,
they are resumed in the same order they were
suspended (FIFO).

However, priority resumption is done automatically if
the mutex priority inheritance was selected during
creation. Priority resumption is also possible if the
application calls tx_mutex_prioritize prior to the
mutex put call that lifts thread suspension. The mutex
prioritize service places the highest priority thread at
the front of the suspension list, while leaving all other
suspended threads in the same FIFO order.
Express Logic

80 Functional Components of ThreadX
Run-time Mutex
Performance
Information

ThreadX provides optional run-time mutex
performance information. If the ThreadX library and
application is built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• mutex puts

• mutex gets

• mutex get suspensions

• mutex get timeouts

• mutex priority inversions

• mutex priority inheritances

Total number for each mutex:

• mutex puts

• mutex gets

• mutex get suspensions

• mutex get timeouts

• mutex priority inversions

• mutex priority inheritances

This information is available at run-time through the
services tx_mutex_performance_info_get and
tx_mutex_performance_system_info_get. Mutex
performance information is useful in determining if
the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “mutex get timeouts” might
suggest that other threads are holding resources too
long.
User Guide

Mutexes 81
Mutex Control
Block TX_MUTEX

The characteristics of each mutex are found in its
control block. It contains information such as the
current mutex ownership count along with the pointer
of the thread that owns the mutex. This structure is
defined in the tx_api.h file.

Mutex control blocks can be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Deadly Embrace One of the most interesting and dangerous pitfalls
associated with mutex ownership is the deadly
embrace. A deadly embrace, or deadlock, is a
condition where two or more threads are suspended
indefinitely while attempting to get a mutex already
owned by the other threads. The discussion of
deadly embrace and its remedies found on page 76
is completely valid for the mutex object as well.

Priority Inversion As mentioned previously, a major pitfall associated
with mutual exclusion is priority inversion. This topic
is discussed more fully in “Thread Priority Pitfalls” on
page 63.

The basic problem results from a situation in which a
lower priority thread has a semaphore that a higher
priority thread needs. This in itself is normal.
However, threads with priorities in between them
may cause the priority inversion to last a non-
deterministic amount of time. Unlike semaphores
discussed previously, the ThreadX mutex object has
optional priority inheritance. The basic idea behind
priority inheritance is that a lower priority thread has
its priority raised temporarily to the priority of a high
priority thread that wants the same mutex owned by
the lower priority thread. When the lower priority
thread releases the mutex, its original priority is then
restored and the higher priority thread is given
Express Logic

82 Functional Components of ThreadX
ownership of the mutex. This feature eliminates
nondeterministic priority inversion by bounding the
amount of inversion to the time the lower priority
thread holds the mutex. Of course, the techniques
discussed earlier in this chapter to handle
nondeterministic priority inversion are also valid with
mutexes as well.

Event Flags
Event flags provide a powerful tool for thread
synchronization. Each event flag is represented by a
single bit. Event flags are arranged in groups of 32.

Threads can operate on all 32 event flags in a group
at the same time. Events are set by
tx_event_flags_set and are retrieved by
tx_event_flags_get.

Setting event flags is done with a logical AND/OR
operation between the current event flags and the
new event flags. The type of logical operation (either
an AND or OR) is specified in the tx_event_flags_set
call.

There are similar logical options for retrieval of event
flags. A get request can specify that all specified
event flags are required (a logical AND).
Alternatively, a get request can specify that any of the
specified event flags will satisfy the request (a logical
OR). The type of logical operation associated with
event flags retrieval is specified in the
tx_event_flags_get call.

Event flags that satisfy a get request are consumed,
i.e., set to zero, if TX_OR_CLEAR or
TX_AND_CLEAR are specified by the request. i
User Guide

Event Flags 83
Each event flags group is a public resource. ThreadX
places no constraints on how event flags groups are
used.

Creating Event
Flags Groups

Event flags groups are created either during
initialization or during run-time by application
threads. At the time of their creation, all event flags in
the group are set to zero. There is no limit on the
number of event flags groups in an application.

Thread
Suspension

Application threads can suspend while attempting to
get any logical combination of event flags from a
group. After an event flag is set, the get requests of
all suspended threads are reviewed. All the threads
that now have the required event flags are resumed.

All suspended threads on an event flags group are
reviewed when its event flags are set. This, of
course, introduces additional overhead. Therefore, it
is good practice to limit the number of threads using
the same event flags group to a reasonable number.

Event Flags Set
Notification

Some applications may find it advantageous to be
notified whenever an event flag is set. ThreadX
provides this ability through the
tx_event_flags_set_notify service. This service
registers the supplied application notification function
with the specified event flags group. ThreadX will
subsequently invoke this application notification
function whenever an event flag in the group is set.
The exact processing within the application
notification function is determined by the application,
but it typically consists of resuming the appropriate
thread for processing the new event flag.

i

Express Logic

84 Functional Components of ThreadX
Event Flags Event-
chaining™

The notification capabilities in ThreadX can be used
to “chain” various synchronization events together.
This is typically useful when a single thread must
process multiple synchronization events.

For example, instead of having separate threads
suspend for a queue message, event flags, and a
semaphore, the application can register a notification
routine for each object. When invoked, the
application notification routine can then resume a
single thread, which can interrogate each object to
find and process the new event.

In general, event-chaining results in fewer threads,
less overhead, and smaller RAM requirements. It
also provides a highly flexible mechanism to handle
synchronization requirements of more complex
systems.

Run-time Event
Flags Performance
Information

ThreadX provides optional run-time event flags
performance information. If the ThreadX library and
application is built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• event flags sets

• event flags gets

• event flags get suspensions

• event flags get timeouts

Total number for each event flags group:

• event flags sets

• event flags gets

• event flags get suspensions

• event flags get timeouts
User Guide

Memory Block Pools 85
This information is available at run-time through the
services tx_event_flags_performance_info_get and
tx_event_flags_performance_system_info_get.
Event Flags performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application. For
example, a relatively high number of timeouts on the
tx_event_flags_get service might suggest that the
event flags suspension timeout is too short.

Event Flags Group
Control Block
TX_EVENT_FLAGS_GROUP

The characteristics of each event flags group are
found in its control block. It contains information such
as the current event flags settings and the number of
threads suspended for events. This structure is
defined in the tx_api.h file.

Event group control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Memory Block Pools
Allocating memory in a fast and deterministic manner
is always a challenge in real-time applications. With
this in mind, ThreadX provides the ability to create
and manage multiple pools of fixed-size memory
blocks.

Because memory block pools consist of fixed-size
blocks, there are never any fragmentation problems.
Of course, fragmentation causes behavior that is
inherently nondeterministic. In addition, the time
required to allocate and free a fixed-size memory
block is comparable to that of simple linked-list
manipulation. Furthermore, memory block allocation
and de-allocation is done at the head of the available
list. This provides the fastest possible linked list
Express Logic

86 Functional Components of ThreadX
processing and might help keep the actual memory
block in cache.

Lack of flexibility is the main drawback of fixed-size
memory pools. The block size of a pool must be large
enough to handle the worst case memory
requirements of its users. Of course, memory may be
wasted if many different size memory requests are
made to the same pool. A possible solution is to
make several different memory block pools that
contain different sized memory blocks.

Each memory block pool is a public resource.
ThreadX places no constraints on how pools are
used.

Creating Memory
Block Pools

Memory block pools are created either during
initialization or during run-time by application
threads. There is no limit on the number of memory
block pools in an application.

Memory Block
Size

As mentioned earlier, memory block pools contain a
number of fixed-size blocks. The block size, in bytes,
is specified during creation of the pool.

ThreadX adds a small amount of overhead—the size
of a C pointer—to each memory block in the pool. In
addition, ThreadX might have to pad the block size to
keep the beginning of each memory block on proper
alignment.

Pool Capacity The number of memory blocks in a pool is a function
of the block size and the total number of bytes in the
memory area supplied during creation. The capacity
of a pool is calculated by dividing the block size

i

User Guide

Memory Block Pools 87
(including padding and the pointer overhead bytes)
into the total number of bytes in the supplied memory
area.

Pool’s Memory
Area

As mentioned before, the memory area for the block
pool is specified during creation. Like other memory
areas in ThreadX, it can be located anywhere in the
target’s address space.

This is an important feature because of the
considerable flexibility it provides. For example,
suppose that a communication product has a high-
speed memory area for I/O. This memory area is
easily managed by making it into a ThreadX memory
block pool.

Thread
Suspension

Application threads can suspend while waiting for a
memory block from an empty pool. When a block is
returned to the pool, the suspended thread is given
this block and the thread is resumed.

If multiple threads are suspended on the same
memory block pool, they are resumed in the order
they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_block_pool_prioritize prior to
the block release call that lifts thread suspension.
The block pool prioritize service places the highest
priority thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Run-time Block
Pool Performance
Information

ThreadX provides optional run-time block pool
performance information. If the ThreadX library and
application is built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO
Express Logic

88 Functional Components of ThreadX
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• blocks allocated

• blocks released

• allocation suspensions

• allocation timeouts

Total number for each block pool:

• blocks allocated

• blocks released

• allocation suspensions

• allocation timeouts

This information is available at run-time through the
services tx_block_pool_performance_info_get and
tx_block_pool_performance_system_info_get. Block
pool performance information is useful in determining
if the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “allocation suspensions”
might suggest that the block pool is too small.

Memory Block
Pool Control Block
TX_BLOCK_POOL

The characteristics of each memory block pool are
found in its control block. It contains information such
as the number of memory blocks available and the
memory pool block size. This structure is defined in
the tx_api.h file.

Pool control blocks can also be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.
User Guide

Memory Byte Pools 89
Overwriting
Memory Blocks

It is important to ensure that the user of an allocated
memory block does not write outside its boundaries.
If this happens, corruption occurs in an adjacent
(usually subsequent) memory area. The results are
unpredictable and often fatal!

Memory Byte Pools
ThreadX memory byte pools are similar to a standard
C heap. Unlike the standard C heap, it is possible to
have multiple memory byte pools. In addition,
threads can suspend on a pool until the requested
memory is available.

Allocations from memory byte pools are similar to
traditional malloc calls, which include the amount of
memory desired (in bytes). Memory is allocated from
the pool in a first-fit manner; i.e., the first free
memory block that satisfies the request is used.
Excess memory from this block is converted into a
new block and placed back in the free memory list.
This process is called fragmentation.

Adjacent free memory blocks are merged together
during a subsequent allocation search for a large
enough free memory block. This process is called
de-fragmentation.

Each memory byte pool is a public resource.
ThreadX places no constraints on how pools are
used, except that memory byte services cannot be
called from ISRs.

Creating Memory
Byte Pools

Memory byte pools are created either during
initialization or during run-time by application
threads. There is no limit on the number of memory
byte pools in an application.
Express Logic

90 Functional Components of ThreadX
Pool Capacity The number of allocatable bytes in a memory byte
pool is slightly less than what was specified during
creation. This is because management of the free
memory area introduces some overhead. Each free
memory block in the pool requires the equivalent of
two C pointers of overhead. In addition, the pool is
created with two blocks, a large free block and a
small permanently allocated block at the end of the
memory area. This allocated block is used to improve
performance of the allocation algorithm. It eliminates
the need to continuously check for the end of the
pool area during merging.

During run-time, the amount of overhead in the pool
typically increases. Allocations of an odd number of
bytes are padded to ensure proper alignment of the
next memory block. In addition, overhead increases
as the pool becomes more fragmented.

Pool’s Memory
Area

The memory area for a memory byte pool is specified
during creation. Like other memory areas in
ThreadX, it can be located anywhere in the target’s
address space.

This is an important feature because of the
considerable flexibility it provides. For example, if the
target hardware has a high-speed memory area and
a low-speed memory area, the user can manage
memory allocation for both areas by creating a pool
in each of them.

Thread
Suspension

Application threads can suspend while waiting for
memory bytes from a pool. When sufficient
contiguous memory becomes available, the
suspended threads are given their requested
memory and the threads are resumed.
User Guide

Memory Byte Pools 91
If multiple threads are suspended on the same
memory byte pool, they are given memory (resumed)
in the order they were suspended (FIFO).

However, priority resumption is also possible if the
application calls tx_byte_pool_prioritize prior to the
byte release call that lifts thread suspension. The
byte pool prioritize service places the highest priority
thread at the front of the suspension list, while
leaving all other suspended threads in the same
FIFO order.

Run-time Byte
Pool Performance
Information

ThreadX provides optional run-time byte pool
performance information. If the ThreadX library and
application is built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• allocations

• releases

• fragments searched

• fragments merged

• fragments created

• allocation suspensions

• allocation timeouts

Total number for each byte pool:

• allocations

• releases

• fragments searched

• fragments merged

• fragments created

• allocation suspensions

• allocation timeouts
Express Logic

92 Functional Components of ThreadX
This information is available at run-time through the
services tx_byte_pool_performance_info_get and
tx_byte_pool_performance_system_info_get. Byte
pool performance information is useful in determining
if the application is behaving properly. It is also useful
in optimizing the application. For example, a
relatively high number of “allocation suspensions”
might suggest that the byte pool is too small.

Memory Byte Pool
Control Block
TX_BYTE_POOL

The characteristics of each memory byte pool are
found in its control block. It contains useful
information such as the number of available bytes in
the pool. This structure is defined in the tx_api.h file.

Pool control blocks can also be located anywhere in
memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Nondeterministic
Behavior

Although memory byte pools provide the most
flexible memory allocation, they also suffer from
somewhat nondeterministic behavior. For example, a
memory byte pool may have 2,000 bytes of memory
available but may not be able to satisfy an allocation
request of 1,000 bytes. This is because there are no
guarantees on how many of the free bytes are
contiguous. Even if a 1,000 byte free block exists,
there are no guarantees on how long it might take to
find the block. It is completely possible that the entire
memory pool would need to be searched to find the
1,000 byte block.

Because of this, it is generally good practice to avoid
using memory byte services in areas where
deterministic, real-time behavior is required. Many
applications pre-allocate their required memory
during initialization or run-time configuration.

i

User Guide

Application Timers 93
Overwriting
Memory Blocks

It is important to ensure that the user of allocated
memory does not write outside its boundaries. If this
happens, corruption occurs in an adjacent (usually
subsequent) memory area. The results are
unpredictable and often fatal!

Application Timers
Fast response to asynchronous external events is
the most important function of real-time, embedded
applications. However, many of these applications
must also perform certain activities at pre-determined
intervals of time.

ThreadX application timers provide applications with
the ability to execute application C functions at
specific intervals of time. It is also possible for an
application timer to expire only once. This type of
timer is called a one-shot timer, while repeating
interval timers are called periodic timers.

Each application timer is a public resource. ThreadX
places no constraints on how application timers are
used.

Timer Intervals In ThreadX time intervals are measured by periodic
timer interrupts. Each timer interrupt is called a timer
tick. The actual time between timer ticks is specified
by the application, but 10ms is the norm for most
implementations. The periodic timer setup is typically
found in the tx_initialize_low_level assembly file.

It is worth mentioning that the underlying hardware
must have the ability to generate periodic interrupts
for application timers to function. In some cases, the
processor has a built-in periodic interrupt capability. If
the processor doesn’t have this ability, the user’s
Express Logic

94 Functional Components of ThreadX
board must have a peripheral device that can
generate periodic interrupts.

ThreadX can still function even without a periodic
interrupt source. However, all timer-related
processing is then disabled. This includes time-
slicing, suspension time-outs, and timer services.

Timer Accuracy Timer expirations are specified in terms of ticks. The
specified expiration value is decreased by one on
each timer tick. Because an application timer could
be enabled just prior to a timer interrupt (or timer
tick), the actual expiration time could be up to one
tick early.

If the timer tick rate is 10ms, application timers may
expire up to 10ms early. This is more significant for
10ms timers than 1 second timers. Of course,
increasing the timer interrupt frequency decreases
this margin of error.

Timer Execution Application timers execute in the order they become
active. For example, if three timers are created with
the same expiration value and activated, their
corresponding expiration functions are guaranteed to
execute in the order they were activated.

Creating
Application Timers

Application timers are created either during
initialization or during run-time by application
threads. There is no limit on the number of
application timers in an application.

i

User Guide

Application Timers 95
Run-time
Application Timer
Performance
Information

ThreadX provides optional run-time application timer
performance information. If the ThreadX library and
application are built with
TX_TIMER_ENABLE_PERFORMANCE_INFO
defined, ThreadX accumulates the following
information.

Total number for the overall system:

• activations

• deactivations

• reactivations (periodic timers)

• expirations

• expiration adjustments

Total number for each application timer:

• activations

• deactivations

• reactivations (periodic timers)

• expirations

• expiration adjustments

This information is available at run-time through the
services tx_timer_performance_info_get and
tx_timer_performance_system_info_get. Application
Timer performance information is useful in
determining if the application is behaving properly. It
is also useful in optimizing the application.

Application Timer
Control Block
TX_TIMER

The characteristics of each application timer are
found in its control block. It contains useful
information such as the 32-bit expiration identification
value. This structure is defined in the tx_api.h file.

Application timer control blocks can be located
anywhere in memory, but it is most common to make
the control block a global structure by defining it
outside the scope of any function.
Express Logic

96 Functional Components of ThreadX
Excessive Timers By default, application timers execute from within a
hidden system thread that runs at priority zero, which
is typically higher than any application thread.
Because of this, processing inside application timers
should be kept to a minimum.

It is also important to avoid, whenever possible,
timers that expire every timer tick. Such a situation
might induce excessive overhead in the application.

As mentioned previously, application timers are
executed from a hidden system thread. It is,
therefore, important not to select suspension on any
ThreadX service calls made from within the
application timer’s expiration function.

Relative Time
In addition to the application timers mentioned
previously, ThreadX provides a single continuously
incrementing 32-bit tick counter. The tick counter or
time is increased by one on each timer interrupt.

The application can read or set this 32-bit counter
through calls to tx_time_get and tx_time_set,
respectively. The use of this tick counter is
determined completely by the application. It is not
used internally by ThreadX.

Interrupts
Fast response to asynchronous events is the
principal function of real-time, embedded
applications. The application knows such an event is
present through hardware interrupts.

An interrupt is an asynchronous change in processor
execution. Typically, when an interrupt occurs, the

!

User Guide

Interrupts 97
processor saves a small portion of the current
execution on the stack and transfers control to the
appropriate interrupt vector. The interrupt vector is
basically just the address of the routine responsible
for handling the specific type interrupt. The exact
interrupt handling procedure is processor specific.

Interrupt Control The tx_interrupt_control service allows applications
to enable and disable interrupts. The previous
interrupt enable/disable posture is returned by this
service. It is important to mention that interrupt
control only affects the currently executing program
segment. For example, if a thread disables interrupts,
they only remain disabled during execution of that
thread.

A Non-Maskable Interrupt (NMI) is an interrupt that
cannot be disabled by the hardware. Such an
interrupt may be used by ThreadX applications.
However, the application’s NMI handling routine is
not allowed to use ThreadX context management or
any API services.

ThreadX Managed
Interrupts

ThreadX provides applications with complete
interrupt management. This management includes
saving and restoring the context of the interrupted
execution. In addition, ThreadX allows certain
services to be called from within Interrupt Service
Routines (ISRs). The following is a list of ThreadX
services allowed from application ISRs:

tx_block_allocate
tx_block_pool_info_get
tx_block_pool_prioritize
tx_block_pool_performance_info_get
tx_block_pool_performance_system_info_get
tx_block_release
tx_byte_pool_info_get
tx_byte_pool_performance_info_get
tx_byte_pool_performance_system_info_get
tx_byte_pool_prioritize

!

Express Logic

98 Functional Components of ThreadX
tx_event_flags_info_get
tx_event_flags_get
tx_event_flags_set
tx_event_flags_performance_info_get
tx_event_flags_performance_system_info_get
tx_event_flags_set_notify
tx_interrupt_control
tx_mutex_performance_info_get
tx_mutex_performance_system_info_get
tx_queue_front_send
tx_queue_info_get
tx_queue_performance_info_get
tx_queue_performance_system_info_get
tx_queue_prioritize
tx_queue_receive
tx_queue_send
tx_semaphore_get
tx_queue_send_notify
tx_semaphore_ceiling_put
tx_semaphore_info_get
tx_semaphore_performance_info_get
tx_semaphore_performance_system_info_get
tx_semaphore_prioritize
tx_semaphore_put
tx_thread_identify
tx_semaphore_put_notify
tx_thread_entry_exit_notify
tx_thread_info_get
tx_thread_resume
tx_thread_performance_info_get
tx_thread_performance_system_info_get
tx_thread_stack_error_notify
tx_thread_wait_abort
tx_time_get
tx_time_set
tx_timer_activate
tx_timer_change
tx_timer_deactivate
tx_timer_info_get
tx_timer_performance_info_get
tx_timer_performance_system_info_get

Suspension is not allowed from ISRs. Therefore, the
wait_option parameter for all ThreadX service calls
made from an ISR must be set to TX_NO_WAIT.!
User Guide

Interrupts 99
ISR Template To manage application interrupts, several ThreadX
utilities must be called in the beginning and end of
application ISRs. The exact format for interrupt
handling varies between ports. Review the
readme_threadx.txt file on the distribution disk for
specific instructions on managing ISRs.

The following small code segment is typical of most
ThreadX managed ISRs. In most cases, this
processing is in assembly language.
Express Logic

100 Functional Components of ThreadX
_application_ISR_vector_entry:
; Save context and prepare for
; ThreadX use by calling the ISR
; entry function.
CALL _tx_thread_context_save

; The ISR can now call ThreadX
; services and its own C functions

; When the ISR is finished, context
; is restored (or thread preemption)
; by calling the context restore
; function. Control does not return!
JUMP _tx_thread_context_restore

High-frequency
Interrupts

Some interrupts occur at such a high frequency that
saving and restoring full context upon each interrupt
would consume excessive processing bandwidth. In
such cases, it is common for the application to have
a small assembly language ISR that does a limited
amount of processing for a majority of these high-
frequency interrupts.

After a certain point in time, the small ISR may need
to interact with ThreadX. This is accomplished by
calling the entry and exit functions described in the
above template.

Interrupt Latency ThreadX locks out interrupts over brief periods of
time. The maximum amount of time interrupts are
disabled is on the order of the time required to save
or restore a thread’s context.
User Guide

C H A P T E R 4
Description of ThreadX Services

This chapter contains a description of all ThreadX
services in alphabetic order. Their names are designed
so all similar services are grouped together. In the
“Return Values” section in the following descriptions,
values in BOLD are not affected by the
TX_DISABLE_ERROR_CHECKING define used to
disable API error checking; while values shown in non-
bold are completely disabled. In addition, a “Yes” listed
under the “Preemption Possible” heading indicates that
calling the service may resume a higher-priority thread,
thus preempting the calling thread.

tx_block_allocate 108
Allocate fixed-size block of memory

tx_block_pool_create 112
Create pool of fixed-size memory blocks

tx_block_pool_delete 114
Delete memory block pool

tx_block_pool_info_get 116
Retrieve information about block pool

tx_block_pool_performance_info_get 118
Get block pool performance information

tx_block_pool_performance_system_info_get 120
Get block pool system performance information

tx_block_pool_prioritize 122
Prioritize block pool suspension list

tx_block_release 124
Release fixed-size block of memory

tx_byte_allocate 126
Allocate bytes of memory
User Guide

102 Description of ThreadX Services
tx_byte_pool_create 130
Create memory pool of bytes

tx_byte_pool_delete 132
Delete memory byte pool

tx_byte_pool_info_get 134
Retrieve information about byte pool

tx_byte_pool_performance_info_get
Get byte pool performance information 136

tx_byte_pool_performance_system_info_get 138
Get byte pool system performance information

tx_byte_pool_prioritize 140
Prioritize byte pool suspension list

tx_byte_release 142
Release bytes back to memory pool

tx_event_flags_create 144
Create event flags group

tx_event_flags_delete 146
Delete event flags group

tx_event_flags_get 148
Get event flags from event flags group

tx_event_flags_info_get 152
Retrieve information about event flags group

tx_event_flags_performance info_get 154
Get event flags group performance information

tx_event_flags_performance_system_info_get 156
Retrieve performance system information

tx_event_flags_set 158
Set event flags in an event flags group

tx_event_flags_set_notify 160
Notify application when event flags are set

tx_interrupt_control 162
Enable and disable interrupts
User Guide

103
tx_mutex_create 164
Create mutual exclusion mutex

tx_mutex_delete 166
Delete mutual exclusion mutex

tx_mutex_get 168
Obtain ownership of mutex

tx_mutex_info_get 170
Retrieve information about mutex

tx_mutex_performance_info_get 172
Get mutex performance information

tx_mutex_performance_system_info_get 174
Get mutex system performance information

tx_mutex_prioritize 176
Prioritize mutex suspension list

tx_mutex_put 178
Release ownership of mutex

tx_queue_create 180
Create message queue

tx_queue_delete 182
Delete message queue

tx_queue_flush 184
Empty messages in message queue

tx_queue_front_send 186
Send message to the front of queue

tx_queue_info_get 188
Retrieve information about queue

tx_queue_performance_info_get 190
Get queue performance information

tx_queue_performance_system_info_get 192
Get queue system performance information

tx_queue_prioritize 194
Prioritize queue suspension list
Express Logic

104 Description of ThreadX Services
tx_queue_receive 196
Get message from message queue

tx_queue_send 200
Send message to message queue

tx_queue_send_notify 202
Notify application when message is sent to queue

tx_semaphore_ceiling_put 204
Place an instance in counting semaphore with ceiling

tx_semaphore_create 206
Create counting semaphore

tx_semaphore_delete 208
Delete counting semaphore

tx_semaphore_get 210
Get instance from counting semaphore

tx_semaphore_info_get 212
Retrieve information about semaphore

tx_semaphore_performance_info_get 214
Get semaphore performance information

tx_semaphore_performance_system_info_get 216
Get semaphore system performance information

tx_semaphore_prioritize 218
Prioritize semaphore suspension list

tx_semaphore_put 220
Place an instance in counting seaphore

tx_semaphore_put_notify 222
Notify application when semaphore is put

tx_thread_create 224
Create application thread

tx_thread_delete 228
Delete application thread

tx_thread_entry_exit_notify 230
Notify application upon thread entry and exit
User Guide

105
tx_thread_identify 232
Retrieves pointer to currently executing thread

tx_thread_info_get 234
Retrieve information about thread

tx_thread_performance_info_get 238
Get thread performance information

tx_thread_performance_system_info_get 242
Get thread system performance information

tx_thread_preemption_change 246
Change preemption-threshold of application thread

tx_thread_priority_change 248
Change priority of application thread

tx_thread_relinquish 250
Relinquish control to other application threads

tx_thread_reset 252
Reset thread

tx_thread_resume 254
Resume suspended application thread

tx_thread_sleep 256
Suspend current thread for specified time

tx_thread_stack_error_notify 258
Register thread stack error notification callback

tx_thread_suspend 260
Suspend application thread

tx_thread_terminate 262
Terminates application thread

tx_thread_time_slice_change 264
Changes time-slice of application thread

tx_thread_wait_abort 266
Abort suspension of specified thread

tx_time_get 268
Retrieves the current time
Express Logic

106 Description of ThreadX Services
tx_time_set 270
Sets the current time

tx_timer_activate 272
Activate application timer

tx_timer_change 274
Change application timer

tx_timer_create 276
Create application timer

tx_timer_deactivate 278
Deactivate application timer

tx_timer_delete 280
Delete application timer

tx_timer_info_get 282
Retrieve information about an application timer

tx_timer_performance_info_get 284
Get timer performance information

tx_timer_performance_system_info_get 286
Get timer system performance information
User Guide

107
Express Logic

108 Description of ThreadX Services
tx_block_allocate
Allocate fixed-size block of memory

Memory Blocks

Prototype
UINT tx_block_allocate(TX_BLOCK_POOL *pool_ptr, VOID **block_ptr,

ULONG wait_option)

Description
This service allocates a fixed-size memory block from the specified
memory pool. The actual size of the memory block is determined during
memory pool creation.

It is important to ensure application code does not write outside the
allocated memory block. If this happens, corruption occurs in an adjacent
(usually subsequent) memory block. The results are unpredictable and
often fatal!

Parameters
pool_ptr Pointer to a previously created memory block

pool.

block_ptr Pointer to a destination block pointer. On
successful allocation, the address of the
allocated memory block is placed where this
parameter points.

wait_option Defines how the service behaves if there are no
memory blocks available. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless if it was
successful or not. This is the only valid option if
the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

!

User Guide

Memory Blocks 109
Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
memory block is available.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a memory
block.

Return Values
TX_SUCCESS (0x00) Successful memory block allocation.

TX_DELETED (0x01) Memory block pool was deleted while
thread was suspended.

TX_NO_MEMORY (0x10) Service was unable to allocate a block
of memory within the specified time to
wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer or ISR.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

TX_PTR_ERROR (0x03) Invalid pointer to destination pointer.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes
Express Logic

110 Description of ThreadX Services
Example
TX_BLOCK_POOL my_pool;
unsigned char *memory_ptr;
UINT status;

/* Allocate a memory block from my_pool. Assume that the
 pool has already been created with a call to
 tx_block_pool_create. */
status = tx_block_allocate(&my_pool, (VOID **) &memory_ptr,
 TX_NO_WAIT);

/* If status equals TX_SUCCESS, memory_ptr contains the
 address of the allocated block of memory. */

See Also
tx_block_pool_create, tx_block_pool_delete, tx_block_pool_info_get,
tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block_release
User Guide

Memory Blocks 111
Express Logic

112 Description of ThreadX Services
tx_block_pool_create
Create pool of fixed-size memory blocks

Prototype
UINT tx_block_pool_create(TX_BLOCK_POOL *pool_ptr,

CHAR *name_ptr, ULONG block_size,
VOID *pool_start, ULONG pool_size)

Description
This service creates a pool of fixed-size memory blocks. The memory
area specified is divided into as many fixed-size memory blocks as
possible using the formula:

total blocks = (total bytes) / (block size + sizeof(void *))

Each memory block contains one pointer of overhead that is invisible to
the user and is represented by the “sizeof(void *)” in the preceding
formula.

Parameters
pool_ptr Pointer to a memory block pool control block.

name_ptr Pointer to the name of the memory block pool.

block_size Number of bytes in each memory block.

pool_start Starting address of the memory block pool. The
starting address must be aligned to the size of
the ULONG data type.

pool_size Total number of bytes available for the memory
block pool.

i

User Guide

Memory Blocks 113
Return Values
TX_SUCCESS (0x00) Successful memory block pool

creation.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.
Either the pointer is NULL or the pool
is already created.

TX_PTR_ERROR (0x03) Invalid starting address of the pool.

TX_SIZE_ERROR (0x05) Size of pool is invalid.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_BLOCK_POOL my_pool;
UINT status;

/* Create a memory pool whose total size is 1000 bytes
starting at address 0x100000. Each block in this
pool is defined to be 50 bytes long. */

status = tx_block_pool_create(&my_pool, "my_pool_name",
50, (VOID *) 0x100000, 1000);

/* If status equals TX_SUCCESS, my_pool contains 18
memory blocks of 50 bytes each. The reason
there are not 20 blocks in the pool is
because of the one overhead pointer associated with each
block. */

See Also
tx_block_allocate, tx_block_pool_delete, tx_block_pool_info_get,
tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block_release
Express Logic

114 Description of ThreadX Services
tx_block_pool_delete
Delete memory block pool

Prototype
UINT tx_block_pool_delete(TX_BLOCK_POOL *pool_ptr)

Description
This service deletes the specified block-memory pool. All threads
suspended waiting for a memory block from this pool are resumed and
given a TX_DELETED return status.

It is the application’s responsibility to manage the memory area
associated with the pool, which is available after this service completes.
In addition, the application must prevent use of a deleted pool or its
former memory blocks.

Parameters
pool_ptr Pointer to a previously created memory block

pool.

Return Values
TX_SUCCESS (0x00) Successful memory block pool

deletion.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Memory Blocks 115
Example
TX_BLOCK_POOL my_pool;
UINT status;

/* Delete entire memory block pool. Assume that the pool
 has already been created with a call to
 tx_block_pool_create. */
status = tx_block_pool_delete(&my_pool);

/* If status equals TX_SUCCESS, the memory block pool is
 deleted. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_info_get,
tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block_release
Express Logic

116 Description of ThreadX Services
tx_block_pool_info_get
Retrieve information about block pool

Memory Blocks

Prototype
UINT tx_block_pool_info_get(TX_BLOCK_POOL *pool_ptr, CHAR **name,

ULONG *available, ULONG *total_blocks,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BLOCK_POOL **next_pool)

Description
This service retrieves information about the specified block memory pool.

Parameters
pool_ptr Pointer to previously created memory block pool.

name Pointer to destination for the pointer to the block
pool’s name.

available Pointer to destination for the number of available
blocks in the block pool.

total_blocks Pointer to destination for the total number of
blocks in the block pool.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this block
pool.

suspended_count Pointer to destination for the number of threads
currently suspended on this block pool.

next_pool Pointer to destination for the pointer of the next
created block pool.

Supplying a TX_NULL for any parameter indicates the parameter is not
required.i
User Guide

Memory Blocks 117
Return Values
TX_SUCCESS (0x00) Successful block pool information retrieve.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BLOCK_POOL my_pool;
CHAR *name;
ULONG available;
ULONG total_blocks;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_BLOCK_POOL *next_pool;
UINT status;

/* Retrieve information about the previously created
block pool "my_pool." */

status = tx_block_pool_info_get(&my_pool, &name,
&available,&total_blocks,
&first_suspended, &suspended_count,
&next_pool);

/* If status equals TX_SUCCESS, the information requested is
valid. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize,
tx_block_release
Express Logic

118 Description of ThreadX Services
tx_block_pool_performance_info_get
Get block pool performance information

Prototype
UINT tx_block_pool_performance_info_get(TX_BLOCK_POOL *pool_ptr,

ULONG *allocates, ULONG *releases,
ULONG *suspensions, ULONG *timeouts))

Description
This service retrieves performance information about the specified
memory block pool.

The ThreadX library and application must be built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
pool_ptr Pointer to previously created memory block pool.

allocates Pointer to destination for the number of allocate
requests performed on this pool.

releases Pointer to destination for the number of release
requests performed on this pool.

suspensions Pointer to destination for the number of thread
allocation suspensions on this pool.

timeouts Pointer to destination for the number of allocate
suspension timeouts on this pool.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Memory Blocks 119
Return Values
TX_SUCCESS (0x00) Successful block pool

performance get.

TX_PTR_ERROR (0x03) Invalid block pool pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BLOCK_POOL my_pool;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on the previously created block
pool. */

status = tx_block_pool_performance_info_get(&my_pool, &allocates,
&releases,
&suspensions,
&timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_release
Express Logic

120 Description of ThreadX Services
tx_block_pool_performance_system_info_get
Get block pool system performance information

Prototype
UINT tx_block_pool_performance_system_info_get(ULONG *allocates,

ULONG *releases, ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all memory block
pools in the application.

The ThreadX library and application must be built with
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
allocates Pointer to destination for the total number of

allocate requests performed on all block pools.

releases Pointer to destination for the total number of
release requests performed on all block pools.

suspensions Pointer to destination for the total number of
thread allocation suspensions on all block pools.

timeouts Pointer to destination for the total number of
allocate suspension timeouts on all block pools.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful block pool

system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

i

i

User Guide

Memory Blocks 121
Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all the block pools in
the system. */

status = tx_block_pool_performance_system_info_get(&allocates,
&releases,&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_prioritize, tx_block_release
Express Logic

122 Description of ThreadX Services
tx_block_pool_prioritize
Prioritize block pool suspension list

Prototype
UINT tx_block_pool_prioritize(TX_BLOCK_POOL *pool_ptr)

Description
This service places the highest priority thread suspended for a block of
memory on this pool at the front of the suspension list. All other threads
remain in the same FIFO order they were suspended in.

Parameters
pool_ptr Pointer to a memory block pool control block.

Return Values
TX_SUCCESS (0x00) Successful block pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory block pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Memory Blocks 123
Example
TX_BLOCK_POOL my_pool;
UINT status;

/* Ensure that the highest priority thread will receive
 the next free block in this pool. */

status = tx_block_pool_prioritize(&my_pool);

/* If status equals TX_SUCCESS, the highest priority
 suspended thread is at the front of the list. The
 next tx_block_release call will wake up this thread. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_release
Express Logic

124 Description of ThreadX Services
tx_block_release
Release fixed-size block of memory

Prototype
UINT tx_block_release(VOID *block_ptr)

Description
This service releases a previously allocated block back to its associated
memory pool. If there are one or more threads suspended waiting for
memory blocks from this pool, the first thread suspended is given this
memory block and resumed.

The application must prevent using a memory block area after it has been
released back to the pool.

Parameters
block_ptr Pointer to the previously allocated memory

block.

Return Values
TX_SUCCESS (0x00) Successful memory block release.

TX_PTR_ERROR (0x03) Invalid pointer to memory block.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

i

User Guide

Memory Blocks 125
Example
TX_BLOCK_POOL my_pool;
unsigned char *memory_ptr;
UINT status;

/* Release a memory block back to my_pool. Assume that the
 pool has been created and the memory block has been
 allocated. */
status = tx_block_release((VOID *) memory_ptr);

/* If status equals TX_SUCCESS, the block of memory pointed
 to by memory_ptr has been returned to the pool. */

See Also
tx_block_allocate, tx_block_pool_create, tx_block_pool_delete,
tx_block_pool_info_get, tx_block_pool_performance_info_get,
tx_block_pool_performance_system_info_get, tx_block_pool_prioritize
Express Logic

126 Description of ThreadX Services
tx_byte_allocate
Allocate bytes of memory

Memory Bytes

Prototype
UINT tx_byte_allocate(TX_BYTE_POOL *pool_ptr,

VOID **memory_ptr, ULONG memory_size,
ULONG wait_option)

Description
This service allocates the specified number of bytes from the specified
memory byte pool.

It is important to ensure application code does not write outside the
allocated memory block. If this happens, corruption occurs in an adjacent
(usually subsequent) memory block. The results are unpredictable and
often fatal!

The performance of this service is a function of the block size and the
amount of fragmentation in the pool. Hence, this service should not be
used during time-critical threads of execution.

Parameters
pool_ptr Pointer to a previously created memory pool.

memory_ptr Pointer to a destination memory pointer. On
successful allocation, the address of the
allocated memory area is placed where this
parameter points to.

memory_size Number of bytes requested.

wait_option Defines how the service behaves if there is not
enough memory available. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or

!

i

User Guide

Memory Bytes 127
not it was successful. This is the only valid option
if the service is called from initialization.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until
enough memory is available.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the memory.

Return Values
TX_SUCCESS (0x00) Successful memory allocation.

TX_DELETED (0x01) Memory pool was deleted while thread
was suspended.

TX_NO_MEMORY (0x10) Service was unable to allocate the
memory within the specified time to
wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.

TX_PTR_ERROR (0x03) Invalid pointer to destination pointer.

TX_SIZE_ERROR (0X05) Requested size is zero or larger than
the pool.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes
Express Logic

128 Description of ThreadX Services
Example
TX_BYTE_POOL my_pool;
unsigned char*memory_ptr;
UINT status;

/* Allocate a 112 byte memory area from my_pool. Assume
 that the pool has already been created with a call to
 tx_byte_pool_create. */
status = tx_byte_allocate(&my_pool, (VOID **) &memory_ptr,

112, TX_NO_WAIT);

/* If status equals TX_SUCCESS, memory_ptr contains the
 address of the allocated memory area. */

See Also
tx_byte_pool_create, tx_byte_pool_delete, tx_byte_pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release
User Guide

Memory Bytes 129
Express Logic

130 Description of ThreadX Services
tx_byte_pool_create
Create memory pool of bytes

Prototype
UINT tx_byte_pool_create(TX_BYTE_POOL *pool_ptr,

CHAR *name_ptr, VOID *pool_start,
ULONG pool_size)

Description
This service creates a memory byte pool in the area specified. Initially the
pool consists of basically one very large free block. However, the pool is
broken into smaller blocks as allocations are made.

Parameters
pool_ptr Pointer to a memory pool control block.

name_ptr Pointer to the name of the memory pool .

pool_start Starting address of the memory pool. The
starting address must be aligned to the size of
the ULONG data type.

pool_size Total number of bytes available for the memory
pool.

Return Values
TX_SUCCESS (0x00) Successful memory pool creation.

TX_POOL_ERROR (0x02) Invalid memory pool pointer. Either the
pointer is NULL or the pool is already
created.

TX_PTR_ERROR (0x03) Invalid starting address of the pool.

TX_SIZE_ERROR (0x05) Size of pool is invalid.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No
User Guide

Memory Bytes 131
Example
TX_BYTE_POOL my_pool;
UINT status;

/* Create a memory pool whose total size is 2000 bytes
 starting at address 0x500000. */
status = tx_byte_pool_create(&my_pool, "my_pool_name",

(VOID *) 0x500000, 2000);

/* If status equals TX_SUCCESS, my_pool is available for
 allocating memory. */

See Also
tx_byte_allocate, tx_byte_pool_delete, tx_byte_pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release
Express Logic

132 Description of ThreadX Services
tx_byte_pool_delete
Delete memory byte pool

Prototype
UINT tx_byte_pool_delete(TX_BYTE_POOL *pool_ptr)

Description
This service deletes the specified memory byte pool. All threads
suspended waiting for memory from this pool are resumed and given a
TX_DELETED return status.

It is the application’s responsibility to manage the memory area
associated with the pool, which is available after this service completes.
In addition, the application must prevent use of a deleted pool or memory
previously allocated from it.

Parameters
pool_ptr Pointer to a previously created memory pool.

Return Values
TX_SUCCESS (0x00) Successful memory pool deletion.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Memory Bytes 133
Example
TX_BYTE_POOL my_pool;
UINT status;

/* Delete entire memory pool. Assume that the pool has already
 been created with a call to tx_byte_pool_create. */

status = tx_byte_pool_delete(&my_pool);

/* If status equals TX_SUCCESS, memory pool is deleted. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_info_get,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release
Express Logic

134 Description of ThreadX Services
tx_byte_pool_info_get
Retrieve information about byte pool

Memory Bytes

Prototype
UINT tx_byte_pool_info_get(TX_BYTE_POOL *pool_ptr, CHAR **name,

ULONG *available, ULONG *fragments,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BYTE_POOL **next_pool)

Description
This service retrieves information about the specified memory byte pool.

Parameters
pool_ptr Pointer to previously created memory pool.

name Pointer to destination for the pointer to the byte
pool’s name.

available Pointer to destination for the number of available
bytes in the pool.

fragments Pointer to destination for the total number of
memory fragments in the byte pool.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this byte
pool.

suspended_count Pointer to destination for the number of threads
currently suspended on this byte pool.

next_pool Pointer to destination for the pointer of the next
created byte pool.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.i
User Guide

Memory Bytes 135
Return Values
TX_SUCCESS (0x00) Successful pool information retrieve.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_BYTE_POOL my_pool;
CHAR *name;
ULONG available;
ULONG fragments;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_BYTE_POOL *next_pool;
UINT status;

/* Retrieve information about the previously created
 block pool "my_pool." */
status = tx_byte_pool_info_get(&my_pool, &name,

&available, &fragments,
&first_suspended, &suspended_count,
&next_pool);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,
tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize,
tx_byte_release
Express Logic

136 Description of ThreadX Services
tx_byte_pool_performance_info_get
Get byte pool performance information

Prototype
UINT tx_byte_pool_performance_info_get(TX_BYTE_POOL *pool_ptr,

ULONG *allocates, ULONG *releases,
ULONG *fragments_searched, ULONG *merges, ULONG *splits,
ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about the specified
memory byte pool.

The ThreadX library and application must be built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
pool_ptr Pointer to previously created memory byte pool.

allocates Pointer to destination for the number of allocate
requests performed on this pool.

releases Pointer to destination for the number of release
requests performed on this pool.

fragments_searched Pointer to destination for the number of internal
memory fragments searched during allocation
requests on this pool.

merges Pointer to destination for the number of internal
memory blocks merged during allocation
requests on this pool.

splits Pointer to destination for the number of internal
memory blocks split (fragments) created during
allocation requests on this pool.

suspensions Pointer to destination for the number of thread
allocation suspensions on this pool.

timeouts Pointer to destination for the number of allocate
suspension timeouts on this pool.

i

User Guide

Memory Bytes 137
Supplying a TX_NULL for any parameter indicates the parameter is not
required.

Return Values
TX_SUCCESS (0x00) Successful byte pool

performance get.

TX_PTR_ERROR (0x03) Invalid byte pool pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_BYTE_POOL my_pool;
ULONG fragments_searched;
ULONG merges;
ULONG splits;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on the previously created byte
pool. */

status = tx_byte_pool_performance_info_get(&my_pool,
&fragments_searched,
&merges, &splits,
&allocates, &releases,
&suspensions,&timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,
tx_byte_pool_info_get, tx_byte_pool_performance_system_info_get,
tx_byte_pool_prioritize, tx_byte_release

i

Express Logic

138 Description of ThreadX Services
tx_byte_pool_performance_system_info_get
Get byte pool system performance information

Prototype
UINT tx_byte_pool_performance_system_info_get(ULONG *allocates,

ULONG *releases, ULONG *fragments_searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);;

Description
This service retrieves performance information about all memory byte
pools in the system.

The ThreadX library and application must be built with
TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
allocates Pointer to destination for the number of allocate

requests performed on this pool.

releases Pointer to destination for the number of release
requests performed on this pool.

fragments_searched Pointer to destination for the total number of
internal memory fragments searched during
allocation requests on all byte pools.

merges Pointer to destination for the total number of
internal memory blocks merged during allocation
requests on all byte pools.

splits Pointer to destination for the total number of
internal memory blocks split (fragments) created
during allocation requests on all byte pools.

suspensions Pointer to destination for the total number of
thread allocation suspensions on all byte pools.

timeouts Pointer to destination for the total number of
allocate suspension timeouts on all byte pools.

i

User Guide

Memory Bytes 139
Supplying a TX_NULL for any parameter indicates the parameter is not
required.

Return Values
TX_SUCCESS (0x00) Successful byte pool

performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG fragments_searched;
ULONG merges;
ULONG splits;
ULONG allocates;
ULONG releases;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all byte pools in the
system. */

status =
tx_byte_pool_performance_system_info_get(&fragments_searched,

&merges, &splits, &allocates, &releases,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,
tx_byte_pool_info_get, tx_byte_pool_performance_info_get,
tx_byte_pool_prioritize, tx_byte_release

i

Express Logic

140 Description of ThreadX Services
tx_byte_pool_prioritize
Prioritize byte pool suspension list

Prototype
UINT tx_byte_pool_prioritize(TX_BYTE_POOL *pool_ptr)

Description
This service places the highest priority thread suspended for memory on
this pool at the front of the suspension list. All other threads remain in the
same FIFO order they were suspended in.

Parameters
pool_ptr Pointer to a memory pool control block.

Return Values
TX_SUCCESS (0x00) Successful memory pool prioritize.

TX_POOL_ERROR (0x02) Invalid memory pool pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Memory Bytes 141
Example
TX_BYTE_POOL my_pool;
UINT status;

/* Ensure that the highest priority thread will receive
 the next free memory from this pool. */
status = tx_byte_pool_prioritize(&my_pool);

/* If status equals TX_SUCCESS, the highest priority
 suspended thread is at the front of the list. The
 next tx_byte_release call will wake up this thread,
 if there is enough memory to satisfy its request. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,
tx_byte_pool_info_get, tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_release
Express Logic

142 Description of ThreadX Services
tx_byte_release
Release bytes back to memory pool

Prototype
UINT tx_byte_release(VOID *memory_ptr)

Description
This service releases a previously allocated memory area back to its
associated pool. If there are one or more threads suspended waiting for
memory from this pool, each suspended thread is given memory and
resumed until the memory is exhausted or until there are no more
suspended threads. This process of allocating memory to suspended
threads always begins with the first thread suspended.

The application must prevent using the memory area after it is released.

Parameters
memory_ptr Pointer to the previously allocated memory area.

Return Values
TX_SUCCESS (0x00) Successful memory release.

TX_PTR_ERROR (0x03) Invalid memory area pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes

i

User Guide

Memory Bytes 143
Example
unsigned char *memory_ptr;
UINT status;

/* Release a memory back to my_pool. Assume that the memory
area was previously allocated from my_pool. */

status = tx_byte_release((VOID *) memory_ptr);

/* If status equals TX_SUCCESS, the memory pointed to by
memory_ptr has been returned to the pool. */

See Also
tx_byte_allocate, tx_byte_pool_create, tx_byte_pool_delete,
tx_byte_pool_info_get, tx_byte_pool_performance_info_get,
tx_byte_pool_performance_system_info_get, tx_byte_pool_prioritize
Express Logic

144 Description of ThreadX Services
tx_event_flags_create
Create event flags group

Event Flags

Prototype
UINT tx_event_flags_create(TX_EVENT_FLAGS_GROUP *group_ptr,

CHAR *name_ptr)

Description
This service creates a group of 32 event flags. All 32 event flags in the
group are initialized to zero. Each event flag is represented by a single bit.

Parameters
group_ptr Pointer to an event flags group control block.

name_ptr Pointer to the name of the event flags group.

Return Values
TX_SUCCESS (0x00) Successful event group creation.

TX_GROUP_ERROR (0x06) Invalid event group pointer. Either the
pointer is NULL or the event group is
already created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No
User Guide

Event Flags 145
Example
TX_EVENT_FLAGS_GROUP my_event_group;
UINT status;

/* Create an event flags group. */
status = tx_event_flags_create(&my_event_group,

"my_event_group_name");

/* If status equals TX_SUCCESS, my_event_group is ready
 for get and set services. */

See Also
tx_event_flags_delete, tx_event_flags_get, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set_notify
Express Logic

146 Description of ThreadX Services
tx_event_flags_delete
Delete event flags group

Prototype
UINT tx_event_flags_delete(TX_EVENT_FLAGS_GROUP *group_ptr)

Description
This service deletes the specified event flags group. All threads
suspended waiting for events from this group are resumed and given a
TX_DELETED return status.

The application must ensure that a set notify callback for this event flags
group is completed (or disabled) before deleting the event flags group. In
addition, the application must prevent all future use of a deleted event
flags group.

Parameters
group_ptr Pointer to a previously created event flags group.

Return Values
TX_SUCCESS (0x00) Successful event flags group deletion.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Event Flags 147
Example
TX_EVENT_FLAGS_GROUP my_event_flags_group;
UINT status;

/* Delete event flags group. Assume that the group has
 already been created with a call to

 tx_event_flags_create. */
status = tx_event_flags_delete(&my_event_flags_group);

/* If status equals TX_SUCCESS, the event flags group is
 deleted. */

See Also
tx_event_flags_create, tx_event_flags_get, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set_notify
Express Logic

148 Description of ThreadX Services
tx_event_flags_get
Get event flags from event flags group

Prototype
UINT tx_event_flags_get(TX_EVENT_FLAGS_GROUP *group_ptr,

ULONG requested_flags, UINT get_option,
ULONG *actual_flags_ptr, ULONG wait_option)

Description
This service retrieves event flags from the specified event flags group.
Each event flags group contains 32 event flags. Each flag is represented
by a single bit. This service can retrieve a variety of event flag
combinations, as selected by the input parameters.

Parameters
group_ptr Pointer to a previously created event flags group.

requested_flags 32-bit unsigned variable that represents the
requested event flags.

get_option Specifies whether all or any of the requested
event flags are required. The following are valid
selections:

TX_AND (0x02)
TX_AND_CLEAR (0x03)
TX_OR (0x00)
TX_OR_CLEAR (0x01)

Selecting TX_AND or TX_AND_CLEAR
specifies that all event flags must be present in
the group. Selecting TX_OR or TX_OR_CLEAR
specifies that any event flag is satisfactory. Event
flags that satisfy the request are cleared (set to
zero) if TX_AND_CLEAR or TX_OR_CLEAR are
specified.

actual_flags_ptr Pointer to destination of where the retrieved
event flags are placed. Note that the actual flags
obtained may contain flags that were not
requested.
User Guide

Event Flags 149
wait_option Defines how the service behaves if the selected
event flags are not set. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001

through
0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until the
event flags are available.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the event flags.

Return Values
TX_SUCCESS (0x00) Successful event flags get.

TX_DELETED (0x01) Event flags group was deleted while
thread was suspended.

TX_NO_EVENTS (0x07) Service was unable to get the
specified events within the specified
time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_PTR_ERROR (0x03) Invalid pointer for actual event flags.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

TX_OPTION_ERROR (0x08) Invalid get-option was specified.
Express Logic

150 Description of ThreadX Services
Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flags_group;
ULONG actual_events;
UINT status;

/* Request that event flags 0, 4, and 8 are all set. Also,
 if they are set they should be cleared. If the event
 flags are not set, this service suspends for a maximum of
 20 timer-ticks. */
status = tx_event_flags_get(&my_event_flags_group, 0x111,

TX_AND_CLEAR, &actual_events, 20);

/* If status equals TX_SUCCESS, actual_events contains the
 actual events obtained. */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_info_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set_notify
User Guide

Event Flags 151
Express Logic

152 Description of ThreadX Services
tx_event_flags_info_get
Retrieve information about event flags group

Event Flags

Prototype
UINT tx_event_flags_info_get(TX_EVENT_FLAGS_GROUP *group_ptr,

CHAR **name, ULONG *current_flags,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_EVENT_FLAGS_GROUP **next_group)

Description
This service retrieves information about the specified event flags group.

Parameters
group_ptr Pointer to an event flags group control block.

name Pointer to destination for the pointer to the event
flags group’s name.

current_flags Pointer to destination for the current set flags in
the event flags group.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this event
flags group.

suspended_count Pointer to destination for the number of threads
currently suspended on this event flags group.

next_group Pointer to destination for the pointer of the next
created event flags group.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.i
User Guide

Event Flags 153
Return Values
TX_SUCCESS (0x00) Successful event group information

retrieval.

TX_GROUP_ERROR (0x06) Invalid event group pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_EVENT_FLAGS_GROUP my_event_group;
CHAR *name;
ULONG current_flags;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_EVENT_FLAGS_GROUP *next_group;
UINT status;

/* Retrieve information about the previously created
 event flags group "my_event_group." */
status = tx_event_flags_info_get(&my_event_group, &name,

¤t_flags,
&first_suspended, &suspended_count,
&next_group);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set,
tx_event_flags_set_notify
Express Logic

154 Description of ThreadX Services
tx_event_flags_performance info_get
Get event flags group performance information

Event Flags

Prototype
UINT tx_event_flags_performance_info_get(TX_EVENT_FLAGS_GROUP

*group_ptr, ULONG *sets, ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about the specified event
flags group.

ThreadX library and application must be built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
group_ptr Pointer to previously created event flags group.

sets Pointer to destination for the number of event
flags set requests performed on this group.

gets Pointer to destination for the number of event
flags get requests performed on this group.

suspensions Pointer to destination for the number of thread
event flags get suspensions on this group.

timeouts Pointer to destination for the number of event
flags get suspension timeouts on this group.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Event Flags 155
Return Values
TX_SUCCESS (0x00) Successful event flags group

performance get.

TX_PTR_ERROR (0x03) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_EVENT_FLAGS_GROUP my_event_flag_group;
ULONG sets;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on the previously created event
flag group. */

status = tx_event_flags_performance_info_get(&my_event_flag_group,
&sets, &gets, &suspensions,
&timeouts);

/* If status is TX_SUCCESS the performance information was successfully
retrieved. */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_info_get, tx_event_flags_performance_system_info_get,
tx_event_flags_set, tx_event_flags_set_notify
Express Logic

156 Description of ThreadX Services
tx_event_flags_performance_system_info_get
Retrieve performance system information

Event Flags

Prototype
UINT tx_event_flags_performance_system_info_get(ULONG *sets,

ULONG *gets,ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all event flags
groups in the system.

ThreadX library and application must be built with
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
sets Pointer to destination for the total number of

event flags set requests performed on all groups.

gets Pointer to destination for the total number of
event flags get requests performed on all groups.

suspensions Pointer to destination for the total number of
thread event flags get suspensions on all groups.

timeouts Pointer to destination for the total number of
event flags get suspension timeouts on all
groups.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful event flags

system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

i

i

User Guide

Event Flags 157
Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG sets;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all previously created event
flag groups. */

status = tx_event_flags_performance_system_info_get(&sets, &gets,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_info_get, tx_event_flags_performance_info_get,
tx_event_flags_set, tx_event_flags_set_notify
Express Logic

158 Description of ThreadX Services
tx_event_flags_set
Set event flags in an event flags group

Prototype
UINT tx_event_flags_set(TX_EVENT_FLAGS_GROUP *group_ptr,

ULONG flags_to_set,UINT set_option)

Description
This service sets or clears event flags in an event flags group, depending
upon the specified set-option. All suspended threads whose event flags
request is now satisfied are resumed.

Parameters
group_ptr Pointer to the previously created event flags

group control block.

flags_to_set Specifies the event flags to set or clear based
upon the set option selected.

set_option Specifies whether the event flags specified are
ANDed or ORed into the current event flags of
the group. The following are valid selections:

TX_AND (0x02)
TX_OR (0x00)

Selecting TX_AND specifies that the specified
event flags are ANDed into the current event
flags in the group. This option is often used to
clear event flags in a group. Otherwise, if TX_OR
is specified, the specified event flags are ORed
with the current event in the group.

Return Values
TX_SUCCESS (0x00) Successful event flags set.

TX_GROUP_ERROR (0x06) Invalid pointer to event flags group.

TX_OPTION_ERROR (0x08) Invalid set-option specified.

!

User Guide

Event Flags 159
Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_EVENT_FLAGS_GROUP my_event_flags_group;
UINT status;

/* Set event flags 0, 4, and 8. */
status = tx_event_flags_set(&my_event_flags_group,

0x111, TX_OR);

/* If status equals TX_SUCCESS, the event flags have been
 set and any suspended thread whose request was satisfied
 has been resumed. */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_info_get, tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set_notify
Express Logic

160 Description of ThreadX Services
tx_event_flags_set_notify
Notify application when event flags are set

Prototype
UINT tx_event_flags_set_notify(TX_EVENT_FLAGS_GROUP *group_ptr,

VOID (*events_set_notify)(TX_EVENT_FLAGS_GROUP *));

Description
This service registers a notification callback function that is called
whenever one or more event flags are set in the specified event flags
group. The processing of the notification callback is defined by the
application.

Parameters
group_ptr Pointer to previously created event flags group.

events_set_notify Pointer to application’s event flags set
notification function. If this value is TX_NULL,
notification is disabled.

Return Values
TX_SUCCESS (0x00) Successful registration of event

flags set notification.

TX_GROUP_ERROR (0x06) Invalid event flags group pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was compiled with
notification capabilities disabled.

!
Note: the application’s event flags set notification callback is
not allowed to call any ThreadX API with a suspension
option.
User Guide

Event Flags 161
Allowed From
Initialization, threads, timers, and ISRs

Example
TX_EVENT_FLAGS_GROUP my_group;

/* Register the "my_event_flags_set_notify" function for monitoring
event flags set in the event flags group "my_group." */

status = tx_event_flags_set_notify(&my_group,
my_event_flags_set_notify);

/* If status is TX_SUCCESS the event flags set notification function
was successfully registered. */

void my_event_flags_set_notify(TX_EVENT_FLAGS_GROUP *group_ptr)

/* One or more event flags was set in this group! */

See Also
tx_event_flags_create, tx_event_flags_delete, tx_event_flags_get,
tx_event_flags_info_get, tx_event_flags_performance_info_get,
tx_event_flags_performance_system_info_get, tx_event_flags_set
Express Logic

162 Description of ThreadX Services
tx_interrupt_control
Enable and disable interrupts

Interrupt Control

Prototype
UINT tx_interrupt_control(UINT new_posture)

Description
This service enables or disables interrupts as specified by the input
parameter new_posture.

If this service is called from an application thread, the interrupt posture
remains part of that thread’s context. For example, if the thread calls this
routine to disable interrupts and then suspends, when it is resumed,
interrupts are disabled again.

This service should not be used to enable interrupts during initialization!
Doing so could cause unpredictable results.

Parameters
new_posture This parameter specifies whether interrupts are

disabled or enabled. Legal values include
TX_INT_DISABLE and TX_INT_ENABLE. The
actual values for these parameters are port
specific. In addition, some processing
architectures might support additional interrupt
disable postures. Please see the
readme_threadx.txt information supplied on the
distribution disk for more details.

Return Values
previous posture This service returns the previous interrupt

posture to the caller. This allows users of the
service to restore the previous posture after
interrupts are disabled.

i

!

User Guide

Interrupt Control 163
Allowed From
Threads, timers, and ISRs

Preemption Possible
No

Example
UINT my_old_posture;

/* Lockout interrupts */
my_old_posture = tx_interrupt_control(TX_INT_DISABLE);

/* Perform critical operations that need interrupts
locked-out.... */

/* Restore previous interrupt lockout posture. */
tx_interrupt_control(my_old_posture);

See Also
None
Express Logic

164 Description of ThreadX Services
tx_mutex_create
Create mutual exclusion mutex

Mutex

Prototype
UINT tx_mutex_create(TX_MUTEX *mutex_ptr,

CHAR *name_ptr, UINT priority_inherit)

Description
This service creates a mutex for inter-thread mutual exclusion for
resource protection.

Parameters
mutex_ptr Pointer to a mutex control block.

name_ptr Pointer to the name of the mutex.

priority_inherit Specifies whether or not this mutex supports
priority inheritance. If this value is TX_INHERIT,
then priority inheritance is supported. However, if
TX_NO_INHERIT is specified, priority
inheritance is not supported by this mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex creation.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer. Either the
pointer is NULL or the mutex is already
created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

TX_INHERIT_ERROR (0x1F) Invalid priority inherit parameter.

Allowed From
Initialization and threads

Preemption Possible
No
User Guide

Mutex 165
Example
TX_MUTEX my_mutex;
UINT status;

/* Create a mutex to provide protection over a
 common resource. */
status = tx_mutex_create(&my_mutex,"my_mutex_name",

TX_NO_INHERIT);

/* If status equals TX_SUCCESS, my_mutex is ready for
 use. */

See Also
tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put
Express Logic

166 Description of ThreadX Services
tx_mutex_delete
Delete mutual exclusion mutex

Prototype
UINT tx_mutex_delete(TX_MUTEX *mutex_ptr)

Description
This service deletes the specified mutex. All threads suspended waiting
for the mutex are resumed and given a TX_DELETED return status.

It is the application’s responsibility to prevent use of a deleted mutex.

Parameters
mutex_ptr Pointer to a previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex deletion.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Mutex 167
Example
TX_MUTEX my_mutex;
UINT status;

/* Delete a mutex. Assume that the mutex
 has already been created. */
status = tx_mutex_delete(&my_mutex);

/* If status equals TX_SUCCESS, the mutex is
 deleted. */

See Also
tx_mutex_create, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put
Express Logic

168 Description of ThreadX Services
tx_mutex_get
Obtain ownership of mutex

Prototype
UINT tx_mutex_get(TX_MUTEX *mutex_ptr, ULONG wait_option)

Description
This service attempts to obtain exclusive ownership of the specified
mutex. If the calling thread already owns the mutex, an internal counter is
incremented and a successful status is returned.

If the mutex is owned by another thread and this thread is higher priority
and priority inheritance was specified at mutex create, the lower priority
thread’s priority will be temporarily raised to that of the calling thread.

The priority of the lower priority thread owning a mutex with priority-
inheritance should never be modified by an external thread during mutex
ownership.

Parameters
mutex_ptr Pointer to a previously created mutex.

wait_option Defines how the service behaves if the mutex is
already owned by another thread. The wait
options are defined as follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from Initialization.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until the
mutex is available.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the mutex.

i

User Guide

Mutex 169
Return Values
TX_SUCCESS (0x00) Successful mutex get operation.

TX_DELETED (0x01) Mutex was deleted while thread was
suspended.

TX_NOT_AVAILABLE (0x1D) Service was unable to get ownership
of the mutex within the specified time
to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads and timers

Preemption Possible
Yes

Example
TX_MUTEX my_mutex;
UINT status;

/* Obtain exclusive ownership of the mutex "my_mutex".
 If the mutex "my_mutex" is not available, suspend until it
 becomes available. */
status = tx_mutex_get(&my_mutex, TX_WAIT_FOREVER);

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put
Express Logic

170 Description of ThreadX Services
tx_mutex_info_get
Retrieve information about mutex

Prototype
UINT tx_mutex_info_get(TX_MUTEX *mutex_ptr, CHAR **name,

ULONG *count, TX_THREAD **owner,
TX_THREAD **first_suspended,
ULONG *suspended_count, TX_MUTEX **next_mutex)

Description
This service retrieves information from the specified mutex.

Parameters
mutex_ptr Pointer to mutex control block.

name Pointer to destination for the pointer to the
mutex’s name.

count Pointer to destination for the ownership count of
the mutex.

owner Pointer to destination for the owning thread’s
pointer.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this mutex.

suspended_count Pointer to destination for the number of threads
currently suspended on this mutex.

next_mutex Pointer to destination for the pointer of the next
created mutex.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful mutex information

retrieval.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

i

User Guide

Mutex 171
Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_MUTEX my_mutex;
CHAR *name;
ULONG count;
TX_THREAD *owner;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_MUTEX *next_mutex;
UINT status;

/* Retrieve information about the previously created
 mutex "my_mutex." */
status = tx_mutex_info_get(&my_mutex, &name,

&count, &owner,
&first_suspended, &suspended_count,
&next_mutex);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put
Express Logic

172 Description of ThreadX Services
tx_mutex_performance_info_get
Get mutex performance information

Prototype
UINT tx_mutex_performance_info_get(TX_MUTEX *mutex_ptr, ULONG *puts,

ULONG *gets, ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

Description
This service retrieves performance information about the specified mutex.

The ThreadX library and application must be built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters
mutex_ptr Pointer to previously created mutex.

puts Pointer to destination for the number of put
requests performed on this mutex.

gets Pointer to destination for the number of get
requests performed on this mutex.

suspensions Pointer to destination for the number of thread
mutex get suspensions on this mutex.

timeouts Pointer to destination for the number of mutex
get suspension timeouts on this mutex.

inversions Pointer to destination for the number of thread
priority inversions on this mutex.

inheritances Pointer to destination for the number of thread
priority inheritance operations on this mutex.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Mutex 173
Return Values
TX_SUCCESS (0x00) Successful mutex

performance get.

TX_PTR_ERROR (0x03) Invalid mutex pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_MUTEX my_mutex;
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;
ULONG inversions;
ULONG inheritances;

/* Retrieve performance information on the previously created
mutex. */

status = tx_mutex_performance_info_get(&my_mutex_ptr, &puts, &gets,
&suspensions, &timeouts, &inversions,
&inheritances);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize,
tx_mutex_put
Express Logic

174 Description of ThreadX Services
tx_mutex_performance_system_info_get
Get mutex system performance information

Prototype
UINT tx_mutex_performance_system_info_get(ULONG *puts, ULONG *gets,

ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

Description
This service retrieves performance information about all the mutexes in
the system.

The ThreadX library and application must be built with
TX_MUTEX_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters
puts Pointer to destination for the total number of put

requests performed on all mutexes.

gets Pointer to destination for the total number of get
requests performed on all mutexes.

suspensions Pointer to destination for the total number of
thread mutex get suspensions on all mutexes.

timeouts Pointer to destination for the total number of
mutex get suspension timeouts on all mutexes.

inversions Pointer to destination for the total number of
thread priority inversions on all mutexes.

inheritances Pointer to destination for the total number of
thread priority inheritance operations on all
mutexes.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Mutex 175
Return Values
TX_SUCCESS (0x00) Successful mutex system

performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;
ULONG inversions;
ULONG inheritances;

/* Retrieve performance information on all previously created
mutexes. */

status = tx_mutex_performance_system_info_get(&puts, &gets,
&suspensions, &timeouts,
&inversions, &inheritances);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get, tx_mutex_prioritize, tx_mutex_put
Express Logic

176 Description of ThreadX Services
tx_mutex_prioritize
Prioritize mutex suspension list

Prototype
UINT tx_mutex_prioritize(TX_MUTEX *mutex_ptr)

Description
This service places the highest priority thread suspended for ownership of
the mutex at the front of the suspension list. All other threads remain in
the same FIFO order they were suspended in.

Parameters
mutex_ptr Pointer to the previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex prioritize.

TX_MUTEX_ERROR (0x1C) Invalid mutex pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Mutex 177
Example
TX_MUTEX my_mutex;
UINT status;

/* Ensure that the highest priority thread will receive
 ownership of the mutex when it becomes available. */
status = tx_mutex_prioritize(&my_mutex);

/* If status equals TX_SUCCESS, the highest priority
 suspended thread is at the front of the list. The
 next tx_mutex_put call that releases ownership of the
 mutex will give ownership to this thread and wake it
 up. */

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_put
Express Logic

178 Description of ThreadX Services
tx_mutex_put
Release ownership of mutex

Prototype
UINT tx_mutex_put(TX_MUTEX *mutex_ptr)

Description
This service decrements the ownership count of the specified mutex. If
the ownership count is zero, the mutex is made available.

If priority inheritance was selected during mutex creation, the priority of
the releasing thread will be restored to the priority it had when it originally
obtained ownership of the mutex. Any other priority changes made to the
releasing thread during ownership of the mutex may be undone.

Parameters
mutex_ptr Pointer to the previously created mutex.

Return Values
TX_SUCCESS (0x00) Successful mutex release.

TX_NOT_OWNED (0x1E) Mutex is not owned by caller.

TX_MUTEX_ERROR (0x1C) Invalid pointer to mutex.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads and timers

Preemption Possible
Yes

i

User Guide

Mutex 179
Example
TX_MUTEX my_mutex;
UINT status;

/* Release ownership of "my_mutex." */
status = tx_mutex_put(&my_mutex);

/* If status equals TX_SUCCESS, the mutex ownership
 count has been decremented and if zero, released. */

See Also
tx_mutex_create, tx_mutex_delete, tx_mutex_get, tx_mutex_info_get,
tx_mutex_performance_info_get,
tx_mutex_performance_system_info_get, tx_mutex_prioritize
Express Logic

180 Description of ThreadX Services
tx_queue_create
Create message queue

Message Queues

Prototype
UINT tx_queue_create(TX_QUEUE *queue_ptr, CHAR *name_ptr,

UINT message_size,
VOID *queue_start, ULONG queue_size)

Description
This service creates a message queue that is typically used for inter-
thread communication. The total number of messages is calculated from
the specified message size and the total number of bytes in the queue.

If the total number of bytes specified in the queue’s memory area is not
evenly divisible by the specified message size, the remaining bytes in the
memory area are not used.

Parameters
queue_ptr Pointer to a message queue control block.

name_ptr Pointer to the name of the message queue.

message_size Specifies the size of each message in the queue.
Message sizes range from 1 32-bit word to 16
32-bit words. Valid message size options are
numerical values from 1 through 16, inclusive.

queue_start Starting address of the message queue. The
starting address must be aligned to the size of
the ULONG data type.

queue_size Total number of bytes available for the message
queue.

i

User Guide

Message Queues 181
Return Values
TX_SUCCESS (0x00) Successful message queue creation.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer. Either
the pointer is NULL or the queue is
already created.

TX_PTR_ERROR (0x03) Invalid starting address of the
message queue.

TX_SIZE_ERROR (0x05) Size of message queue is invalid.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_QUEUE my_queue;
UINT status;

/* Create a message queue whose total size is 2000 bytes
 starting at address 0x300000. Each message in this
 queue is defined to be 4 32-bit words long. */
status = tx_queue_create(&my_queue, "my_queue_name",

4, (VOID *) 0x300000, 2000);

/* If status equals TX_SUCCESS, my_queue contains room
 for storing 125 messages (2000 bytes/ 16 bytes per
 message). */

See Also
tx_queue_delete, tx_queue_flush, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

182 Description of ThreadX Services
tx_queue_delete
Delete message queue

Prototype
UINT tx_queue_delete(TX_QUEUE *queue_ptr)

Description
This service deletes the specified message queue. All threads suspended
waiting for a message from this queue are resumed and given a
TX_DELETED return status.

The application must ensure that any send notify callback for this queue
is completed (or disabled) before deleting the queue. In addition, the
application must prevent any future use of a deleted queue.

It is also the application's responsibility to manage the memory area
associated with the queue, which is available after this service
completes.

Parameters
queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful message queue deletion.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Message Queues 183
Example
TX_QUEUE my_queue;
UINT status;

/* Delete entire message queue. Assume that the queue
 has already been created with a call to
 tx_queue_create. */
status = tx_queue_delete(&my_queue);

/* If status equals TX_SUCCESS, the message queue is
 deleted. */

See Also
tx_queue_create, tx_queue_flush, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

184 Description of ThreadX Services
tx_queue_flush
Empty messages in message queue

Prototype
UINT tx_queue_flush(TX_QUEUE *queue_ptr)

Description
This service deletes all messages stored in the specified message queue.
If the queue is full, messages of all suspended threads are discarded.
Each suspended thread is then resumed with a return status that
indicates the message send was successful. If the queue is empty, this
service does nothing.

Parameters
queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful message queue flush.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes
User Guide

Message Queues 185
Example
TX_QUEUE my_queue;
UINT status;

/* Flush out all pending messages in the specified message
 queue. Assume that the queue has already been created
 with a call to tx_queue_create. */
status = tx_queue_flush(&my_queue);

/* If status equals TX_SUCCESS, the message queue is
 empty. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_front_send,
tx_queue_info_get, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

186 Description of ThreadX Services
tx_queue_front_send
Send message to the front of queue

Message Queues

Prototype
UINT tx_queue_front_send(TX_QUEUE *queue_ptr,

VOID *source_ptr, ULONG wait_option)

Description
This service sends a message to the front location of the specified
message queue. The message is copied to the front of the queue from
the memory area specified by the source pointer.

Parameters
queue_ptr Pointer to a message queue control block.

source_ptr Pointer to the message.

wait_option Defines how the service behaves if the message
queue is full. The wait options are defined as
follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until there is
room in the queue.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for room in the
queue.

Return Values
TX_SUCCESS (0x00) Successful sending of message.
User Guide

Message Queues 187
TX_DELETED (0x01) Message queue was deleted while
thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message
because the queue was full for the
duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_QUEUE my_queue;
UINT status;
ULONG my_message[4];

/* Send a message to the front of "my_queue." Return
 immediately, regardless of success. This wait
 option is used for calls from initialization, timers,
 and ISRs. */
status = tx_queue_front_send(&my_queue, my_message,

TX_NO_WAIT);

/* If status equals TX_SUCCESS, the message is at the front
 of the specified queue. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

188 Description of ThreadX Services
tx_queue_info_get
Retrieve information about queue

Prototype
UINT tx_queue_info_get(TX_QUEUE *queue_ptr, CHAR **name,

ULONG *enqueued, ULONG *available_storage
TX_THREAD **first_suspended, ULONG *suspended_count,
TX_QUEUE **next_queue)

Description
This service retrieves information about the specified message queue.

Parameters
queue_ptr Pointer to a previously created message queue.

name Pointer to destination for the pointer to the
queue’s name.

enqueued Pointer to destination for the number of
messages currently in the queue.

available_storage Pointer to destination for the number of
messages the queue currently has space for.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this queue.

suspended_count Pointer to destination for the number of threads
currently suspended on this queue.

next_queue Pointer to destination for the pointer of the next
created queue.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful queue information get.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

i

User Guide

Message Queues 189
Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_QUEUE my_queue;
CHAR *name;
ULONG enqueued;
ULONG available_storage;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_QUEUE *next_queue;
UINT status;

/* Retrieve information about the previously created
 message queue "my_queue." */
status = tx_queue_info_get(&my_queue, &name,

&enqueued, &available_storage,
&first_suspended, &suspended_count,
&next_queue);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

190 Description of ThreadX Services
tx_queue_performance_info_get
Get queue performance information

Prototype
UINT tx_queue_performance_info_get(TX_QUEUE *queue_ptr,

ULONG *messages_sent, ULONG *messages_received,
ULONG *empty_suspensions, ULONG *full_suspensions,
ULONG *full_errors, ULONG *timeouts);

Description
This service retrieves performance information about the specified queue.

The ThreadX library and application must be built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters
queue_ptr Pointer to previously created queue.

messages_sent Pointer to destination for the number of send
requests performed on this queue.

messages_received Pointer to destination for the number of receive
requests performed on this queue.

empty_suspensions Pointer to destination for the number of queue
empty suspensions on this queue.

full_suspensions Pointer to destination for the number of queue
full suspensions on this queue.

full_errors Pointer to destination for the number of queue
full errors on this queue.

timeouts Pointer to destination for the number of thread
suspension timeouts on this queue.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Message Queues 191
Return Values
TX_SUCCESS (0x00) Successful queue performance

get.

TX_PTR_ERROR (0x03) Invalid queue pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_QUEUE my_queue;
ULONG messages_sent;
ULONG messages_received;
ULONG empty_suspensions;
ULONG full_suspensions;
ULONG full_errors;
ULONG timeouts;

/* Retrieve performance information on the previously created
queue. */

status = tx_queue_performance_info_get(&my_queue, &messages_sent,
&messages_received, &empty_suspensions,
&full_suspensions, &full_errors, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send, tx_queue_send_notify
Express Logic

192 Description of ThreadX Services
tx_queue_performance_system_info_get
Get queue system performance information

Prototype
UINT tx_queue_performance_system_info_get(ULONG *messages_sent,

ULONG *messages_received, ULONG *empty_suspensions,
ULONG *full_suspensions, ULONG *full_errors,
ULONG *timeouts);

Description
This service retrieves performance information about all the queues in the
system.

The ThreadX library and application must be built with
TX_QUEUE_ENABLE_PERFORMANCE_INFO defined for this service
to return performance information.

Parameters
messages_sent Pointer to destination for the total number of

send requests performed on all queues.

messages_received Pointer to destination for the total number of
receive requests performed on all queues.

empty_suspensions Pointer to destination for the total number of
queue empty suspensions on all queues.

full_suspensions Pointer to destination for the total number of
queue full suspensions on all queues.

full_errors Pointer to destination for the total number of
queue full errors on all queues.

timeouts Pointer to destination for the total number of
thread suspension timeouts on all queues.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Message Queues 193
Return Values
TX_SUCCESS (0x00) Successful queue system

performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG messages_sent;
ULONG messages_received;
ULONG empty_suspensions;
ULONG full_suspensions;
ULONG full_errors;
ULONG timeouts;

/* Retrieve performance information on all previously created
queues. */

status = tx_queue_performance_system_info_get(&messages_sent,
&messages_received, &empty_suspensions,
&full_suspensions, &full_errors, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get, tx_queue_prioritize, tx_queue_receive,
tx_queue_send, tx_queue_send_notify
Express Logic

194 Description of ThreadX Services
tx_queue_prioritize
Prioritize queue suspension list

Prototype
UINT tx_queue_prioritize(TX_QUEUE *queue_ptr)

Description
This service places the highest priority thread suspended for a message
(or to place a message) on this queue at the front of the suspension list.
All other threads remain in the same FIFO order they were suspended in.

Parameters
queue_ptr Pointer to a previously created message queue.

Return Values
TX_SUCCESS (0x00) Successful queue prioritize.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Message Queues 195
Example
TX_QUEUE my_queue;
UINT status;

/* Ensure that the highest priority thread will receive
 the next message placed on this queue. */
status = tx_queue_prioritize(&my_queue);

/* If status equals TX_SUCCESS, the highest priority
 suspended thread is at the front of the list. The
 next tx_queue_send or tx_queue_front_send call made
 to this queue will wake up this thread. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_receive,
tx_queue_send, tx_queue_send_notify
Express Logic

196 Description of ThreadX Services
tx_queue_receive
Get message from message queue

Prototype
UINT tx_queue_receive(TX_QUEUE *queue_ptr,

VOID *destination_ptr, ULONG wait_option)

Description
This service retrieves a message from the specified message queue. The
retrieved message is copied from the queue into the memory area
specified by the destination pointer. That message is then removed from
the queue.

The specified destination memory area must be large enough to hold the
message; i.e., the message destination pointed to by destination_ptr
must be at least as large as the message size for this queue. Otherwise,
if the destination is not large enough, memory corruption occurs in the
following memory area.

Parameters
queue_ptr Pointer to a previously created message queue.

destination_ptr Location of where to copy the message.

wait_option Defines how the service behaves if the message
queue is empty. The wait options are defined as
follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001

through
0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
message is available.

!

User Guide

Message Queues 197
Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a message.

Return Values
TX_SUCCESS (0x00) Successful retrieval of message.

TX_DELETED (0x01) Message queue was deleted while
thread was suspended.

TX_QUEUE_EMPTY (0x0A) Service was unable to retrieve a
message because the queue was
empty for the duration of the specified
time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid destination pointer for
message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes
Express Logic

198 Description of ThreadX Services
Example
TX_QUEUE my_queue;
UINT status;
ULONG my_message[4];

/* Retrieve a message from "my_queue." If the queue is
 empty, suspend until a message is present. Note that
 this suspension is only possible from application
 threads. */
status = tx_queue_receive(&my_queue, my_message,

TX_WAIT_FOREVER);

/* If status equals TX_SUCCESS, the message is in
 "my_message." */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_send, tx_queue_send_notify
User Guide

Message Queues 199
Express Logic

200 Description of ThreadX Services
tx_queue_send
Send message to message queue

Prototype
UINT tx_queue_send(TX_QUEUE *queue_ptr,

VOID *source_ptr, ULONG wait_option)

Description
This service sends a message to the specified message queue. The sent
message is copied to the queue from the memory area specified by the
source pointer.

Parameters
queue_ptr Pointer to a previously created message queue.

source_ptr Pointer to the message.

wait_option Defines how the service behaves if the message
queue is full. The wait options are defined as
follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
Initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until there is
room in the queue.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for room in the
queue.

Return Values
TX_SUCCESS (0x00) Successful sending of message.
User Guide

Message Queues 201
TX_DELETED (0x01) Message queue was deleted while
thread was suspended.

TX_QUEUE_FULL (0x0B) Service was unable to send message
because the queue was full for the
duration of the specified time to wait.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_QUEUE_ERROR (0x09) Invalid message queue pointer.

TX_PTR_ERROR (0x03) Invalid source pointer for message.

TX_WAIT_ERROR (0x04) A wait option other than TX_NO_WAIT
was specified on a call from a non-
thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_QUEUE my_queue;
UINT status;
ULONG my_message[4];

/* Send a message to "my_queue." Return immediately,
regardless of success. This wait option is used for
calls from initialization, timers, and ISRs. */

status = tx_queue_send(&my_queue, my_message, TX_NO_WAIT);

/* If status equals TX_SUCCESS, the message is in the
queue. */

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send_notify
Express Logic

202 Description of ThreadX Services
tx_queue_send_notify
Notify application when message is sent to queue

Prototype
UINT tx_queue_send_notify(TX_QUEUE *queue_ptr,

VOID (*queue_send_notify)(TX_QUEUE *));

Description
This service registers a notification callback function that is called
whenever a message is sent to the specified queue. The processing of
the notification callback is defined by the application.

Parameters
queue_ptr Pointer to previously created queue.

queue_send_notify Pointer to application’s queue send notification
function. If this value is TX_NULL, notification is
disabled.

Return Values
TX_SUCCESS (0x00) Successful registration of

queue send notification.

TX_QUEUE_ERROR (0x09) Invalid queue pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was compiled
with notification capabilities
disabled.

Allowed From
Initialization, threads, timers, and ISRs

!
Note: the application’s queue send notification callback is not
allowed to call any ThreadX API with a suspension option.
User Guide

Message Queues 203
Example
TX_QUEUE my_queue;

/* Register the "my_queue_send_notify" function for monitoring
messages sent to the queue "my_queue." */

status = tx_queue_send_notify(&my_queue, my_queue_send_notify);

/* If status is TX_SUCCESS the queue send notification function was
successfully registered. */

void my_queue_send_notify(TX_QUEUE *queue_ptr)
{

/* A message was just sent to this queue! */

}

See Also
tx_queue_create, tx_queue_delete, tx_queue_flush,
tx_queue_front_send, tx_queue_info_get,
tx_queue_performance_info_get,
tx_queue_performance_system_info_get, tx_queue_prioritize,
tx_queue_receive, tx_queue_send
Express Logic

204 Description of ThreadX Services
tx_semaphore_ceiling_put
Place an instance in counting semaphore with ceiling

Counting Semaphores

Prototype
UINT tx_semaphore_ceiling_put(TX_SEMAPHORE *semaphore_ptr,

ULONG ceiling);

Description
This service puts an instance into the specified counting semaphore,
which in reality increments the counting semaphore by one. If the
counting semaphore’s current value is greater than or equal to the
specified ceiling, the instance will not be put and a
TX_CEILING_EXCEEDED error will be returned.

Parameters
semaphore_ptr Pointer to previously created semaphore.

ceiling Maximum limit allowed for the semaphore (valid
values range from 1 through 0xFFFFFFFF).

Return Values
TX_SUCCESS (0x00) Successful semaphore ceiling

put.

TX_CEILING_EXCEEDED (0x21) Put request exceeds ceiling.

TX_INVALID_CEILING (0x22) An invalid value of zero was
supplied for ceiling.

TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs
User Guide

Counting Semaphores 205
Example
TX_SEMAPHORE my_semaphore;

/* Increment the counting semaphore "my_semaphore" but make sure
that it never exceeds 7 as specified in the call. */

status = tx_semaphore_ceiling_put(&my_semaphore, 7);

/* If status is TX_SUCCESS the semaphore count has been
incremented. */

See Also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

206 Description of ThreadX Services
tx_semaphore_create
Create counting semaphore

Counting Semaphores

Prototype
UINT tx_semaphore_create(TX_SEMAPHORE *semaphore_ptr,

CHAR *name_ptr, ULONG initial_count)

Description
This service creates a counting semaphore for inter-thread
synchronization. The initial semaphore count is specified as an input
parameter.

Parameters
semaphore_ptr Pointer to a semaphore control block.

name_ptr Pointer to the name of the semaphore.

initial_count Specifies the initial count for this semaphore.
Legal values range from 0x00000000 through
0xFFFFFFFF.

Return Values
TX_SUCCESS (0x00) Successful semaphore

creation.

TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.
Either the pointer is NULL or
the semaphore is already
created.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No
User Guide

Counting Semaphores 207
Example
TX_SEMAPHORE my_semaphore;
UINT status;

/* Create a counting semaphore whose initial value is 1.
 This is typically the technique used to make a binary
 semaphore. Binary semaphores are used to provide
 protection over a common resource. */
status = tx_semaphore_create(&my_semaphore,

 "my_semaphore_name", 1);

/* If status equals TX_SUCCESS, my_semaphore is ready for
 use. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

208 Description of ThreadX Services
tx_semaphore_delete
Delete counting semaphore

Counting Semaphores

Prototype
UINT tx_semaphore_delete(TX_SEMAPHORE *semaphore_ptr)

Description
This service deletes the specified counting semaphore. All threads
suspended waiting for a semaphore instance are resumed and given a
TX_DELETED return status.

The application must ensure that a put notify callback for this semaphore
is completed (or disabled) before deleting the semaphore. In addition, the
application must prevent all future use of a deleted semaphore.

Parameters
semaphore_ptr Pointer to a previously created semaphore.

Return Values
TX_SUCCESS (0x00) Successful counting

semaphore deletion.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Counting Semaphores 209
Example
TX_SEMAPHORE my_semaphore;
UINT status;

/* Delete counting semaphore. Assume that the counting
 semaphore has already been created. */
status = tx_semaphore_delete(&my_semaphore);

/* If status equals TX_SUCCESS, the counting semaphore is
 deleted. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

210 Description of ThreadX Services
tx_semaphore_get
Get instance from counting semaphore

Counting Semaphores

Prototype
UINT tx_semaphore_get(TX_SEMAPHORE *semaphore_ptr,

ULONG wait_option)

Description
This service retrieves an instance (a single count) from the specified
counting semaphore. As a result, the specified semaphore’s count is
decreased by one.

Parameters
semaphore_ptr Pointer to a previously created counting

semaphore.

wait_option Defines how the service behaves if there are no
instances of the semaphore available; i.e., the
semaphore count is zero. The wait options are
defined as follows:

TX_NO_WAIT (0x00000000)
TX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid option
if the service is called from a non-thread; e.g.,
initialization, timer, or ISR.

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
semaphore instance is available.

Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for a semaphore
instance.

Return Values
TX_SUCCESS (0x00) Successful retrieval of a

semaphore instance.
User Guide

Counting Semaphores 211
TX_DELETED (0x01) Counting semaphore was
deleted while thread was
suspended.

TX_NO_INSTANCE (0x0D) Service was unable to
retrieve an instance of the
counting semaphore
(semaphore count is zero
within the specified time to
wait).

TX_WAIT_ABORTED (0x1A) Suspension was aborted by
another thread, timer, or
ISR.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.

TX_WAIT_ERROR (0x04) A wait option other than
TX_NO_WAIT was specified
on a call from a non-thread.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
TX_SEMAPHORE my_semaphore;
UINT status;

/* Get a semaphore instance from the semaphore
 "my_semaphore." If the semaphore count is zero,
 suspend until an instance becomes available.
 Note that this suspension is only possible from
 application threads. */
status = tx_semaphore_get(&my_semaphore, TX_WAIT_FOREVER);

/* If status equals TX_SUCCESS, the thread has obtained
 an instance of the semaphore. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semahore_delete,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_prioritize, tx_semaphore_put, tx_semaphore_put_notify
Express Logic

212 Description of ThreadX Services
tx_semaphore_info_get
Retrieve information about semaphore

Counting Semaphores

Prototype
UINT tx_semaphore_info_get(TX_SEMAPHORE *semaphore_ptr,

CHAR **name, ULONG *current_value,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_SEMAPHORE **next_semaphore)

Description
This service retrieves information about the specified semaphore.

Parameters
semaphore_ptr Pointer to semaphore control block.

name Pointer to destination for the pointer to the
semaphore’s name.

current_value Pointer to destination for the current
semaphore’s count.

first_suspended Pointer to destination for the pointer to the thread
that is first on the suspension list of this
semaphore.

suspended_count Pointer to destination for the number of threads
currently suspended on this semaphore.

next_semaphore Pointer to destination for the pointer of the next
created semaphore.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.i
User Guide

Counting Semaphores 213
Return Values
TX_SUCCESS (0x00) Successful semaphore

information retrieval.

TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_SEMAPHORE my_semaphore;
CHAR *name;
ULONG current_value;
TX_THREAD *first_suspended;
ULONG suspended_count;
TX_SEMAPHORE *next_semaphore;
UINT status;

/* Retrieve information about the previously created
 semaphore "my_semaphore." */
status = tx_semaphore_info_get(&my_semaphore, &name,

¤t_value,
&first_suspended, &suspended_count,
&next_semaphore);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

214 Description of ThreadX Services
tx_semaphore_performance_info_get
Get semaphore performance information

Counting Semaphores

Prototype
UINT tx_semaphore_performance_info_get(TX_SEMAPHORE *semaphore_ptr,

ULONG *puts, ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about the specified
semaphore.

Note: The ThreadX library and application must be built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information.

Parameters
semaphore_ptr Pointer to previously created semaphore.

puts Pointer to destination for the number of put
requests performed on this semaphore.

gets Pointer to destination for the number of get
requests performed on this semaphore.

suspensions Pointer to destination for the number of thread
suspensions on this semaphore.

timeouts Pointer to destination for the number of thread
suspension timeouts on this semaphore.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Counting Semaphores 215
Return Values
TX_SUCCESS (0x00) Successful semaphore

performance get.

TX_PTR_ERROR (0x03) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_SEMAPHORE my_semaphore;
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on the previously created
semaphore. */

status = tx_semaphore_performance_info_get(&my_semaphore, &puts,
&gets, &suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

216 Description of ThreadX Services
tx_semaphore_performance_system_info_get
Get semaphore system performance information

Counting Semaphores

Prototype
UINT tx_semaphore_performance_system_info_get(ULONG *puts,

ULONG *gets, ULONG *suspensions, ULONG *timeouts);

Description
This service retrieves performance information about all the semaphores
in the system.

The ThreadX library and application must be built with
TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO defined for this
service to return performance information

Parameters
puts Pointer to destination for the total number of put

requests performed on all semaphores.

gets Pointer to destination for the total number of get
requests performed on all semaphores.

suspensions Pointer to destination for the total number of
thread suspensions on all semaphores.

timeouts Pointer to destination for the total number of
thread suspension timeouts on all semaphores.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

i

i

User Guide

Counting Semaphores 217
Return Values
TX_SUCCESS (0x00) Successful semaphore

system performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG puts;
ULONG gets;
ULONG suspensions;
ULONG timeouts;

/* Retrieve performance information on all previously created
semaphores. */

status = tx_semaphore_performance_system_info_get(&puts, &gets,
&suspensions, &timeouts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_info_get, tx_semaphore_prioritize,
tx_semaphore_put, tx_semaphore_put_notify
Express Logic

218 Description of ThreadX Services
tx_semaphore_prioritize
Prioritize semaphore suspension list

Counting Semaphores

Prototype
UINT tx_semaphore_prioritize(TX_SEMAPHORE *semaphore_ptr)

Description
This service places the highest priority thread suspended for an instance
of the semaphore at the front of the suspension list. All other threads
remain in the same FIFO order they were suspended in.

Parameters
semaphore_ptr Pointer to a previously created semaphore.

Return Values
TX_SUCCESS (0x00) Successful semaphore

prioritize.

TX_SEMAPHORE_ERROR (0x0C) Invalid counting semaphore
pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Counting Semaphores 219
Example
TX_SEMAPHORE my_semaphore;
UINT status;

/* Ensure that the highest priority thread will receive
 the next instance of this semaphore. */
status = tx_semaphore_prioritize(&my_semaphore);

/* If status equals TX_SUCCESS, the highest priority
 suspended thread is at the front of the list. The
 next tx_semaphore_put call made to this semaphore will
 wake up this thread. */

See Also
tx_semaphore_create, tx_semaphore_delete, tx_semaphore_get,
tx_semaphore_info_get, tx_semaphore_put
Express Logic

220 Description of ThreadX Services
tx_semaphore_put
Place an instance in counting semaphore

Counting Semaphores

Prototype
UINT tx_semaphore_put(TX_SEMAPHORE *semaphore_ptr)

Description
This service puts an instance into the specified counting semaphore,
which in reality increments the counting semaphore by one.

If this service is called when the semaphore is all ones (OxFFFFFFFF),
the new put operation will cause the semaphore to be reset to zero.

Parameters
semaphore_ptr Pointer to the previously created counting

semaphore control block.

Return Values
TX_SUCCESS (0x00) Successful semaphore put.

TX_SEMAPHORE_ERROR (0x0C) Invalid pointer to counting
semaphore.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

i

User Guide

Counting Semaphores 221
Example
TX_SEMAPHORE my_semaphore;
UINT status;

/* Increment the counting semaphore "my_semaphore." */
status = tx_semaphore_put(&my_semaphore);

/* If status equals TX_SUCCESS, the semaphore count has
been incremented. Of course, if a thread was waiting,
it was given the semaphore instance and resumed. */

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_info_get, tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_get, tx_semaphore_put_notify
Express Logic

222 Description of ThreadX Services
tx_semaphore_put_notify
Notify application when semaphore is put

Counting Semaphores

Prototype
UINT tx_semaphore_put_notify(TX_SEMAPHORE *semaphore_ptr,

VOID (*semaphore_put_notify)(TX_SEMAPHORE *));

Description
This service registers a notification callback function that is called
whenever the specified semaphore is put. The processing of the
notification callback is defined by the application.

Parameters
semaphore_ptr Pointer to previously created semaphore.

semaphore_put_notify Pointer to application’s semaphore put
notification function. If this value is TX_NULL,
notification is disabled.

Return Values
TX_SUCCESS (0x00) Successful registration of

semaphore put notification.

TX_SEMAPHORE_ERROR (0x0C) Invalid semaphore pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled
with notification capabilities
disabled.

Allowed From
Initialization, threads, timers, and ISRs

!
Note: the application’s semaphore notification callback is not
allowed to call any ThreadX API with a suspension option.
User Guide

Counting Semaphores 223
Example
TX_SEMAPHORE my_semaphore;

/* Register the "my_semaphore_put_notify" function for monitoring
the put operations on the semaphore "my_semaphore." */

status = tx_semaphore_put_notify(&my_semaphore,
my_semaphore_put_notify);

/* If status is TX_SUCCESS the semaphore put notification function
was successfully registered. */

void my_semaphore_put_notify(TX_SEMAPHORE *semaphore_ptr)
{

/* The semaphore was just put! */

}

See Also
tx_semaphore_ceiling_put, tx_semaphore_create, tx_semaphore_delete,
tx_semaphore_get, tx_semaphore_info_get,
tx_semaphore_performance_info_get,
tx_semaphore_performance_system_info_get, tx_semaphore_prioritize,
tx_semaphore_put
Express Logic

224 Description of ThreadX Services
tx_thread_create
Create application thread

Thread Control

Prototype
UINT tx_thread_create(TX_THREAD *thread_ptr,

CHAR *name_ptr, VOID (*entry_function)(ULONG),
ULONG entry_input, VOID *stack_start,
ULONG stack_size, UINT priority,
UINT preempt_threshold, ULONG time_slice,
UINT auto_start)

Description
This service creates an application thread that starts execution at the
specified task entry function. The stack, priority, preemption-threshold,
and time-slice are among the attributes specified by the input parameters.
In addition, the initial execution state of the thread is also specified.

Parameters
thread_ptr Pointer to a thread control block.

name_ptr Pointer to the name of the thread.

entry_function Specifies the initial C function for thread
execution. When a thread returns from this entry
function, it is placed in a completed state and
suspended indefinitely.

entry_input A 32-bit value that is passed to the thread’s
entry function when it first executes. The use for
this input is determined exclusively by the
application.

stack_start Starting address of the stack’s memory area.

stack_size Number bytes in the stack memory area. The
thread’s stack area must be large enough to
handle its worst-case function call nesting and
local variable usage.

priority Numerical priority of thread. Legal values range
from 0 through (TX_MAX_PRIORITES-1), where
a value of 0 represents the highest priority.
User Guide

Thread Control 225
preempt_threshold Highest priority level (0 through
(TX_MAX_PRIORITIES-1)) of disabled
preemption. Only priorities higher than this level
are allowed to preempt this thread. This value
must be less than or equal to the specified
priority. A value equal to the thread priority
disables preemption-threshold.

time_slice Number of timer-ticks this thread is allowed to
run before other ready threads of the same
priority are given a chance to run. Note that
using preemption-threshold disables time-slicing.
Legal time-slice values range from 1 to
0xFFFFFFFF (inclusive). A value of
TX_NO_TIME_SLICE (a value of 0) disables
time-slicing of this thread.

Using time-slicing results in a slight amount of
system overhead. Since time-slicing is only
useful in cases where multiple threads share the
same priority, threads having a unique priority
should not be assigned a time-slice.

auto_start Specifies whether the thread starts immediately
or is placed in a suspended state. Legal options
are TX_AUTO_START (0x01) and
TX_DONT_START (0x00). If TX_DONT_START
is specified, the application must later call
tx_thread_resume in order for the thread to run.

i

Express Logic

226 Description of ThreadX Services
Return Values
TX_SUCCESS (0x00) Successful thread creation.

TX_THREAD_ERROR (0x0E) Invalid thread control
pointer. Either the pointer is
NULL or the thread is
already created.

TX_PTR_ERROR (0x03) Invalid starting address of
the entry point or the stack
area is invalid, usually
NULL.

TX_SIZE_ERROR (0x05) Size of stack area is invalid.
Threads must have at least
TX_MINIMUM_STACK
bytes to execute.

TX_PRIORITY_ERROR (0x0F) Invalid thread priority, which
is a value outside the range
of (0 through
(TX_MAX_PRIORITIES-1)).

TX_THRESH_ERROR (0x18) Invalid preemption-
threshold specified. This
value must be a valid priority
less than or equal to the
initial priority of the thread.

TX_START_ERROR (0x10) Invalid auto-start selection.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
Yes
User Guide

Thread Control 227
Example
TX_THREAD my_thread;
UINT status;

/* Create a thread of priority 15 whose entry point is
"my_thread_entry". This thread’s stack area is 1000
bytes in size, starting at address 0x400000. The
preemption-threshold is setup to allow preemption of threads
with priorities ranging from 0 through 14. Time-slicing is
disabled. This thread is automatically put into a ready
condition. */

status = tx_thread_create(&my_thread, "my_thread_name",
my_thread_entry, 0x1234,
(VOID *) 0x400000, 1000,
15, 15, TX_NO_TIME_SLICE,
TX_AUTO_START);

/* If status equals TX_SUCCESS, my_thread is ready
for execution! */

...

/* Thread’s entry function. When "my_thread" actually
begins execution, control is transferred to this
function. */

VOID my_thread_entry (ULONG initial_input)
{

 /* When we get here, the value of initial_input is
0x1234. See how this was specified during
creation. */

 /* The real work of the thread, including calls to
 other function should be called from here! */

 /* When this function returns, the corresponding
 thread is placed into a "completed" state. */

}

See Also
tx_thread_delete, tx_thread_entry_exit_notify, tx_thread_identify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

228 Description of ThreadX Services
tx_thread_delete
Delete application thread

Prototype
UINT tx_thread_delete(TX_THREAD *thread_ptr)

Description
This service deletes the specified application thread. Since the specified
thread must be in a terminated or completed state, this service cannot be
called from a thread attempting to delete itself.

It is the application’s responsibility to manage the memory area
associated with the thread’s stack, which is available after this service
completes. In addition, the application must prevent use of a deleted
thread.

Parameters
thread_ptr Pointer to a previously created application

thread.

Return Values
TX_SUCCESS (0x00) Successful thread deletion.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_DELETE_ERROR (0x11) Specified thread is not in a terminated
or completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
No

i

User Guide

Thread Control 229
Example
TX_THREAD my_thread;
UINT status;

/* Delete an application thread whose control block is
 "my_thread". Assume that the thread has already been
 created with a call to tx_thread_create. */
status = tx_thread_delete(&my_thread);

/* If status equals TX_SUCCESS, the application thread is
 deleted. */

See Also
tx_thread_create, tx_thread_entry_exit_notify, tx_thread_identify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

230 Description of ThreadX Services
tx_thread_entry_exit_notify
Notify application upon thread entry and exit

Prototype
UINT tx_thread_entry_exit_notify(TX_THREAD *thread_ptr,

VOID (*entry_exit_notify)(TX_THREAD *, UINT))

Description
This service registers a notification callback function that is called
whenever the specified thread is entered or exits. The processing of the
notification callback is defined by the application.

Parameters
thread_ptr Pointer to previously created thread.

entry_exit_notify Pointer to application’s thread entry/exit
notification function. The second parameter to the
entry/exit notification function designates if an
entry or exit is present. The value
TX_THREAD_ENTRY (0x00) indicates the thread
was entered, while the value TX_THREAD_EXIT
(0x01) indicates the thread was exited. If this value
is TX_NULL, notification is disabled.

Return Values
TX_SUCCESS (0x00) Successful registration of the

thread entry/exit notification
function.

TX_THREAD_ERROR (0x0E) Invalid thread pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was compiled with
notification capabilities disabled.

Allowed From
Initialization, threads, timers, and ISRs

!
Note: the application’s thread entry/exit notification callback
is not allowed to call any ThreadX API with a suspension
option.
User Guide

Thread Control 231
Example
TX_THREAD my_thread;

/* Register the "my_entry_exit_notify" function for monitoring
the entry/exit of the thread "my_thread." */

status = tx_thread_entry_exit_notify(&my_thread,
my_entry_exit_notify);

/* If status is TX_SUCCESS the entry/exit notification function was
successfully registered. */

void my_entry_exit_notify(TX_THREAD *thread_ptr, UINT condition)

{

/* Determine if the thread was entered or exited. */
if (condition == TX_THREAD_ENTRY)

/* Thread entry! */
else if (condition == TX_THREAD_EXIT)

 /* Thread exit! */

}

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

232 Description of ThreadX Services
tx_thread_identify
Retrieves pointer to currently executing thread

Prototype
TX_THREAD* tx_thread_identify(VOID)

Description
This service returns a pointer to the currently executing thread. If no
thread is executing, this service returns a null pointer.

If this service is called from an ISR, the return value represents the thread
running prior to the executing interrupt handler.

Parameters
None

Return Values
thread pointer Pointer to the currently executing thread. If no

thread is executing, the return value is
TX_NULL.

Allowed From
Threads and ISRs

Preemption Possible
No

i

User Guide

Thread Control 233
Example
TX_THREAD *my_thread_ptr;

/* Find out who we are! */
my_thread_ptr = tx_thread_identify();

/* If my_thread_ptr is non-null, we are currently executing
 from that thread or an ISR that interrupted that thread.

 Otherwise, this service was called
 from an ISR when no thread was running when the
 interrupt occurred. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

234 Description of ThreadX Services
tx_thread_info_get
Retrieve information about thread

Thread Control

Prototype
UINT tx_thread_info_get(TX_THREAD *thread_ptr, CHAR **name,

UINT *state, ULONG *run_count,
UINT *priority,
UINT *preemption_threshold,
ULONG *time_slice,
TX_THREAD **next_thread,
TX_THREAD **suspended_thread)

Description
This service retrieves information about the specified thread.

Parameters
thread_ptr Pointer to thread control block.

name Pointer to destination for the pointer to the
thread’s name.

state Pointer to destination for the thread’s current
execution state. Possible values are as follows:

TX_READY (0x00)
TX_COMPLETED (0x01)
TX_TERMINATED (0x02)
TX_SUSPENDED (0x03)
TX_SLEEP (0x04)
TX_QUEUE_SUSP (0x05)
TX_SEMAPHORE_SUSP (0x06)
TX_EVENT_FLAG (0x07)
TX_BLOCK_MEMORY (0x08)
TX_BYTE_MEMORY (0x09)

TX_MUTEX_SUSP (0x0D)

run_count Pointer to destination for the thread’s run count.

priority Pointer to destination for the thread’s priority.

preemption_threshold Pointer to destination for the thread’s
preemption-threshold.

time_slice Pointer to destination for the thread’s time-slice.
User Guide

Thread Control 235
next_thread Pointer to destination for next created thread
pointer.

suspended_thread Pointer to destination for pointer to next thread in
suspension list.

Supplying a TX_NULL for any parameter indicates that the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful thread information

retrieval.

TX_THREAD_ERROR (0x0E) Invalid thread control pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_THREAD my_thread;
CHAR *name;
UINT state;
ULONG run_count;
UINT priority;
UINT preemption_threshold;
UINT time_slice;
TX_THREAD *next_thread;
TX_THREAD *suspended_thread;
UINT status;

/* Retrieve information about the previously created
 thread "my_thread." */
status = tx_thread_info_get(&my_thread, &name,

&state, &run_count,
&priority, &preemption_threshold,
&time_slice, &next_thread,&suspended_thread);

/* If status equals TX_SUCCESS, the information requested is
 valid. */

i

Express Logic

236 Description of ThreadX Services
See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
User Guide

Thread Control 237
Express Logic

238 Description of ThreadX Services
tx_thread_performance_info_get
Get thread performance information

Prototype
UINT tx_thread_performance_info_get(TX_THREAD *thread_ptr,

ULONG *resumptions, ULONG *suspensions,
ULONG *solicited_preemptions, ULONG *interrupt_preemptions,
ULONG *priority_inversions, ULONG *time_slices,
ULONG *relinquishes, ULONG *timeouts, ULONG *wait_aborts,
TX_THREAD **last_preempted_by);

Description
This service retrieves performance information about the specified thread.

The ThreadX library and application must be built with
TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for
this service to return performance information.

Parameters
thread_ptr Pointer to previously created thread.

resumptions Pointer to destination for the number of
resumptions of this thread.

suspensions Pointer to destination for the number of
suspensions of this thread.

solicited_preemptions Pointer to destination for the number of
preemptions as a result of a ThreadX API
service call made by this thread.

interrupt_preemptions Pointer to destination for the number of
preemptions of this thread as a result of
interrupt processing.

priority_inversions Pointer to destination for the number of priority
inversions of this thread.

time_slices Pointer to destination for the number of time-
slices of this thread.

relinquishes Pointer to destination for the number of thread
relinquishes performed by this thread.

i

User Guide

Thread Control 239
timeouts Pointer to destination for the number of
suspension timeouts on this thread.

wait_aborts Pointer to destination for the number of wait
aborts performed on this thread.

last_preempted_by Pointer to destination for the thread pointer that
last preempted this thread.

Supplying a TX_NULL for any parameter indicates that the
parameter is not required.

Return Values
TX_SUCCESS (0x00) Successful thread

performance get.

TX_PTR_ERROR (0x03) Invalid thread pointer.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

i

Express Logic

240 Description of ThreadX Services
Example
TX_THREAD my_thread;
ULONG resumptions;
ULONG suspensions;
ULONG solicited_preemptions;
ULONG interrupt_preemptions;
ULONG priority_inversions;
ULONG time_slices;
ULONG relinquishes;
ULONG timeouts;
ULONG wait_aborts;
TX_THREAD *last_preempted_by;

/* Retrieve performance information on the previously created
thread. */

status = tx_thread_performance_info_get(&my_thread, &resumptions,
&suspensions,
&solicited_preemptions, &interrupt_preemptions,
&priority_inversions, &time_slices,
&relinquishes, &timeouts,
&wait_aborts, &last_preempted_by);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
User Guide

Thread Control 241
Express Logic

242 Description of ThreadX Services
tx_thread_performance_system_info_get
Get thread system performance information

Prototype
UINT tx_thread_performance_system_info_get(ULONG *resumptions,

ULONG *suspensions, ULONG *solicited_preemptions,
ULONG *interrupt_preemptions, ULONG *priority_inversions,
ULONG *time_slices, ULONG *relinquishes, ULONG *timeouts,
ULONG *wait_aborts, ULONG *non_idle_returns,
ULONG *idle_returns);

Description
This service retrieves performance information about all the threads in the
system.

The ThreadX library and application must be built with
TX_THREAD_ENABLE_PERFORMANCE_INFO defined in order for
this service to return performance information.

Parameters
resumptions Pointer to destination for the total number of

thread resumptions.

suspensions Pointer to destination for the total number of
thread suspensions.

solicited_preemptions Pointer to destination for the total number of
thread preemptions as a result of a thread
calling a ThreadX API service.

interrupt_preemptions Pointer to destination for the total number of
thread preemptions as a result of interrupt
processing.

priority_inversions Pointer to destination for the total number of
thread priority inversions.

time_slices Pointer to destination for the total number of
thread time-slices.

relinquishes Pointer to destination for the total number of
thread relinquishes.

i

User Guide

Thread Control 243
timeouts Pointer to destination for the total number of
thread suspension timeouts.

wait_aborts Pointer to destination for the total number of
thread wait aborts.

non_idle_returns Pointer to destination for the number of times a
thread returns to the system when another
thread is ready to execute.

idle_returns Pointer to destination for the number of times a
thread returns to the system when no other
thread is ready to execute (idle system).

Supplying a TX_NULL for any parameter indicates that the
parameter is not required.

Return Values
TX_SUCCESS (0x00) Successful thread system

performance get.

TX_FEATURE_NOT_ENABLED (0xFF) The system was not
compiled with performance
information enabled.

Allowed From
Initialization, threads, timers, and ISRs

i

Express Logic

244 Description of ThreadX Services
Example
ULONG resumptions;
ULONG suspensions;
ULONG solicited_preemptions;
ULONG interrupt_preemptions;
ULONG priority_inversions;
ULONG time_slices;
ULONG relinquishes;
ULONG timeouts;
ULONG wait_aborts;
ULONG non_idle_returns;
ULONG idle_returns;

/* Retrieve performance information on all previously created
thread. */

status = tx_thread_performance_system_info_get(&resumptions,
&suspensions,
&solicited_preemptions, &interrupt_preemptions,
&priority_inversions, &time_slices, &relinquishes,
&timeouts, &wait_aborts, &non_idle_returns,
&idle_returns);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
User Guide

Thread Control 245
Express Logic

246 Description of ThreadX Services
tx_thread_preemption_change
Change preemption-threshold of application thread

Prototype
UINT tx_thread_preemption_change(TX_THREAD *thread_ptr,

UINT new_threshold, UINT *old_threshold)

Description
This service changes the preemption-threshold of the specified thread.
The preemption-threshold prevents preemption of the specified thread by
threads equal to or less than the preemption-threshold value.

Using preemption-threshold disables time-slicing for the specified thread.

Parameters
thread_ptr Pointer to a previously created application

thread.

new_threshold New preemption-threshold priority level (0
through (TX_MAX_PRIORITIES-1)).

old_threshold Pointer to a location to return the previous
preemption-threshold.

Return Values
TX_SUCCESS (0x00) Successful preemption-threshold

change.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_THRESH_ERROR (0x18) Specified new preemption-threshold is
not a valid thread priority (a value other
than (0 through
(TX_MAX_PRIORITIES-1)) or is
greater than (lower priority) than the
current thread priority.

TX_PTR_ERROR (0x03) Invalid pointer to previous preemption-
threshold storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

i

User Guide

Thread Control 247
Allowed From
Threads and timers

Preemption Possible
Yes

Example
TX_THREAD my_thread;
UINT my_old_threshold;
UINT status;

/* Disable all preemption of the specified thread. The
current preemption-threshold is returned in
"my_old_threshold". Assume that "my_thread" has

 already been created. */
status = tx_thread_preemption_change(&my_thread,

0, &my_old_threshold);

/* If status equals TX_SUCCESS, the application thread is
non-preemptable by another thread. Note that ISRs are
not prevented by preemption disabling. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

248 Description of ThreadX Services
tx_thread_priority_change
Change priority of application thread

Prototype
UINT tx_thread_priority_change(TX_THREAD *thread_ptr,

UINT new_priority, UINT *old_priority)

Description
This service changes the priority of the specified thread. Valid priorities
range from 0 through (TX_MAX_PRIORITES-1), where 0 represents the
highest priority level.

The preemption-threshold of the specified thread is automatically set to
the new priority. If a new threshold is desired, the
tx_thread_preemption_change service must be used after this call.

Parameters
thread_ptr Pointer to a previously created application

thread.

new_priority New thread priority level (0 through
(TX_MAX_PRIORITIES-1)).

old_priority Pointer to a location to return the thread’s
previous priority.

Return Values
TX_SUCCESS (0x00) Successful priority change.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_PRIORITY_ERROR (0x0F) Specified new priority is not valid (a
value other than (0 through
(TX_MAX_PRIORITIES-1)).

TX_PTR_ERROR (0x03) Invalid pointer to previous priority
storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

i

User Guide

Thread Control 249
Allowed From
Threads and timers

Preemption Possible
Yes

Example
TX_THREAD my_thread;
UINT my_old_priority;
UINT status;

/* Change the thread represented by "my_thread" to priority
0. */

status = tx_thread_priority_change(&my_thread,
0, &my_old_priority);

/* If status equals TX_SUCCESS, the application thread is
now at the highest priority level in the system. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_relinquish, tx_thread_reset,
tx_thread_resume, tx_thread_sleep, tx_thread_stack_error_notify,
tx_thread_suspend, tx_thread_terminate, tx_thread_time_slice_change,
tx_thread_wait_abort
Express Logic

250 Description of ThreadX Services
tx_thread_relinquish
Relinquish control to other application threads

Prototype
VOID tx_thread_relinquish(VOID)

Description
This service relinquishes processor control to other ready-to-run threads
at the same or higher priority.

In addition to relinquishing control to threads of the same priority, this
service also relinquishes control to the highest-priority thread prevented
from execution because of the current thread's preemption-threshold
setting.

Parameters
None

Return Values
None

Allowed From
Threads

Preemption Possible
Yes

i

User Guide

Thread Control 251
Example
ULONG run_counter_1 = 0;
ULONG run_counter_2 = 0;

/* Example of two threads relinquishing control to
each other in an infinite loop. Assume that
both of these threads are ready and have the same
priority. The run counters will always stay within one
of each other. */

VOID my_first_thread(ULONG thread_input)
{

 /* Endless loop of relinquish. */
 while(1)
 {

 /* Increment the run counter. */
 run_counter_1++;

/* Relinquish control to other thread. */
 tx_thread_relinquish();
 }

}

VOID my_second_thread(ULONG thread_input)
{

 /* Endless loop of relinquish. */
 while(1)
 {

 /* Increment the run counter. */
 run_counter_2++;

 /* Relinquish control to other thread. */
 tx_thread_relinquish();
 }

}

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_reset, tx_thread_resume, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

252 Description of ThreadX Services
tx_thread_reset
Reset thread

Prototype
UINT tx_thread_reset(TX_THREAD *thread_ptr);

Description
This service resets the specified thread to execute at the entry point
defined at thread creation. The thread must be in either a
TX_COMPLETED or TX_TERMINATED state for it to be reset

The thread must be resumed for it to execute again.

Parameters
thread_ptr Pointer to a previously created thread.

Return Values
TX_SUCCESS (0x00) Successful thread reset.

TX_NOT_DONE (0x20) Specified thread is not in a
TX_COMPLETED or
TX_TERMINATED state.

TX_THREAD_ERROR (0x0E) Invalid thread pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

i

User Guide

Thread Control 253
Example
TX_THREAD my_thread;

/* Reset the previously created thread "my_thread." */
status = tx_thread_reset(&my_thread);

/* If status is TX_SUCCESS the thread is reset. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preformance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_resume, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

254 Description of ThreadX Services
tx_thread_resume
Resume suspended application thread

Prototype
UINT tx_thread_resume(TX_THREAD *thread_ptr)

Description
This service resumes or prepares for execution a thread that was
previously suspended by a tx_thread_suspend call. In addition, this
service resumes threads that were created without an automatic start.

Parameters
thread_ptr Pointer to a suspended application thread.

Return Values
TX_SUCCESS (0x00) Successful thread resume.

TX_SUSPEND_LIFTED(0x19) Previously set delayed suspension
was lifted.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_RESUME_ERROR (0x12) Specified thread is not suspended or
was previously suspended by a
service other than
tx_thread_suspend.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes
User Guide

Thread Control 255
Example
TX_THREAD my_thread;
UINT status;

/* Resume the thread represented by "my_thread". */
status = tx_thread_resume(&my_thread);

/* If status equals TX_SUCCESS, the application thread is
now ready to execute. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_sleep,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

256 Description of ThreadX Services
tx_thread_sleep
Suspend current thread for specified time

Prototype
UINT tx_thread_sleep(ULONG timer_ticks)

Description
This service causes the calling thread to suspend for the specified
number of timer ticks. The amount of physical time associated with a
timer tick is application specific. This service can be called only from an
application thread.

Parameters
timer_ticks The number of timer ticks to suspend the calling

application thread, ranging from 0 through
0xFFFFFFFF. If 0 is specified, the service returns
immediately.

Return Values
TX_SUCCESS (0x00) Successful thread sleep.

TX_WAIT_ABORTED (0x1A) Suspension was aborted by another
thread, timer, or ISR.

TX_CALLER_ERROR (0x13) Service called from a non-thread.

Allowed From
Threads

Preemption Possible
Yes
User Guide

Thread Control 257
Example
UINT status;

/* Make the calling thread sleep for 100
 timer-ticks. */
status = tx_thread_sleep(100);

/* If status equals TX_SUCCESS, the currently running
 application thread slept for the specified number of
 timer-ticks. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_stack_error_notify, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

258 Description of ThreadX Services
tx_thread_stack_error_notify
Register thread stack error notification callback

Prototype
UINT tx_thread_stack_error_notify(VOID (*error_handler)(TX_THREAD *));

Description
This service registers a notification callback function for handling thread
stack errors. When ThreadX detects a thread stack error during
execution, it will call this notification function to process the error.
Processing of the error is completely defined by the application. Anything
from suspending the violating thread to resetting the entire system may
be done.

The ThreadX library must be built with
TX_ENABLE_STACK_CHECKING defined in order for this service to
return performance information.

Parameters
error_handler Pointer to application’s stack error handling

function. If this value is TX_NULL, the notification
is disabled.

Return Values
TX_SUCCESS (0x00) Successful thread reset.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

i

User Guide

Thread Control 259
Example
void my_stack_error_handler(TX_THREAD *thread_ptr);

/* Register the "my_stack_error_handler" function with ThreadX
so that thread stack errors can be handled by the application. */

status = tx_thread_stack_error_notify(my_stack_error_handler);

/* If status is TX_SUCCESS the stack error handler is registered.*/

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_preformance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_suspend, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

260 Description of ThreadX Services
tx_thread_suspend
Suspend application thread

Prototype
UINT tx_thread_suspend(TX_THREAD *thread_ptr)

Description
This service suspends the specified application thread. A thread may call
this service to suspend itself.

If the specified thread is already suspended for another reason, this
suspension is held internally until the prior suspension is lifted. When that
happens, this unconditional suspension of the specified thread is
performed. Further unconditional suspension requests have no effect.

After being suspended, the thread must be resumed by
tx_thread_resume to execute again.

Parameters
thread_ptr Pointer to an application thread.

Return Values
TX_SUCCESS (0x00) Successful thread suspend.

TX_THREAD_ERROR (0x0E) Invalid application thread
pointer.

TX_SUSPEND_ERROR (0x14) Specified thread is in a
terminated or
completed state.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

i

User Guide

Thread Control 261
Example
TX_THREAD my_thread;
UINT status;

/* Suspend the thread represented by "my_thread". */
status = tx_thread_suspend(&my_thread);

/* If status equals TX_SUCCESS, the application thread is
unconditionally suspended. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_terminate,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

262 Description of ThreadX Services
tx_thread_terminate
Terminates application thread

Prototype
UINT tx_thread_terminate(TX_THREAD *thread_ptr)

Description
This service terminates the specified application thread regardless of
whether the thread is suspended or not. A thread may call this service to
terminate itself.

It is the application's responsibility to ensure that the thread is in a state
suitable for termination. For example, a thread should not be terminated
during critical application processing or inside of other middleware
components where it could leave such processing in an unknown state.

After being terminated, the thread must be reset for it to execute again.

Parameters
thread_ptr Pointer to application thread.

Return Values
TX_SUCCESS (0x00) Successful thread terminate.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads and timers

Preemption Possible
Yes

!

i

User Guide

Thread Control 263
Example
TX_THREAD my_thread;
UINT status;

/* Terminate the thread represented by "my_thread". */
status = tx_thread_terminate(&my_thread);

/* If status equals TX_SUCCESS, the thread is terminated
and cannot execute again until it is reset. */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_time_slice_change, tx_thread_wait_abort
Express Logic

264 Description of ThreadX Services
tx_thread_time_slice_change
Changes time-slice of application thread

Prototype
UINT tx_thread_time_slice_change(TX_THREAD *thread_ptr,

ULONG new_time_slice, ULONG *old_time_slice)

Description
This service changes the time-slice of the specified application thread.
Selecting a time-slice for a thread insures that it won’t execute more than
the specified number of timer ticks before other threads of the same or
higher priorities have a chance to execute.

Using preemption-threshold disables time-slicing for the specified thread.

Parameters
thread_ptr Pointer to application thread.

new_time_slice New time slice value. Legal values include
TX_NO_TIME_SLICE and numeric values from
1 through 0xFFFFFFFF.

old_time_slice Pointer to location for storing the previous time-
slice value of the specified thread.

Return Values
TX_SUCCESS (0x00) Successful time-slice chance.

TX_THREAD_ERROR (0x0E) Invalid application thread pointer.

TX_PTR_ERROR (0x03) Invalid pointer to previous time-slice
storage location.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

i

User Guide

Thread Control 265
Allowed From
Threads and timers

Preemption Possible
No

Example
TX_THREAD my_thread;
ULONG my_old_time_slice;
UINT status;

/* Change the time-slice of the thread associated with
"my_thread" to 20. This will mean that "my_thread"
can only run for 20 timer-ticks consecutively before
other threads of equal or higher priority get a chance
to run. */

status = tx_thread_time_slice_change(&my_thread, 20,
&my_old_time_slice);

/* If status equals TX_SUCCESS, the thread’s time-slice
has been changed to 20 and the previous time-slice is
in "my_old_time_slice." */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_wait_abort
Express Logic

266 Description of ThreadX Services
tx_thread_wait_abort
Abort suspension of specified thread

Prototype
UINT tx_thread_wait_abort(TX_THREAD *thread_ptr)

Description
This service aborts sleep or any other object suspension of the specified
thread. If the wait is aborted, a TX_WAIT_ABORTED value is returned
from the service that the thread was waiting on.

This service does not release explicit suspension that is made by the
tx_thread_suspend service.

Parameters
thread_ptr Pointer to a previously created application

thread.

Return Values
TX_SUCCESS (0x00) Successful thread wait

abort.

TX_THREAD_ERROR (0x0E) Invalid application thread
pointer.

TX_WAIT_ABORT_ERROR (0x1B) Specified thread is not in a
waiting state.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

i

User Guide

Thread Control 267
Example
TX_THREAD my_thread;
UINT status;

/* Abort the suspension condition of "my_thread." */
status = tx_thread_wait_abort(&my_thread);

/* If status equals TX_SUCCESS, the thread is now ready
again, with a return value showing its suspension
was aborted (TX_WAIT_ABORTED). */

See Also
tx_thread_create, tx_thread_delete, tx_thread_entry_exit_notify,
tx_thread_identify, tx_thread_info_get, tx_thread_performance_info_get,
tx_thread_performance_system_info_get,
tx_thread_preemption_change, tx_thread_priority_change,
tx_thread_relinquish, tx_thread_reset, tx_thread_resume,
tx_thread_sleep, tx_thread_stack_error_notify, tx_thread_suspend,
tx_thread_terminate, tx_thread_time_slice_change
Express Logic

268 Description of ThreadX Services
tx_time_get
Retrieves the current time

Application Timers

Prototype
ULONG tx_time_get(VOID)

Description
This service returns the contents of the internal system clock. Each timer-
tick increases the internal system clock by one. The system clock is set to
zero during initialization and can be changed to a specific value by the
service tx_time_set.

The actual time each timer-tick represents is application specific.

Parameters
None

Return Values
system clock ticks Value of the internal, free running, system clock.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

i

User Guide

Application Timers 269
Example
ULONG current_time;

/* Pickup the current system time, in timer-ticks. */
current_time = tx_time_get();

/* Current time now contains a copy of the internal system
clock. */

See Also
tx_time_set
Express Logic

270 Description of ThreadX Services
tx_time_set
Sets the current time

Prototype
VOID tx_time_set(ULONG new_time)

Description
This service sets the internal system clock to the specified value. Each
timer-tick increases the internal system clock by one.

The actual time each timer-tick represents is application specific.

Parameters
new_time New time to put in the system clock, legal values

range from 0 through 0xFFFFFFFF.

Return Values
None

Allowed From
Threads, timers, and ISRs

Preemption Possible
No

i

User Guide

Application Timers 271
Example
/* Set the internal system time to 0x1234. */
tx_time_set(0x1234);

/* Current time now contains 0x1234 until the next timer
interrupt. */

See Also
tx_time_get
Express Logic

272 Description of ThreadX Services
tx_timer_activate
Activate application timer

Application Timers

Prototype
UINT tx_timer_activate(TX_TIMER *timer_ptr)

Description
This service activates the specified application timer. The expiration
routines of timers that expire at the same time are executed in the order
they were activated.

Note that an expired one-shot timer must be reset via
tx_timer_change before it can be activated again.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values
TX_SUCCESS (0x00) Successful application timer

activation.

TX_TIMER_ERROR (0x15) Invalid application timer
pointer.

TX_ACTIVATE_ERROR (0x17) Timer was already active or
is a one-shot timer that has
already expired.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

i

User Guide

Application Timers 273
Example
TX_TIMER my_timer;
UINT status;

/* Activate an application timer. Assume that the
application timer has already been created. */

status = tx_timer_activate(&my_timer);

/* If status equals TX_SUCCESS, the application timer is
now active. */

See Also
tx_timer_change, tx_timer_create, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

274 Description of ThreadX Services
tx_timer_change
Change application timer

Prototype
UINT tx_timer_change(TX_TIMER *timer_ptr,

ULONG initial_ticks, ULONG reschedule_ticks)

Description
This service changes the expiration characteristics of the specified
application timer. The timer must be deactivated prior to calling this
service.

A call to the tx_timer_activate service is required after this service in
order to start the timer again.

Parameters
timer_ptr Pointer to a timer control block.

initial_ticks Specifies the initial number of ticks for timer
expiration. Legal values range from 1 through
0xFFFFFFFF.

reschedule_ticks Specifies the number of ticks for all timer
expirations after the first. A zero for this
parameter makes the timer a one-shot timer.
Otherwise, for periodic timers, legal values range
from 1 through 0xFFFFFFFF.

Note that an expired one-shot timer
must be reset via tx_timer_change
before it can be activated again.

Return Values
TX_SUCCESS (0x00) Successful application timer change.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

TX_TICK_ERROR (0x16) Invalid value (a zero) supplied for initial
ticks.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

i

i

User Guide

Application Timers 275
Allowed From
Threads, timers, and ISRs

Preemption Possible
No

Example
TX_TIMER my_timer;
UINT status;

/* Change a previously created and now deactivated timer
to expire every 50 timer ticks, including the initial
expiration. */

status = tx_timer_change(&my_timer,50, 50);

/* If status equals TX_SUCCESS, the specified timer is
changed to expire every 50 ticks. */

/* Activate the specified timer to get it started again. */
status = tx_timer_activate(&my_timer);

See Also
tx_timer_activate, tx_timer_create, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

276 Description of ThreadX Services
tx_timer_create
Create application timer

Prototype
UINT tx_timer_create(TX_TIMER *timer_ptr, CHAR *name_ptr,

VOID (*expiration_function)(ULONG),
ULONG expiration_input, ULONG initial_ticks,
ULONG reschedule_ticks, UINT auto_activate)

Description
This service creates an application timer with the specified expiration
function and periodic.

Parameters
timer_ptr Pointer to a timer control block

name_ptr Pointer to the name of the timer.

expiration_function Application function to call when the timer
expires.

expiration_input Input to pass to expiration function when timer
expires.

initial_ticks Specifies the initial number of ticks for timer
expiration. Legal values range from 1 through
0xFFFFFFFF.

reschedule_ticks Specifies the number of ticks for all timer
expirations after the first. A zero for this
parameter makes the timer a one-shot timer.
Otherwise, for periodic timers, legal values range
from 1 through 0xFFFFFFFF.

Note after a one-shot timer expires, it
must be reset via tx_timer_change
before it can be activated again.

auto_activate Determines if the timer is automatically activated
during creation. If this value is
TX_AUTO_ACTIVATE (0x01) the timer is made
active. Otherwise, if the value
TX_NO_ACTIVATE (0x00) is selected, the timer
is created in a non-active state. In this case, a

i

User Guide

Application Timers 277
subsequent tx_timer_activate service call is
necessary to get the timer actually started.

Return Values
TX_SUCCESS (0x00) Successful application timer

creation.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.
Either the pointer is NULL or the
timer is already created.

TX_TICK_ERROR (0x16) Invalid value (a zero) supplied for
initial ticks.

TX_ACTIVATE_ERROR (0x17) Invalid activation selected.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Initialization and threads

Preemption Possible
No

Example
TX_TIMER my_timer;
UINT status;

/* Create an application timer that executes
"my_timer_function" after 100 ticks initially and then
after every 25 ticks. This timer is specified to start
immediately! */

status = tx_timer_create(&my_timer,"my_timer_name",
my_timer_function, 0x1234, 100, 25,
TX_AUTO_ACTIVATE);

/* If status equals TX_SUCCESS, my_timer_function will
be called 100 timer ticks later and then called every
25 timer ticks. Note that the value 0x1234 is passed to
my_timer_function every time it is called. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_deactivate, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

278 Description of ThreadX Services
tx_timer_deactivate
Deactivate application timer

Prototype
UINT tx_timer_deactivate(TX_TIMER *timer_ptr)

Description
This service deactivates the specified application timer. If the timer is
already deactivated, this service has no effect.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values
TX_SUCCESS (0x00) Successful application timer

deactivation.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No
User Guide

Application Timers 279
Example
TX_TIMER my_timer;
UINT status;

/* Deactivate an application timer. Assume that the
application timer has already been created. */

status = tx_timer_deactivate(&my_timer);

/* If status equals TX_SUCCESS, the application timer is
now deactivated. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_delete,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

280 Description of ThreadX Services
tx_timer_delete
Delete application timer

Prototype
UINT tx_timer_delete(TX_TIMER *timer_ptr)

Description
This service deletes the specified application timer.

It is the application’s responsibility to prevent use of a deleted timer.

Parameters
timer_ptr Pointer to a previously created application timer.

Return Values
TX_SUCCESS (0x00) Successful application timer deletion.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

TX_CALLER_ERROR (0x13) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

i

User Guide

Application Timers 281
Example
TX_TIMER my_timer;
UINT status;

/* Delete application timer. Assume that the application
timer has already been created. */

status = tx_timer_delete(&my_timer);

/* If status equals TX_SUCCESS, the application timer is
deleted. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_deactivate,
tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

282 Description of ThreadX Services
tx_timer_info_get
Retrieve information about an application timer

Application Timers

Prototype
UINT tx_timer_info_get(TX_TIMER *timer_ptr, CHAR **name,

UINT *active, ULONG *remaining_ticks,
ULONG *reschedule_ticks,
TX_TIMER **next_timer)

Description
This service retrieves information about the specified application timer.

Parameters
timer_ptr Pointer to a previously created application timer.

name Pointer to destination for the pointer to the
timer’s name.

active Pointer to destination for the timer active
indication. If the timer is inactive or this service
is called from the timer itself, a TX_FALSE value
is returned. Otherwise, if the timer is active, a
TX_TRUE value is returned.

remaining_ticks Pointer to destination for the number of timer
ticks left before the timer expires.

reschedule_ticks Pointer to destination for the number of timer
ticks that will be used to automatically
reschedule this timer. If the value is zero, then
the timer is a one-shot and won’t be
rescheduled.

next_timer Pointer to destination for the pointer of the next
created application timer.

Note: Supplying a TX_NULL for any parameter indicates that the
parameter is not required.i
User Guide

Application Timers 283
Return Values
TX_SUCCESS (0x00) Successful timer information retrieval.

TX_TIMER_ERROR (0x15) Invalid application timer pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Example
TX_TIMER my_timer;
CHAR *name;
UINT active;
ULONG remaining_ticks;
ULONG reschedule_ticks;
TX_TIMER *next_timer;
UINT status;

/* Retrieve information about the previously created
application timer "my_timer." */

status = tx_timer_info_get(&my_timer, &name,
&active,&remaining_ticks,
&reschedule_ticks,
&next_timer);

/* If status equals TX_SUCCESS, the information requested is
valid. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_create, tx_timer_deactivate,
tx_timer_delete, tx_timer_info_get, tx_timer_performance_info_get,
tx_timer_performance_system_info_get
Express Logic

284 Description of ThreadX Services
tx_timer_performance_info_get
Get timer performance information

Prototype
UINT tx_timer_performance_info_get(TX_TIMER *timer_ptr,

ULONG *activates, ULONG *reactivates,
ULONG *deactivates, ULONG *expirations,
ULONG *expiration_adjusts);

Description
This service retrieves performance information about the specified
application timer.

The ThreadX library and application must be built with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined for this service to
return performance information.

Parameters
timer_ptr Pointer to previously created timer.

activates Pointer to destination for the number of activation
requests performed on this timer.

reactivates Pointer to destination for the number of
automatic reactivations performed on this
periodic timer.

deactivates Pointer to destination for the number of
deactivation requests performed on this timer.

expirations Pointer to destination for the number of
expirations of this timer.

expiration_adjusts Pointer to destination for the number of internal
expiration adjustments performed on this timer.
These adjustments are done in the timer
interrupt processing for timers that are larger
than the default timer list size (by default timers
with expirations greater than 32 ticks).

i

User Guide

Application Timers 285
Supplying a TX_NULL for any parameter indicates the parameter is
not required.

Return Values
TX_SUCCESS (0x00) Successful timer performance

get.

TX_PTR_ERROR (0x03) Invalid timer pointer.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
TX_TIMER my_timer;
ULONG activates;
ULONG reactivates;
ULONG deactivates;
ULONG expirations;
ULONG expiration_adjusts;

/* Retrieve performance information on the previously created
timer. */

status = tx_timer_performance_info_get(&my_timer, &activates,
&reactivates,&deactivates, &expirations,
&expiration_adjusts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_create,
tx_timer_deactivate, tx_timer_delete, tx_timer_info_get,
tx_timer_performance_system_info_get

i

Express Logic

286 Description of ThreadX Services
tx_timer_performance_system_info_get
Get timer system performance information

Prototype
UINT tx_timer_performance_system_info_get(ULONG *activates,

ULONG *reactivates, ULONG *deactivates,
ULONG *expirations, ULONG *expiration_adjusts);

Description
This service retrieves performance information about all the application
timers in the system.

The ThreadX library and application must be built with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined for this service to
return performance information.

Parameters
activates Pointer to destination for the total number of

activation requests performed on all timers.

reactivates Pointer to destination for the total number of
automatic reactivation performed on all periodic
timers.

deactivates Pointer to destination for the total number of
deactivation requests performed on all timers.

expirations Pointer to destination for the total number of
expirations on all timers.

expiration_adjusts Pointer to destination for the total number of
internal expiration adjustments performed on all
timers. These adjustments are done in the timer
interrupt processing for timers that are larger
than the default timer list size (by default timers
with expirations greater than 32 ticks).

Supplying a TX_NULL for any parameter indicates that the parameter
is not required.

i

i

User Guide

Application Timers 287
Return Values
TX_SUCCESS (0x00) Successful timer system

performance get.

TX_FEATURE_NOT_ENABLED(0xFF) The system was not compiled
with performance information
enabled.

Allowed From
Initialization, threads, timers, and ISRs

Example
ULONG activates;
ULONG reactivates;
ULONG deactivates;
ULONG expirations;
ULONG expiration_adjusts;

/* Retrieve performance information on all previously created
timers. */

status = tx_timer_performance_system_info_get(&activates,
&reactivates, &deactivates, &expirations,
&expiration_adjusts);

/* If status is TX_SUCCESS the performance information was
successfully retrieved. */

See Also
tx_timer_activate, tx_timer_change, tx_timer_create,
tx_timer_deactivate, tx_timer_delete, tx_timer_info_get,
tx_timer_performance_info_get
Express Logic

288 Description of ThreadX Services

User Guide

C H A P T E R 5
Device Drivers for ThreadX

This chapter contains a description of device drivers
for ThreadX. The information presented in this
chapter is designed to help developers write
application specific drivers. The following lists the
device driver topics covered in this chapter:

1 Device Driver Introduction 290

1 Driver Functions 290
Driver Initialization 291
Driver Control 291
Driver Access 291
Driver Input 291
Driver Output 292
Driver Interrupts 292
Driver Status 292
Driver Termination 292

1 Simple Driver Example 292
Simple Driver Initialization 293
Simple Driver Input 294
Simple Driver Output 295
Simple Driver Shortcomings 296

1 Advanced Driver Issues 297
I/O Buffering 297
Circular Byte Buffers 297
Circular Buffer Input 297
Circular Output Buffer 299
Buffer I/O Management 300
TX_IO_BUFFER 300
Buffered I/O Advantage 301
Buffered Driver Responsibilities 301
Interrupt Management 303
Thread Suspension 303
User Guide

290 Device Drivers for ThreadX
Device Driver Introduction
Communication with the external environment is an
important component of most embedded
applications. This communication is accomplished
through hardware devices that are accessible to the
embedded application software. The software
components responsible for managing such devices
are commonly called Device Drivers.

Device drivers in embedded, real-time systems are
inherently application dependent. This is true for two
principal reasons: the vast diversity of target
hardware and the equally vast performance
requirements imposed on real-time applications.
Because of this, it is virtually impossible to provide a
common set of drivers that will meet the
requirements of every application. For these
reasons, the information in this chapter is designed
to help users customize off-the-shelf ThreadX device
drivers and write their own specific drivers.

Driver Functions

ThreadX device drivers are composed of eight basic
functional areas, as follows:

Driver Initialization
Driver Control
Driver Access
Driver Input
Driver Output
Driver Interrupts
Driver Status
Driver Termination

With the exception of initialization, each driver
functional area is optional. Furthermore, the exact
User Guide

Driver Functions 291
processing in each area is specific to the device
driver.

Driver Initialization This functional area is responsible for initialization of
the actual hardware device and the internal data
structures of the driver. Calling other driver services
is not allowed until initialization is complete.

The driver’s initialization function component is
typically called from the tx_application_define
function or from an initialization thread.

Driver Control After the driver is initialized and ready for operation,
this functional area is responsible for run-time
control. Typically, run-time control consists of making
changes to the underlying hardware device.
Examples include changing the baud rate of a serial
device or seeking a new sector on a disk.

Driver Access Some device drivers are called only from a single
application thread. In such cases, this functional area
is not needed. However, in applications where
multiple threads need simultaneous driver access,
their interaction must be controlled by adding assign/
release facilities in the device driver. Alternatively, the
application may use a semaphore to control driver
access and avoid extra overhead and complication
inside the driver.

Driver Input This functional area is responsible for all device
input. The principal issues associated with driver
input usually involve how the input is buffered and
how threads wait for such input.

i

Express Logic

292 Device Drivers for ThreadX
Driver Output This functional area is responsible for all device
output. The principal issues associated with driver
output usually involve how the output is buffered and
how threads wait to perform output.

Driver Interrupts Most real-time systems rely on hardware interrupts to
notify the driver of device input, output, control, and
error events. Interrupts provide a guaranteed
response time to such external events. Instead of
interrupts, the driver software may periodically check
the external hardware for such events. This
technique is called polling. It is less real-time than
interrupts, but polling may make sense for some less
real-time applications.

Driver Status This function area is responsible for providing run-
time status and statistics associated with the driver
operation. Information managed by this function area
typically includes the following:

Current device status
Input bytes
Output bytes
Device error counts

Driver Termination This functional area is optional. It is only required if
the driver and/or the physical hardware device need
to be shut down. After being terminated, the driver
must not be called again until it is re-initialized.

Simple Driver Example
An example is the best way to describe a device
driver. In this example, the driver assumes a simple
serial hardware device with a configuration register,
User Guide

Simple Driver Example 293
an input register, and an output register. This simple
driver example illustrates the initialization, input,
output, and interrupt functional areas.

Simple Driver
Initialization

The tx_sdriver_initialize function of the simple
driver creates two counting semaphores that are
used to manage the driver’s input and output
operation. The input semaphore is set by the input
ISR when a character is received by the serial
hardware device. Because of this, the input
semaphore is created with an initial count of zero.

Conversely, the output semaphore indicates the
availability of the serial hardware transmit register. It
is created with a value of one to indicate the transmit
register is initially available.

The initialization function is also responsible for
installing the low-level interrupt vector handlers for
input and output notifications. Like other ThreadX
interrupt service routines, the low-level handler must
call _tx_thread_context_save before calling the
simple driver ISR. After the driver ISR returns, the
low-level handler must call
_tx_thread_context_restore.

It is important that initialization is called before any of
the other driver functions. Typically, driver
initialization is called from tx_application_define.

See Figure 9 on page 294 for the initialization source
code of the simple driver.

i

Express Logic

294 Device Drivers for ThreadX
FIGURE 9. Simple Driver Initialization

Simple Driver
Input

Input for the simple driver centers around the input
semaphore. When a serial device input interrupt is
received, the input semaphore is set. If one or more
threads are waiting for a character from the driver,
the thread waiting the longest is resumed. If no
threads are waiting, the semaphore simply remains
set until a thread calls the drive input function.

There are several limitations to the simple driver
input handling. The most significant is the potential
for dropping input characters. This is possible
because there is no ability to buffer input characters
that arrive before the previous character is
processed. This is easily handled by adding an input
character buffer.

Only threads are allowed to call the
tx_sdriver_input function.

VOID tx_sdriver_initialize(VOID)
{

 /* Initialize the two counting semaphores used to control
 the simple driver I/O. */
 tx_semaphore_create(&tx_sdriver_input_semaphore,
 "simple driver input semaphore", 0);
 tx_semaphore_create(&tx_sdriver_output_semaphore,
 "simple driver output semaphore", 1);

 /* Setup interrupt vectors for input and output ISRs.
 The initial vector handling should call the ISRs
 defined in this file. */

 /* Configure serial device hardware for RX/TX interrupt
 generation, baud rate, stop bits, etc. */
}

i

User Guide

Simple Driver Example 295
Figure 10 shows the source code associated with
simple driver input.

FIGURE 10. Simple Driver Input

Simple Driver
Output

Output processing utilizes the output semaphore to
signal when the serial device’s transmit register is
free. Before an output character is actually written to
the device, the output semaphore is obtained. If it is
not available, the previous transmit is not yet
complete.

The output ISR is responsible for handling the
transmit complete interrupt. Processing of the output
ISR amounts to setting the output semaphore,
thereby allowing output of another character.

UCHAR tx_sdriver_input(VOID)
{

 /* Determine if there is a character waiting. If not,
 suspend. */
 tx_semaphore_get(&tx_sdriver_input_semaphore,
 TX_WAIT_FOREVER;
 /* Return character from serial RX hardware register. */
 return(*serial_hardware_input_ptr);
}

VOID tx_sdriver_input_ISR(VOID)
{
 /* See if an input character notification is pending. */
 if (!tx_sdriver_input_semaphore.tx_semaphore_count)
 {
 /* If not, notify thread of an input character. */
 tx_semaphore_put(&tx_sdriver_input_semaphore);
 }
}

Express Logic

296 Device Drivers for ThreadX
Only threads are allowed to call the
tx_sdriver_output function.

Figure 11 shows the source code associated with
simple driver output.

FIGURE 11. Simple Driver Output

Simple Driver
Shortcomings

This simple device driver example illustrates the
basic idea of a ThreadX device driver. However,
because the simple device driver does not address
data buffering or any overhead issues, it does not
fully represent real-world ThreadX drivers. The
following section describes some of the more
advanced issues associated with device drivers.

i

VOID tx_sdriver_output(UCHAR alpha)
{

 /* Determine if the hardware is ready to transmit a
 character. If not, suspend until the previous output
 completes. */
 tx_semaphore_get(&tx_sdriver_output_semaphore,
 TX_WAIT_FOREVER);
 /* Send the character through the hardware. */
 *serial_hardware_output_ptr = alpha;
}

VOID tx_sdriver_output_ISR(VOID)
{
 /* Notify thread last character transmit is
 complete. */
 tx_semaphore_put(&tx_sdriver_output_semaphore);
}

User Guide

Advanced Driver Issues 297
Advanced Driver Issues
As mentioned previously, device drivers have
requirements as unique as their applications. Some
applications may require an enormous amount of
data buffering while another application may require
optimized driver ISRs because of high-frequency
device interrupts.

I/O Buffering Data buffering in real-time embedded applications
requires considerable planning. Some of the design
is dictated by the underlying hardware device. If the
device provides basic byte I/O, a simple circular
buffer is probably in order. However, if the device
provides block, DMA, or packet I/O, a buffer
management scheme is probably warranted.

Circular Byte
Buffers

Circular byte buffers are typically used in drivers that
manage a simple serial hardware device like a
UART. Two circular buffers are most often used in
such situations—one for input and one for output.

Each circular byte buffer is comprised of a byte
memory area (typically an array of UCHARs), a read
pointer, and a write pointer. A buffer is considered
empty when the read pointer and the write pointers
reference the same memory location in the buffer.
Driver initialization sets both the read and write buffer
pointers to the beginning address of the buffer.

Circular Buffer
Input

The input buffer is used to hold characters that arrive
before the application is ready for them. When an
input character is received (usually in an interrupt
service routine), the new character is retrieved from
the hardware device and placed into the input buffer
at the location pointed to by the write pointer. The
write pointer is then advanced to the next position in
Express Logic

298 Device Drivers for ThreadX
the buffer. If the next position is past the end of the
buffer, the write pointer is set to the beginning of the
buffer. The queue full condition is handled by
canceling the write pointer advancement if the new
write pointer is the same as the read pointer.

Application input byte requests to the driver first
examine the read and write pointers of the input
buffer. If the read and write pointers are identical, the
buffer is empty. Otherwise, if the read pointer is not
the same, the byte pointed to by the read pointer is
copied from the input buffer and the read pointer is
advanced to the next buffer location. If the new read
pointer is past the end of the buffer, it is reset to the
beginning. Figure 12 shows the logic for the circular
input buffer.

FIGURE 12. Logic for Circular Input Buffer

UCHAR tx_input_buffer[MAX_SIZE];
UCHAR tx_input_write_ptr;
UCHAR tx_input_read_ptr;

/* Initialization. */
tx_input_write_ptr = &tx_input_buffer[0];
tx_input_read_ptr = &tx_input_buffer[0];

/* Input byte ISR... UCHAR alpha has character from device. */
save_ptr = tx_input_write_ptr;
*tx_input_write_ptr++ = alpha;
if (tx_input_write_ptr > &tx_input_buffer[MAX_SIZE-1])
 tx_input_write_ptr = &tx_input_buffer[0]; /* Wrap */
if (tx_input_write_ptr == tx_input_read_ptr)
 tx_input_write_ptr = save_ptr; /* Buffer full */

/* Retrieve input byte from buffer... */
if (tx_input_read_ptr != tx_input_write_ptr)
{
 alpha = *tx_input_read_ptr++;
 if (tx_input_read_ptr > &tx_input_buffer[MAX_SIZE-1])
 tx_input_read_ptr = &tx_input_buffer[0];
}

User Guide

Advanced Driver Issues 299
For reliable operation, it may be necessary to lockout
interrupts when manipulating the read and write
pointers of both the input and output circular buffers.

Circular Output
Buffer

The output buffer is used to hold characters that have
arrived for output before the hardware device
finished sending the previous byte. Output buffer
processing is similar to input buffer processing,
except the transmit complete interrupt processing
manipulates the output read pointer, while the
application output request utilizes the output write
pointer. Otherwise, the output buffer processing is
the same. Figure 13 shows the logic for the circular
output buffer.

FIGURE 13. Logic for Circular Output Buffer

i

UCHAR tx_output_buffer[MAX_SIZE];
UCHAR tx_output_write_ptr;
UCHAR tx_output_read_ptr;

/* Initialization. */
tx_output_write_ptr = &tx_output_buffer[0];
tx_output_read_ptr = &tx_output_buffer[0];

/* Transmit complete ISR... Device ready to send. */
if (tx_output_read_ptr != tx_output_write_ptr)
{
 *device_reg = *tx_output_read_ptr++;
 if (tx_output_read_reg > &tx_output_buffer[MAX_SIZE-1])
 tx_output_read_ptr = &tx_output_buffer[0];
}

/* Output byte driver service. If device busy, buffer! */
save_ptr = tx_output_write_ptr;
*tx_output_write_ptr++ = alpha;
if (tx_output_write_ptr > &tx_output_buffer[MAX_SIZE-1])
 tx_output_write_ptr = &tx_output_buffer[0]; /* Wrap */
if (tx_output_write_ptr == tx_output_read_ptr)
 tx_output_write_ptr = save_ptr; /* Buffer full! */
Express Logic

300 Device Drivers for ThreadX
Buffer I/O
Management

To improve the performance of embedded
microprocessors, many peripheral device devices
transmit and receive data with buffers supplied by
software. In some implementations, multiple buffers
may be used to transmit or receive individual packets
of data.

The size and location of I/O buffers is determined by
the application and/or driver software. Typically,
buffers are fixed in size and managed within a
ThreadX block memory pool. Figure 14 describes a
typical I/O buffer and a ThreadX block memory pool
that manages their allocation.

FIGURE 14. I/O Buffer

TX_IO_BUFFER The typedef TX_IO_BUFFER consists of two
pointers. The tx_next_packet pointer is used to link
multiple packets on either the input or output list. The

typedef struct TX_IO_BUFFER_STRUCT
{

 struct TX_IO_BUFFER_STRUCT *tx_next_packet;
 struct TX_IO_BUFFER_STRUCT *tx_next_buffer;

 UCHAR tx_buffer_area[TX_MAX_BUFFER_SIZE];
} TX_IO_BUFFER;

TX_BLOCK_POOL tx_io_block_pool;

/* Create a pool of I/O buffers. Assume that the pointer
"free_memory_ptr"points to an available memory area that
is 64 KBytes in size. */

tx_block_pool_create(&tx_io_block_pool,
 "Sample IO Driver Buffer Pool",
 free_memory_ptr, 0x10000,
 sizeof(TX_IO_BUFFER));
User Guide

Advanced Driver Issues 301
tx_next_buffer pointer is used to link together
buffers that make up an individual packet of data
from the device. Both of these pointers are set to
NULL when the buffer is allocated from the pool. In
addition, some devices may require another field to
indicate how much of the buffer area actually
contains data.

Buffered I/O
Advantage

What are the advantages of a buffer I/O scheme?
The biggest advantage is that data is not copied
between the device registers and the application’s
memory. Instead, the driver provides the device with
a series of buffer pointers. Physical device I/O
utilizes the supplied buffer memory directly.

Using the processor to copy input or output packets
of information is extremely costly and should be
avoided in any high throughput I/O situation.

Another advantage to the buffered I/O approach is
that the input and output lists do not have full
conditions. All of the available buffers can be on
either list at any one time. This contrasts with the
simple byte circular buffers presented earlier in the
chapter. Each had a fixed size determined at
compilation.

Buffered Driver
Responsibilities

Buffered device drivers are only concerned with
managing linked lists of I/O buffers. An input buffer
list is maintained for packets that are received before
the application software is ready. Conversely, an
output buffer list is maintained for packets being sent
faster than the hardware device can handle them.
Figure 15 on page 302 shows simple input and
Express Logic

302 Device Drivers for ThreadX
output linked lists of data packets and the buffer(s)
that make up each packet.

FIGURE 15. Input-Output Lists

Applications interface with buffered drivers with the
same I/O buffers. On transmit, application software
provides the driver with one or more buffers to
transmit. When the application software requests
input, the driver returns the input data in I/O buffers.

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet 1

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet 2

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet n

NULL

Input Tail PointerInput Head Pointer

Input List

more buffers
in packet or
NULL

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet 1

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet 2

tx_next_packet
tx_next_buffer
tx_buffer_area

Packet n

NULL

Output Tail PointerOutput Head Pointer

Output List

more buffers
in packet or
NULL
User Guide

Advanced Driver Issues 303
In some applications, it may be useful to build a
driver input interface that requires the application to
exchange a free buffer for an input buffer from the
driver. This might alleviate some buffer allocation
processing inside of the driver.

Interrupt
Management

In some applications, the device interrupt frequency
may prohibit writing the ISR in C or to interact with
ThreadX on each interrupt. For example, if it takes
25us to save and restore the interrupted context, it
would not be advisable to perform a full context save
if the interrupt frequency was 50us. In such cases, a
small assembly language ISR is used to handle most
of the device interrupts. This low-overhead ISR
would only interact with ThreadX when necessary.

A similar discussion can be found in the interrupt
management discussion at the end of Chapter 3.

Thread
Suspension

In the simple driver example presented earlier in this
chapter, the caller of the input service suspends if a
character is not available. In some applications, this
might not be acceptable.

For example, if the thread responsible for processing
input from a driver also has other duties, suspending
on just the driver input is probably not going to work.
Instead, the driver needs to be customized to request
processing similar to the way other processing
requests are made to the thread.

In most cases, the input buffer is placed on a linked
list and an input event message is sent to the
thread’s input queue.

i

Express Logic

304 Device Drivers for ThreadX
User Guide

C H A P T E R 6
Demonstration System for
ThreadX

This chapter contains a description of the
demonstration system that is delivered with all
ThreadX processor support packages. The following
lists specific demonstration areas that are covered in
this chapter:

1 Overview 306

1 Application Define 306
Initial Execution 307

1 Thread 0 308

1 Thread 1 308

1 Thread 2 308

1 Threads 3 and 4 309

1 Thread 5 309

1 Threads 6 and 7 310

1 Observing the Demonstration 310

1 Distribution file: demo_threadx.c 311
User Guide

306 Demonstration System for ThreadX
Overview
Each ThreadX product distribution contains a
demonstration system that runs on all supported
microprocessors.

This example system is defined in the distribution file
demo_threadx.c and is designed to illustrate how
ThreadX is used in an embedded multithread
environment. The demonstration consists of
initialization, eight threads, one byte pool, one block
pool, one queue, one semaphore, one mutex, and
one event flags group.

Except for the thread’s stack size, the demonstration
application is identical on all ThreadX supported
processors.

The complete listing of demo_threadx.c, including
the line numbers referenced throughout the
remainder of this chapter, is displayed on page 312
and following.

Application Define

The tx_application_define function executes after
the basic ThreadX initialization is complete. It is
responsible for setting up all of the initial system
resources, including threads, queues, semaphores,
mutexes, event flags, and memory pools.

The demonstration system’s tx_application_define
(line numbers 60-164) creates the demonstration
objects in the following order:

byte_pool_0
thread_0
thread_1
thread_2
thread_3

i

User Guide

Application Define 307
thread_4
thread_5
thread_6
thread_7
queue_0
semaphore_0
event_flags_0
mutex_0
block_pool_0

The demonstration system does not create any other
additional ThreadX objects. However, an actual
application may create system objects during run-
time inside of executing threads.

Initial Execution All threads are created with the TX_AUTO_START
option. This makes them initially ready for execution.
After tx_application_define completes, control is
transferred to the thread scheduler and from there to
each individual thread.

The order in which the threads execute is determined
by their priority and the order that they were created.
In the demonstration system, thread_0 executes first
because it has the highest priority (it was created
with a priority of 1). After thread_0 suspends,
thread_5 is executed, followed by the execution of
thread_3, thread_4, thread_6, thread_7, thread_1,
and finally thread_2.

Even though thread_3 and thread_4 have the same
priority (both created with a priority of 8), thread_3
executes first. This is because thread_3 was created
and became ready before thread_4. Threads of
equal priority execute in a FIFO fashion.

i

Express Logic

308 Demonstration System for ThreadX
Thread 0
The function thread_0_entry marks the entry point
of the thread (lines 167-190). Thread_0 is the first
thread in the demonstration system to execute. Its
processing is simple: it increments its counter, sleeps
for 10 timer ticks, sets an event flag to wake up
thread_5, then repeats the sequence.

Thread_0 is the highest priority thread in the system.
When its requested sleep expires, it will preempt any
other executing thread in the demonstration.

Thread 1
The function thread_1_entry marks the entry point
of the thread (lines 193-216). Thread_1 is the
second-to-last thread in the demonstration system to
execute. Its processing consists of incrementing its
counter, sending a message to thread_2 (through
queue_0), and repeating the sequence. Notice that
thread_1 suspends whenever queue_0 becomes
full (line 207).

Thread 2

The function thread_2_entry marks the entry point
of the thread (lines 219-243). Thread_2 is the last
thread in the demonstration system to execute. Its
processing consists of incrementing its counter,
getting a message from thread_1 (through
queue_0), and repeating the sequence. Notice that
thread_2 suspends whenever queue_0 becomes
empty (line 233).

Although thread_1 and thread_2 share the lowest
priority in the demonstration system (priority 16), they
User Guide

Threads 3 and 4 309
are also the only threads that are ready for execution
most of the time. They are also the only threads
created with time-slicing (lines 87 and 93). Each
thread is allowed to execute for a maximum of 4
timer ticks before the other thread is executed.

Threads 3 and 4

The function thread_3_and_4_entry marks the
entry point of both thread_3 and thread_4 (lines
246-280). Both threads have a priority of 8, which
makes them the third and fourth threads in the
demonstration system to execute. The processing for
each thread is the same: incrementing its counter,
getting semaphore_0, sleeping for 2 timer ticks,
releasing semaphore_0, and repeating the
sequence. Notice that each thread suspends
whenever semaphore_0 is unavailable (line 264).

Also both threads use the same function for their
main processing. This presents no problems
because they both have their own unique stack, and
C is naturally reentrant. Each thread determines
which one it is by examination of the thread input
parameter (line 258), which is setup when they are
created (lines 102 and 109).

It is also reasonable to obtain the current thread point
during thread execution and compare it with the
control block’s address to determine thread identity.

Thread 5

The function thread_5_entry marks the entry point
of the thread (lines 283-305). Thread_5 is the
second thread in the demonstration system to
execute. Its processing consists of incrementing its

i

Express Logic

310 Demonstration System for ThreadX
counter, getting an event flag from thread_0 (through
event_flags_0), and repeating the sequence. Notice
that thread_5 suspends whenever the event flag in
event_flags_0 is not available (line 298).

Threads 6 and 7

The function thread_6_and_7_entry marks the
entry point of both thread_6 and thread_7 (lines
307-358). Both threads have a priority of 8, which
makes them the fifth and sixth threads in the
demonstration system to execute. The processing for
each thread is the same: incrementing its counter,
getting mutex_0 twice, sleeping for 2 timer ticks,
releasing mutex_0 twice, and repeating the
sequence. Notice that each thread suspends
whenever mutex_0 is unavailable (line 325).

Also both threads use the same function for their
main processing. This presents no problems
because they both have their own unique stack, and
C is naturally reentrant. Each thread determines
which one it is by examination of the thread input
parameter (line 319), which is setup when they are
created (lines 126 and 133).

Observing the Demonstration
Each of the demonstration threads increments its
own unique counter. The following counters may be
examined to check on the demo’s operation:

thread_0_counter
thread_1_counter
thread_2_counter
thread_3_counter
thread_4_counter
thread_5_counter
thread_6_counter
thread_7_counter
User Guide

Distribution file: demo_threadx.c 311
Each of these counters should continue to increase
as the demonstration executes, with
thread_1_counter and thread_2_counter
increasing at the fastest rate.

Distribution file: demo_threadx.c

This section displays the complete listing of
demo_threadx.c, including the line numbers
referenced throughout this chapter.
Express Logic

312 Demonstration System for ThreadX
000 /* This is a small demo of the high-performance ThreadX kernel. It includes examples of eight
001 threads of different priorities, using a message queue, semaphore, mutex, event flags group,
002 byte pool, and block pool. */
003
004 #include "tx_api.h"
005
006 #define DEMO_STACK_SIZE 1024
007 #define DEMO_BYTE_POOL_SIZE 9120
008 #define DEMO_BLOCK_POOL_SIZE 100
009 #define DEMO_QUEUE_SIZE 100
010
011 /* Define the ThreadX object control blocks... */
012
013 TX_THREAD thread_0;
014 TX_THREAD thread_1;
015 TX_THREAD thread_2;
016 TX_THREAD thread_3;
017 TX_THREAD thread_4;
018 TX_THREAD thread_5;
019 TX_THREAD thread_6;
020 TX_THREAD thread_7;
021 TX_QUEUE queue_0;
022 TX_SEMAPHORE semaphore_0;
023 TX_MUTEX mutex_0;
024 TX_EVENT_FLAGS_GROUP event_flags_0;
025 TX_BYTE_POOL byte_pool_0;
026 TX_BLOCK_POOL block_pool_0;
027
028 /* Define the counters used in the demo application... */
029
030 ULONG thread_0_counter;
031 ULONG thread_1_counter;
032 ULONG thread_1_messages_sent;
033 ULONG thread_2_counter;
034 ULONG thread_2_messages_received;
035 ULONG thread_3_counter;
036 ULONG thread_4_counter;
037 ULONG thread_5_counter;
038 ULONG thread_6_counter;
039 ULONG thread_7_counter;
040
041 /* Define thread prototypes. */
042
043 void thread_0_entry(ULONG thread_input);
044 void thread_1_entry(ULONG thread_input);
045 void thread_2_entry(ULONG thread_input);
046 void thread_3_and_4_entry(ULONG thread_input);
047 void thread_5_entry(ULONG thread_input);
048 void thread_6_and_7_entry(ULONG thread_input);
049
050
051 /* Define main entry point. */
052
053 int main()
054 {
055
056 /* Enter the ThreadX kernel. */
057 tx_kernel_enter();
058 }
059
060 /* Define what the initial system looks like. */
061 void tx_application_define(void *first_unused_memory)
062 {
063
064 CHAR *pointer;
065
066 /* Create a byte memory pool from which to allocate the thread stacks. */
067 tx_byte_pool_create(&byte_pool_0, "byte pool 0", first_unused_memory,
068 DEMO_BYTE_POOL_SIZE);
069
070 /* Put system definition stuff in here, e.g., thread creates and other assorted
071 create information. */
User Guide

Distribution file: demo_threadx.c 313
072
073 /* Allocate the stack for thread 0. */
074 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
075
076 /* Create the main thread. */
077 tx_thread_create(&thread_0, "thread 0", thread_0_entry, 0,
078 pointer, DEMO_STACK_SIZE,
079 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START);
080
081 /* Allocate the stack for thread 1. */
082 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
083
084 /* Create threads 1 and 2. These threads pass information through a ThreadX
085 message queue. It is also interesting to note that these threads have a time
086 slice. */
087 tx_thread_create(&thread_1, "thread 1", thread_1_entry, 1,
088 pointer, DEMO_STACK_SIZE,
089 16, 16, 4, TX_AUTO_START);
090
091 /* Allocate the stack for thread 2. */
092 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
093 tx_thread_create(&thread_2, "thread 2", thread_2_entry, 2,
094 pointer, DEMO_STACK_SIZE,
095 16, 16, 4, TX_AUTO_START);
096
097 /* Allocate the stack for thread 3. */
098 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
099
100 /* Create threads 3 and 4. These threads compete for a ThreadX counting semaphore.
101 An interesting thing here is that both threads share the same instruction area. */
102 tx_thread_create(&thread_3, "thread 3", thread_3_and_4_entry, 3,
103 pointer, DEMO_STACK_SIZE,
104 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
105
106 /* Allocate the stack for thread 4. */
107 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
108
109 tx_thread_create(&thread_4, "thread 4", thread_3_and_4_entry, 4,
110 pointer, DEMO_STACK_SIZE,
111 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
112
113 /* Allocate the stack for thread 5. */
114 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
115
116 /* Create thread 5. This thread simply pends on an event flag, which will be set
117 by thread_0. */
118 tx_thread_create(&thread_5, "thread 5", thread_5_entry, 5,
119 pointer, DEMO_STACK_SIZE,
120 4, 4, TX_NO_TIME_SLICE, TX_AUTO_START);
121
122 /* Allocate the stack for thread 6. */
123 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
124
125 /* Create threads 6 and 7. These threads compete for a ThreadX mutex. */
126 tx_thread_create(&thread_6, "thread 6", thread_6_and_7_entry, 6,
127 pointer, DEMO_STACK_SIZE,
128 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
129
130 /* Allocate the stack for thread 7. */
131 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_STACK_SIZE, TX_NO_WAIT);
132
133 tx_thread_create(&thread_7, "thread 7", thread_6_and_7_entry, 7,
134 pointer, DEMO_STACK_SIZE,
135 8, 8, TX_NO_TIME_SLICE, TX_AUTO_START);
136
137 /* Allocate the message queue. */
138 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_QUEUE_SIZE*sizeof(ULONG), TX_NO_WAIT);
139
140 /* Create the message queue shared by threads 1 and 2. */
141 tx_queue_create(&queue_0, "queue 0", TX_1_ULONG, pointer, DEMO_QUEUE_SIZE*sizeof(ULONG));
142
143 /* Create the semaphore used by threads 3 and 4. */
Express Logic

314 Demonstration System for ThreadX
144 tx_semaphore_create(&semaphore_0, "semaphore 0", 1);
145
146 /* Create the event flags group used by threads 1 and 5. */
147 tx_event_flags_create(&event_flags_0, "event flags 0");
148
149 /* Create the mutex used by thread 6 and 7 without priority inheritance. */
150 tx_mutex_create(&mutex_0, "mutex 0", TX_NO_INHERIT);
151
152 /* Allocate the memory for a small block pool. */
153 tx_byte_allocate(&byte_pool_0, &pointer, DEMO_BLOCK_POOL_SIZE, TX_NO_WAIT);
154
155 /* Create a block memory pool to allocate a message buffer from. */
156 tx_block_pool_create(&block_pool_0, "block pool 0", sizeof(ULONG), pointer,
157 DEMO_BLOCK_POOL_SIZE);
158
159 /* Allocate a block and release the block memory. */
160 tx_block_allocate(&block_pool_0, &pointer, TX_NO_WAIT);
161
162 /* Release the block back to the pool. */
163 tx_block_release(pointer);
164 }
165
166 /* Define the test threads. */
167 void thread_0_entry(ULONG thread_input)
168 {
169
170 UINT status;
171
172
173 /* This thread simply sits in while-forever-sleep loop. */
174 while(1)
175 {
176
177 /* Increment the thread counter. */
178 thread_0_counter++;
179
180 /* Sleep for 10 ticks. */
181 tx_thread_sleep(10);
182
183 /* Set event flag 0 to wakeup thread 5. */
184 status = tx_event_flags_set(&event_flags_0, 0x1, TX_OR);
185
186 /* Check status. */
187 if (status != TX_SUCCESS)
188 break;
189 }
190 }
191
192
193 void thread_1_entry(ULONG thread_input)
194 {
195
196 UINT status;
197
198
199 /* This thread simply sends messages to a queue shared by thread 2. */
200 while(1)
201 {
202
203 /* Increment the thread counter. */
204 thread_1_counter++;
205
206 /* Send message to queue 0. */
207 status = tx_queue_send(&queue_0, &thread_1_messages_sent, TX_WAIT_FOREVER);
208
209 /* Check completion status. */
210 if (status != TX_SUCCESS)
211 break;
212
213 /* Increment the message sent. */
214 thread_1_messages_sent++;
215 }
User Guide

Distribution file: demo_threadx.c 315
216 }
217
218
219 void thread_2_entry(ULONG thread_input)
220 {
221
222 ULONG received_message;
223 UINT status;
224
225 /* This thread retrieves messages placed on the queue by thread 1. */
226 while(1)
227 {
228
229 /* Increment the thread counter. */
230 thread_2_counter++;
231
232 /* Retrieve a message from the queue. */
233 status = tx_queue_receive(&queue_0, &received_message, TX_WAIT_FOREVER);
234
235 /* Check completion status and make sure the message is what we
236 expected. */
237 if ((status != TX_SUCCESS) || (received_message != thread_2_messages_received))
238 break;
239
240 /* Otherwise, all is okay. Increment the received message count. */
241 thread_2_messages_received++;
242 }
243 }
244
245
246 void thread_3_and_4_entry(ULONG thread_input)
247 {
248
249 UINT status;
250
251
252 /* This function is executed from thread 3 and thread 4. As the loop
253 below shows, these function compete for ownership of semaphore_0. */
254 while(1)
255 {
256
257 /* Increment the thread counter. */
258 if (thread_input == 3)
259 thread_3_counter++;
260 else
261 thread_4_counter++;
262
263 /* Get the semaphore with suspension. */
264 status = tx_semaphore_get(&semaphore_0, TX_WAIT_FOREVER);
265
266 /* Check status. */
267 if (status != TX_SUCCESS)
268 break;
269
270 /* Sleep for 2 ticks to hold the semaphore. */
271 tx_thread_sleep(2);
272
273 /* Release the semaphore. */
274 status = tx_semaphore_put(&semaphore_0);
275
276 /* Check status. */
277 if (status != TX_SUCCESS)
278 break;
279 }
280 }
281
282
283 void thread_5_entry(ULONG thread_input)
284 {
285
286 UINT status;
287 ULONG actual_flags;
Express Logic

316 Demonstration System for ThreadX
288
289
290 /* This thread simply waits for an event in a forever loop. */
291 while(1)
292 {
293
294 /* Increment the thread counter. */
295 thread_5_counter++;
296
297 /* Wait for event flag 0. */
298 status = tx_event_flags_get(&event_flags_0, 0x1, TX_OR_CLEAR,
299 &actual_flags, TX_WAIT_FOREVER);
300
301 /* Check status. */
302 if ((status != TX_SUCCESS) || (actual_flags != 0x1))
303 break;
304 }
305 }
306
307 void thread_6_and_7_entry(ULONG thread_input)
308 {
309
310 UINT status;
311
312
313 /* This function is executed from thread 6 and thread 7. As the loop
314 below shows, these function compete for ownership of mutex_0. */
315 while(1)
316 {
317
318 /* Increment the thread counter. */
319 if (thread_input == 6)
320 thread_6_counter++;
321 else
322 thread_7_counter++;
323
324 /* Get the mutex with suspension. */
325 status = tx_mutex_get(&mutex_0, TX_WAIT_FOREVER);
326
327 /* Check status. */
328 if (status != TX_SUCCESS)
329 break;
330
331 /* Get the mutex again with suspension. This shows
332 that an owning thread may retrieve the mutex it
333 owns multiple times. */
334 status = tx_mutex_get(&mutex_0, TX_WAIT_FOREVER);
335
336 /* Check status. */
337 if (status != TX_SUCCESS)
338 break;
339
340 /* Sleep for 2 ticks to hold the mutex. */
341 tx_thread_sleep(2);
342
343 /* Release the mutex. */
344 status = tx_mutex_put(&mutex_0);
345
346 /* Check status. */
347 if (status != TX_SUCCESS)
348 break;
349
350 /* Release the mutex again. This will actually
351 release ownership since it was obtained twice. */
352 status = tx_mutex_put(&mutex_0);
353
354 /* Check status. */
355 if (status != TX_SUCCESS)
356 break;
357 }
358 }
User Guide

A P P E N D I X A
ThreadX API Services

1 Entry Function 318

1 Block Memory Services 318

1 Byte Memory Services 318

1 Event Flags Services 319

1 Interrupt Control 319

1 Mutex Services 319

1 Queue Services 320

1 Semaphore Services 320

1 Thread Control Services 321

1 Time Services 322

1 Timer Services 322
User Guide

318 ThreadX API Services
Entry
Function

VOID tx_kernel_enter(VOID);

Block
Memory
Services

UINT tx_block_allocate(TX_BLOCK_POOL *pool_ptr,
VOID **block_ptr, ULONG wait_option);

UINT tx_block_pool_create(TX_BLOCK_POOL *pool_ptr,
CHAR *name_ptr, ULONG block_size,
VOID *pool_start, ULONG pool_size);

UINT tx_block_pool_delete(TX_BLOCK_POOL *pool_ptr);

UINT tx_block_pool_info_get(TX_BLOCK_POOL *pool_ptr,
CHAR **name,
ULONG *available_blocks, ULONG *total_blocks,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BLOCK_POOL **next_pool);

UINT tx_block_pool_performance_info_get(TX_BLOCK_POOL *pool_ptr,
ULONG *allocates, ULONG *releases, ULONG *suspensions,
ULONG *timeouts);

UINT tx_block_pool_performance_system_info_get(ULONG *allocates,
ULONG *releases, ULONG *suspensions, ULONG *timeouts);

UINT tx_block_pool_prioritize(TX_BLOCK_POOL *pool_ptr);

UINT tx_block_release(VOID *block_ptr);

Byte
Memory
Services

UINT tx_byte_allocate(TX_BYTE_POOL *pool_ptr,
VOID **memory_ptr,
ULONG memory_size, ULONG wait_option);

UINT tx_byte_pool_create(TX_BYTE_POOL *pool_ptr,
CHAR *name_ptr,
VOID *pool_start, ULONG pool_size);

UINT tx_byte_pool_delete(TX_BYTE_POOL *pool_ptr);

UINT tx_byte_pool_info_get(TX_BYTE_POOL *pool_ptr,
CHAR **name, ULONG *available_bytes,
ULONG *fragments, TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_BYTE_POOL **next_pool);

UINT tx_byte_pool_performance_info_get(TX_BYTE_POOL *pool_ptr,
ULONG *allocates,
ULONG *releases, ULONG *fragments_searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);

UINT tx_byte_pool_performance_system_info_get(ULONG *allocates,
ULONG *releases, ULONG *fragments_searched, ULONG *merges,
ULONG *splits, ULONG *suspensions, ULONG *timeouts);

UINT tx_byte_pool_prioritize(TX_BYTE_POOL *pool_ptr);

UINT tx_byte_release(VOID *memory_ptr);
User Guide

ThreadX API Services 319
Event
Flags
Services

UINT tx_event_flags_create(TX_EVENT_FLAGS_GROUP *group_ptr,
CHAR *name_ptr);

UINT tx_event_flags_delete(TX_EVENT_FLAGS_GROUP *group_ptr);

UINT tx_event_flags_get(TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG requested_flags, UINT get_option,
ULONG *actual_flags_ptr, ULONG wait_option);

UINT tx_event_flags_info_get(TX_EVENT_FLAGS_GROUP *group_ptr,
CHAR **name, ULONG *current_flags,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_EVENT_FLAGS_GROUP **next_group);

UINT tx_event_flags_performance_info_get(TX_EVENT_FLAGS_GROUP
*group_ptr, ULONG *sets, ULONG *gets, ULONG *suspensions,
ULONG *timeouts);

UINT tx_event_flags_performance_system_info_get(ULONG *sets,
ULONG *gets,
ULONG *suspensions, ULONG *timeouts);

UINT tx_event_flags_set(TX_EVENT_FLAGS_GROUP *group_ptr,
ULONG flags_to_set, UINT set_option);

UINT tx_event_flags_set_notify(TX_EVENT_FLAGS_GROUP *group_ptr,
VOID (*events_set_notify)(TX_EVENT_FLAGS_GROUP *));

Interrupt
Control

UINT tx_interrupt_control(UINT new_posture);

Mutex
Services

UINT tx_mutex_create(TX_MUTEX *mutex_ptr, CHAR *name_ptr,
UINT inherit);

UINT tx_mutex_delete(TX_MUTEX *mutex_ptr);

UINT tx_mutex_get(TX_MUTEX *mutex_ptr, ULONG wait_option);

UINT tx_mutex_info_get(TX_MUTEX *mutex_ptr, CHAR **name,
ULONG *count, TX_THREAD **owner,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_MUTEX **next_mutex);

UINT tx_mutex_performance_info_get(TX_MUTEX *mutex_ptr, ULONG
*puts, ULONG *gets, ULONG *suspensions, ULONG *timeouts,
ULONG *inversions, ULONG *inheritances);

UINT tx_mutex_performance_system_info_get(ULONG *puts, ULONG
*gets,
ULONG *suspensions, ULONG *timeouts, ULONG *inversions,
ULONG *inheritances);

UINT tx_mutex_prioritize(TX_MUTEX *mutex_ptr);

UINT tx_mutex_put(TX_MUTEX *mutex_ptr);
Express Logic

320 ThreadX API Services
Queue
Services

UINT tx_queue_create(TX_QUEUE *queue_ptr, CHAR *name_ptr,
UINT message_size, VOID *queue_start,
ULONG queue_size);

UINT tx_queue_delete(TX_QUEUE *queue_ptr);

UINT tx_queue_flush(TX_QUEUE *queue_ptr);

UINT tx_queue_front_send(TX_QUEUE *queue_ptr, VOID *source_ptr,
ULONG wait_option);

UINT tx_queue_info_get(TX_QUEUE *queue_ptr, CHAR **name,
ULONG *enqueued, ULONG *available_storage,
TX_THREAD **first_suspended,
ULONG *suspended_count, TX_QUEUE **next_queue);

UINT tx_queue_performance_info_get(TX_QUEUE *queue_ptr,
ULONG *messages_sent, ULONG *messages_received,
ULONG *empty_suspensions, ULONG *full_suspensions,
ULONG *full_errors, ULONG *timeouts);

UINT tx_queue_performance_system_info_get(ULONG *messages_sent,
ULONG *messages_received, ULONG *empty_suspensions,
ULONG *full_suspensions, ULONG *full_errors,
ULONG *timeouts);

UINT tx_queue_prioritize(TX_QUEUE *queue_ptr);

UINT tx_queue_receive(TX_QUEUE *queue_ptr,
VOID *destination_ptr, ULONG wait_option);

UINT tx_queue_send(TX_QUEUE *queue_ptr, VOID *source_ptr,
ULONG wait_option);

UINT tx_queue_send_notify(TX_QUEUE *queue_ptr, VOID
(*queue_send_notify)(TX_QUEUE *));

Semaphore
Services

UINT tx_semaphore_ceiling_put(TX_SEMAPHORE *semaphore_ptr,
ULONG ceiling);

UINT tx_semaphore_create(TX_SEMAPHORE *semaphore_ptr,
CHAR *name_ptr, ULONG initial_count);

UINT tx_semaphore_delete(TX_SEMAPHORE *semaphore_ptr);

UINT tx_semaphore_get(TX_SEMAPHORE *semaphore_ptr,
ULONG wait_option);

UINT tx_semaphore_info_get(TX_SEMAPHORE *semaphore_ptr, CHAR **name,
ULONG *current_value,
TX_THREAD **first_suspended,
ULONG *suspended_count,
TX_SEMAPHORE **next_semaphore);

UINT tx_semaphore_performance_info_get(TX_SEMAPHORE *semaphore_ptr,
ULONG *puts, ULONG *gets, ULONG *suspensions,
ULONG *timeouts);

UINT tx_semaphore_performance_system_info_get(ULONG *puts,
ULONG *gets, ULONG *suspensions, ULONG *timeouts);

UINT tx_semaphore_prioritize(TX_SEMAPHORE *semaphore_ptr);
User Guide

ThreadX API Services 321
UINT tx_semaphore_put(TX_SEMAPHORE *semaphore_ptr);

UINT tx_semaphore_put_notify(TX_SEMAPHORE *semaphore_ptr,
VOID (*semaphore_put_notify)(TX_SEMAPHORE *));

Thread
Control
Services

UINT tx_thread_create(TX_THREAD *thread_ptr,
CHAR *name_ptr,
VOID (*entry_function)(ULONG), ULONG entry_input,
VOID *stack_start, ULONG stack_size,
UINT priority, UINT preempt_threshold,
ULONG time_slice, UINT auto_start);

UINT tx_thread_delete(TX_THREAD *thread_ptr);

UINT tx_thread_entry_exit_notify(TX_THREAD *thread_ptr,
VOID (*thread_entry_exit_notify)(TX_THREAD *, UINT));

TX_THREAD *tx_thread_identify(VOID);

UINT tx_thread_info_get(TX_THREAD *thread_ptr, CHAR **name,
UINT *state, ULONG *run_count, UINT *priority,
UINT *preemption_threshold, ULONG *time_slice,
TX_THREAD **next_thread,
TX_THREAD **next_suspended_thread);

UINT tx_thread_performance_info_get(TX_THREAD *thread_ptr,
ULONG *resumptions, ULONG *suspensions,
ULONG *solicited_preemptions,
ULONG *interrupt_preemptions,
ULONG *priority_inversions,ULONG *time_slices, ULONG
*relinquishes, ULONG *timeouts,
ULONG *wait_aborts, TX_THREAD **last_preempted_by);

UINT tx_thread_performance_system_info_get(ULONG *resumptions,
ULONG *suspensions,
ULONG *solicited_preemptions,
ULONG *interrupt_preemptions,
ULONG *priority_inversions,ULONG *time_slices, ULONG
*relinquishes, ULONG *timeouts,
ULONG *wait_aborts, ULONG *non_idle_returns,
ULONG *idle_returns);

UINT tx_thread_preemption_change(TX_THREAD *thread_ptr,
UINT new_threshold, UINT *old_threshold);

UINT tx_thread_priority_change(TX_THREAD *thread_ptr,
UINT new_priority, UINT *old_priority);

VOID tx_thread_relinquish(VOID);

UINT tx_thread_reset(TX_THREAD *thread_ptr);

UINT tx_thread_resume(TX_THREAD *thread_ptr);

UINT tx_thread_sleep(ULONG timer_ticks);

UINT tx_thread_stack_error_notify
VOID(*stack_error_handler)(TX_THREAD *));

UINT tx_thread_suspend(TX_THREAD *thread_ptr);
Express Logic

322 ThreadX API Services
UINT tx_thread_terminate(TX_THREAD *thread_ptr);

UINT tx_thread_time_slice_change(TX_THREAD *thread_ptr,
ULONG new_time_slice, ULONG *old_time_slice);

UINT tx_thread_wait_abort(TX_THREAD *thread_ptr);

Time Services ULONG tx_time_get(VOID);
VOID tx_time_set(ULONG new_time);

Timer Services UINT tx_timer_activate(TX_TIMER *timer_ptr);

UINT tx_timer_change(TX_TIMER *timer_ptr,
ULONG initial_ticks,
ULONG reschedule_ticks);

UINT tx_timer_create(TX_TIMER *timer_ptr,
CHAR *name_ptr,
VOID (*expiration_function)(ULONG),
ULONG expiration_input, ULONG initial_ticks,
ULONG reschedule_ticks, UINT auto_activate);

UINT tx_timer_deactivate(TX_TIMER *timer_ptr);

UINT tx_timer_delete(TX_TIMER *timer_ptr);

UINT tx_timer_info_get(TX_TIMER *timer_ptr, CHAR **name,
UINT *active, ULONG *remaining_ticks,
ULONG *reschedule_ticks,
TX_TIMER **next_timer);

UINT tx_timer_performance_info_get(TX_TIMER *timer_ptr,
ULONG *activates,
ULONG *reactivates, ULONG *deactivates,
ULONG *expirations,
ULONG *expiration_adjusts);

UINT tx_timer_performance_system_info_get
ULONG *activates, ULONG *reactivates,
ULONG *deactivates, ULONG *expirations,
ULONG *expiration_adjusts);
User Guide

User Guide

A P P E N D I X B

ThreadX Constants

1 Alphabetic Listings 324

1 Listing by Value 326

324 ThreadX User Guide
Alphabetic
Listings

TX_1_ULONG 1

TX_2_ULONG 2

TX_4_ULONG 4

TX_8_ULONG 8

TX_16_ULONG 16

TX_ACTIVATE_ERROR 0x17

TX_AND 2

TX_AND_CLEAR 3

TX_AUTO_ACTIVATE 1

TX_AUTO_START 1

TX_BLOCK_MEMORY 8

TX_BYTE_MEMORY 9

TX_CALLER_ERROR 0x13

TX_CEILING_EXCEEDED 0x21

TX_COMPLETED 1

TX_DELETE_ERROR 0x11

TX_DELETED 0x01

TX_DONT_START 0

TX_EVENT_FLAG 7

TX_FALSE 0

TX_FEATURE_NOT_ENABLED 0xFF

TX_FILE 11

TX_GROUP_ERROR 0x06

TX_INHERIT 1

TX_INHERIT_ERROR 0x1F

TX_INVALID_CEILING 0x22

TX_IO_DRIVER 10

TX_LOOP_FOREVER 1

TX_MUTEX_ERROR 0x1C

TX_MUTEX_SUSP 13

TX_NO_ACTIVATE 0
User Guide

ThreadX Constants 325
TX_NO_EVENTS 0x07

TX_NO_INHERIT 0

TX_NO_INSTANCE 0x0D

TX_NO_MEMORY 0x10

TX_NO_TIME_SLICE 0

TX_NO_WAIT 0

TX_NOT_AVAILABLE 0x1D

TX_NOT_DONE 0x20

TX_NOT_OWNED 0x1E

TX_NULL 0

TX_OPTION_ERROR 0x08

TX_OR 0

TX_OR_CLEAR 1

TX_POOL_ERROR 0x02

TX_PRIORITY_ERROR 0x0F

TX_PTR_ERROR 0x03

TX_QUEUE_EMPTY 0x0A

TX_QUEUE_ERROR 0x09

TX_QUEUE_FULL 0x0B

TX_QUEUE_SUSP 5

TX_READY 0

TX_RESUME_ERROR 0x12

TX_SEMAPHORE_ERROR 0x0C

TX_SEMAPHORE_SUSP 6

TX_SIZE_ERROR 0x05

TX_SLEEP 4

TX_STACK_FILL 0xEFEFEFEFUL

TX_START_ERROR 0x10

TX_SUCCESS 0x00

TX_SUSPEND_ERROR 0x14

TX_SUSPEND_LIFTED 0x19
Express Logic

326 ThreadX User Guide
TX_SUSPENDED 3

TX_TCP_IP 12

TX_TERMINATED 2

TX_THREAD_ENTRY 0

TX_THREAD_ERROR 0x0E

TX_THREAD_EXIT 1

TX_THRESH_ERROR 0x18

TX_TICK_ERROR 0x16

TX_TIMER_ERROR 0x15

TX_TRUE 1

TX_WAIT_ABORT_ERROR 0x1B

TX_WAIT_ABORTED 0x1A

TX_WAIT_ERROR 0x04

TX_WAIT_FOREVER 0xFFFFFFFFUL

Listing by Value TX_DONT_START 0

TX_FALSE 0

TX_NO_ACTIVATE 0

TX_NO_INHERIT 0

TX_NO_TIME_SLICE 0

TX_NO_WAIT 0

TX_NULL 0

TX_OR 0

TX_READY 0

TX_SUCCESS 0x00

TX_THREAD_ENTRY 0

TX_1_ULONG 1

TX_AUTO_ACTIVATE 1

TX_AUTO_START 1

TX_COMPLETED 1

TX_INHERIT 1
User Guide

ThreadX Constants 327
TX_LOOP_FOREVER 1

TX_DELETED 0x01

TX_OR_CLEAR 1

TX_THREAD_EXIT 1

TX_TRUE 1

TX_2_ULONG 2

TX_AND 2

TX_POOL_ERROR 0x02

TX_TERMINATED 2

TX_AND_CLEAR 3

TX_PTR_ERROR 0x03

TX_SUSPENDED 3

TX_4_ULONG 4

TX_SLEEP 4

TX_WAIT_ERROR 0x04

TX_QUEUE_SUSP 5

TX_SIZE_ERROR 0x05

TX_GROUP_ERROR 0x06

TX_SEMAPHORE_SUSP 6

TX_EVENT_FLAG 7

TX_NO_EVENTS 0x07

TX_8_ULONG 8

TX_BLOCK_MEMORY 8

TX_OPTION_ERROR 0x08

TX_BYTE_MEMORY 9

TX_QUEUE_ERROR 0x09

TX_IO_DRIVER 10

TX_QUEUE_EMPTY 0x0A

TX_FILE 11

TX_QUEUE_FULL 0x0B

TX_TCP_IP 12
Express Logic

328 ThreadX User Guide
TX_SEMAPHORE_ERROR 0x0C

TX_MUTEX_SUSP 13

TX_NO_INSTANCE 0x0D

TX_THREAD_ERROR 0x0E

TX_PRIORITY_ERROR 0x0F

TX_16_ULONG 16

TX_NO_MEMORY 0x10

TX_START_ERROR 0x10

TX_DELETE_ERROR 0x11

TX_RESUME_ERROR 0x12

TX_CALLER_ERROR 0x13

TX_SUSPEND_ERROR 0x14

TX_TIMER_ERROR 0x15

TX_TICK_ERROR 0x16

TX_ACTIVATE_ERROR 0x17

TX_THRESH_ERROR 0x18

TX_SUSPEND_LIFTED 0x19

TX_WAIT_ABORTED 0x1A

TX_WAIT_ABORT_ERROR 0x1B

TX_MUTEX_ERROR 0x1C

TX_NOT_AVAILABLE 0x1D

TX_NOT_OWNED 0x1E

TX_INHERIT_ERROR 0x1F

TX_NOT_DONE 0x20

TX_CEILING_EXCEEDED 0x21

TX_INVALID_CEILING 0x22

TX_FEATURE_NOT_ENABLED 0xFF

TX_STACK_FILL 0xEFEFEFEFUL

TX_WAIT_FOREVER 0xFFFFFFFFUL
User Guide

User Guide

A P P E N D I X C

ThreadX Data Types

1 TX_BLOCK_POOL 330

1 TX_BYTE_POOL 330

1 TX_EVENT_FLAGS_GROUP 331

1 TX_MUTEX 331

1 TX_QUEUE 332

1 TX_SEMAPHORE 333

1 TX_THREAD 333

1 TX_TIMER 335

1 TX_TIMER_INTERNAL 336

330 ThreadX Data Types
TX_BLOCK_POOL
typedef struct TX_BLOCK_POOL_STRUCT
{

ULONG tx_block_pool_id;
CHAR *tx_block_pool_name;
ULONG tx_block_pool_available;
ULONG tx_block_pool_total;
UCHAR *tx_block_pool_available_list;
UCHAR *tx_block_pool_start;
ULONG tx_block_pool_size;
ULONG tx_block_pool_block_size;
struct TX_THREAD_STRUCT

*tx_block_pool_suspension_list;
ULONG tx_block_pool_suspended_count;
struct TX_BLOCK_POOL_STRUCT

*tx_block_pool_created_next,
*tx_block_pool_created_previous;

#ifdef TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO
ULONG tx_block_pool_performance_allocate_count;
ULONG tx_block_pool_performance_release_count;
ULONG tx_block_pool_performance_suspension_count;
ULONG tx_block_pool_performance_timeout_count;

#endif

TX_BLOCK_POOL_EXTENSION /* Port defined */

} TX_BLOCK_POOL;

TX_BYTE_POOL
typedef struct TX_BYTE_POOL_STRUCT
{

ULONG tx_byte_pool_id;
CHAR *tx_byte_pool_name;
ULONG tx_byte_pool_available;
ULONG tx_byte_pool_fragments;
UCHAR *tx_byte_pool_list;
UCHAR *tx_byte_pool_search;
UCHAR *tx_byte_pool_start;
ULONG tx_byte_pool_size;
struct TX_THREAD_STRUCT

*tx_byte_pool_owner;
struct TX_THREAD_STRUCT

*tx_byte_pool_suspension_list;
ULONG tx_byte_pool_suspended_count;
struct TX_BYTE_POOL_STRUCT

*tx_byte_pool_created_next,
*tx_byte_pool_created_previous;

#ifdef TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO
User Guide

TX_EVENT_FLAGS_GROUP 331
ULONG tx_byte_pool_performance_allocate_count;
ULONG tx_byte_pool_performance_release_count;
ULONG tx_byte_pool_performance_merge_count;
ULONG tx_byte_pool_performance_split_count;
ULONG tx_byte_pool_performance_search_count;
ULONG tx_byte_pool_performance_suspension_count;
ULONG tx_byte_pool_performance_timeout_count;

#endif

TX_BYTE_POOL_EXTENSION /* Port defined */

} TX_BYTE_POOL;

TX_EVENT_FLAGS_GROUP
typedef struct TX_EVENT_FLAGS_GROUP_STRUCT
{

ULONG tx_event_flags_group_id;
CHAR *tx_event_flags_group_name;
ULONG tx_event_flags_group_current;
UINT tx_event_flags_group_reset_search;
struct TX_THREAD_STRUCT

*tx_event_flags_group_suspension_list;
ULONG tx_event_flags_group_suspended_count;
struct TX_EVENT_FLAGS_GROUP_STRUCT

*tx_event_flags_group_created_next,
*tx_event_flags_group_created_previous;

ULONG tx_event_flags_group_delayed_clear;

#ifdef TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO
ULONG tx_event_flags_group_performance_set_count;
ULONG tx_event_flags_group__performance_get_count;
ULONG tx_event_flags_group___performance_suspension_count;
ULONG tx_event_flags_group____performance_timeout_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS

VOID (*tx_event_flags_group_set_notify)(struct TX_EVENT_FLAGS_GROUP_STRUCT
*);
#endif

TX_EVENT_FLAGS_GROUP_EXTENSION /* Port defined */
} TX_EVENT_FLAGS_GROUP;

TX_MUTEX
typedef struct TX_MUTEX_STRUCT
{

ULONG tx_mutex_id;
CHAR *tx_mutex_name;
ULONG tx_mutex_ownership_count;
Express Logic

332 ThreadX Data Types
TX_THREAD *tx_mutex_owner;
UINT tx_mutex_inherit;
UINT tx_mutex_original_priority;
struct TX_THREAD_STRUCT

*tx_mutex_suspension_list;
ULONG tx_mutex_suspended_count;
struct TX_MUTEX_STRUCT

*tx_mutex_created_next,
*tx_mutex_created_previous;

ULONG tx_mutex_highest_priority_waiting;
struct TX_MUTEX_STRUCT

*tx_mutex_owned_next,
*tx_mutex_owned_previous;

#ifdef TX_MUTEX_ENABLE_PERFORMANCE_INFO
ULONG tx_mutex_performance_put_count;
ULONG tx_mutex_performance_get_count;
ULONG tx_mutex_performance_suspension_count;
ULONG tx_mutex_performance_timeout_count;
ULONG tx_mutex_performance_priority_inversion_count;
ULONG tx_mutex_performance__priority_inheritance_count;

#endif

TX_MUTEX_EXTENSION /* Port defined */

} TX_MUTEX;

TX_QUEUE
typedef struct TX_QUEUE_STRUCT
{

ULONG tx_queue_id;
CHAR *tx_queue_name;
UINT tx_queue_message_size;
ULONG tx_queue_capacity;
ULONG tx_queue_enqueued;
ULONG tx_queue_available_storage;
ULONG *tx_queue_start;
ULONG *tx_queue_end;
ULONG *tx_queue_read;
ULONG *tx_queue_write;
struct TX_THREAD_STRUCT

*tx_queue_suspension_list;
ULONG tx_queue_suspended_count;

 struct TX_QUEUE_STRUCT
*tx_queue_created_next,
*tx_queue_created_previous;

#ifdef TX_QUEUE_ENABLE_PERFORMANCE_INFO
ULONG tx_queue_performance_messages_sent_count;
ULONG tx_queue_performance_messages_received_count;
User Guide

TX_SEMAPHORE 333
ULONG tx_queue_performance_empty_suspension_count;
ULONG tx_queue_performance_full_suspension_count;
ULONG tx_queue_performance_full_error_count;
ULONG tx_queue_performance_timeout_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS
VOID *tx_queue_send_notify)(struct TX_QUEUE_STRUCT *);

#endif

TX_QUEUE_EXTENSION /* Port defined */

} TX_QUEUE;

TX_SEMAPHORE
typedef struct TX_SEMAPHORE_STRUCT
{

ULONG tx_semaphore_id;
CHAR *tx_semaphore_name;
ULONG tx_semaphore_count;
struct TX_THREAD_STRUCT

*tx_semaphore_suspension_list;
ULONG tx_semaphore_suspended_count;
struct TX_SEMAPHORE_STRUCT

*tx_semaphore_created_next,
*tx_semaphore_created_previous;

#ifdef TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO
ULONG tx_semaphore_performance_put_count;
ULONG tx_semaphore_performance_get_count;
ULONG tx_semaphore_performance_suspension_count;
ULONG tx_semaphore_performance_timeout_count;

#endif

#ifndef TX_DISABLE_NOTIFY_CALLBACKS
VOID (*tx_semaphore_put_notify)(struct TX_SEMAPHORE_STRUCT *);

#endif

TX_SEMAPHORE_EXTENSION /* Port defined */

} TX_SEMAPHORE;

TX_THREAD
typedef struct TX_THREAD_STRUCT
{

ULONG tx_thread_id;
ULONG tx_thread_run_count;
VOID *tx_thread_stack_ptr;
VOID *tx_thread_stack_start;
VOID *tx_thread_stack_end;
Express Logic

334 ThreadX Data Types
ULONG tx_thread_stack_size;
ULONG tx_thread_time_slice;
ULONG tx_thread_new_time_slice;
struct TX_THREAD_STRUCT

*tx_thread_ready_next,
*tx_thread_ready_previous;

TX_THREAD_EXTENSION_0 /* Port defined */

CHAR *tx_thread_name;
UINT tx_thread_priority;
UINT tx_thread_state;
UINT tx_thread_delayed_suspend;
UINT tx_thread_suspending;
UINT tx_thread_preempt_threshold;
VOID (*tx_thread_schedule_hook)(struct TX_THREAD_STRUCT *, ULONG);
VOID (*tx_thread_entry)(ULONG);
ULONG tx_thread_entry_parameter;
TX_TIMER_INTERNAL tx_thread_timer;
VOID (*tx_thread_suspend_cleanup)(struct TX_THREAD_STRUCT *);
VOID *tx_thread_suspend_control_block;
struct TX_THREAD_STRUCT

*tx_thread_suspended_next,
*tx_thread_suspended_previous;

ULONG tx_thread_suspend_info;
VOID *tx_thread_additional_suspend_info;
UINT tx_thread_suspend_option;
UINT tx_thread_suspend_status;

TX_THREAD_EXTENSION_1 /* Port defined */

struct TX_THREAD_STRUCT
*tx_thread_created_next,
*tx_thread_created_previous;

TX_THREAD_EXTENSION_2 /* Port defined */

VOID *tx_thread_filex_ptr;

UINT tx_thread_user_priority;
UINT tx_thread_user_preempt_threshold;
UINT tx_thread_inherit_priority;
ULONG tx_thread_owned_mutex_count;
struct TX_MUTEX_STRUCT*tx_thread_owned_mutex_list;

#ifdef TX_THREAD_ENABLE_PERFORMANCE_INFO
ULONG tx_thread_performance_resume_count;
ULONG tx_thread_performance_suspend_count;
ULONG tx_thread_performance_solicited_preemption_count;
ULONG tx_thread_performance_interrupt_preemption_count;
User Guide

TX_TIMER 335
ULONG tx_thread_performance_priority_inversion_count;
struct TX_THREAD_STRUCT

*tx_thread_performance_last_preempting_thread;
ULONG tx_thread_performance_time_slice_count;
ULONG tx_thread_performance_relinquish_count;
ULONG tx_thread_performance_timeout_count;
ULONG tx_thread_performance_wait_abort_count;

#endif
VOID *tx_thread_stack_highest_ptr;

#ifndef TX_DISABLE_NOTIFY_CALLBACKS
VOID (*tx_thread_entry_exit_notify)

(struct TX_THREAD_STRUCT *, UINT);
#endif

TX_THREAD_EXTENSION_3 /* Port defined */
ULONG tx_thread_suspension_sequence;

TX_THREAD_USER_EXTENSION

} TX_THREAD;

TX_TIMER
typedef struct TX_TIMER_STRUCT
{

ULONG tx_timer_id;
CHAR *tx_timer_name;
TX_TIMER_INTERNAL tx_timer_internal;
struct TX_TIMER_STRUCT

*tx_timer_created_next,
*tx_timer_created_previous;

TX_TIMER_EXTENSION /* Port defined */

#ifdef TX_TIMER_ENABLE_PERFORMANCE_INFO
ULONG tx_timer_performance_activate_count;
ULONG tx_timer_performance_reactivate_count;
ULONG tx_timer_performance_deactivate_count;
ULONG tx_timer_performance_expiration_count;
ULONG tx_timer_performance__expiration_adjust_count;

#endif
Express Logic

336 ThreadX Data Types
} TX_TIMER;

TX_TIMER_INTERNAL
typedef struct TX_TIMER_INTERNAL_STRUCT
{

ULONG tx_timer_internal_remaining_ticks;
ULONG tx_timer_internal_re_initialize_ticks;
VOID (*tx_timer_internal_timeout_function)(ULONG);
ULONG tx_timer_internal_timeout_param;
struct TX_TIMER_INTERNAL_STRUCT
*tx_timer_internal_active_next,

*tx_timer_internal_active_previous;
struct TX_TIMER_INTERNAL_STRUCT

*tx_timer_internal_list_head;

TX_TIMER_INTERNAL_EXTENSION /* Port defined */

} TX_TIMER_INTERNAL;
User Guide

User Guide

A P P E N D I X D

ASCII Character Codes

1 ASCII Character Codes in HEX 338

338 ASCII Character Codes

User Guide

ASCII Character Codes in HEX

0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_

_0 NUL DLE SP 0 @ P ' p

_1 SOH DC1 ! 1 A Q a q

_2 STX DC2 " 2 B R b r

_3 ETX DC3 # 3 C S c s

_4 EOT DC4 $ 4 D T d t

_5 ENQ NAK % 5 E U e u

_6 ACK SYN & 6 F V f v

_7 BEL ETB ' 7 G W g w

_8 BS CAN (8 H X h x

_9 HT EM) 9 I Y i y

_A LF SUB * : J Z j z

_B VT ESC + ; K [K }

_C FF FS , < L \ l |

_D CR GS - = M] m }

_E SO RS . > N ^ n ~

_F SI US / ? O _ o DEL

most significant nibble

le
as

t
si

g
n

if
ic

a
n

t
n

ib
b

le

Index

Symbols

_application_ISR_entry 100

_tx_thread_context_restore 100, 293

_tx_thread_context_save 100, 293

_tx_thread_stack_error_handler 62

A

abort suspension of specified thread 266

accelerated development

benefit of ThreadX 24
activate an application timer 272

activations

number of 95
total number of 95

adding assign/release facilities in the

device driver 291

advanced driver issue 297

alleviating some buffer allocation

processing 303

allocate bytes of memory 126

allocate fixed-size block of memory 108

allocation algorithm 90

allocation of processing 21

allocation suspensions

high number of 88, 92
number of 88, 91
total number of 88, 91

allocation timeouts

number of 88, 91
total number of 88, 91

allocations

number of 91
total number of 91

ANSI C 16

application define 306

application definition function 50

application downloaded to target 28

application entry point 48

application linked 28

application located on host 28

application notification registration 70

application output request 299

application resources 73, 79

application run-time behavior 63

application specific modifications 17

application timer control block 95

application timers 29, 46, 93, 94

application-specific modifications 17

application-specific processing 54

architecture

non-layering picokernel 16
ASCII character codes in HEX 338

assembly language 16

asynchronous events 96

B

Background Debug Mode (BDM) 28

basic service call error checking

disable 35
basic thread suspension 53

BDM (Background Debug Mode) 28

binary semaphores 73, 78

black-box problem elimination 17

block memory services 318

block size 86
User GuideUser Guide

340 ThreadX User Guide
Block TX_MUTEX 81

Block TX_THREAD 57

blocks allocated

number of 88
total number of 88

blocks released

number of 88
total number of 88

buffer I/O management 300

buffered device drivers 301

buffered driver responsibilities 301

buffered I/O advantage 301

buffered output 292

buffering messages 69

byte memory area 297

byte memory services 318

C

C library 16

C main function 31

C pointers 86, 90

C source code 16

change an application timer 274

change priority of an application

thread 248

changes time-slice of application

thread 264

changing the baud rate of a serial

device 291

circular buffer input 297

circular buffers 297, 299

circular byte buffers 297

circular output buffer 299

clock tick 31

compiled application 28

compiler tool 46

completed state 52, 53

configuration options 33

fastest execution 34
smallest code size 34

constant 46

constant area 46

context of last execution 59

context switch overhead 64

context switches 22, 64, 65

context switching and polling 23

control-loop based applications 24

corrupt memory 62

counting semaphore

delete 208
get instance from 210
get performance information 214
get system performance

information 216
notify application when put 222
place instance in 220
place instance with ceiling 204
prioritize suspension list 218
retrieve information about 212

counting semaphores 72, 73, 76, 79, 293

create a memory pool of bytes 130

create a message queue 180

create an application thread 224

create an application timer 276

create an event flags group 144

create mutual exclusion mutex 164

create pool of fixed-size memory

blocks 112

creating application timers 94

creating counting semaphores 74

creating event flags groups 83

creating memory block pools 86

creating memory byte pools 89

creating message queues 68

creating mutexes 79
User Guide

Index 341
critical sections 73, 79

current device status 292

current thread point 309

currently executing thread 59

Customer Support Center 12

D

data buffering 296, 297

deactivate an application timer 278

deactivations

number of 95
total number of 95

deadlock 76, 81

deadlock condition 76

deadly embrace 76, 81

debugger 28

debugger communication 28

debugging multithreaded applications 66

debugging pitfalls 66

de-fragmentation

definition of 89
delete a message queue 182

delete an application timer 280

delete counting semaphore 208

delete memory block pool 114

delete mutual exclusion mutex 166

demo_threadx.c 30, 306, 311

demo.threadx.c 306

demonstration application 33

demonstration system 306

deterministic 85

deterministic real-time behavior 92

deterministic response times 22

development tool

compiler 46
linker 46

locator 46
development tool initialization 48, 49

development tools 46

device drivers 297

device error counts 292

device interrupt frequency 303

device interrupts 297, 303

disable ThreadX timer logic 38

disabling 0xEF value in byte of thread stack

defining 36
disabling basic service call error

checking 35

disabling notify callbacks for ThreadX

objects 35

disabling the preemption-threshold feature

defining 36
distribution file 311

demo.threadx.c 311
dividing the application 24

division of application into threads 24

DMA 297

does not minimize interrupt lockout time 38

driver access 290, 291

driver control 290, 291

driver example 292, 293

driver functions 290

driver initialization 290, 291

driver input 290, 291

driver input interface 303

driver interrupts 290, 292

driver output 290, 292

driver status 290, 292

driver termination 290, 292

dynamic memory 46, 48

dynamic memory usage 48
Express Logic

342 ThreadX User Guide
E

ease of use

ThreadX 24
elimination of internal system timer thread

defining 39
embedded applications 20

allocation of processor between
tasks 21

definition 20
definition of 20
multitasking 21

embraces avoided 77

empty messages in a message queue 184

EN 50128 19

enable and disable interrupts 162

enable the event gathering code for

creating a TraceX trace buffer 36

enabling performance gathering

information on mutexes 38

enabling performance information

gathering on block pools 35

enabling performance information

gathering on byte pools 35

enabling performance information

gathering on event flags groups 37

enabling performance information

gathering on queues 38

enabling performance information

gathering on timers 39

entry function 318

entry point 51

entry point of the thread 308

entry point of thread 308

event flag services 319

event flags 50, 53, 82

get event flags from group 148
get performance information 154

notify application when set 160
retrieve information about group 152
retrieve performance system

information 156
set flags in group 158

event flags get suspensions

number of 84
total number of 84

event flags get timeouts

number of 84
total number of 84

event flags gets

number of 84
total number of 84

event flags group

create 144
event flags group control block 85

event flags groups 31

event flags set notification 83

event flags sets

number of 84
total number of 84

event notification 73, 78

event_flags_0 310

event-chaining 70

advantages of 71, 75, 84
example of suspended threads 77

example system 31

excessive timers 96

exchanging a free buffer for an input

buffer 303

executing state 52, 53

execution

initialization 45
interrupt service routines (ISR) 44

execution context 60

execution overview 44

expiration adjustments
User Guide

Index 343
number of 95
total number of 95

expirations

number of 95
total number of 95

external events 64

F

fast memory 48

faster time to market

benefit of ThreadX 24
FIFO order 69, 74, 79, 87, 91

first_unused_memory 32

first-available RAM 50

first-fit memory allocation 89

first-in-first-out (FIFO) 55

fixed-size block of memory

allocation of 108
fixed-size blocks 86

fixed-size memory 85

fixed-size memory blocks

create pool of 112
fixed-sized messages 68

fragmentation 85

definition of 89
fragmented pool 90

fragments created

number of 91
total number of 91

fragments merged

number of 91
total number of 91

fragments searched

number of 91
total number of 91

function call nesting 60

function calls 59

G

gathering of performance information on

semaphores 39

get a message from message queue 196

get block pool performance

information 118

get block pool system performance

information 120

get byte pool performance information 136

get byte pool system performance

information 138

get event flags from event flags group 148

get event flags group performance

information 154

get instance from counting semaphore 210

get mutex performance information 172

get mutex system performance

information 174

get queue performance information 190

get queue system performance

information 192

get semaphore performance

information 214

get semaphore system performance

information 216

get thread performance information 238

get thread system performance

information 242

get timer performance information 284

get timer system performance

information 286

getting started 27

global data structures 28

global variables 47

globals 63
Express Logic

344 ThreadX User Guide
H

hardware devices 290

hardware interrupt 46

hardware interrupts 292

heterogeneous 54

hidden system thread 96

high throughput I/O 301

highest priority thread 308

high-frequency interrupts 100

host computers 28

host considerations 28

I

I/O buffer 300

I/O buffering 297

I/O drivers 290

ICE (In-Circuit Emulation) 28

idle system returns

low number of 66
number of 66

IEC 60335-1 19

IEC 60730 Annex H 19

IEC 61508 18

IEC 62304 18

IEC/UL 60730-1 19

IEEE 1149.1 28

improve the tx_thread_resume and

tx_thread_suspend API calls 37

improved responsiveness

ThreadX benefit 22
In-Circuit Emulation (ICE) 28

increased throughput 23

in-house kernels 17

initial condition of a mutex 79

initial execution 307

initialization 44, 45, 48

initialization process 48

initialized data 46, 47

input and output notifications 293

input buffer 297, 298

input buffer list 301

input byte requests 298

input bytes 292

input characters 297

input semaphore 294

input-output lists 302

installation

troubleshooting 33
installation of ThreadX 30

instruction 46

instruction area 46

instruction image of ThreadX 16

International Electrotechnical Commission

(IEC) 61508 and IEC 62304 18

International Electrotechnical Commission

(IEC) 62304 18

interrupt control 97, 319

enable and disable 162
interrupt frequency 303

interrupt latency 100

interrupt management 303

interrupt preemptions

number of 65, 66
interrupt service routines 44, 45

interrupt vector handlers 293

interrupting 56

interrupts 44, 50, 96

invalid pointer 63

ISO 26262 18

ISR

handling transmit complete interrupt 295
ISR template 99

ISRs 44
User Guide

Index 345
memory cannot be called from 89

J

JTAG 28

L

large local data 62

linker tool 46

linking multiple packets 300

Linux 28

Linux development platform 30

local storage 58

local variable allocation 60

local variables 59

locator tool 46

locking out interrupts 299

logic for circular input buffer 298

logic for circular output buffer 299

logical AND/OR operation 82

lower-priority threads

not suspending 66
low-level initialization 49

M

main 32, 49, 51

main function 49

malloc calls 89

memory 53

memory areas 46

memory block in cache 86

memory block pool 85

delete 114
get performance information about 118
get system performance for 120
prioritize suspension list 122
release fixed size block 124

retrieve information about 116
memory block pool control block 88

memory block pools 85

memory block size 86

memory byte pool 89, 92

allocate 126
create 130
get performance information 136
get system performance

information 138
prioritize suspension list 140
release bytes to pool 142

memory byte pool control block 92

memory pitfalls 62

memory pools 31, 48, 50

memory usage 46

merging of adjacent memory blocks 89

message destination pitfall 72

message queue 67

create 180
delete 182
empty messages from 184
get message from queue 196
get queue performance information 190
get system performance

information 192
notify application when message is sent

to queue 202
prioritize suspension list 194
retrieve information about 188
send message to front of queue 186
send message to queue 200

message queue capacity 68

message size 68

messages received

total number of 71
messages sent

total number of 71
microkernel vs. picokernel architecture 16
Express Logic

346 ThreadX User Guide
minimum stack size 60

defining 38
MISRA C Compliant 19

MISRA-C

2004 19
2012 19

misuse of thread priorities 63

multiple buffers 300

multiple synchronization events 70

multitasking 21

multithreaded 52

multithreaded environment 23

multithreading 63, 64, 67

mutex

create 164
delete 166
get information about 170
get ownership of 168
get performance information 172
get system performance

information 174
prioritize suspension list 176
release ownership of 178

mutex get suspensions

number of 80
total number of 80

mutex get timeouts

high number of 80
number of 80
total number of 80

mutex gets

number of 80
total number of 80

mutex mutual exclusion 79

mutex priority inheritances

number of 80
total number of 80

mutex priority inversions

number of 80

total number of 80
mutex puts

number of 80
total number of 80

mutex services 319

mutex_0 310

mutexes 31, 50, 53, 57, 64, 78, 79

mutual exclusion 73, 76, 78, 81

my_thread_entry 32

N

nondeterministic behavior 85, 92

nondeterministic priority inversion 82

non-idle system returns

number of 66
non-reentrant 63

notify application upon thread entry and

exit 230

notify application when event flags are

set 160

notify application when message is sent to

queue 202

notify application when semaphore is

put 222

number of threads 57

O

observing the demonstration 310

obtain ownership of mutex 168

OCD 28

OCD (on chip debug) 28

on-chip debug 28

one-shot timer 93

optimized driver ISRs 297

optimizing applications 71

order of thread execution 307
User Guide

Index 347
output buffer 299

output buffer list 301

output bytes 292

output semaphore 293

overhead 90

associated with multithreaded
kernels 23

reduction due to multithreading 23
overhead impact of multithreaded

environments 23

overview 306

ThreadX 16
overwriting memory blocks 89, 93

ownership count 79

P

packet I/O 297

performance of embedded

microprocessors 300

periodic interrupt 29

periodic timers 93

periodics 46

physical memory 48

picokernel 16

picokernel architecture 16

pitfall 78, 81

place an instance in counting

semaphore 220

place an instance in counting semaphore

with ceiling 204

polling

definition of 292
polling as work around to control loop

response time 23

pool capacity 86, 90

pool memory area 87, 90

portability of ThreadX 16, 25

preemption 55, 56

preemption-threshold 56, 57, 64, 65, 78

changing during run-time 57
too low 66

preemptive scheduling 22

priorities

thread control block field 59
prioritize block pool suspension list 122

prioritize byte pool suspension list 140

prioritize mutex suspension list 176

prioritize queue suspension list 194

prioritize semaphore suspension list 218

priority 54

priority ceiling 56

priority inheritance 57, 64, 81

priority inversion 56, 63, 78, 81

priority inversions

number of 66
priority levels for ThreadX

defining 37
priority of internal ThreadX timer thread

defining 40
priority overhead 64

priority zero 96

priority-based scheduling 22

process

definition of 21
process oriented operating system 21

processing bandwidth 63, 100

processing time allocation prior to real-time

kernels 22

processor allocation 24

processor allocation logic 24

processor isolation 24

processor reset 44

processor-independent interface provided

by ThreadX 24
Express Logic

348 ThreadX User Guide
producer-consumer 73

product distribution 29

program execution

types of 44
protecting the software investment

ThreadX guarantees migration path 25
public resource 68, 73, 78, 93

memory blocks 86
memory byte pool 89

Q

queue control 72

queue empty suspensions

total number of 71
queue event-chaining 70

queue full error returns

total number of 71
queue full suspensions 71

total number of 71
queue memory area 69

queue messages 53

queue performance information 71

queue send notification 70

queue services 320

queue timeouts

total number of 71
queue_0 308

queues 31, 48, 50

R

RAM

first available 50
initialized data area 47
placing stack in 60
queue memory area in 69
requirements 28

reactivation of ThreadX timers in-line

defining 38
reactivations (periodic timers)

number of 95
total number of 95

read and write pointers 298

read pointer 298

readme_threadx.txt 28, 29, 32, 33, 34, 99

ready state 52, 53

ready thread 44

real-time 85

definition of 20
real-time software

definition of 20
real-time systems 44, 56

device drivers embedded in 290
re-creating thread 53

recursive algorithms 62

redundant polling 23

reentrancy of threads 62

reentrant 62

reentrant function 62

register thread stack error notification

callback 258

relative time 96

release a fixed-size block of memory 124

release bytes back to memory pool 142

release ownership of mutex 178

releases

number of 91
total number of 91

Relinquish control to other application

threads 250

removing logic for initializing ThreadX

global C data structures 36

reset 48, 50

reset thread 252

responsive processing 57
User Guide

Index 349
re-starting thread 53

resume suspended application thread 254

retrieve information about an application

timer 282

retrieve information about block pool 116

retrieve information about event flags

group 152

retrieve information about mutex 170

retrieve information about queue 188

retrieve information about semaphore 212

retrieve information about thread 234

retrieve performance system information

about event flags group 156

retrieves current time

time
retrieve 268

retrieves pointer to currently executing

thread 232

ROM

instruction area location 46
location of instruction area 47

ROM requirements for target 28

round-robin scheduling 55

RTOS standard 18

run-time

preemption-threshold changing
during 57

run-time application timer performance 95

run-time behavior 24, 63

run-time block pool performance 87

run-time byte pool performance 91

run-time configuration 92

run-time control. 291

run-time event flags performance 84

run-time image 16

run-time mutex performance 80

run-time queue performance 71

run-time semaphore performance 75

run-time stack checking 37, 62

run-time statistics 292

run-time status 292

run-time thread performance 65

S

Safety Certifications 18

ThreadX Certification Pack 20
UL Certification 19

scalability 16

scaling among micro-controller-based

applications 16

scheduling 50

scheduling loop 59

scheduling threads 44

seeking a new sector on a disk 291

semaphore control block 76, 81

semaphore event-chaining 75

semaphore get suspensions

number of 75
total number of 75

semaphore get timeouts

high number of 76
number of 75
total number of 75

semaphore gets

number of 75
total number of 75

semaphore put notification 74

semaphore puts

number of 75
total number of 75

semaphore services 320

semaphore_0 309

semaphores 31, 50, 53, 78

semi-independent program segment 50
Express Logic

350 ThreadX User Guide
send a message to message queue 200

send message to the front of queue 186

service call preemptions 66

number of 65, 66
service call time-outs 29

set event flags in an event flag group 158

sets the current time 270

setting both the read and write buffer

pointers to beginning address of

buffer 297

setting the output semaphore 295

simple 296

simple driver initialization 293, 294

simple driver input 294

simple driver output 295, 296

simple driver shortcomings 296

simplifying development with threads 24

size and location of I/O buffers 300

size of ThreadX 16

slow memory 48

software maintenance 23

stack 44

stack areas

preset with data pattern prior to creating
threads 61

stack corruption 62

stack error handler 37

stack error handling routine 62

stack memory area 61

stack pointer 59

stack preset 61

stack size 67, 306

stack size of internal ThreadX timer thread

defining 40
stack space 58

stacks 48, 50

starvation 56

of threads 63
starving threads 63

static memory 46

static memory usage 46

static variables 47

statics 63

suspend an application thread 260

suspended current thread for specified

time 256

suspended state 52, 53

suspension 98

suspension aborts

number of 66
system reset 48, 51

system stack 28, 46, 47

system throughput

impact on 23

T

tailoring kernel with assembly language 16

target

address space of 69
interrupt source requirements 29
ROM requirements 28

target address space 87

target considerations 28

target download 28

target’s address space 60, 90

task

definition of 21
ThreadX does not use term 22

tasks vs. threads 21

terminated state 52, 53

terminates an application thread 262

Thread 309

thread

abort suspension of 266
User Guide

Index 351
change priority of 248
changes time slice of 264
control block of 57
create 224
critical sections 56
definition of 21
get performance information 238
get system performance 242
highest priority 308
notify application when entering and

exiting 230
register stack error notification 258
relinquish control to other threads 250
reset 252
resume suspended 254
retrieve information about 234
retrieves pointer to executing thread 232
stack area 60
stack for saving context of execution 59
stack of 58, 59
suspend 260
suspend for specified time 256
term that replaces task 22
terminate 262

thread 0 308

thread 1 308

thread 2 308

Thread 3 309

Thread 4 309

thread 5 309

thread 6 310

thread 7 310

thread control 57

thread control block fields 59

thread control services 321

thread counters 310

thread creation 57

Thread Entry/Exit Notification 54

thread execution 44, 50, 309

thread execution states 52

thread identity 309

thread model 22

thread preemption 53

thread priorities 54, 63

thread priority pitfalls 63

thread relinquishes

number of 66
thread resumptions

number of 65
thread scheduling 55

thread scheduling loops 44, 49

thread stack area 59

thread stack sizes 61

thread starvation 63

thread state transition 52

thread states 52

thread suspension 69, 74, 83, 87, 90, 303

thread suspensions

number of 65
thread timeouts

number of 66
Thread_0 308

thread_0 308, 310

thread_0_entry 308

Thread_1 308

thread_1_counter 311

thread_1_entry 308

thread_2 308

thread_2_counter 311

thread_2_entry 308

thread_3 309

thread_3_and_4_entry 309

thread_4 309

thread_5 308, 309, 310

thread_5_entry 309
Express Logic

352 ThreadX User Guide
thread_6 310

thread_6_and_7_entry 310

thread_7 310

threads 31, 50, 54, 57

number of 57
simplifying development with 24

threads 3 and 4 309

ThreadX

block memory pool 300
constants 323
data types 11
demo application 33
deployed in two-billion devices 18
distribution contents 29
ease of use 24
initialization 306
installation 30
instruction image of 16
managed interrupts 97
overview 16
portability 16
portability of 25
primary purpose of 21
processor-independent interface 24
RTOS standard for deeply embedded

applications 18
services 101
size of 16
supported processors 306
synchronization primitive 54
using 31

ThreadX benefit 22

accelerated development 24
faster time to market 24
improve time-to-market 24
improved responsiveness 22

ThreadX_Express_Startup.pdf 29

throughput reduction 23

tick counter 96

time

set 270
suspension for 53

time services 322

time slicing 55

service call function 29
time-outs 46, 69

service call 29
timer

activate 272
change 274
create 276
deactivate 278
delete 280
get performance information 284
get system performance

information 286
retrieve information about 282

timer accuracy 94

timer execution 94

timer intervals 93

timer related functions 29

timer services 94, 322

timer setup 93

timer ticks 55, 93, 94, 96

timers 50

time-slice 55, 59

number of 66
time-slices

number of 66
time-slicing 94

transmitting and receiving data with

buffers 300

transmitting or receiving individual packets

of data 300

troubleshooting 33

installation 33
tips 33
where to send information 33

TÜV Certification 18
User Guide

Index 353

6

D

TX_AND_CLEAR 82

tx_api.h 30, 31, 32, 57, 72, 76, 81, 85, 88,

92, 95

tx_application_define 31, 32, 49, 50, 51,

291, 293, 306, 307

TX_AUTO_START 307

tx_block_allocate 97, 108

TX_BLOCK_MEMORY (0x08) 58

TX_BLOCK_POOL 88, 330

tx_block_pool_create 112, 122

tx_block_pool_delete 114

TX_BLOCK_POOL_ENABLE_PERFORM

ANCE_INFO 35, 87

tx_block_pool_info_get 97, 116

tx_block_pool_performance_info_get 88,

97, 118

tx_block_pool_performance_system_info_

get 88, 97, 120

tx_block_pool_prioritize 87, 97, 122

tx_block_release 97, 124

tx_byte_allocate 126, 134

TX_BYTE_MEMORY (0x09) 58

TX_BYTE_POOL 92, 330, 331

tx_byte_pool_create 130, 140

tx_byte_pool_delete 132

TX_BYTE_POOL_ENABLE_PERFORMA

NCE_INFO 91

tx_byte_pool_info_get 97

tx_byte_pool_performance_info_get 92,

97, 136

tx_byte_pool_performance_system_info_g

et 92, 97, 138

tx_byte_pool_prioritize 91, 97, 140

tx_byte_release 142

TX_COMPLETED (0x01) 58

36

TX_DISABLE_REDUNDANT_CLEARING 3

TX_DISABLE_STACK_FILLING 36

TX_ENABLE_EVENT_TRACE 36

TX_ENABLE_STACK_CHECKING 37, 62

TX_EVENT_FLAG (0x07) 58

tx_event_flags_create 144, 152

tx_event_flags_delete 146

TX_EVENT_FLAGS_ENABLE_PERFOR

MANCE_INFO 37, 84

tx_event_flags_get 82, 98, 148

TX_EVENT_FLAGS_GROUP 85, 331

tx_event_flags_info_get 98, 152

tx_event_flags_performance 154

tx_event_flags_performance_info_get 85,

98

tx_event_flags_performance_system_info

_get 85, 98, 156

tx_event_flags_set 82, 98, 158

tx_event_flags_set_notify 83, 98, 160 tx_ill

assembly file 93

TX_INCLUDE_USER_DEFINE_FILE 34

tx_initialize_low_level 29

TX_INLINE_THREAD_RESUME_SUSPE

ND 37

tx_interrupt_control 97, 98, 162

TX_IO_BUFFER 300

tx_kernel_enter 31, 32, 49, 51

TX_MAX_PRIORITIES 37

TX_MINIMUM_STACK 38, 60

TX_MISRA_ENABLE 38

TX_MUTEX 331, 332

TX_DISABLE_NOTIFY_CALLBACKS 35

TX_DISABLE_PREEMPTION_THRESHOL

TX_DISABLE_ERROR_CHECKING 35,101
Express Logic

354 ThreadX User Guide
tx_mutex_create 164

tx_mutex_delete 166

TX_MUTEX_ENABLE_PERFORMANCE_I

NFO 38, 80

tx_mutex_get 78, 168

tx_mutex_info_get 170

tx_mutex_performance_info_get 80, 98,

172

tx_mutex_performance_system_info_get

80, 98, 174

tx_mutex_prioritize 79, 176

tx_mutex_put 78, 178

TX_MUTEX_SUSP (0x0D) 58

tx_next_buffer 301

tx_next_packet 300

TX_NO_TIMER 38

TX_NOT_INTERRUPTABLE 38

TX_OR_CONSUME 82

tx_port.h 11, 30, 38

TX_QUEUE 72, 332, 333

tx_queue_create 180

tx_queue_delete 182

TX_QUEUE_ENABLE_PERFORMANCE_

INFO 38, 71

tx_queue_flush 184

tx_queue_front_send 98, 186

tx_queue_info_get 98, 188

tx_queue_performance_info_get 71, 98,

190

tx_queue_performance_system_info_get

71, 98, 192

tx_queue_prioritize 69, 98, 194

tx_queue_receive 67, 98, 196

tx_queue_send 65, 67, 98, 200

tx_queue_send_notify 70, 98, 202

TX_QUEUE_SUSP (0x05) 58

TX_REACTIVATE_INLINE 38

TX_READY (0x00) 58

tx_sdriver_initialize 293

tx_sdriver_input 294

tx_sdriver_output 296

TX_SEMAPHORE 76, 333

tx_semaphore_ceiling_put 73, 98, 204

tx_semaphore_create 206

tx_semaphore_delete 208

TX_SEMAPHORE_ENABLE_PERFORMA

NCE_INFO 39, 75

tx_semaphore_get 70, 72, 98, 210

tx_semaphore_info_get 98, 212

tx_semaphore_performance_info_get 76,

98, 214

tx_semaphore_performance_system_info_

get 76, 98, 216

tx_semaphore_prioritize 74, 98, 218

tx_semaphore_put 70, 72, 98, 220

tx_semaphore_put_notify 74, 98, 222

TX_SEMAPHORE_SUSP (0x06) 58

TX_SLEEP (0x04) 58

TX_SUSPENDED (0x03) 58

TX_TERMINATED (0x02) 58

TX_THREAD 48, 333, 335

tx_thread_create 32, 50, 224, 234

tx_thread_current_ptr 59, 67

tx_thread_delete 228, 266

TX_THREAD_ENABLE_PERFORMANCE

_INFO 39, 65

tx_thread_entry_exit_notify 54, 98, 230

tx_thread_identify 59, 98, 232

tx_thread_info_get 98, 234

tx_thread_performance_info_get 66, 98,

238
User Guide

Index 355
tx_thread_performance_system_info_get

66, 98, 242

tx_thread_preemption_change 246

tx_thread_priority_change 248

tx_thread_relinquish 55, 250

tx_thread_reset 252

tx_thread_resume 98, 254

tx_thread_run_count 58

tx_thread_sleep 32, 256

tx_thread_stack_error_notify 37, 62, 98,

258

tx_thread_state 58

tx_thread_suspend 260

tx_thread_terminate 53, 262

tx_thread_time_slice_change 264

tx_thread_wait_abort 98, 266

tx_time_get 96, 98, 268

tx_time_se 96

tx_time_set 96, 98, 270

TX_TIMER 95, 335, 336

tx_timer_activate 98, 272, 282

tx_timer_change 98, 274

tx_timer_create 276

tx_timer_deactivate 98, 278

tx_timer_delete 280

TX_TIMER_ENABLE_PERFORMANCE_I

NFO 39, 95

tx_timer_info_get 98, 282

TX_TIMER_INTERNAL 336

tx_timer_performance_info_get 95, 98,

284

tx_timer_performance_system_info_get 9

5, 98, 286

TX_TIMER_PROCESS_IN_ISR 39

TX_TIMER_THREAD_PRIORITY 40

TX_TIMER_THREAD_STACK_SIZE 40

tx_user.h 33, 34

tx.a 30, 31

tx.lib 30, 31

types of program execution 44

typical thread stack 60

U

UART 297

UL 1998 20

UL/IEC 60335 20

UL/IEC 60730 20

un-deterministic priority inversion 57, 64

uninitialized data 46, 47

Unix 28

Unix development platform 30

unnecessary processing due to extra

poling 23

unpredictable behavior 50

user-supplied main function 49

using a semaphore to control driver

access 291

using ThreadX 31

W

watchdog services 46

Windows 28

write pointer 297, 298
Express Logic

356
User Guide

	ThreadX User Guide
	Contents
	Figures
	About This Guide
	Organization
	Guide Conventions
	ThreadX Data Types
	Customer Support Center
	Latest Product Information
	What We Need From You
	Where to Send Comments About This Guide

	1 Introduction to ThreadX
	ThreadX Unique Features
	picokernel™ Architecture
	ANSI C Source Code
	Advanced Technology
	Not A Black Box
	The RTOS Standard

	Safety Certifications
	TÜV Certification
	MISRA C Compliant
	UL Certification
	Certification Pack

	Embedded Applications
	Real-time Software
	Multitasking
	Tasks vs. Threads

	ThreadX Benefits
	Improved Responsiveness
	Software Maintenance
	Increased Throughput
	Processor Isolation
	Dividing the Application
	Ease of Use
	Improve Time-to-market
	Protecting the Software Investment

	2 Installation and Use of ThreadX
	Host Considerations
	Target Considerations
	Product Distribution
	ThreadX Installation
	Using ThreadX
	Small Example System
	Troubleshooting
	Configuration Options
	Smallest Configuration
	Fastest Configuration
	Global Time Source
	Detailed Configuration Options

	ThreadX Version ID

	3 Functional Components of ThreadX
	Execution Overview
	Initialization
	Initialization
	Thread Execution
	Interrupt Service Routines (ISR)
	Application Timers

	Memory Usage
	Static Memory Usage
	Dynamic Memory Usage

	Initialization
	System Reset Vector
	Development Tool Initialization
	main Function
	tx_kernel_enter
	Application Definition Function
	Interrupts

	Thread Execution
	Thread Execution States
	Thread Entry/Exit Notification
	Thread Priorities
	Thread Scheduling
	Round-robin Scheduling
	Time-Slicing
	Preemption
	Preemption- Threshold™
	Priority Inheritance
	Thread Creation
	Thread Control Block TX_THREAD
	Currently Executing Thread
	Thread Stack Area
	Memory Pitfalls
	Optional Run-time Stack Checking
	Reentrancy
	Thread Priority Pitfalls
	Priority Overhead
	Run-time Thread Performance Information
	Debugging Pitfalls

	Message Queues
	Creating Message Queues
	Message Size
	Message Queue Capacity
	Queue Memory Area
	Thread Suspension
	Queue Send Notification
	Queue Event- chaining™
	Run-time Queue Performance Information
	Queue Control Block TX_QUEUE
	Message Destination Pitfall

	Counting Semaphores
	Mutual Exclusion
	Event Notification
	Creating Counting Semaphores
	Thread Suspension
	Semaphore Put Notification
	Semaphore Event- chaining™
	Run-time Semaphore Performance Information
	Semaphore Control Block TX_SEMAPHORE
	Deadly Embrace
	Priority Inversion

	Mutexes
	Mutex Mutual Exclusion
	Creating Mutexes
	Thread Suspension
	Run-time Mutex Performance Information
	Mutex Control Block TX_MUTEX
	Deadly Embrace
	Priority Inversion

	Event Flags
	Creating Event Flags Groups
	Thread Suspension
	Event Flags Set Notification
	Event Flags Event- chaining™
	Run-time Event Flags Performance Information
	Event Flags Group Control Block TX_EVENT_FLAGS_GROUP

	Memory Block Pools
	Creating Memory Block Pools
	Memory Block Size
	Pool Capacity
	Pool’s Memory Area
	Thread Suspension
	Run-time Block Pool Performance Information
	Memory Block Pool Control Block TX_BLOCK_POOL
	Overwriting Memory Blocks

	Memory Byte Pools
	Creating Memory Byte Pools
	Pool Capacity
	Pool’s Memory Area
	Thread Suspension
	Run-time Byte Pool Performance Information
	Memory Byte Pool Control Block TX_BYTE_POOL
	Nondeterministic Behavior
	Overwriting Memory Blocks

	Application Timers
	Timer Intervals
	Timer Accuracy
	Timer Execution
	Creating Application Timers
	Run-time Application Timer Performance Information
	Application Timer Control Block TX_TIMER
	Excessive Timers

	Relative Time
	Interrupts
	Interrupt Control
	ThreadX Managed Interrupts
	ISR Template
	High-frequency Interrupts
	Interrupt Latency

	4 Description of ThreadX Services
	5 Device Drivers for ThreadX
	Device Driver Introduction
	Driver Functions
	Driver Initialization
	Driver Control
	Driver Access
	Driver Input
	Driver Output
	Driver Interrupts
	Driver Status
	Driver Termination

	Simple Driver Example
	Simple Driver Initialization
	Simple Driver Input
	Simple Driver Output
	Simple Driver Shortcomings

	Advanced Driver Issues
	I/O Buffering
	Circular Byte Buffers
	Circular Buffer Input
	Circular Output Buffer
	Buffer I/O Management
	TX_IO_BUFFER
	Buffered I/O Advantage
	Buffered Driver Responsibilities
	Interrupt Management
	Thread Suspension

	6 Demonstration System for ThreadX
	Overview
	Application Define
	Initial Execution

	Thread 0
	Thread 1
	Thread 2
	Threads 3 and 4
	Thread 5
	Threads 6 and 7
	Observing the Demonstration
	Distribution file: demo_threadx.c

	A ThreadX API Services
	Entry Function
	Block Memory Services
	Byte Memory Services
	Event Flags Services
	Interrupt Control
	Mutex Services
	Queue Services
	Semaphore Services
	Thread Control Services
	Time Services
	Timer Services

	B ThreadX Constants
	Alphabetic Listings
	Listing by Value

	C ThreadX Data Types
	TX_BLOCK_POOL
	TX_BYTE_POOL
	TX_EVENT_FLAGS_GROUP
	TX_MUTEX
	TX_QUEUE
	TX_SEMAPHORE
	TX_THREAD
	TX_TIMER
	TX_TIMER_INTERNAL
	ASCII Character Codes in HEX

	D ASCII Character Codes
	Index

