mirror of
https://gitlab.rtems.org/rtems/rtos/rtems.git
synced 2025-11-16 12:34:45 +00:00
Add "(void) param;" annotation to address unused parameter warnings. Found with GCC's warning -Wunused-parameter.
894 lines
20 KiB
C
894 lines
20 KiB
C
/*
|
|
* Rosimildo da Silva: rdasilva@connecttel.com
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <sys/types.h>
|
|
#include <rtems/keyboard.h>
|
|
#include "i386kbd.h"
|
|
#include <rtems/kd.h>
|
|
#include <bsp.h>
|
|
#include <bsp/bootcard.h>
|
|
#include <stdatomic.h>
|
|
|
|
#define SIZE(x) (sizeof(x)/sizeof((x)[0]))
|
|
|
|
#ifndef KBD_DEFMODE
|
|
#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
|
|
#endif
|
|
|
|
#ifndef KBD_DEFLEDS
|
|
/*
|
|
* Some laptops take the 789uiojklm,. keys as number pad when NumLock
|
|
* is on. This seems a good reason to start with NumLock off.
|
|
*/
|
|
#define KBD_DEFLEDS 0
|
|
#endif
|
|
|
|
#ifndef KBD_DEFLOCK
|
|
#define KBD_DEFLOCK 0
|
|
#endif
|
|
|
|
static int kbd_test_and_set_bit(int nr, atomic_uint_least32_t * addr)
|
|
{
|
|
uint_least32_t mask;
|
|
int retval;
|
|
|
|
addr += nr >> 5;
|
|
mask = 1UL << (nr & 0x1f);
|
|
|
|
retval = (atomic_fetch_or(addr, mask) & mask) != 0;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int kbd_test_and_clear_bit(int nr, atomic_uint_least32_t * addr)
|
|
{
|
|
uint_least32_t mask;
|
|
int retval;
|
|
|
|
addr += nr >> 5;
|
|
mask = 1UL << (nr & 0x1f);
|
|
|
|
retval = (atomic_fetch_and(addr, ~mask) & mask) != 0;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int kbd_test_bit(int nr, atomic_uint_least32_t * addr)
|
|
{
|
|
unsigned long mask;
|
|
|
|
addr += nr >> 5;
|
|
mask = 1 << (nr & 0x1f);
|
|
return ((mask & atomic_load(addr)) != 0);
|
|
}
|
|
|
|
/*
|
|
* global state includes the following, and various static variables
|
|
* in this module: prev_scancode, shift_state, diacr, npadch, dead_key_next.
|
|
* (last_console is now a global variable)
|
|
*/
|
|
#define KBD_BITS_PER_ELEMENT (sizeof(atomic_uint_least32_t)*CHAR_BIT)
|
|
|
|
/* shift state counters.. */
|
|
static unsigned char k_down[NR_SHIFT] = {0, };
|
|
/* keyboard key bitmap */
|
|
static atomic_uint_least32_t
|
|
key_down[(256 + KBD_BITS_PER_ELEMENT - 1) / KBD_BITS_PER_ELEMENT] = { 0, };
|
|
|
|
static int dead_key_next = 0;
|
|
/*
|
|
* In order to retrieve the shift_state (for the mouse server), either
|
|
* the variable must be global, or a new procedure must be created to
|
|
* return the value. I chose the former way.
|
|
*/
|
|
int shift_state = 0;
|
|
static int npadch = -1; /* -1 or number assembled on pad */
|
|
static unsigned char diacr = 0;
|
|
static char rep = 0; /* flag telling character repeat */
|
|
|
|
/* default console for RTEMS */
|
|
static int fg_console = 0;
|
|
|
|
struct kbd_struct kbd_table[MAX_NR_CONSOLES];
|
|
static struct kbd_struct * kbd = kbd_table;
|
|
|
|
void compute_shiftstate(void);
|
|
|
|
typedef void (*k_hand)(unsigned char value, char up_flag);
|
|
typedef void (k_handfn)(unsigned char value, char up_flag);
|
|
|
|
static k_handfn
|
|
do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift,
|
|
do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_dead2,
|
|
do_ignore;
|
|
|
|
static k_hand key_handler[16] = {
|
|
do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift,
|
|
do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_dead2,
|
|
do_ignore, do_ignore
|
|
};
|
|
|
|
/* Key types processed even in raw modes */
|
|
|
|
#define TYPES_ALLOWED_IN_RAW_MODE ((1 << KT_SPEC) | (1 << KT_SHIFT))
|
|
|
|
typedef void (*void_fnp)(void);
|
|
typedef void (void_fn)(void);
|
|
|
|
static void show_mem(void)
|
|
{
|
|
}
|
|
static void show_state(void)
|
|
{
|
|
}
|
|
|
|
static void_fn do_null, enter, show_ptregs, send_intr, lastcons, caps_toggle,
|
|
num, hold, scroll_forw, scroll_back, caps_on, compose,
|
|
SAK, decr_console, incr_console, spawn_console, bare_num;
|
|
|
|
static void bsp_reset_wrapper(void)
|
|
{
|
|
bsp_reset(RTEMS_FATAL_SOURCE_BSP, 0);
|
|
}
|
|
|
|
static void_fnp spec_fn_table[] = {
|
|
do_null, enter, show_ptregs, show_mem,
|
|
show_state, send_intr, lastcons, caps_toggle,
|
|
num, hold, scroll_forw, scroll_back,
|
|
bsp_reset_wrapper, caps_on, compose, SAK,
|
|
decr_console, incr_console, spawn_console, bare_num
|
|
};
|
|
|
|
#define SPECIALS_ALLOWED_IN_RAW_MODE (1 << KVAL(K_SAK))
|
|
|
|
/* maximum values each key_handler can handle */
|
|
const int max_vals[] = {
|
|
255, SIZE(func_table) - 1, SIZE(spec_fn_table) - 1, NR_PAD - 1,
|
|
NR_DEAD - 1, 255, 3, NR_SHIFT - 1,
|
|
255, NR_ASCII - 1, NR_LOCK - 1, 255,
|
|
NR_LOCK - 1, 255
|
|
};
|
|
|
|
const int NR_TYPES = SIZE(max_vals);
|
|
|
|
/* N.B. drivers/macintosh/mac_keyb.c needs to call put_queue */
|
|
static void put_queue(int);
|
|
static unsigned char handle_diacr(unsigned char);
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
static int sysrq_pressed;
|
|
#endif
|
|
|
|
/*
|
|
* Many other routines do put_queue, but I think either
|
|
* they produce ASCII, or they produce some user-assigned
|
|
* string, and in both cases we might assume that it is
|
|
* in utf-8 already.
|
|
*/
|
|
static void to_utf8(ushort c)
|
|
{
|
|
if (c < 0x80)
|
|
put_queue(c); /* 0******* */
|
|
else if (c < 0x800) {
|
|
put_queue(0xc0 | (c >> 6)); /* 110***** 10****** */
|
|
put_queue(0x80 | (c & 0x3f));
|
|
} else {
|
|
put_queue(0xe0 | (c >> 12)); /* 1110**** 10****** 10****** */
|
|
put_queue(0x80 | ((c >> 6) & 0x3f));
|
|
put_queue(0x80 | (c & 0x3f));
|
|
}
|
|
/* UTF-8 is defined for words of up to 31 bits,
|
|
but we need only 16 bits here */
|
|
}
|
|
|
|
/*
|
|
* Translation of escaped scancodes to keycodes.
|
|
* This is now user-settable (for machines were it makes sense).
|
|
*/
|
|
|
|
int setkeycode(unsigned int scancode, unsigned int keycode)
|
|
{
|
|
return kbd_setkeycode(scancode, keycode);
|
|
}
|
|
|
|
int getkeycode(unsigned int scancode)
|
|
{
|
|
return kbd_getkeycode(scancode);
|
|
}
|
|
|
|
void handle_scancode(unsigned char scancode, int down)
|
|
{
|
|
unsigned char keycode;
|
|
char up_flag = down ? 0 : 0200;
|
|
char raw_mode;
|
|
|
|
mark_bh(CONSOLE_BH);
|
|
|
|
#if 0
|
|
tty = ttytab? ttytab[fg_console]: NULL;
|
|
if (tty && (!tty->driver_data)) {
|
|
/*
|
|
* We touch the tty structure via the the ttytab array
|
|
* without knowing whether or not tty is open, which
|
|
* is inherently dangerous. We currently rely on that
|
|
* fact that console_open sets tty->driver_data when
|
|
* it opens it, and clears it when it closes it.
|
|
*/
|
|
tty = NULL;
|
|
}
|
|
#endif
|
|
|
|
kbd = kbd_table + fg_console;
|
|
if ((raw_mode = (kbd->kbdmode == VC_RAW))) {
|
|
put_queue(scancode | up_flag);
|
|
/* we do not return yet, because we want to maintain
|
|
the key_down array, so that we have the correct
|
|
values when finishing RAW mode or when changing VT's */
|
|
}
|
|
|
|
/*
|
|
* Convert scancode to keycode
|
|
*/
|
|
if (!kbd_translate(scancode, &keycode, raw_mode))
|
|
return;
|
|
|
|
/*
|
|
* At this point the variable `keycode' contains the keycode.
|
|
* Note: the keycode must not be 0 (++Geert: on m68k 0 is valid).
|
|
* We keep track of the up/down status of the key, and
|
|
* return the keycode if in MEDIUMRAW mode.
|
|
*/
|
|
|
|
if (up_flag) {
|
|
rep = 0;
|
|
if(!kbd_test_and_clear_bit(keycode, key_down))
|
|
up_flag = kbd_unexpected_up(keycode);
|
|
} else
|
|
rep = kbd_test_and_set_bit(keycode, key_down);
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
|
|
if (keycode == SYSRQ_KEY) {
|
|
sysrq_pressed = !up_flag;
|
|
return;
|
|
} else if (sysrq_pressed) {
|
|
if (!up_flag && sysrq_enabled)
|
|
handle_sysrq(kbd_sysrq_xlate[keycode], kbd_pt_regs, kbd, tty);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (kbd->kbdmode == VC_MEDIUMRAW) {
|
|
/* soon keycodes will require more than one byte */
|
|
put_queue(keycode + up_flag);
|
|
raw_mode = 1; /* Most key classes will be ignored */
|
|
}
|
|
/*
|
|
* Small change in philosophy: earlier we defined repetition by
|
|
* rep = keycode == prev_keycode;
|
|
* prev_keycode = keycode;
|
|
* but now by the fact that the depressed key was down already.
|
|
* Does this ever make a difference? Yes.
|
|
*/
|
|
|
|
/*
|
|
* Repeat a key only if the input buffers are empty or the
|
|
* characters get echoed locally. This makes key repeat usable
|
|
* with slow applications and under heavy loads.
|
|
*/
|
|
if (!rep || vc_kbd_mode(kbd,VC_REPEAT) ) {
|
|
/*
|
|
|| (vc_kbd_mode(kbd,VC_REPEAT) && tty &&
|
|
(L_ECHO(tty) || (tty->driver.chars_in_buffer(tty) == 0)))) {
|
|
*/
|
|
u_short keysym;
|
|
u_char type;
|
|
|
|
/* the XOR below used to be an OR */
|
|
int shift_final = shift_state ^ kbd->lockstate ^ kbd->slockstate;
|
|
ushort *key_map = key_maps[shift_final];
|
|
|
|
if (key_map != NULL) {
|
|
keysym = key_map[keycode];
|
|
type = KTYP(keysym);
|
|
|
|
if (type >= 0xf0) {
|
|
type -= 0xf0;
|
|
if (raw_mode && ! (TYPES_ALLOWED_IN_RAW_MODE & (1 << type)))
|
|
return;
|
|
if (type == KT_LETTER) {
|
|
type = KT_LATIN;
|
|
if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
|
|
key_map = key_maps[shift_final ^ (1<<KG_SHIFT)];
|
|
if (key_map)
|
|
keysym = key_map[keycode];
|
|
}
|
|
}
|
|
|
|
(*key_handler[type])(keysym & 0xff, up_flag);
|
|
|
|
if (type != KT_SLOCK)
|
|
kbd->slockstate = 0;
|
|
|
|
} else {
|
|
/* maybe only if (kbd->kbdmode == VC_UNICODE) ? */
|
|
if (!up_flag && !raw_mode)
|
|
to_utf8(keysym);
|
|
}
|
|
} else {
|
|
/* maybe beep? */
|
|
/* we have at least to update shift_state */
|
|
#if 1 /* how? two almost equivalent choices follow */
|
|
compute_shiftstate();
|
|
#else
|
|
keysym = U(plain_map[keycode]);
|
|
type = KTYP(keysym);
|
|
if (type == KT_SHIFT)
|
|
(*key_handler[type])(keysym & 0xff, up_flag);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ( *driver_input_handler_kbd )( void *, unsigned short, unsigned long ) = 0;
|
|
/*
|
|
*/
|
|
void kbd_set_driver_handler(
|
|
void ( *handler )( void *, unsigned short, unsigned long )
|
|
)
|
|
{
|
|
driver_input_handler_kbd = handler;
|
|
}
|
|
|
|
static void put_queue(int ch)
|
|
{
|
|
if ( driver_input_handler_kbd ) {
|
|
driver_input_handler_kbd( ( void *)kbd, (unsigned short)ch, 0 );
|
|
} else {
|
|
add_to_queue( ch );
|
|
}
|
|
}
|
|
|
|
static void puts_queue(char *cp)
|
|
{
|
|
while (*cp) {
|
|
put_queue( *cp );
|
|
cp++;
|
|
}
|
|
}
|
|
|
|
static void applkey(int key, char mode)
|
|
{
|
|
static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
|
|
|
|
buf[1] = (mode ? 'O' : '[');
|
|
buf[2] = key;
|
|
puts_queue(buf);
|
|
}
|
|
|
|
static void enter(void)
|
|
{
|
|
if (diacr) {
|
|
put_queue(diacr);
|
|
diacr = 0;
|
|
}
|
|
put_queue(13);
|
|
|
|
if (vc_kbd_mode(kbd,VC_CRLF))
|
|
put_queue(10);
|
|
}
|
|
|
|
static void caps_toggle(void)
|
|
{
|
|
if (rep)
|
|
return;
|
|
chg_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void caps_on(void)
|
|
{
|
|
if (rep)
|
|
return;
|
|
set_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
static void show_ptregs(void)
|
|
{
|
|
}
|
|
|
|
static void hold(void)
|
|
{
|
|
if (rep )
|
|
return;
|
|
chg_vc_kbd_led(kbd, VC_SCROLLOCK );
|
|
}
|
|
|
|
static void num(void)
|
|
{
|
|
if (vc_kbd_mode(kbd,VC_APPLIC))
|
|
applkey('P', 1);
|
|
else
|
|
bare_num();
|
|
}
|
|
|
|
/*
|
|
* Bind this to Shift-NumLock if you work in application keypad mode
|
|
* but want to be able to change the NumLock flag.
|
|
* Bind this to NumLock if you prefer that the NumLock key always
|
|
* changes the NumLock flag.
|
|
*/
|
|
static void bare_num(void)
|
|
{
|
|
if (!rep)
|
|
chg_vc_kbd_led(kbd,VC_NUMLOCK);
|
|
}
|
|
|
|
static void lastcons(void)
|
|
{
|
|
}
|
|
|
|
static void decr_console(void)
|
|
{
|
|
}
|
|
|
|
static void incr_console(void)
|
|
{
|
|
}
|
|
|
|
static void send_intr(void)
|
|
{
|
|
}
|
|
|
|
static void scroll_forw(void)
|
|
{
|
|
}
|
|
|
|
static void scroll_back(void)
|
|
{
|
|
}
|
|
|
|
static void compose(void)
|
|
{
|
|
dead_key_next = 1;
|
|
}
|
|
|
|
int spawnpid, spawnsig;
|
|
|
|
static void spawn_console(void)
|
|
{
|
|
}
|
|
|
|
static void SAK(void)
|
|
{
|
|
}
|
|
|
|
static void do_ignore(unsigned char value, char up_flag)
|
|
{
|
|
(void) value;
|
|
(void) up_flag;
|
|
}
|
|
|
|
static void do_null()
|
|
{
|
|
compute_shiftstate();
|
|
}
|
|
|
|
static void do_spec(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
if (value >= SIZE(spec_fn_table))
|
|
return;
|
|
|
|
if ((kbd->kbdmode == VC_RAW || kbd->kbdmode == VC_MEDIUMRAW) &&
|
|
!(SPECIALS_ALLOWED_IN_RAW_MODE & (1 << value)))
|
|
return;
|
|
|
|
spec_fn_table[value]();
|
|
}
|
|
|
|
static void do_lowercase(unsigned char value, char up_flag)
|
|
{
|
|
(void) value;
|
|
(void) up_flag;
|
|
}
|
|
|
|
static void do_self(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
if (diacr)
|
|
value = handle_diacr(value);
|
|
|
|
if (dead_key_next) {
|
|
dead_key_next = 0;
|
|
diacr = value;
|
|
return;
|
|
}
|
|
put_queue(value);
|
|
}
|
|
|
|
#define A_GRAVE '`'
|
|
#define A_ACUTE '\''
|
|
#define A_CFLEX '^'
|
|
#define A_TILDE '~'
|
|
#define A_DIAER '"'
|
|
#define A_CEDIL ','
|
|
static unsigned char ret_diacr[NR_DEAD] =
|
|
{A_GRAVE, A_ACUTE, A_CFLEX, A_TILDE, A_DIAER, A_CEDIL };
|
|
|
|
/* Obsolete - for backwards compatibility only */
|
|
static void do_dead(unsigned char value, char up_flag)
|
|
{
|
|
value = ret_diacr[value];
|
|
printk( " do_dead( %X ) ", value );
|
|
do_dead2(value,up_flag);
|
|
}
|
|
|
|
/*
|
|
* Handle dead key. Note that we now may have several
|
|
* dead keys modifying the same character. Very useful
|
|
* for Vietnamese.
|
|
*/
|
|
static void do_dead2(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
diacr = (diacr ? handle_diacr(value) : value);
|
|
}
|
|
|
|
/*
|
|
* We have a combining character DIACR here, followed by the character CH.
|
|
* If the combination occurs in the table, return the corresponding value.
|
|
* Otherwise, if CH is a space or equals DIACR, return DIACR.
|
|
* Otherwise, conclude that DIACR was not combining after all,
|
|
* queue it and return CH.
|
|
*/
|
|
unsigned char handle_diacr(unsigned char ch)
|
|
{
|
|
int d = diacr;
|
|
int i;
|
|
|
|
diacr = 0;
|
|
|
|
for (i = 0; i < accent_table_size; i++) {
|
|
if (accent_table[i].diacr == d && accent_table[i].base == ch)
|
|
return accent_table[i].result;
|
|
}
|
|
if (ch == ' ' || ch == d)
|
|
return d;
|
|
|
|
put_queue(d);
|
|
return ch;
|
|
}
|
|
|
|
static void do_cons(unsigned char value, char up_flag)
|
|
{
|
|
(void) value;
|
|
|
|
if (up_flag)
|
|
return;
|
|
}
|
|
|
|
static void do_fn(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (value < SIZE(func_table)) {
|
|
if (func_table[value])
|
|
puts_queue(func_table[value]);
|
|
} else
|
|
printk( "do_fn called with value=%d\n", value);
|
|
}
|
|
|
|
static void do_pad(unsigned char value, char up_flag)
|
|
{
|
|
static const char *pad_chars = "0123456789+-*/\015,.?()";
|
|
static const char *app_map = "pqrstuvwxylSRQMnnmPQ";
|
|
|
|
if (up_flag)
|
|
return; /* no action, if this is a key release */
|
|
|
|
/* kludge... shift forces cursor/number keys */
|
|
if (vc_kbd_mode(kbd,VC_APPLIC) && !k_down[KG_SHIFT]) {
|
|
applkey(app_map[value], 1);
|
|
return;
|
|
}
|
|
if (!vc_kbd_led(kbd,VC_NUMLOCK))
|
|
switch (value) {
|
|
case KVAL(K_PCOMMA):
|
|
case KVAL(K_PDOT):
|
|
do_fn(KVAL(K_REMOVE), 0);
|
|
return;
|
|
case KVAL(K_P0):
|
|
do_fn(KVAL(K_INSERT), 0);
|
|
return;
|
|
case KVAL(K_P1):
|
|
do_fn(KVAL(K_SELECT), 0);
|
|
return;
|
|
case KVAL(K_P2):
|
|
do_cur(KVAL(K_DOWN), 0);
|
|
return;
|
|
case KVAL(K_P3):
|
|
do_fn(KVAL(K_PGDN), 0);
|
|
return;
|
|
case KVAL(K_P4):
|
|
do_cur(KVAL(K_LEFT), 0);
|
|
return;
|
|
case KVAL(K_P6):
|
|
do_cur(KVAL(K_RIGHT), 0);
|
|
return;
|
|
case KVAL(K_P7):
|
|
do_fn(KVAL(K_FIND), 0);
|
|
return;
|
|
case KVAL(K_P8):
|
|
do_cur(KVAL(K_UP), 0);
|
|
return;
|
|
case KVAL(K_P9):
|
|
do_fn(KVAL(K_PGUP), 0);
|
|
return;
|
|
case KVAL(K_P5):
|
|
applkey('G', vc_kbd_mode(kbd, VC_APPLIC));
|
|
return;
|
|
}
|
|
|
|
put_queue(pad_chars[value]);
|
|
|
|
if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
|
|
put_queue(10);
|
|
|
|
}
|
|
|
|
static void do_cur(unsigned char value, char up_flag)
|
|
{
|
|
static const char *cur_chars = "BDCA";
|
|
if (up_flag)
|
|
return;
|
|
|
|
applkey(cur_chars[value], vc_kbd_mode(kbd,VC_CKMODE));
|
|
}
|
|
|
|
static void do_shift(unsigned char value, char up_flag)
|
|
{
|
|
int old_state = shift_state;
|
|
|
|
if (rep)
|
|
return;
|
|
|
|
/* Mimic typewriter:
|
|
a CapsShift key acts like Shift but undoes CapsLock */
|
|
if (value == KVAL(K_CAPSSHIFT)) {
|
|
value = KVAL(K_SHIFT);
|
|
if (!up_flag)
|
|
clr_vc_kbd_led(kbd, VC_CAPSLOCK);
|
|
}
|
|
|
|
if (up_flag) {
|
|
/* handle the case that two shift or control
|
|
keys are depressed simultaneously */
|
|
if (k_down[value])
|
|
k_down[value]--;
|
|
} else
|
|
k_down[value]++;
|
|
|
|
if (k_down[value])
|
|
shift_state |= (1 << value);
|
|
else
|
|
shift_state &= ~ (1 << value);
|
|
|
|
/* kludge */
|
|
if (up_flag && shift_state != old_state && npadch != -1) {
|
|
if (kbd->kbdmode == VC_UNICODE)
|
|
to_utf8(npadch & 0xffff);
|
|
else
|
|
put_queue(npadch & 0xff);
|
|
npadch = -1;
|
|
}
|
|
}
|
|
|
|
/* called after returning from RAW mode or when changing consoles -
|
|
recompute k_down[] and shift_state from key_down[] */
|
|
/* maybe called when keymap is undefined, so that shiftkey release is seen */
|
|
void compute_shiftstate(void)
|
|
{
|
|
int i, j, k, sym, val;
|
|
|
|
shift_state = 0;
|
|
for(i=0; i < SIZE(k_down); i++)
|
|
k_down[i] = 0;
|
|
|
|
for(i=0; i < SIZE(key_down); i++)
|
|
if(atomic_load(key_down + i)) { /* skip this word if not a single bit on */
|
|
k = i*KBD_BITS_PER_ELEMENT;
|
|
for(j=0; j<KBD_BITS_PER_ELEMENT; j++,k++)
|
|
if(kbd_test_bit(k, key_down)) {
|
|
sym = U(plain_map[k]);
|
|
if(KTYP(sym) == KT_SHIFT) {
|
|
val = KVAL(sym);
|
|
if (val == KVAL(K_CAPSSHIFT))
|
|
val = KVAL(K_SHIFT);
|
|
k_down[val]++;
|
|
shift_state |= (1<<val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_meta(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (vc_kbd_mode(kbd, VC_META)) {
|
|
put_queue('\033');
|
|
put_queue(value);
|
|
} else
|
|
put_queue(value | 0x80);
|
|
}
|
|
|
|
static void do_ascii(unsigned char value, char up_flag)
|
|
{
|
|
int base;
|
|
|
|
if (up_flag)
|
|
return;
|
|
|
|
if (value < 10) /* decimal input of code, while Alt depressed */
|
|
base = 10;
|
|
else { /* hexadecimal input of code, while AltGr depressed */
|
|
value -= 10;
|
|
base = 16;
|
|
}
|
|
|
|
if (npadch == -1)
|
|
npadch = value;
|
|
else
|
|
npadch = npadch * base + value;
|
|
}
|
|
|
|
static void do_lock(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag || rep)
|
|
return;
|
|
chg_vc_kbd_lock(kbd, value);
|
|
}
|
|
|
|
static void do_slock(unsigned char value, char up_flag)
|
|
{
|
|
if (up_flag || rep)
|
|
return;
|
|
|
|
chg_vc_kbd_slock(kbd, value);
|
|
}
|
|
|
|
/*
|
|
* The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
|
|
* or (ii) whatever pattern of lights people want to show using KDSETLED,
|
|
* or (iii) specified bits of specified words in kernel memory.
|
|
*/
|
|
|
|
static unsigned char ledstate = 0xff; /* undefined */
|
|
static unsigned char ledioctl;
|
|
|
|
unsigned char getledstate(void) {
|
|
return ledstate;
|
|
}
|
|
|
|
void setledstate(struct kbd_struct *kbd, unsigned int led) {
|
|
if (!(led & ~7)) {
|
|
ledioctl = led;
|
|
kbd->ledmode = LED_SHOW_IOCTL;
|
|
} else {
|
|
;
|
|
}
|
|
kbd->ledmode = LED_SHOW_FLAGS;
|
|
set_leds();
|
|
}
|
|
|
|
static struct ledptr {
|
|
unsigned int *addr;
|
|
unsigned int mask;
|
|
unsigned char valid:1;
|
|
} ledptrs[3];
|
|
|
|
void register_leds(
|
|
int console,
|
|
unsigned int led,
|
|
unsigned int *addr,
|
|
unsigned int mask
|
|
)
|
|
{
|
|
struct kbd_struct *kbd = kbd_table + console;
|
|
|
|
if (led < 3) {
|
|
ledptrs[led].addr = addr;
|
|
ledptrs[led].mask = mask;
|
|
ledptrs[led].valid = 1;
|
|
kbd->ledmode = LED_SHOW_MEM;
|
|
} else
|
|
kbd->ledmode = LED_SHOW_FLAGS;
|
|
}
|
|
|
|
static inline unsigned char getleds(void)
|
|
{
|
|
|
|
struct kbd_struct *kbd = kbd_table + fg_console;
|
|
|
|
unsigned char leds;
|
|
|
|
if (kbd->ledmode == LED_SHOW_IOCTL)
|
|
return ledioctl;
|
|
leds = kbd->ledflagstate;
|
|
if (kbd->ledmode == LED_SHOW_MEM) {
|
|
if (ledptrs[0].valid) {
|
|
if (*ledptrs[0].addr & ledptrs[0].mask)
|
|
leds |= 1;
|
|
else
|
|
leds &= ~1;
|
|
}
|
|
if (ledptrs[1].valid) {
|
|
if (*ledptrs[1].addr & ledptrs[1].mask)
|
|
leds |= 2;
|
|
else
|
|
leds &= ~2;
|
|
}
|
|
if (ledptrs[2].valid) {
|
|
if (*ledptrs[2].addr & ledptrs[2].mask)
|
|
leds |= 4;
|
|
else
|
|
leds &= ~4;
|
|
}
|
|
}
|
|
return leds;
|
|
}
|
|
|
|
/*
|
|
* This routine is the bottom half of the keyboard interrupt
|
|
* routine, and runs with all interrupts enabled. It does
|
|
* console changing, led setting and copy_to_cooked, which can
|
|
* take a reasonably long time.
|
|
*
|
|
* Aside from timing (which isn't really that important for
|
|
* keyboard interrupts as they happen often), using the software
|
|
* interrupt routines for this thing allows us to easily mask
|
|
* this when we don't want any of the above to happen. Not yet
|
|
* used, but this allows for easy and efficient race-condition
|
|
* prevention later on.
|
|
*/
|
|
static void kbd_bh(void)
|
|
{
|
|
unsigned char leds = getleds();
|
|
if (leds != ledstate) {
|
|
ledstate = leds;
|
|
kbd_leds(leds);
|
|
}
|
|
}
|
|
|
|
void set_leds(void)
|
|
{
|
|
kbd_bh();
|
|
}
|
|
|
|
int kbd_init(void)
|
|
{
|
|
|
|
int i;
|
|
struct kbd_struct kbd0;
|
|
kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS;
|
|
kbd0.ledmode = LED_SHOW_MEM;
|
|
kbd0.lockstate = KBD_DEFLOCK;
|
|
kbd0.slockstate = 0;
|
|
kbd0.modeflags = KBD_DEFMODE;
|
|
kbd0.kbdmode = VC_XLATE;
|
|
|
|
for (i = 0 ; i < MAX_NR_CONSOLES ; i++)
|
|
kbd_table[i] = kbd0;
|
|
|
|
kbd_init_hw();
|
|
mark_bh(KEYBOARD_BH);
|
|
return 0;
|
|
}
|