mirror of
https://gitlab.rtems.org/rtems/rtos/rtems.git
synced 2025-12-05 15:15:44 +00:00
cpukit: Delete zlib and add to build
Includes had to be added to jffs2 and cpukit.
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -1,367 +0,0 @@
|
|||||||
|
|
||||||
Frequently Asked Questions about zlib
|
|
||||||
|
|
||||||
|
|
||||||
If your question is not there, please check the zlib home page
|
|
||||||
http://zlib.net/ which may have more recent information.
|
|
||||||
The latest zlib FAQ is at http://zlib.net/zlib_faq.html
|
|
||||||
|
|
||||||
|
|
||||||
1. Is zlib Y2K-compliant?
|
|
||||||
|
|
||||||
Yes. zlib doesn't handle dates.
|
|
||||||
|
|
||||||
2. Where can I get a Windows DLL version?
|
|
||||||
|
|
||||||
The zlib sources can be compiled without change to produce a DLL. See the
|
|
||||||
file win32/DLL_FAQ.txt in the zlib distribution.
|
|
||||||
|
|
||||||
3. Where can I get a Visual Basic interface to zlib?
|
|
||||||
|
|
||||||
See
|
|
||||||
* http://marknelson.us/1997/01/01/zlib-engine/
|
|
||||||
* win32/DLL_FAQ.txt in the zlib distribution
|
|
||||||
|
|
||||||
4. compress() returns Z_BUF_ERROR.
|
|
||||||
|
|
||||||
Make sure that before the call of compress(), the length of the compressed
|
|
||||||
buffer is equal to the available size of the compressed buffer and not
|
|
||||||
zero. For Visual Basic, check that this parameter is passed by reference
|
|
||||||
("as any"), not by value ("as long").
|
|
||||||
|
|
||||||
5. deflate() or inflate() returns Z_BUF_ERROR.
|
|
||||||
|
|
||||||
Before making the call, make sure that avail_in and avail_out are not zero.
|
|
||||||
When setting the parameter flush equal to Z_FINISH, also make sure that
|
|
||||||
avail_out is big enough to allow processing all pending input. Note that a
|
|
||||||
Z_BUF_ERROR is not fatal--another call to deflate() or inflate() can be
|
|
||||||
made with more input or output space. A Z_BUF_ERROR may in fact be
|
|
||||||
unavoidable depending on how the functions are used, since it is not
|
|
||||||
possible to tell whether or not there is more output pending when
|
|
||||||
strm.avail_out returns with zero. See http://zlib.net/zlib_how.html for a
|
|
||||||
heavily annotated example.
|
|
||||||
|
|
||||||
6. Where's the zlib documentation (man pages, etc.)?
|
|
||||||
|
|
||||||
It's in zlib.h . Examples of zlib usage are in the files test/example.c
|
|
||||||
and test/minigzip.c, with more in examples/ .
|
|
||||||
|
|
||||||
7. Why don't you use GNU autoconf or libtool or ...?
|
|
||||||
|
|
||||||
Because we would like to keep zlib as a very small and simple package.
|
|
||||||
zlib is rather portable and doesn't need much configuration.
|
|
||||||
|
|
||||||
8. I found a bug in zlib.
|
|
||||||
|
|
||||||
Most of the time, such problems are due to an incorrect usage of zlib.
|
|
||||||
Please try to reproduce the problem with a small program and send the
|
|
||||||
corresponding source to us at zlib@gzip.org . Do not send multi-megabyte
|
|
||||||
data files without prior agreement.
|
|
||||||
|
|
||||||
9. Why do I get "undefined reference to gzputc"?
|
|
||||||
|
|
||||||
If "make test" produces something like
|
|
||||||
|
|
||||||
example.o(.text+0x154): undefined reference to `gzputc'
|
|
||||||
|
|
||||||
check that you don't have old files libz.* in /usr/lib, /usr/local/lib or
|
|
||||||
/usr/X11R6/lib. Remove any old versions, then do "make install".
|
|
||||||
|
|
||||||
10. I need a Delphi interface to zlib.
|
|
||||||
|
|
||||||
See the contrib/delphi directory in the zlib distribution.
|
|
||||||
|
|
||||||
11. Can zlib handle .zip archives?
|
|
||||||
|
|
||||||
Not by itself, no. See the directory contrib/minizip in the zlib
|
|
||||||
distribution.
|
|
||||||
|
|
||||||
12. Can zlib handle .Z files?
|
|
||||||
|
|
||||||
No, sorry. You have to spawn an uncompress or gunzip subprocess, or adapt
|
|
||||||
the code of uncompress on your own.
|
|
||||||
|
|
||||||
13. How can I make a Unix shared library?
|
|
||||||
|
|
||||||
By default a shared (and a static) library is built for Unix. So:
|
|
||||||
|
|
||||||
make distclean
|
|
||||||
./configure
|
|
||||||
make
|
|
||||||
|
|
||||||
14. How do I install a shared zlib library on Unix?
|
|
||||||
|
|
||||||
After the above, then:
|
|
||||||
|
|
||||||
make install
|
|
||||||
|
|
||||||
However, many flavors of Unix come with a shared zlib already installed.
|
|
||||||
Before going to the trouble of compiling a shared version of zlib and
|
|
||||||
trying to install it, you may want to check if it's already there! If you
|
|
||||||
can #include <zlib.h>, it's there. The -lz option will probably link to
|
|
||||||
it. You can check the version at the top of zlib.h or with the
|
|
||||||
ZLIB_VERSION symbol defined in zlib.h .
|
|
||||||
|
|
||||||
15. I have a question about OttoPDF.
|
|
||||||
|
|
||||||
We are not the authors of OttoPDF. The real author is on the OttoPDF web
|
|
||||||
site: Joel Hainley, jhainley@myndkryme.com.
|
|
||||||
|
|
||||||
16. Can zlib decode Flate data in an Adobe PDF file?
|
|
||||||
|
|
||||||
Yes. See http://www.pdflib.com/ . To modify PDF forms, see
|
|
||||||
http://sourceforge.net/projects/acroformtool/ .
|
|
||||||
|
|
||||||
17. Why am I getting this "register_frame_info not found" error on Solaris?
|
|
||||||
|
|
||||||
After installing zlib 1.1.4 on Solaris 2.6, running applications using zlib
|
|
||||||
generates an error such as:
|
|
||||||
|
|
||||||
ld.so.1: rpm: fatal: relocation error: file /usr/local/lib/libz.so:
|
|
||||||
symbol __register_frame_info: referenced symbol not found
|
|
||||||
|
|
||||||
The symbol __register_frame_info is not part of zlib, it is generated by
|
|
||||||
the C compiler (cc or gcc). You must recompile applications using zlib
|
|
||||||
which have this problem. This problem is specific to Solaris. See
|
|
||||||
http://www.sunfreeware.com for Solaris versions of zlib and applications
|
|
||||||
using zlib.
|
|
||||||
|
|
||||||
18. Why does gzip give an error on a file I make with compress/deflate?
|
|
||||||
|
|
||||||
The compress and deflate functions produce data in the zlib format, which
|
|
||||||
is different and incompatible with the gzip format. The gz* functions in
|
|
||||||
zlib on the other hand use the gzip format. Both the zlib and gzip formats
|
|
||||||
use the same compressed data format internally, but have different headers
|
|
||||||
and trailers around the compressed data.
|
|
||||||
|
|
||||||
19. Ok, so why are there two different formats?
|
|
||||||
|
|
||||||
The gzip format was designed to retain the directory information about a
|
|
||||||
single file, such as the name and last modification date. The zlib format
|
|
||||||
on the other hand was designed for in-memory and communication channel
|
|
||||||
applications, and has a much more compact header and trailer and uses a
|
|
||||||
faster integrity check than gzip.
|
|
||||||
|
|
||||||
20. Well that's nice, but how do I make a gzip file in memory?
|
|
||||||
|
|
||||||
You can request that deflate write the gzip format instead of the zlib
|
|
||||||
format using deflateInit2(). You can also request that inflate decode the
|
|
||||||
gzip format using inflateInit2(). Read zlib.h for more details.
|
|
||||||
|
|
||||||
21. Is zlib thread-safe?
|
|
||||||
|
|
||||||
Yes. However any library routines that zlib uses and any application-
|
|
||||||
provided memory allocation routines must also be thread-safe. zlib's gz*
|
|
||||||
functions use stdio library routines, and most of zlib's functions use the
|
|
||||||
library memory allocation routines by default. zlib's *Init* functions
|
|
||||||
allow for the application to provide custom memory allocation routines.
|
|
||||||
|
|
||||||
Of course, you should only operate on any given zlib or gzip stream from a
|
|
||||||
single thread at a time.
|
|
||||||
|
|
||||||
22. Can I use zlib in my commercial application?
|
|
||||||
|
|
||||||
Yes. Please read the license in zlib.h.
|
|
||||||
|
|
||||||
23. Is zlib under the GNU license?
|
|
||||||
|
|
||||||
No. Please read the license in zlib.h.
|
|
||||||
|
|
||||||
24. The license says that altered source versions must be "plainly marked". So
|
|
||||||
what exactly do I need to do to meet that requirement?
|
|
||||||
|
|
||||||
You need to change the ZLIB_VERSION and ZLIB_VERNUM #defines in zlib.h. In
|
|
||||||
particular, the final version number needs to be changed to "f", and an
|
|
||||||
identification string should be appended to ZLIB_VERSION. Version numbers
|
|
||||||
x.x.x.f are reserved for modifications to zlib by others than the zlib
|
|
||||||
maintainers. For example, if the version of the base zlib you are altering
|
|
||||||
is "1.2.3.4", then in zlib.h you should change ZLIB_VERNUM to 0x123f, and
|
|
||||||
ZLIB_VERSION to something like "1.2.3.f-zachary-mods-v3". You can also
|
|
||||||
update the version strings in deflate.c and inftrees.c.
|
|
||||||
|
|
||||||
For altered source distributions, you should also note the origin and
|
|
||||||
nature of the changes in zlib.h, as well as in ChangeLog and README, along
|
|
||||||
with the dates of the alterations. The origin should include at least your
|
|
||||||
name (or your company's name), and an email address to contact for help or
|
|
||||||
issues with the library.
|
|
||||||
|
|
||||||
Note that distributing a compiled zlib library along with zlib.h and
|
|
||||||
zconf.h is also a source distribution, and so you should change
|
|
||||||
ZLIB_VERSION and ZLIB_VERNUM and note the origin and nature of the changes
|
|
||||||
in zlib.h as you would for a full source distribution.
|
|
||||||
|
|
||||||
25. Will zlib work on a big-endian or little-endian architecture, and can I
|
|
||||||
exchange compressed data between them?
|
|
||||||
|
|
||||||
Yes and yes.
|
|
||||||
|
|
||||||
26. Will zlib work on a 64-bit machine?
|
|
||||||
|
|
||||||
Yes. It has been tested on 64-bit machines, and has no dependence on any
|
|
||||||
data types being limited to 32-bits in length. If you have any
|
|
||||||
difficulties, please provide a complete problem report to zlib@gzip.org
|
|
||||||
|
|
||||||
27. Will zlib decompress data from the PKWare Data Compression Library?
|
|
||||||
|
|
||||||
No. The PKWare DCL uses a completely different compressed data format than
|
|
||||||
does PKZIP and zlib. However, you can look in zlib's contrib/blast
|
|
||||||
directory for a possible solution to your problem.
|
|
||||||
|
|
||||||
28. Can I access data randomly in a compressed stream?
|
|
||||||
|
|
||||||
No, not without some preparation. If when compressing you periodically use
|
|
||||||
Z_FULL_FLUSH, carefully write all the pending data at those points, and
|
|
||||||
keep an index of those locations, then you can start decompression at those
|
|
||||||
points. You have to be careful to not use Z_FULL_FLUSH too often, since it
|
|
||||||
can significantly degrade compression. Alternatively, you can scan a
|
|
||||||
deflate stream once to generate an index, and then use that index for
|
|
||||||
random access. See examples/zran.c .
|
|
||||||
|
|
||||||
29. Does zlib work on MVS, OS/390, CICS, etc.?
|
|
||||||
|
|
||||||
It has in the past, but we have not heard of any recent evidence. There
|
|
||||||
were working ports of zlib 1.1.4 to MVS, but those links no longer work.
|
|
||||||
If you know of recent, successful applications of zlib on these operating
|
|
||||||
systems, please let us know. Thanks.
|
|
||||||
|
|
||||||
30. Is there some simpler, easier to read version of inflate I can look at to
|
|
||||||
understand the deflate format?
|
|
||||||
|
|
||||||
First off, you should read RFC 1951. Second, yes. Look in zlib's
|
|
||||||
contrib/puff directory.
|
|
||||||
|
|
||||||
31. Does zlib infringe on any patents?
|
|
||||||
|
|
||||||
As far as we know, no. In fact, that was originally the whole point behind
|
|
||||||
zlib. Look here for some more information:
|
|
||||||
|
|
||||||
http://www.gzip.org/#faq11
|
|
||||||
|
|
||||||
32. Can zlib work with greater than 4 GB of data?
|
|
||||||
|
|
||||||
Yes. inflate() and deflate() will process any amount of data correctly.
|
|
||||||
Each call of inflate() or deflate() is limited to input and output chunks
|
|
||||||
of the maximum value that can be stored in the compiler's "unsigned int"
|
|
||||||
type, but there is no limit to the number of chunks. Note however that the
|
|
||||||
strm.total_in and strm_total_out counters may be limited to 4 GB. These
|
|
||||||
counters are provided as a convenience and are not used internally by
|
|
||||||
inflate() or deflate(). The application can easily set up its own counters
|
|
||||||
updated after each call of inflate() or deflate() to count beyond 4 GB.
|
|
||||||
compress() and uncompress() may be limited to 4 GB, since they operate in a
|
|
||||||
single call. gzseek() and gztell() may be limited to 4 GB depending on how
|
|
||||||
zlib is compiled. See the zlibCompileFlags() function in zlib.h.
|
|
||||||
|
|
||||||
The word "may" appears several times above since there is a 4 GB limit only
|
|
||||||
if the compiler's "long" type is 32 bits. If the compiler's "long" type is
|
|
||||||
64 bits, then the limit is 16 exabytes.
|
|
||||||
|
|
||||||
33. Does zlib have any security vulnerabilities?
|
|
||||||
|
|
||||||
The only one that we are aware of is potentially in gzprintf(). If zlib is
|
|
||||||
compiled to use sprintf() or vsprintf(), then there is no protection
|
|
||||||
against a buffer overflow of an 8K string space (or other value as set by
|
|
||||||
gzbuffer()), other than the caller of gzprintf() assuring that the output
|
|
||||||
will not exceed 8K. On the other hand, if zlib is compiled to use
|
|
||||||
snprintf() or vsnprintf(), which should normally be the case, then there is
|
|
||||||
no vulnerability. The ./configure script will display warnings if an
|
|
||||||
insecure variation of sprintf() will be used by gzprintf(). Also the
|
|
||||||
zlibCompileFlags() function will return information on what variant of
|
|
||||||
sprintf() is used by gzprintf().
|
|
||||||
|
|
||||||
If you don't have snprintf() or vsnprintf() and would like one, you can
|
|
||||||
find a portable implementation here:
|
|
||||||
|
|
||||||
http://www.ijs.si/software/snprintf/
|
|
||||||
|
|
||||||
Note that you should be using the most recent version of zlib. Versions
|
|
||||||
1.1.3 and before were subject to a double-free vulnerability, and versions
|
|
||||||
1.2.1 and 1.2.2 were subject to an access exception when decompressing
|
|
||||||
invalid compressed data.
|
|
||||||
|
|
||||||
34. Is there a Java version of zlib?
|
|
||||||
|
|
||||||
Probably what you want is to use zlib in Java. zlib is already included
|
|
||||||
as part of the Java SDK in the java.util.zip package. If you really want
|
|
||||||
a version of zlib written in the Java language, look on the zlib home
|
|
||||||
page for links: http://zlib.net/ .
|
|
||||||
|
|
||||||
35. I get this or that compiler or source-code scanner warning when I crank it
|
|
||||||
up to maximally-pedantic. Can't you guys write proper code?
|
|
||||||
|
|
||||||
Many years ago, we gave up attempting to avoid warnings on every compiler
|
|
||||||
in the universe. It just got to be a waste of time, and some compilers
|
|
||||||
were downright silly as well as contradicted each other. So now, we simply
|
|
||||||
make sure that the code always works.
|
|
||||||
|
|
||||||
36. Valgrind (or some similar memory access checker) says that deflate is
|
|
||||||
performing a conditional jump that depends on an uninitialized value.
|
|
||||||
Isn't that a bug?
|
|
||||||
|
|
||||||
No. That is intentional for performance reasons, and the output of deflate
|
|
||||||
is not affected. This only started showing up recently since zlib 1.2.x
|
|
||||||
uses malloc() by default for allocations, whereas earlier versions used
|
|
||||||
calloc(), which zeros out the allocated memory. Even though the code was
|
|
||||||
correct, versions 1.2.4 and later was changed to not stimulate these
|
|
||||||
checkers.
|
|
||||||
|
|
||||||
37. Will zlib read the (insert any ancient or arcane format here) compressed
|
|
||||||
data format?
|
|
||||||
|
|
||||||
Probably not. Look in the comp.compression FAQ for pointers to various
|
|
||||||
formats and associated software.
|
|
||||||
|
|
||||||
38. How can I encrypt/decrypt zip files with zlib?
|
|
||||||
|
|
||||||
zlib doesn't support encryption. The original PKZIP encryption is very
|
|
||||||
weak and can be broken with freely available programs. To get strong
|
|
||||||
encryption, use GnuPG, http://www.gnupg.org/ , which already includes zlib
|
|
||||||
compression. For PKZIP compatible "encryption", look at
|
|
||||||
http://www.info-zip.org/
|
|
||||||
|
|
||||||
39. What's the difference between the "gzip" and "deflate" HTTP 1.1 encodings?
|
|
||||||
|
|
||||||
"gzip" is the gzip format, and "deflate" is the zlib format. They should
|
|
||||||
probably have called the second one "zlib" instead to avoid confusion with
|
|
||||||
the raw deflate compressed data format. While the HTTP 1.1 RFC 2616
|
|
||||||
correctly points to the zlib specification in RFC 1950 for the "deflate"
|
|
||||||
transfer encoding, there have been reports of servers and browsers that
|
|
||||||
incorrectly produce or expect raw deflate data per the deflate
|
|
||||||
specification in RFC 1951, most notably Microsoft. So even though the
|
|
||||||
"deflate" transfer encoding using the zlib format would be the more
|
|
||||||
efficient approach (and in fact exactly what the zlib format was designed
|
|
||||||
for), using the "gzip" transfer encoding is probably more reliable due to
|
|
||||||
an unfortunate choice of name on the part of the HTTP 1.1 authors.
|
|
||||||
|
|
||||||
Bottom line: use the gzip format for HTTP 1.1 encoding.
|
|
||||||
|
|
||||||
40. Does zlib support the new "Deflate64" format introduced by PKWare?
|
|
||||||
|
|
||||||
No. PKWare has apparently decided to keep that format proprietary, since
|
|
||||||
they have not documented it as they have previous compression formats. In
|
|
||||||
any case, the compression improvements are so modest compared to other more
|
|
||||||
modern approaches, that it's not worth the effort to implement.
|
|
||||||
|
|
||||||
41. I'm having a problem with the zip functions in zlib, can you help?
|
|
||||||
|
|
||||||
There are no zip functions in zlib. You are probably using minizip by
|
|
||||||
Giles Vollant, which is found in the contrib directory of zlib. It is not
|
|
||||||
part of zlib. In fact none of the stuff in contrib is part of zlib. The
|
|
||||||
files in there are not supported by the zlib authors. You need to contact
|
|
||||||
the authors of the respective contribution for help.
|
|
||||||
|
|
||||||
42. The match.asm code in contrib is under the GNU General Public License.
|
|
||||||
Since it's part of zlib, doesn't that mean that all of zlib falls under the
|
|
||||||
GNU GPL?
|
|
||||||
|
|
||||||
No. The files in contrib are not part of zlib. They were contributed by
|
|
||||||
other authors and are provided as a convenience to the user within the zlib
|
|
||||||
distribution. Each item in contrib has its own license.
|
|
||||||
|
|
||||||
43. Is zlib subject to export controls? What is its ECCN?
|
|
||||||
|
|
||||||
zlib is not subject to export controls, and so is classified as EAR99.
|
|
||||||
|
|
||||||
44. Can you please sign these lengthy legal documents and fax them back to us
|
|
||||||
so that we can use your software in our product?
|
|
||||||
|
|
||||||
No. Go away. Shoo.
|
|
||||||
@@ -1,118 +0,0 @@
|
|||||||
ZLIB DATA COMPRESSION LIBRARY
|
|
||||||
=============================
|
|
||||||
|
|
||||||
zlib 1.3.1 is a general purpose data compression library. All the code is
|
|
||||||
thread safe. The data format used by the zlib library is described by RFCs
|
|
||||||
(Request for Comments) 1950 to 1952 in the files
|
|
||||||
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
|
|
||||||
rfc1952 (gzip format).
|
|
||||||
|
|
||||||
All functions of the compression library are documented in the file zlib.h
|
|
||||||
(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
|
|
||||||
of the library is given in the file test/example.c which also tests that
|
|
||||||
the library is working correctly. Another example is given in the file
|
|
||||||
test/minigzip.c. The compression library itself is composed of all source
|
|
||||||
files in the root directory.
|
|
||||||
|
|
||||||
To compile all files and run the test program, follow the instructions given at
|
|
||||||
the top of Makefile.in. In short "./configure; make test", and if that goes
|
|
||||||
well, "make install" should work for most flavors of Unix. For Windows, use
|
|
||||||
one of the special makefiles in win32/ or contrib/vstudio/ . For VMS, use
|
|
||||||
make_vms.com.
|
|
||||||
|
|
||||||
Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
|
|
||||||
<info@winimage.com> for the Windows DLL version. The zlib home page is
|
|
||||||
http://zlib.net/ . Before reporting a problem, please check this site to
|
|
||||||
verify that you have the latest version of zlib; otherwise get the latest
|
|
||||||
version and check whether the problem still exists or not.
|
|
||||||
|
|
||||||
PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
|
|
||||||
|
|
||||||
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
|
|
||||||
issue of Dr. Dobb's Journal; a copy of the article is available at
|
|
||||||
https://marknelson.us/posts/1997/01/01/zlib-engine.html .
|
|
||||||
|
|
||||||
The changes made in version 1.3.1 are documented in the file ChangeLog.
|
|
||||||
|
|
||||||
Unsupported third party contributions are provided in directory contrib/ .
|
|
||||||
|
|
||||||
zlib is available in Java using the java.util.zip package. Follow the API
|
|
||||||
Documentation link at: https://docs.oracle.com/search/?q=java.util.zip .
|
|
||||||
|
|
||||||
A Perl interface to zlib and bzip2 written by Paul Marquess <pmqs@cpan.org>
|
|
||||||
can be found at https://github.com/pmqs/IO-Compress .
|
|
||||||
|
|
||||||
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
|
|
||||||
available in Python 1.5 and later versions, see
|
|
||||||
http://docs.python.org/library/zlib.html .
|
|
||||||
|
|
||||||
zlib is built into tcl: http://wiki.tcl.tk/4610 .
|
|
||||||
|
|
||||||
An experimental package to read and write files in .zip format, written on top
|
|
||||||
of zlib by Gilles Vollant <info@winimage.com>, is available in the
|
|
||||||
contrib/minizip directory of zlib.
|
|
||||||
|
|
||||||
|
|
||||||
Notes for some targets:
|
|
||||||
|
|
||||||
- For Windows DLL versions, please see win32/DLL_FAQ.txt
|
|
||||||
|
|
||||||
- For 64-bit Irix, deflate.c must be compiled without any optimization. With
|
|
||||||
-O, one libpng test fails. The test works in 32 bit mode (with the -n32
|
|
||||||
compiler flag). The compiler bug has been reported to SGI.
|
|
||||||
|
|
||||||
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
|
|
||||||
when compiled with cc.
|
|
||||||
|
|
||||||
- On Digital Unix 4.0D (formerly OSF/1) on AlphaServer, the cc option -std1 is
|
|
||||||
necessary to get gzprintf working correctly. This is done by configure.
|
|
||||||
|
|
||||||
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
|
|
||||||
other compilers. Use "make test" to check your compiler.
|
|
||||||
|
|
||||||
- gzdopen is not supported on RISCOS or BEOS.
|
|
||||||
|
|
||||||
- For PalmOs, see http://palmzlib.sourceforge.net/
|
|
||||||
|
|
||||||
|
|
||||||
Acknowledgments:
|
|
||||||
|
|
||||||
The deflate format used by zlib was defined by Phil Katz. The deflate and
|
|
||||||
zlib specifications were written by L. Peter Deutsch. Thanks to all the
|
|
||||||
people who reported problems and suggested various improvements in zlib; they
|
|
||||||
are too numerous to cite here.
|
|
||||||
|
|
||||||
Copyright notice:
|
|
||||||
|
|
||||||
(C) 1995-2024 Jean-loup Gailly and Mark Adler
|
|
||||||
|
|
||||||
This software is provided 'as-is', without any express or implied
|
|
||||||
warranty. In no event will the authors be held liable for any damages
|
|
||||||
arising from the use of this software.
|
|
||||||
|
|
||||||
Permission is granted to anyone to use this software for any purpose,
|
|
||||||
including commercial applications, and to alter it and redistribute it
|
|
||||||
freely, subject to the following restrictions:
|
|
||||||
|
|
||||||
1. The origin of this software must not be misrepresented; you must not
|
|
||||||
claim that you wrote the original software. If you use this software
|
|
||||||
in a product, an acknowledgment in the product documentation would be
|
|
||||||
appreciated but is not required.
|
|
||||||
2. Altered source versions must be plainly marked as such, and must not be
|
|
||||||
misrepresented as being the original software.
|
|
||||||
3. This notice may not be removed or altered from any source distribution.
|
|
||||||
|
|
||||||
Jean-loup Gailly Mark Adler
|
|
||||||
jloup@gzip.org madler@alumni.caltech.edu
|
|
||||||
|
|
||||||
If you use the zlib library in a product, we would appreciate *not* receiving
|
|
||||||
lengthy legal documents to sign. The sources are provided for free but without
|
|
||||||
warranty of any kind. The library has been entirely written by Jean-loup
|
|
||||||
Gailly and Mark Adler; it does not include third-party code. We make all
|
|
||||||
contributions to and distributions of this project solely in our personal
|
|
||||||
capacity, and are not conveying any rights to any intellectual property of
|
|
||||||
any third parties.
|
|
||||||
|
|
||||||
If you redistribute modified sources, we would appreciate that you include in
|
|
||||||
the file ChangeLog history information documenting your changes. Please read
|
|
||||||
the FAQ for more information on the distribution of modified source versions.
|
|
||||||
@@ -1,164 +0,0 @@
|
|||||||
/* adler32.c -- compute the Adler-32 checksum of a data stream
|
|
||||||
* Copyright (C) 1995-2011, 2016 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
|
|
||||||
#define BASE 65521U /* largest prime smaller than 65536 */
|
|
||||||
#define NMAX 5552
|
|
||||||
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
|
||||||
|
|
||||||
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
|
||||||
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
|
||||||
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
|
||||||
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
|
||||||
#define DO16(buf) DO8(buf,0); DO8(buf,8);
|
|
||||||
|
|
||||||
/* use NO_DIVIDE if your processor does not do division in hardware --
|
|
||||||
try it both ways to see which is faster */
|
|
||||||
#ifdef NO_DIVIDE
|
|
||||||
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
|
|
||||||
(thank you to John Reiser for pointing this out) */
|
|
||||||
# define CHOP(a) \
|
|
||||||
do { \
|
|
||||||
unsigned long tmp = a >> 16; \
|
|
||||||
a &= 0xffffUL; \
|
|
||||||
a += (tmp << 4) - tmp; \
|
|
||||||
} while (0)
|
|
||||||
# define MOD28(a) \
|
|
||||||
do { \
|
|
||||||
CHOP(a); \
|
|
||||||
if (a >= BASE) a -= BASE; \
|
|
||||||
} while (0)
|
|
||||||
# define MOD(a) \
|
|
||||||
do { \
|
|
||||||
CHOP(a); \
|
|
||||||
MOD28(a); \
|
|
||||||
} while (0)
|
|
||||||
# define MOD63(a) \
|
|
||||||
do { /* this assumes a is not negative */ \
|
|
||||||
z_off64_t tmp = a >> 32; \
|
|
||||||
a &= 0xffffffffL; \
|
|
||||||
a += (tmp << 8) - (tmp << 5) + tmp; \
|
|
||||||
tmp = a >> 16; \
|
|
||||||
a &= 0xffffL; \
|
|
||||||
a += (tmp << 4) - tmp; \
|
|
||||||
tmp = a >> 16; \
|
|
||||||
a &= 0xffffL; \
|
|
||||||
a += (tmp << 4) - tmp; \
|
|
||||||
if (a >= BASE) a -= BASE; \
|
|
||||||
} while (0)
|
|
||||||
#else
|
|
||||||
# define MOD(a) a %= BASE
|
|
||||||
# define MOD28(a) a %= BASE
|
|
||||||
# define MOD63(a) a %= BASE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* ========================================================================= */
|
|
||||||
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
|
|
||||||
unsigned long sum2;
|
|
||||||
unsigned n;
|
|
||||||
|
|
||||||
/* split Adler-32 into component sums */
|
|
||||||
sum2 = (adler >> 16) & 0xffff;
|
|
||||||
adler &= 0xffff;
|
|
||||||
|
|
||||||
/* in case user likes doing a byte at a time, keep it fast */
|
|
||||||
if (len == 1) {
|
|
||||||
adler += buf[0];
|
|
||||||
if (adler >= BASE)
|
|
||||||
adler -= BASE;
|
|
||||||
sum2 += adler;
|
|
||||||
if (sum2 >= BASE)
|
|
||||||
sum2 -= BASE;
|
|
||||||
return adler | (sum2 << 16);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* initial Adler-32 value (deferred check for len == 1 speed) */
|
|
||||||
if (buf == Z_NULL)
|
|
||||||
return 1L;
|
|
||||||
|
|
||||||
/* in case short lengths are provided, keep it somewhat fast */
|
|
||||||
if (len < 16) {
|
|
||||||
while (len--) {
|
|
||||||
adler += *buf++;
|
|
||||||
sum2 += adler;
|
|
||||||
}
|
|
||||||
if (adler >= BASE)
|
|
||||||
adler -= BASE;
|
|
||||||
MOD28(sum2); /* only added so many BASE's */
|
|
||||||
return adler | (sum2 << 16);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* do length NMAX blocks -- requires just one modulo operation */
|
|
||||||
while (len >= NMAX) {
|
|
||||||
len -= NMAX;
|
|
||||||
n = NMAX / 16; /* NMAX is divisible by 16 */
|
|
||||||
do {
|
|
||||||
DO16(buf); /* 16 sums unrolled */
|
|
||||||
buf += 16;
|
|
||||||
} while (--n);
|
|
||||||
MOD(adler);
|
|
||||||
MOD(sum2);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* do remaining bytes (less than NMAX, still just one modulo) */
|
|
||||||
if (len) { /* avoid modulos if none remaining */
|
|
||||||
while (len >= 16) {
|
|
||||||
len -= 16;
|
|
||||||
DO16(buf);
|
|
||||||
buf += 16;
|
|
||||||
}
|
|
||||||
while (len--) {
|
|
||||||
adler += *buf++;
|
|
||||||
sum2 += adler;
|
|
||||||
}
|
|
||||||
MOD(adler);
|
|
||||||
MOD(sum2);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* return recombined sums */
|
|
||||||
return adler | (sum2 << 16);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ========================================================================= */
|
|
||||||
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
|
|
||||||
return adler32_z(adler, buf, len);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ========================================================================= */
|
|
||||||
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
|
|
||||||
unsigned long sum1;
|
|
||||||
unsigned long sum2;
|
|
||||||
unsigned rem;
|
|
||||||
|
|
||||||
/* for negative len, return invalid adler32 as a clue for debugging */
|
|
||||||
if (len2 < 0)
|
|
||||||
return 0xffffffffUL;
|
|
||||||
|
|
||||||
/* the derivation of this formula is left as an exercise for the reader */
|
|
||||||
MOD63(len2); /* assumes len2 >= 0 */
|
|
||||||
rem = (unsigned)len2;
|
|
||||||
sum1 = adler1 & 0xffff;
|
|
||||||
sum2 = rem * sum1;
|
|
||||||
MOD(sum2);
|
|
||||||
sum1 += (adler2 & 0xffff) + BASE - 1;
|
|
||||||
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
|
||||||
if (sum1 >= BASE) sum1 -= BASE;
|
|
||||||
if (sum1 >= BASE) sum1 -= BASE;
|
|
||||||
if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
|
|
||||||
if (sum2 >= BASE) sum2 -= BASE;
|
|
||||||
return sum1 | (sum2 << 16);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ========================================================================= */
|
|
||||||
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
|
|
||||||
return adler32_combine_(adler1, adler2, len2);
|
|
||||||
}
|
|
||||||
|
|
||||||
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
|
|
||||||
return adler32_combine_(adler1, adler2, len2);
|
|
||||||
}
|
|
||||||
@@ -1,75 +0,0 @@
|
|||||||
/* compress.c -- compress a memory buffer
|
|
||||||
* Copyright (C) 1995-2005, 2014, 2016 Jean-loup Gailly, Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#define ZLIB_INTERNAL
|
|
||||||
#include "zlib.h"
|
|
||||||
|
|
||||||
/* ===========================================================================
|
|
||||||
Compresses the source buffer into the destination buffer. The level
|
|
||||||
parameter has the same meaning as in deflateInit. sourceLen is the byte
|
|
||||||
length of the source buffer. Upon entry, destLen is the total size of the
|
|
||||||
destination buffer, which must be at least 0.1% larger than sourceLen plus
|
|
||||||
12 bytes. Upon exit, destLen is the actual size of the compressed buffer.
|
|
||||||
|
|
||||||
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
|
||||||
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
|
|
||||||
Z_STREAM_ERROR if the level parameter is invalid.
|
|
||||||
*/
|
|
||||||
int ZEXPORT compress2(Bytef *dest, uLongf *destLen, const Bytef *source,
|
|
||||||
uLong sourceLen, int level) {
|
|
||||||
z_stream stream;
|
|
||||||
int err;
|
|
||||||
const uInt max = (uInt)-1;
|
|
||||||
uLong left;
|
|
||||||
|
|
||||||
left = *destLen;
|
|
||||||
*destLen = 0;
|
|
||||||
|
|
||||||
stream.zalloc = (alloc_func)0;
|
|
||||||
stream.zfree = (free_func)0;
|
|
||||||
stream.opaque = (voidpf)0;
|
|
||||||
|
|
||||||
err = deflateInit(&stream, level);
|
|
||||||
if (err != Z_OK) return err;
|
|
||||||
|
|
||||||
stream.next_out = dest;
|
|
||||||
stream.avail_out = 0;
|
|
||||||
stream.next_in = (z_const Bytef *)source;
|
|
||||||
stream.avail_in = 0;
|
|
||||||
|
|
||||||
do {
|
|
||||||
if (stream.avail_out == 0) {
|
|
||||||
stream.avail_out = left > (uLong)max ? max : (uInt)left;
|
|
||||||
left -= stream.avail_out;
|
|
||||||
}
|
|
||||||
if (stream.avail_in == 0) {
|
|
||||||
stream.avail_in = sourceLen > (uLong)max ? max : (uInt)sourceLen;
|
|
||||||
sourceLen -= stream.avail_in;
|
|
||||||
}
|
|
||||||
err = deflate(&stream, sourceLen ? Z_NO_FLUSH : Z_FINISH);
|
|
||||||
} while (err == Z_OK);
|
|
||||||
|
|
||||||
*destLen = stream.total_out;
|
|
||||||
deflateEnd(&stream);
|
|
||||||
return err == Z_STREAM_END ? Z_OK : err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ===========================================================================
|
|
||||||
*/
|
|
||||||
int ZEXPORT compress(Bytef *dest, uLongf *destLen, const Bytef *source,
|
|
||||||
uLong sourceLen) {
|
|
||||||
return compress2(dest, destLen, source, sourceLen, Z_DEFAULT_COMPRESSION);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* ===========================================================================
|
|
||||||
If the default memLevel or windowBits for deflateInit() is changed, then
|
|
||||||
this function needs to be updated.
|
|
||||||
*/
|
|
||||||
uLong ZEXPORT compressBound(uLong sourceLen) {
|
|
||||||
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
|
|
||||||
(sourceLen >> 25) + 13;
|
|
||||||
}
|
|
||||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,377 +0,0 @@
|
|||||||
/* deflate.h -- internal compression state
|
|
||||||
* Copyright (C) 1995-2024 Jean-loup Gailly
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications. It is
|
|
||||||
part of the implementation of the compression library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#ifndef DEFLATE_H
|
|
||||||
#define DEFLATE_H
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
|
|
||||||
/* define NO_GZIP when compiling if you want to disable gzip header and
|
|
||||||
trailer creation by deflate(). NO_GZIP would be used to avoid linking in
|
|
||||||
the crc code when it is not needed. For shared libraries, gzip encoding
|
|
||||||
should be left enabled. */
|
|
||||||
#ifndef NO_GZIP
|
|
||||||
# define GZIP
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* define LIT_MEM to slightly increase the speed of deflate (order 1% to 2%) at
|
|
||||||
the cost of a larger memory footprint */
|
|
||||||
/* #define LIT_MEM */
|
|
||||||
|
|
||||||
/* ===========================================================================
|
|
||||||
* Internal compression state.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define LENGTH_CODES 29
|
|
||||||
/* number of length codes, not counting the special END_BLOCK code */
|
|
||||||
|
|
||||||
#define LITERALS 256
|
|
||||||
/* number of literal bytes 0..255 */
|
|
||||||
|
|
||||||
#define L_CODES (LITERALS+1+LENGTH_CODES)
|
|
||||||
/* number of Literal or Length codes, including the END_BLOCK code */
|
|
||||||
|
|
||||||
#define D_CODES 30
|
|
||||||
/* number of distance codes */
|
|
||||||
|
|
||||||
#define BL_CODES 19
|
|
||||||
/* number of codes used to transfer the bit lengths */
|
|
||||||
|
|
||||||
#define HEAP_SIZE (2*L_CODES+1)
|
|
||||||
/* maximum heap size */
|
|
||||||
|
|
||||||
#define MAX_BITS 15
|
|
||||||
/* All codes must not exceed MAX_BITS bits */
|
|
||||||
|
|
||||||
#define Buf_size 16
|
|
||||||
/* size of bit buffer in bi_buf */
|
|
||||||
|
|
||||||
#define INIT_STATE 42 /* zlib header -> BUSY_STATE */
|
|
||||||
#ifdef GZIP
|
|
||||||
# define GZIP_STATE 57 /* gzip header -> BUSY_STATE | EXTRA_STATE */
|
|
||||||
#endif
|
|
||||||
#define EXTRA_STATE 69 /* gzip extra block -> NAME_STATE */
|
|
||||||
#define NAME_STATE 73 /* gzip file name -> COMMENT_STATE */
|
|
||||||
#define COMMENT_STATE 91 /* gzip comment -> HCRC_STATE */
|
|
||||||
#define HCRC_STATE 103 /* gzip header CRC -> BUSY_STATE */
|
|
||||||
#define BUSY_STATE 113 /* deflate -> FINISH_STATE */
|
|
||||||
#define FINISH_STATE 666 /* stream complete */
|
|
||||||
/* Stream status */
|
|
||||||
|
|
||||||
|
|
||||||
/* Data structure describing a single value and its code string. */
|
|
||||||
typedef struct ct_data_s {
|
|
||||||
union {
|
|
||||||
ush freq; /* frequency count */
|
|
||||||
ush code; /* bit string */
|
|
||||||
} fc;
|
|
||||||
union {
|
|
||||||
ush dad; /* father node in Huffman tree */
|
|
||||||
ush len; /* length of bit string */
|
|
||||||
} dl;
|
|
||||||
} FAR ct_data;
|
|
||||||
|
|
||||||
#define Freq fc.freq
|
|
||||||
#define Code fc.code
|
|
||||||
#define Dad dl.dad
|
|
||||||
#define Len dl.len
|
|
||||||
|
|
||||||
typedef struct static_tree_desc_s static_tree_desc;
|
|
||||||
|
|
||||||
typedef struct tree_desc_s {
|
|
||||||
ct_data *dyn_tree; /* the dynamic tree */
|
|
||||||
int max_code; /* largest code with non zero frequency */
|
|
||||||
const static_tree_desc *stat_desc; /* the corresponding static tree */
|
|
||||||
} FAR tree_desc;
|
|
||||||
|
|
||||||
typedef ush Pos;
|
|
||||||
typedef Pos FAR Posf;
|
|
||||||
typedef unsigned IPos;
|
|
||||||
|
|
||||||
/* A Pos is an index in the character window. We use short instead of int to
|
|
||||||
* save space in the various tables. IPos is used only for parameter passing.
|
|
||||||
*/
|
|
||||||
|
|
||||||
typedef struct internal_state {
|
|
||||||
z_streamp strm; /* pointer back to this zlib stream */
|
|
||||||
int status; /* as the name implies */
|
|
||||||
Bytef *pending_buf; /* output still pending */
|
|
||||||
ulg pending_buf_size; /* size of pending_buf */
|
|
||||||
Bytef *pending_out; /* next pending byte to output to the stream */
|
|
||||||
ulg pending; /* nb of bytes in the pending buffer */
|
|
||||||
int wrap; /* bit 0 true for zlib, bit 1 true for gzip */
|
|
||||||
gz_headerp gzhead; /* gzip header information to write */
|
|
||||||
ulg gzindex; /* where in extra, name, or comment */
|
|
||||||
Byte method; /* can only be DEFLATED */
|
|
||||||
int last_flush; /* value of flush param for previous deflate call */
|
|
||||||
|
|
||||||
/* used by deflate.c: */
|
|
||||||
|
|
||||||
uInt w_size; /* LZ77 window size (32K by default) */
|
|
||||||
uInt w_bits; /* log2(w_size) (8..16) */
|
|
||||||
uInt w_mask; /* w_size - 1 */
|
|
||||||
|
|
||||||
Bytef *window;
|
|
||||||
/* Sliding window. Input bytes are read into the second half of the window,
|
|
||||||
* and move to the first half later to keep a dictionary of at least wSize
|
|
||||||
* bytes. With this organization, matches are limited to a distance of
|
|
||||||
* wSize-MAX_MATCH bytes, but this ensures that IO is always
|
|
||||||
* performed with a length multiple of the block size. Also, it limits
|
|
||||||
* the window size to 64K, which is quite useful on MSDOS.
|
|
||||||
* To do: use the user input buffer as sliding window.
|
|
||||||
*/
|
|
||||||
|
|
||||||
ulg window_size;
|
|
||||||
/* Actual size of window: 2*wSize, except when the user input buffer
|
|
||||||
* is directly used as sliding window.
|
|
||||||
*/
|
|
||||||
|
|
||||||
Posf *prev;
|
|
||||||
/* Link to older string with same hash index. To limit the size of this
|
|
||||||
* array to 64K, this link is maintained only for the last 32K strings.
|
|
||||||
* An index in this array is thus a window index modulo 32K.
|
|
||||||
*/
|
|
||||||
|
|
||||||
Posf *head; /* Heads of the hash chains or NIL. */
|
|
||||||
|
|
||||||
uInt ins_h; /* hash index of string to be inserted */
|
|
||||||
uInt hash_size; /* number of elements in hash table */
|
|
||||||
uInt hash_bits; /* log2(hash_size) */
|
|
||||||
uInt hash_mask; /* hash_size-1 */
|
|
||||||
|
|
||||||
uInt hash_shift;
|
|
||||||
/* Number of bits by which ins_h must be shifted at each input
|
|
||||||
* step. It must be such that after MIN_MATCH steps, the oldest
|
|
||||||
* byte no longer takes part in the hash key, that is:
|
|
||||||
* hash_shift * MIN_MATCH >= hash_bits
|
|
||||||
*/
|
|
||||||
|
|
||||||
long block_start;
|
|
||||||
/* Window position at the beginning of the current output block. Gets
|
|
||||||
* negative when the window is moved backwards.
|
|
||||||
*/
|
|
||||||
|
|
||||||
uInt match_length; /* length of best match */
|
|
||||||
IPos prev_match; /* previous match */
|
|
||||||
int match_available; /* set if previous match exists */
|
|
||||||
uInt strstart; /* start of string to insert */
|
|
||||||
uInt match_start; /* start of matching string */
|
|
||||||
uInt lookahead; /* number of valid bytes ahead in window */
|
|
||||||
|
|
||||||
uInt prev_length;
|
|
||||||
/* Length of the best match at previous step. Matches not greater than this
|
|
||||||
* are discarded. This is used in the lazy match evaluation.
|
|
||||||
*/
|
|
||||||
|
|
||||||
uInt max_chain_length;
|
|
||||||
/* To speed up deflation, hash chains are never searched beyond this
|
|
||||||
* length. A higher limit improves compression ratio but degrades the
|
|
||||||
* speed.
|
|
||||||
*/
|
|
||||||
|
|
||||||
uInt max_lazy_match;
|
|
||||||
/* Attempt to find a better match only when the current match is strictly
|
|
||||||
* smaller than this value. This mechanism is used only for compression
|
|
||||||
* levels >= 4.
|
|
||||||
*/
|
|
||||||
# define max_insert_length max_lazy_match
|
|
||||||
/* Insert new strings in the hash table only if the match length is not
|
|
||||||
* greater than this length. This saves time but degrades compression.
|
|
||||||
* max_insert_length is used only for compression levels <= 3.
|
|
||||||
*/
|
|
||||||
|
|
||||||
int level; /* compression level (1..9) */
|
|
||||||
int strategy; /* favor or force Huffman coding*/
|
|
||||||
|
|
||||||
uInt good_match;
|
|
||||||
/* Use a faster search when the previous match is longer than this */
|
|
||||||
|
|
||||||
int nice_match; /* Stop searching when current match exceeds this */
|
|
||||||
|
|
||||||
/* used by trees.c: */
|
|
||||||
/* Didn't use ct_data typedef below to suppress compiler warning */
|
|
||||||
struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
|
|
||||||
struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
|
|
||||||
struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
|
|
||||||
|
|
||||||
struct tree_desc_s l_desc; /* desc. for literal tree */
|
|
||||||
struct tree_desc_s d_desc; /* desc. for distance tree */
|
|
||||||
struct tree_desc_s bl_desc; /* desc. for bit length tree */
|
|
||||||
|
|
||||||
ush bl_count[MAX_BITS+1];
|
|
||||||
/* number of codes at each bit length for an optimal tree */
|
|
||||||
|
|
||||||
int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
|
|
||||||
int heap_len; /* number of elements in the heap */
|
|
||||||
int heap_max; /* element of largest frequency */
|
|
||||||
/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
|
|
||||||
* The same heap array is used to build all trees.
|
|
||||||
*/
|
|
||||||
|
|
||||||
uch depth[2*L_CODES+1];
|
|
||||||
/* Depth of each subtree used as tie breaker for trees of equal frequency
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifdef LIT_MEM
|
|
||||||
# define LIT_BUFS 5
|
|
||||||
ushf *d_buf; /* buffer for distances */
|
|
||||||
uchf *l_buf; /* buffer for literals/lengths */
|
|
||||||
#else
|
|
||||||
# define LIT_BUFS 4
|
|
||||||
uchf *sym_buf; /* buffer for distances and literals/lengths */
|
|
||||||
#endif
|
|
||||||
|
|
||||||
uInt lit_bufsize;
|
|
||||||
/* Size of match buffer for literals/lengths. There are 4 reasons for
|
|
||||||
* limiting lit_bufsize to 64K:
|
|
||||||
* - frequencies can be kept in 16 bit counters
|
|
||||||
* - if compression is not successful for the first block, all input
|
|
||||||
* data is still in the window so we can still emit a stored block even
|
|
||||||
* when input comes from standard input. (This can also be done for
|
|
||||||
* all blocks if lit_bufsize is not greater than 32K.)
|
|
||||||
* - if compression is not successful for a file smaller than 64K, we can
|
|
||||||
* even emit a stored file instead of a stored block (saving 5 bytes).
|
|
||||||
* This is applicable only for zip (not gzip or zlib).
|
|
||||||
* - creating new Huffman trees less frequently may not provide fast
|
|
||||||
* adaptation to changes in the input data statistics. (Take for
|
|
||||||
* example a binary file with poorly compressible code followed by
|
|
||||||
* a highly compressible string table.) Smaller buffer sizes give
|
|
||||||
* fast adaptation but have of course the overhead of transmitting
|
|
||||||
* trees more frequently.
|
|
||||||
* - I can't count above 4
|
|
||||||
*/
|
|
||||||
|
|
||||||
uInt sym_next; /* running index in symbol buffer */
|
|
||||||
uInt sym_end; /* symbol table full when sym_next reaches this */
|
|
||||||
|
|
||||||
ulg opt_len; /* bit length of current block with optimal trees */
|
|
||||||
ulg static_len; /* bit length of current block with static trees */
|
|
||||||
uInt matches; /* number of string matches in current block */
|
|
||||||
uInt insert; /* bytes at end of window left to insert */
|
|
||||||
|
|
||||||
#ifdef ZLIB_DEBUG
|
|
||||||
ulg compressed_len; /* total bit length of compressed file mod 2^32 */
|
|
||||||
ulg bits_sent; /* bit length of compressed data sent mod 2^32 */
|
|
||||||
#endif
|
|
||||||
|
|
||||||
ush bi_buf;
|
|
||||||
/* Output buffer. bits are inserted starting at the bottom (least
|
|
||||||
* significant bits).
|
|
||||||
*/
|
|
||||||
int bi_valid;
|
|
||||||
/* Number of valid bits in bi_buf. All bits above the last valid bit
|
|
||||||
* are always zero.
|
|
||||||
*/
|
|
||||||
|
|
||||||
ulg high_water;
|
|
||||||
/* High water mark offset in window for initialized bytes -- bytes above
|
|
||||||
* this are set to zero in order to avoid memory check warnings when
|
|
||||||
* longest match routines access bytes past the input. This is then
|
|
||||||
* updated to the new high water mark.
|
|
||||||
*/
|
|
||||||
|
|
||||||
} FAR deflate_state;
|
|
||||||
|
|
||||||
/* Output a byte on the stream.
|
|
||||||
* IN assertion: there is enough room in pending_buf.
|
|
||||||
*/
|
|
||||||
#define put_byte(s, c) {s->pending_buf[s->pending++] = (Bytef)(c);}
|
|
||||||
|
|
||||||
|
|
||||||
#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
|
|
||||||
/* Minimum amount of lookahead, except at the end of the input file.
|
|
||||||
* See deflate.c for comments about the MIN_MATCH+1.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
|
|
||||||
/* In order to simplify the code, particularly on 16 bit machines, match
|
|
||||||
* distances are limited to MAX_DIST instead of WSIZE.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define WIN_INIT MAX_MATCH
|
|
||||||
/* Number of bytes after end of data in window to initialize in order to avoid
|
|
||||||
memory checker errors from longest match routines */
|
|
||||||
|
|
||||||
/* in trees.c */
|
|
||||||
void ZLIB_INTERNAL _tr_init(deflate_state *s);
|
|
||||||
int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
|
|
||||||
void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
|
|
||||||
ulg stored_len, int last);
|
|
||||||
void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s);
|
|
||||||
void ZLIB_INTERNAL _tr_align(deflate_state *s);
|
|
||||||
void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
|
|
||||||
ulg stored_len, int last);
|
|
||||||
|
|
||||||
#define d_code(dist) \
|
|
||||||
((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
|
|
||||||
/* Mapping from a distance to a distance code. dist is the distance - 1 and
|
|
||||||
* must not have side effects. _dist_code[256] and _dist_code[257] are never
|
|
||||||
* used.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef ZLIB_DEBUG
|
|
||||||
/* Inline versions of _tr_tally for speed: */
|
|
||||||
|
|
||||||
#if defined(GEN_TREES_H) || !defined(STDC)
|
|
||||||
extern uch ZLIB_INTERNAL _length_code[];
|
|
||||||
extern uch ZLIB_INTERNAL _dist_code[];
|
|
||||||
#else
|
|
||||||
extern const uch ZLIB_INTERNAL _length_code[];
|
|
||||||
extern const uch ZLIB_INTERNAL _dist_code[];
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef LIT_MEM
|
|
||||||
# define _tr_tally_lit(s, c, flush) \
|
|
||||||
{ uch cc = (c); \
|
|
||||||
s->d_buf[s->sym_next] = 0; \
|
|
||||||
s->l_buf[s->sym_next++] = cc; \
|
|
||||||
s->dyn_ltree[cc].Freq++; \
|
|
||||||
flush = (s->sym_next == s->sym_end); \
|
|
||||||
}
|
|
||||||
# define _tr_tally_dist(s, distance, length, flush) \
|
|
||||||
{ uch len = (uch)(length); \
|
|
||||||
ush dist = (ush)(distance); \
|
|
||||||
s->d_buf[s->sym_next] = dist; \
|
|
||||||
s->l_buf[s->sym_next++] = len; \
|
|
||||||
dist--; \
|
|
||||||
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
|
|
||||||
s->dyn_dtree[d_code(dist)].Freq++; \
|
|
||||||
flush = (s->sym_next == s->sym_end); \
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
# define _tr_tally_lit(s, c, flush) \
|
|
||||||
{ uch cc = (c); \
|
|
||||||
s->sym_buf[s->sym_next++] = 0; \
|
|
||||||
s->sym_buf[s->sym_next++] = 0; \
|
|
||||||
s->sym_buf[s->sym_next++] = cc; \
|
|
||||||
s->dyn_ltree[cc].Freq++; \
|
|
||||||
flush = (s->sym_next == s->sym_end); \
|
|
||||||
}
|
|
||||||
# define _tr_tally_dist(s, distance, length, flush) \
|
|
||||||
{ uch len = (uch)(length); \
|
|
||||||
ush dist = (ush)(distance); \
|
|
||||||
s->sym_buf[s->sym_next++] = (uch)dist; \
|
|
||||||
s->sym_buf[s->sym_next++] = (uch)(dist >> 8); \
|
|
||||||
s->sym_buf[s->sym_next++] = len; \
|
|
||||||
dist--; \
|
|
||||||
s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
|
|
||||||
s->dyn_dtree[d_code(dist)].Freq++; \
|
|
||||||
flush = (s->sym_next == s->sym_end); \
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
#else
|
|
||||||
# define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
|
|
||||||
# define _tr_tally_dist(s, distance, length, flush) \
|
|
||||||
flush = _tr_tally(s, distance, length)
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif /* DEFLATE_H */
|
|
||||||
@@ -1,209 +0,0 @@
|
|||||||
1. Compression algorithm (deflate)
|
|
||||||
|
|
||||||
The deflation algorithm used by gzip (also zip and zlib) is a variation of
|
|
||||||
LZ77 (Lempel-Ziv 1977, see reference below). It finds duplicated strings in
|
|
||||||
the input data. The second occurrence of a string is replaced by a
|
|
||||||
pointer to the previous string, in the form of a pair (distance,
|
|
||||||
length). Distances are limited to 32K bytes, and lengths are limited
|
|
||||||
to 258 bytes. When a string does not occur anywhere in the previous
|
|
||||||
32K bytes, it is emitted as a sequence of literal bytes. (In this
|
|
||||||
description, `string' must be taken as an arbitrary sequence of bytes,
|
|
||||||
and is not restricted to printable characters.)
|
|
||||||
|
|
||||||
Literals or match lengths are compressed with one Huffman tree, and
|
|
||||||
match distances are compressed with another tree. The trees are stored
|
|
||||||
in a compact form at the start of each block. The blocks can have any
|
|
||||||
size (except that the compressed data for one block must fit in
|
|
||||||
available memory). A block is terminated when deflate() determines that
|
|
||||||
it would be useful to start another block with fresh trees. (This is
|
|
||||||
somewhat similar to the behavior of LZW-based _compress_.)
|
|
||||||
|
|
||||||
Duplicated strings are found using a hash table. All input strings of
|
|
||||||
length 3 are inserted in the hash table. A hash index is computed for
|
|
||||||
the next 3 bytes. If the hash chain for this index is not empty, all
|
|
||||||
strings in the chain are compared with the current input string, and
|
|
||||||
the longest match is selected.
|
|
||||||
|
|
||||||
The hash chains are searched starting with the most recent strings, to
|
|
||||||
favor small distances and thus take advantage of the Huffman encoding.
|
|
||||||
The hash chains are singly linked. There are no deletions from the
|
|
||||||
hash chains, the algorithm simply discards matches that are too old.
|
|
||||||
|
|
||||||
To avoid a worst-case situation, very long hash chains are arbitrarily
|
|
||||||
truncated at a certain length, determined by a runtime option (level
|
|
||||||
parameter of deflateInit). So deflate() does not always find the longest
|
|
||||||
possible match but generally finds a match which is long enough.
|
|
||||||
|
|
||||||
deflate() also defers the selection of matches with a lazy evaluation
|
|
||||||
mechanism. After a match of length N has been found, deflate() searches for
|
|
||||||
a longer match at the next input byte. If a longer match is found, the
|
|
||||||
previous match is truncated to a length of one (thus producing a single
|
|
||||||
literal byte) and the process of lazy evaluation begins again. Otherwise,
|
|
||||||
the original match is kept, and the next match search is attempted only N
|
|
||||||
steps later.
|
|
||||||
|
|
||||||
The lazy match evaluation is also subject to a runtime parameter. If
|
|
||||||
the current match is long enough, deflate() reduces the search for a longer
|
|
||||||
match, thus speeding up the whole process. If compression ratio is more
|
|
||||||
important than speed, deflate() attempts a complete second search even if
|
|
||||||
the first match is already long enough.
|
|
||||||
|
|
||||||
The lazy match evaluation is not performed for the fastest compression
|
|
||||||
modes (level parameter 1 to 3). For these fast modes, new strings
|
|
||||||
are inserted in the hash table only when no match was found, or
|
|
||||||
when the match is not too long. This degrades the compression ratio
|
|
||||||
but saves time since there are both fewer insertions and fewer searches.
|
|
||||||
|
|
||||||
|
|
||||||
2. Decompression algorithm (inflate)
|
|
||||||
|
|
||||||
2.1 Introduction
|
|
||||||
|
|
||||||
The key question is how to represent a Huffman code (or any prefix code) so
|
|
||||||
that you can decode fast. The most important characteristic is that shorter
|
|
||||||
codes are much more common than longer codes, so pay attention to decoding the
|
|
||||||
short codes fast, and let the long codes take longer to decode.
|
|
||||||
|
|
||||||
inflate() sets up a first level table that covers some number of bits of
|
|
||||||
input less than the length of longest code. It gets that many bits from the
|
|
||||||
stream, and looks it up in the table. The table will tell if the next
|
|
||||||
code is that many bits or less and how many, and if it is, it will tell
|
|
||||||
the value, else it will point to the next level table for which inflate()
|
|
||||||
grabs more bits and tries to decode a longer code.
|
|
||||||
|
|
||||||
How many bits to make the first lookup is a tradeoff between the time it
|
|
||||||
takes to decode and the time it takes to build the table. If building the
|
|
||||||
table took no time (and if you had infinite memory), then there would only
|
|
||||||
be a first level table to cover all the way to the longest code. However,
|
|
||||||
building the table ends up taking a lot longer for more bits since short
|
|
||||||
codes are replicated many times in such a table. What inflate() does is
|
|
||||||
simply to make the number of bits in the first table a variable, and then
|
|
||||||
to set that variable for the maximum speed.
|
|
||||||
|
|
||||||
For inflate, which has 286 possible codes for the literal/length tree, the size
|
|
||||||
of the first table is nine bits. Also the distance trees have 30 possible
|
|
||||||
values, and the size of the first table is six bits. Note that for each of
|
|
||||||
those cases, the table ended up one bit longer than the ``average'' code
|
|
||||||
length, i.e. the code length of an approximately flat code which would be a
|
|
||||||
little more than eight bits for 286 symbols and a little less than five bits
|
|
||||||
for 30 symbols.
|
|
||||||
|
|
||||||
|
|
||||||
2.2 More details on the inflate table lookup
|
|
||||||
|
|
||||||
Ok, you want to know what this cleverly obfuscated inflate tree actually
|
|
||||||
looks like. You are correct that it's not a Huffman tree. It is simply a
|
|
||||||
lookup table for the first, let's say, nine bits of a Huffman symbol. The
|
|
||||||
symbol could be as short as one bit or as long as 15 bits. If a particular
|
|
||||||
symbol is shorter than nine bits, then that symbol's translation is duplicated
|
|
||||||
in all those entries that start with that symbol's bits. For example, if the
|
|
||||||
symbol is four bits, then it's duplicated 32 times in a nine-bit table. If a
|
|
||||||
symbol is nine bits long, it appears in the table once.
|
|
||||||
|
|
||||||
If the symbol is longer than nine bits, then that entry in the table points
|
|
||||||
to another similar table for the remaining bits. Again, there are duplicated
|
|
||||||
entries as needed. The idea is that most of the time the symbol will be short
|
|
||||||
and there will only be one table look up. (That's whole idea behind data
|
|
||||||
compression in the first place.) For the less frequent long symbols, there
|
|
||||||
will be two lookups. If you had a compression method with really long
|
|
||||||
symbols, you could have as many levels of lookups as is efficient. For
|
|
||||||
inflate, two is enough.
|
|
||||||
|
|
||||||
So a table entry either points to another table (in which case nine bits in
|
|
||||||
the above example are gobbled), or it contains the translation for the symbol
|
|
||||||
and the number of bits to gobble. Then you start again with the next
|
|
||||||
ungobbled bit.
|
|
||||||
|
|
||||||
You may wonder: why not just have one lookup table for how ever many bits the
|
|
||||||
longest symbol is? The reason is that if you do that, you end up spending
|
|
||||||
more time filling in duplicate symbol entries than you do actually decoding.
|
|
||||||
At least for deflate's output that generates new trees every several 10's of
|
|
||||||
kbytes. You can imagine that filling in a 2^15 entry table for a 15-bit code
|
|
||||||
would take too long if you're only decoding several thousand symbols. At the
|
|
||||||
other extreme, you could make a new table for every bit in the code. In fact,
|
|
||||||
that's essentially a Huffman tree. But then you spend too much time
|
|
||||||
traversing the tree while decoding, even for short symbols.
|
|
||||||
|
|
||||||
So the number of bits for the first lookup table is a trade of the time to
|
|
||||||
fill out the table vs. the time spent looking at the second level and above of
|
|
||||||
the table.
|
|
||||||
|
|
||||||
Here is an example, scaled down:
|
|
||||||
|
|
||||||
The code being decoded, with 10 symbols, from 1 to 6 bits long:
|
|
||||||
|
|
||||||
A: 0
|
|
||||||
B: 10
|
|
||||||
C: 1100
|
|
||||||
D: 11010
|
|
||||||
E: 11011
|
|
||||||
F: 11100
|
|
||||||
G: 11101
|
|
||||||
H: 11110
|
|
||||||
I: 111110
|
|
||||||
J: 111111
|
|
||||||
|
|
||||||
Let's make the first table three bits long (eight entries):
|
|
||||||
|
|
||||||
000: A,1
|
|
||||||
001: A,1
|
|
||||||
010: A,1
|
|
||||||
011: A,1
|
|
||||||
100: B,2
|
|
||||||
101: B,2
|
|
||||||
110: -> table X (gobble 3 bits)
|
|
||||||
111: -> table Y (gobble 3 bits)
|
|
||||||
|
|
||||||
Each entry is what the bits decode as and how many bits that is, i.e. how
|
|
||||||
many bits to gobble. Or the entry points to another table, with the number of
|
|
||||||
bits to gobble implicit in the size of the table.
|
|
||||||
|
|
||||||
Table X is two bits long since the longest code starting with 110 is five bits
|
|
||||||
long:
|
|
||||||
|
|
||||||
00: C,1
|
|
||||||
01: C,1
|
|
||||||
10: D,2
|
|
||||||
11: E,2
|
|
||||||
|
|
||||||
Table Y is three bits long since the longest code starting with 111 is six
|
|
||||||
bits long:
|
|
||||||
|
|
||||||
000: F,2
|
|
||||||
001: F,2
|
|
||||||
010: G,2
|
|
||||||
011: G,2
|
|
||||||
100: H,2
|
|
||||||
101: H,2
|
|
||||||
110: I,3
|
|
||||||
111: J,3
|
|
||||||
|
|
||||||
So what we have here are three tables with a total of 20 entries that had to
|
|
||||||
be constructed. That's compared to 64 entries for a single table. Or
|
|
||||||
compared to 16 entries for a Huffman tree (six two entry tables and one four
|
|
||||||
entry table). Assuming that the code ideally represents the probability of
|
|
||||||
the symbols, it takes on the average 1.25 lookups per symbol. That's compared
|
|
||||||
to one lookup for the single table, or 1.66 lookups per symbol for the
|
|
||||||
Huffman tree.
|
|
||||||
|
|
||||||
There, I think that gives you a picture of what's going on. For inflate, the
|
|
||||||
meaning of a particular symbol is often more than just a letter. It can be a
|
|
||||||
byte (a "literal"), or it can be either a length or a distance which
|
|
||||||
indicates a base value and a number of bits to fetch after the code that is
|
|
||||||
added to the base value. Or it might be the special end-of-block code. The
|
|
||||||
data structures created in inftrees.c try to encode all that information
|
|
||||||
compactly in the tables.
|
|
||||||
|
|
||||||
|
|
||||||
Jean-loup Gailly Mark Adler
|
|
||||||
jloup@gzip.org madler@alumni.caltech.edu
|
|
||||||
|
|
||||||
|
|
||||||
References:
|
|
||||||
|
|
||||||
[LZ77] Ziv J., Lempel A., ``A Universal Algorithm for Sequential Data
|
|
||||||
Compression,'' IEEE Transactions on Information Theory, Vol. 23, No. 3,
|
|
||||||
pp. 337-343.
|
|
||||||
|
|
||||||
``DEFLATE Compressed Data Format Specification'' available in
|
|
||||||
http://tools.ietf.org/html/rfc1951
|
|
||||||
@@ -1,619 +0,0 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Network Working Group P. Deutsch
|
|
||||||
Request for Comments: 1950 Aladdin Enterprises
|
|
||||||
Category: Informational J-L. Gailly
|
|
||||||
Info-ZIP
|
|
||||||
May 1996
|
|
||||||
|
|
||||||
|
|
||||||
ZLIB Compressed Data Format Specification version 3.3
|
|
||||||
|
|
||||||
Status of This Memo
|
|
||||||
|
|
||||||
This memo provides information for the Internet community. This memo
|
|
||||||
does not specify an Internet standard of any kind. Distribution of
|
|
||||||
this memo is unlimited.
|
|
||||||
|
|
||||||
IESG Note:
|
|
||||||
|
|
||||||
The IESG takes no position on the validity of any Intellectual
|
|
||||||
Property Rights statements contained in this document.
|
|
||||||
|
|
||||||
Notices
|
|
||||||
|
|
||||||
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
|
|
||||||
|
|
||||||
Permission is granted to copy and distribute this document for any
|
|
||||||
purpose and without charge, including translations into other
|
|
||||||
languages and incorporation into compilations, provided that the
|
|
||||||
copyright notice and this notice are preserved, and that any
|
|
||||||
substantive changes or deletions from the original are clearly
|
|
||||||
marked.
|
|
||||||
|
|
||||||
A pointer to the latest version of this and related documentation in
|
|
||||||
HTML format can be found at the URL
|
|
||||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
|
||||||
|
|
||||||
Abstract
|
|
||||||
|
|
||||||
This specification defines a lossless compressed data format. The
|
|
||||||
data can be produced or consumed, even for an arbitrarily long
|
|
||||||
sequentially presented input data stream, using only an a priori
|
|
||||||
bounded amount of intermediate storage. The format presently uses
|
|
||||||
the DEFLATE compression method but can be easily extended to use
|
|
||||||
other compression methods. It can be implemented readily in a manner
|
|
||||||
not covered by patents. This specification also defines the ADLER-32
|
|
||||||
checksum (an extension and improvement of the Fletcher checksum),
|
|
||||||
used for detection of data corruption, and provides an algorithm for
|
|
||||||
computing it.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 1]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
Table of Contents
|
|
||||||
|
|
||||||
1. Introduction ................................................... 2
|
|
||||||
1.1. Purpose ................................................... 2
|
|
||||||
1.2. Intended audience ......................................... 3
|
|
||||||
1.3. Scope ..................................................... 3
|
|
||||||
1.4. Compliance ................................................ 3
|
|
||||||
1.5. Definitions of terms and conventions used ................ 3
|
|
||||||
1.6. Changes from previous versions ............................ 3
|
|
||||||
2. Detailed specification ......................................... 3
|
|
||||||
2.1. Overall conventions ....................................... 3
|
|
||||||
2.2. Data format ............................................... 4
|
|
||||||
2.3. Compliance ................................................ 7
|
|
||||||
3. References ..................................................... 7
|
|
||||||
4. Source code .................................................... 8
|
|
||||||
5. Security Considerations ........................................ 8
|
|
||||||
6. Acknowledgements ............................................... 8
|
|
||||||
7. Authors' Addresses ............................................. 8
|
|
||||||
8. Appendix: Rationale ............................................ 9
|
|
||||||
9. Appendix: Sample code ..........................................10
|
|
||||||
|
|
||||||
1. Introduction
|
|
||||||
|
|
||||||
1.1. Purpose
|
|
||||||
|
|
||||||
The purpose of this specification is to define a lossless
|
|
||||||
compressed data format that:
|
|
||||||
|
|
||||||
* Is independent of CPU type, operating system, file system,
|
|
||||||
and character set, and hence can be used for interchange;
|
|
||||||
|
|
||||||
* Can be produced or consumed, even for an arbitrarily long
|
|
||||||
sequentially presented input data stream, using only an a
|
|
||||||
priori bounded amount of intermediate storage, and hence can
|
|
||||||
be used in data communications or similar structures such as
|
|
||||||
Unix filters;
|
|
||||||
|
|
||||||
* Can use a number of different compression methods;
|
|
||||||
|
|
||||||
* Can be implemented readily in a manner not covered by
|
|
||||||
patents, and hence can be practiced freely.
|
|
||||||
|
|
||||||
The data format defined by this specification does not attempt to
|
|
||||||
allow random access to compressed data.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 2]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
1.2. Intended audience
|
|
||||||
|
|
||||||
This specification is intended for use by implementors of software
|
|
||||||
to compress data into zlib format and/or decompress data from zlib
|
|
||||||
format.
|
|
||||||
|
|
||||||
The text of the specification assumes a basic background in
|
|
||||||
programming at the level of bits and other primitive data
|
|
||||||
representations.
|
|
||||||
|
|
||||||
1.3. Scope
|
|
||||||
|
|
||||||
The specification specifies a compressed data format that can be
|
|
||||||
used for in-memory compression of a sequence of arbitrary bytes.
|
|
||||||
|
|
||||||
1.4. Compliance
|
|
||||||
|
|
||||||
Unless otherwise indicated below, a compliant decompressor must be
|
|
||||||
able to accept and decompress any data set that conforms to all
|
|
||||||
the specifications presented here; a compliant compressor must
|
|
||||||
produce data sets that conform to all the specifications presented
|
|
||||||
here.
|
|
||||||
|
|
||||||
1.5. Definitions of terms and conventions used
|
|
||||||
|
|
||||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
|
||||||
(For this specification, a byte is exactly 8 bits, even on
|
|
||||||
machines which store a character on a number of bits different
|
|
||||||
from 8.) See below, for the numbering of bits within a byte.
|
|
||||||
|
|
||||||
1.6. Changes from previous versions
|
|
||||||
|
|
||||||
Version 3.1 was the first public release of this specification.
|
|
||||||
In version 3.2, some terminology was changed and the Adler-32
|
|
||||||
sample code was rewritten for clarity. In version 3.3, the
|
|
||||||
support for a preset dictionary was introduced, and the
|
|
||||||
specification was converted to RFC style.
|
|
||||||
|
|
||||||
2. Detailed specification
|
|
||||||
|
|
||||||
2.1. Overall conventions
|
|
||||||
|
|
||||||
In the diagrams below, a box like this:
|
|
||||||
|
|
||||||
+---+
|
|
||||||
| | <-- the vertical bars might be missing
|
|
||||||
+---+
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 3]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
represents one byte; a box like this:
|
|
||||||
|
|
||||||
+==============+
|
|
||||||
| |
|
|
||||||
+==============+
|
|
||||||
|
|
||||||
represents a variable number of bytes.
|
|
||||||
|
|
||||||
Bytes stored within a computer do not have a "bit order", since
|
|
||||||
they are always treated as a unit. However, a byte considered as
|
|
||||||
an integer between 0 and 255 does have a most- and least-
|
|
||||||
significant bit, and since we write numbers with the most-
|
|
||||||
significant digit on the left, we also write bytes with the most-
|
|
||||||
significant bit on the left. In the diagrams below, we number the
|
|
||||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
|
||||||
the bits are numbered:
|
|
||||||
|
|
||||||
+--------+
|
|
||||||
|76543210|
|
|
||||||
+--------+
|
|
||||||
|
|
||||||
Within a computer, a number may occupy multiple bytes. All
|
|
||||||
multi-byte numbers in the format described here are stored with
|
|
||||||
the MOST-significant byte first (at the lower memory address).
|
|
||||||
For example, the decimal number 520 is stored as:
|
|
||||||
|
|
||||||
0 1
|
|
||||||
+--------+--------+
|
|
||||||
|00000010|00001000|
|
|
||||||
+--------+--------+
|
|
||||||
^ ^
|
|
||||||
| |
|
|
||||||
| + less significant byte = 8
|
|
||||||
+ more significant byte = 2 x 256
|
|
||||||
|
|
||||||
2.2. Data format
|
|
||||||
|
|
||||||
A zlib stream has the following structure:
|
|
||||||
|
|
||||||
0 1
|
|
||||||
+---+---+
|
|
||||||
|CMF|FLG| (more-->)
|
|
||||||
+---+---+
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 4]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
(if FLG.FDICT set)
|
|
||||||
|
|
||||||
0 1 2 3
|
|
||||||
+---+---+---+---+
|
|
||||||
| DICTID | (more-->)
|
|
||||||
+---+---+---+---+
|
|
||||||
|
|
||||||
+=====================+---+---+---+---+
|
|
||||||
|...compressed data...| ADLER32 |
|
|
||||||
+=====================+---+---+---+---+
|
|
||||||
|
|
||||||
Any data which may appear after ADLER32 are not part of the zlib
|
|
||||||
stream.
|
|
||||||
|
|
||||||
CMF (Compression Method and flags)
|
|
||||||
This byte is divided into a 4-bit compression method and a 4-
|
|
||||||
bit information field depending on the compression method.
|
|
||||||
|
|
||||||
bits 0 to 3 CM Compression method
|
|
||||||
bits 4 to 7 CINFO Compression info
|
|
||||||
|
|
||||||
CM (Compression method)
|
|
||||||
This identifies the compression method used in the file. CM = 8
|
|
||||||
denotes the "deflate" compression method with a window size up
|
|
||||||
to 32K. This is the method used by gzip and PNG (see
|
|
||||||
references [1] and [2] in Chapter 3, below, for the reference
|
|
||||||
documents). CM = 15 is reserved. It might be used in a future
|
|
||||||
version of this specification to indicate the presence of an
|
|
||||||
extra field before the compressed data.
|
|
||||||
|
|
||||||
CINFO (Compression info)
|
|
||||||
For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
|
|
||||||
size, minus eight (CINFO=7 indicates a 32K window size). Values
|
|
||||||
of CINFO above 7 are not allowed in this version of the
|
|
||||||
specification. CINFO is not defined in this specification for
|
|
||||||
CM not equal to 8.
|
|
||||||
|
|
||||||
FLG (FLaGs)
|
|
||||||
This flag byte is divided as follows:
|
|
||||||
|
|
||||||
bits 0 to 4 FCHECK (check bits for CMF and FLG)
|
|
||||||
bit 5 FDICT (preset dictionary)
|
|
||||||
bits 6 to 7 FLEVEL (compression level)
|
|
||||||
|
|
||||||
The FCHECK value must be such that CMF and FLG, when viewed as
|
|
||||||
a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
|
|
||||||
is a multiple of 31.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 5]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
FDICT (Preset dictionary)
|
|
||||||
If FDICT is set, a DICT dictionary identifier is present
|
|
||||||
immediately after the FLG byte. The dictionary is a sequence of
|
|
||||||
bytes which are initially fed to the compressor without
|
|
||||||
producing any compressed output. DICT is the Adler-32 checksum
|
|
||||||
of this sequence of bytes (see the definition of ADLER32
|
|
||||||
below). The decompressor can use this identifier to determine
|
|
||||||
which dictionary has been used by the compressor.
|
|
||||||
|
|
||||||
FLEVEL (Compression level)
|
|
||||||
These flags are available for use by specific compression
|
|
||||||
methods. The "deflate" method (CM = 8) sets these flags as
|
|
||||||
follows:
|
|
||||||
|
|
||||||
0 - compressor used fastest algorithm
|
|
||||||
1 - compressor used fast algorithm
|
|
||||||
2 - compressor used default algorithm
|
|
||||||
3 - compressor used maximum compression, slowest algorithm
|
|
||||||
|
|
||||||
The information in FLEVEL is not needed for decompression; it
|
|
||||||
is there to indicate if recompression might be worthwhile.
|
|
||||||
|
|
||||||
compressed data
|
|
||||||
For compression method 8, the compressed data is stored in the
|
|
||||||
deflate compressed data format as described in the document
|
|
||||||
"DEFLATE Compressed Data Format Specification" by L. Peter
|
|
||||||
Deutsch. (See reference [3] in Chapter 3, below)
|
|
||||||
|
|
||||||
Other compressed data formats are not specified in this version
|
|
||||||
of the zlib specification.
|
|
||||||
|
|
||||||
ADLER32 (Adler-32 checksum)
|
|
||||||
This contains a checksum value of the uncompressed data
|
|
||||||
(excluding any dictionary data) computed according to Adler-32
|
|
||||||
algorithm. This algorithm is a 32-bit extension and improvement
|
|
||||||
of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
|
|
||||||
standard. See references [4] and [5] in Chapter 3, below)
|
|
||||||
|
|
||||||
Adler-32 is composed of two sums accumulated per byte: s1 is
|
|
||||||
the sum of all bytes, s2 is the sum of all s1 values. Both sums
|
|
||||||
are done modulo 65521. s1 is initialized to 1, s2 to zero. The
|
|
||||||
Adler-32 checksum is stored as s2*65536 + s1 in most-
|
|
||||||
significant-byte first (network) order.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 6]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
2.3. Compliance
|
|
||||||
|
|
||||||
A compliant compressor must produce streams with correct CMF, FLG
|
|
||||||
and ADLER32, but need not support preset dictionaries. When the
|
|
||||||
zlib data format is used as part of another standard data format,
|
|
||||||
the compressor may use only preset dictionaries that are specified
|
|
||||||
by this other data format. If this other format does not use the
|
|
||||||
preset dictionary feature, the compressor must not set the FDICT
|
|
||||||
flag.
|
|
||||||
|
|
||||||
A compliant decompressor must check CMF, FLG, and ADLER32, and
|
|
||||||
provide an error indication if any of these have incorrect values.
|
|
||||||
A compliant decompressor must give an error indication if CM is
|
|
||||||
not one of the values defined in this specification (only the
|
|
||||||
value 8 is permitted in this version), since another value could
|
|
||||||
indicate the presence of new features that would cause subsequent
|
|
||||||
data to be interpreted incorrectly. A compliant decompressor must
|
|
||||||
give an error indication if FDICT is set and DICTID is not the
|
|
||||||
identifier of a known preset dictionary. A decompressor may
|
|
||||||
ignore FLEVEL and still be compliant. When the zlib data format
|
|
||||||
is being used as a part of another standard format, a compliant
|
|
||||||
decompressor must support all the preset dictionaries specified by
|
|
||||||
the other format. When the other format does not use the preset
|
|
||||||
dictionary feature, a compliant decompressor must reject any
|
|
||||||
stream in which the FDICT flag is set.
|
|
||||||
|
|
||||||
3. References
|
|
||||||
|
|
||||||
[1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
|
|
||||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
|
||||||
|
|
||||||
[2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
|
|
||||||
available in ftp://ftp.uu.net/graphics/png/documents/
|
|
||||||
|
|
||||||
[3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
|
||||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
|
||||||
|
|
||||||
[4] Fletcher, J. G., "An Arithmetic Checksum for Serial
|
|
||||||
Transmissions," IEEE Transactions on Communications, Vol. COM-30,
|
|
||||||
No. 1, January 1982, pp. 247-252.
|
|
||||||
|
|
||||||
[5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
|
|
||||||
November, 1993, pp. 144, 145. (Available from
|
|
||||||
gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 7]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
4. Source code
|
|
||||||
|
|
||||||
Source code for a C language implementation of a "zlib" compliant
|
|
||||||
library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
|
||||||
|
|
||||||
5. Security Considerations
|
|
||||||
|
|
||||||
A decoder that fails to check the ADLER32 checksum value may be
|
|
||||||
subject to undetected data corruption.
|
|
||||||
|
|
||||||
6. Acknowledgements
|
|
||||||
|
|
||||||
Trademarks cited in this document are the property of their
|
|
||||||
respective owners.
|
|
||||||
|
|
||||||
Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
|
|
||||||
the related software described in this specification. Glenn
|
|
||||||
Randers-Pehrson converted this document to RFC and HTML format.
|
|
||||||
|
|
||||||
7. Authors' Addresses
|
|
||||||
|
|
||||||
L. Peter Deutsch
|
|
||||||
Aladdin Enterprises
|
|
||||||
203 Santa Margarita Ave.
|
|
||||||
Menlo Park, CA 94025
|
|
||||||
|
|
||||||
Phone: (415) 322-0103 (AM only)
|
|
||||||
FAX: (415) 322-1734
|
|
||||||
EMail: <ghost@aladdin.com>
|
|
||||||
|
|
||||||
|
|
||||||
Jean-Loup Gailly
|
|
||||||
|
|
||||||
EMail: <gzip@prep.ai.mit.edu>
|
|
||||||
|
|
||||||
Questions about the technical content of this specification can be
|
|
||||||
sent by email to
|
|
||||||
|
|
||||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
|
||||||
Mark Adler <madler@alumni.caltech.edu>
|
|
||||||
|
|
||||||
Editorial comments on this specification can be sent by email to
|
|
||||||
|
|
||||||
L. Peter Deutsch <ghost@aladdin.com> and
|
|
||||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 8]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
8. Appendix: Rationale
|
|
||||||
|
|
||||||
8.1. Preset dictionaries
|
|
||||||
|
|
||||||
A preset dictionary is specially useful to compress short input
|
|
||||||
sequences. The compressor can take advantage of the dictionary
|
|
||||||
context to encode the input in a more compact manner. The
|
|
||||||
decompressor can be initialized with the appropriate context by
|
|
||||||
virtually decompressing a compressed version of the dictionary
|
|
||||||
without producing any output. However for certain compression
|
|
||||||
algorithms such as the deflate algorithm this operation can be
|
|
||||||
achieved without actually performing any decompression.
|
|
||||||
|
|
||||||
The compressor and the decompressor must use exactly the same
|
|
||||||
dictionary. The dictionary may be fixed or may be chosen among a
|
|
||||||
certain number of predefined dictionaries, according to the kind
|
|
||||||
of input data. The decompressor can determine which dictionary has
|
|
||||||
been chosen by the compressor by checking the dictionary
|
|
||||||
identifier. This document does not specify the contents of
|
|
||||||
predefined dictionaries, since the optimal dictionaries are
|
|
||||||
application specific. Standard data formats using this feature of
|
|
||||||
the zlib specification must precisely define the allowed
|
|
||||||
dictionaries.
|
|
||||||
|
|
||||||
8.2. The Adler-32 algorithm
|
|
||||||
|
|
||||||
The Adler-32 algorithm is much faster than the CRC32 algorithm yet
|
|
||||||
still provides an extremely low probability of undetected errors.
|
|
||||||
|
|
||||||
The modulo on unsigned long accumulators can be delayed for 5552
|
|
||||||
bytes, so the modulo operation time is negligible. If the bytes
|
|
||||||
are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
|
|
||||||
and order sensitive, unlike the first sum, which is just a
|
|
||||||
checksum. That 65521 is prime is important to avoid a possible
|
|
||||||
large class of two-byte errors that leave the check unchanged.
|
|
||||||
(The Fletcher checksum uses 255, which is not prime and which also
|
|
||||||
makes the Fletcher check insensitive to single byte changes 0 <->
|
|
||||||
255.)
|
|
||||||
|
|
||||||
The sum s1 is initialized to 1 instead of zero to make the length
|
|
||||||
of the sequence part of s2, so that the length does not have to be
|
|
||||||
checked separately. (Any sequence of zeroes has a Fletcher
|
|
||||||
checksum of zero.)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 9]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
9. Appendix: Sample code
|
|
||||||
|
|
||||||
The following C code computes the Adler-32 checksum of a data buffer.
|
|
||||||
It is written for clarity, not for speed. The sample code is in the
|
|
||||||
ANSI C programming language. Non C users may find it easier to read
|
|
||||||
with these hints:
|
|
||||||
|
|
||||||
& Bitwise AND operator.
|
|
||||||
>> Bitwise right shift operator. When applied to an
|
|
||||||
unsigned quantity, as here, right shift inserts zero bit(s)
|
|
||||||
at the left.
|
|
||||||
<< Bitwise left shift operator. Left shift inserts zero
|
|
||||||
bit(s) at the right.
|
|
||||||
++ "n++" increments the variable n.
|
|
||||||
% modulo operator: a % b is the remainder of a divided by b.
|
|
||||||
|
|
||||||
#define BASE 65521 /* largest prime smaller than 65536 */
|
|
||||||
|
|
||||||
/*
|
|
||||||
Update a running Adler-32 checksum with the bytes buf[0..len-1]
|
|
||||||
and return the updated checksum. The Adler-32 checksum should be
|
|
||||||
initialized to 1.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
unsigned long adler = 1L;
|
|
||||||
|
|
||||||
while (read_buffer(buffer, length) != EOF) {
|
|
||||||
adler = update_adler32(adler, buffer, length);
|
|
||||||
}
|
|
||||||
if (adler != original_adler) error();
|
|
||||||
*/
|
|
||||||
unsigned long update_adler32(unsigned long adler,
|
|
||||||
unsigned char *buf, int len)
|
|
||||||
{
|
|
||||||
unsigned long s1 = adler & 0xffff;
|
|
||||||
unsigned long s2 = (adler >> 16) & 0xffff;
|
|
||||||
int n;
|
|
||||||
|
|
||||||
for (n = 0; n < len; n++) {
|
|
||||||
s1 = (s1 + buf[n]) % BASE;
|
|
||||||
s2 = (s2 + s1) % BASE;
|
|
||||||
}
|
|
||||||
return (s2 << 16) + s1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Return the adler32 of the bytes buf[0..len-1] */
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 10]
|
|
||||||
|
|
||||||
RFC 1950 ZLIB Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
unsigned long adler32(unsigned char *buf, int len)
|
|
||||||
{
|
|
||||||
return update_adler32(1L, buf, len);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch & Gailly Informational [Page 11]
|
|
||||||
|
|
||||||
@@ -1,955 +0,0 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Network Working Group P. Deutsch
|
|
||||||
Request for Comments: 1951 Aladdin Enterprises
|
|
||||||
Category: Informational May 1996
|
|
||||||
|
|
||||||
|
|
||||||
DEFLATE Compressed Data Format Specification version 1.3
|
|
||||||
|
|
||||||
Status of This Memo
|
|
||||||
|
|
||||||
This memo provides information for the Internet community. This memo
|
|
||||||
does not specify an Internet standard of any kind. Distribution of
|
|
||||||
this memo is unlimited.
|
|
||||||
|
|
||||||
IESG Note:
|
|
||||||
|
|
||||||
The IESG takes no position on the validity of any Intellectual
|
|
||||||
Property Rights statements contained in this document.
|
|
||||||
|
|
||||||
Notices
|
|
||||||
|
|
||||||
Copyright (c) 1996 L. Peter Deutsch
|
|
||||||
|
|
||||||
Permission is granted to copy and distribute this document for any
|
|
||||||
purpose and without charge, including translations into other
|
|
||||||
languages and incorporation into compilations, provided that the
|
|
||||||
copyright notice and this notice are preserved, and that any
|
|
||||||
substantive changes or deletions from the original are clearly
|
|
||||||
marked.
|
|
||||||
|
|
||||||
A pointer to the latest version of this and related documentation in
|
|
||||||
HTML format can be found at the URL
|
|
||||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
|
||||||
|
|
||||||
Abstract
|
|
||||||
|
|
||||||
This specification defines a lossless compressed data format that
|
|
||||||
compresses data using a combination of the LZ77 algorithm and Huffman
|
|
||||||
coding, with efficiency comparable to the best currently available
|
|
||||||
general-purpose compression methods. The data can be produced or
|
|
||||||
consumed, even for an arbitrarily long sequentially presented input
|
|
||||||
data stream, using only an a priori bounded amount of intermediate
|
|
||||||
storage. The format can be implemented readily in a manner not
|
|
||||||
covered by patents.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 1]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
Table of Contents
|
|
||||||
|
|
||||||
1. Introduction ................................................... 2
|
|
||||||
1.1. Purpose ................................................... 2
|
|
||||||
1.2. Intended audience ......................................... 3
|
|
||||||
1.3. Scope ..................................................... 3
|
|
||||||
1.4. Compliance ................................................ 3
|
|
||||||
1.5. Definitions of terms and conventions used ................ 3
|
|
||||||
1.6. Changes from previous versions ............................ 4
|
|
||||||
2. Compressed representation overview ............................. 4
|
|
||||||
3. Detailed specification ......................................... 5
|
|
||||||
3.1. Overall conventions ....................................... 5
|
|
||||||
3.1.1. Packing into bytes .................................. 5
|
|
||||||
3.2. Compressed block format ................................... 6
|
|
||||||
3.2.1. Synopsis of prefix and Huffman coding ............... 6
|
|
||||||
3.2.2. Use of Huffman coding in the "deflate" format ....... 7
|
|
||||||
3.2.3. Details of block format ............................. 9
|
|
||||||
3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
|
|
||||||
3.2.5. Compressed blocks (length and distance codes) ...... 11
|
|
||||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
|
|
||||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
|
|
||||||
3.3. Compliance ............................................... 14
|
|
||||||
4. Compression algorithm details ................................. 14
|
|
||||||
5. References .................................................... 16
|
|
||||||
6. Security Considerations ....................................... 16
|
|
||||||
7. Source code ................................................... 16
|
|
||||||
8. Acknowledgements .............................................. 16
|
|
||||||
9. Author's Address .............................................. 17
|
|
||||||
|
|
||||||
1. Introduction
|
|
||||||
|
|
||||||
1.1. Purpose
|
|
||||||
|
|
||||||
The purpose of this specification is to define a lossless
|
|
||||||
compressed data format that:
|
|
||||||
* Is independent of CPU type, operating system, file system,
|
|
||||||
and character set, and hence can be used for interchange;
|
|
||||||
* Can be produced or consumed, even for an arbitrarily long
|
|
||||||
sequentially presented input data stream, using only an a
|
|
||||||
priori bounded amount of intermediate storage, and hence
|
|
||||||
can be used in data communications or similar structures
|
|
||||||
such as Unix filters;
|
|
||||||
* Compresses data with efficiency comparable to the best
|
|
||||||
currently available general-purpose compression methods,
|
|
||||||
and in particular considerably better than the "compress"
|
|
||||||
program;
|
|
||||||
* Can be implemented readily in a manner not covered by
|
|
||||||
patents, and hence can be practiced freely;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 2]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
* Is compatible with the file format produced by the current
|
|
||||||
widely used gzip utility, in that conforming decompressors
|
|
||||||
will be able to read data produced by the existing gzip
|
|
||||||
compressor.
|
|
||||||
|
|
||||||
The data format defined by this specification does not attempt to:
|
|
||||||
|
|
||||||
* Allow random access to compressed data;
|
|
||||||
* Compress specialized data (e.g., raster graphics) as well
|
|
||||||
as the best currently available specialized algorithms.
|
|
||||||
|
|
||||||
A simple counting argument shows that no lossless compression
|
|
||||||
algorithm can compress every possible input data set. For the
|
|
||||||
format defined here, the worst case expansion is 5 bytes per 32K-
|
|
||||||
byte block, i.e., a size increase of 0.015% for large data sets.
|
|
||||||
English text usually compresses by a factor of 2.5 to 3;
|
|
||||||
executable files usually compress somewhat less; graphical data
|
|
||||||
such as raster images may compress much more.
|
|
||||||
|
|
||||||
1.2. Intended audience
|
|
||||||
|
|
||||||
This specification is intended for use by implementors of software
|
|
||||||
to compress data into "deflate" format and/or decompress data from
|
|
||||||
"deflate" format.
|
|
||||||
|
|
||||||
The text of the specification assumes a basic background in
|
|
||||||
programming at the level of bits and other primitive data
|
|
||||||
representations. Familiarity with the technique of Huffman coding
|
|
||||||
is helpful but not required.
|
|
||||||
|
|
||||||
1.3. Scope
|
|
||||||
|
|
||||||
The specification specifies a method for representing a sequence
|
|
||||||
of bytes as a (usually shorter) sequence of bits, and a method for
|
|
||||||
packing the latter bit sequence into bytes.
|
|
||||||
|
|
||||||
1.4. Compliance
|
|
||||||
|
|
||||||
Unless otherwise indicated below, a compliant decompressor must be
|
|
||||||
able to accept and decompress any data set that conforms to all
|
|
||||||
the specifications presented here; a compliant compressor must
|
|
||||||
produce data sets that conform to all the specifications presented
|
|
||||||
here.
|
|
||||||
|
|
||||||
1.5. Definitions of terms and conventions used
|
|
||||||
|
|
||||||
Byte: 8 bits stored or transmitted as a unit (same as an octet).
|
|
||||||
For this specification, a byte is exactly 8 bits, even on machines
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 3]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
which store a character on a number of bits different from eight.
|
|
||||||
See below, for the numbering of bits within a byte.
|
|
||||||
|
|
||||||
String: a sequence of arbitrary bytes.
|
|
||||||
|
|
||||||
1.6. Changes from previous versions
|
|
||||||
|
|
||||||
There have been no technical changes to the deflate format since
|
|
||||||
version 1.1 of this specification. In version 1.2, some
|
|
||||||
terminology was changed. Version 1.3 is a conversion of the
|
|
||||||
specification to RFC style.
|
|
||||||
|
|
||||||
2. Compressed representation overview
|
|
||||||
|
|
||||||
A compressed data set consists of a series of blocks, corresponding
|
|
||||||
to successive blocks of input data. The block sizes are arbitrary,
|
|
||||||
except that non-compressible blocks are limited to 65,535 bytes.
|
|
||||||
|
|
||||||
Each block is compressed using a combination of the LZ77 algorithm
|
|
||||||
and Huffman coding. The Huffman trees for each block are independent
|
|
||||||
of those for previous or subsequent blocks; the LZ77 algorithm may
|
|
||||||
use a reference to a duplicated string occurring in a previous block,
|
|
||||||
up to 32K input bytes before.
|
|
||||||
|
|
||||||
Each block consists of two parts: a pair of Huffman code trees that
|
|
||||||
describe the representation of the compressed data part, and a
|
|
||||||
compressed data part. (The Huffman trees themselves are compressed
|
|
||||||
using Huffman encoding.) The compressed data consists of a series of
|
|
||||||
elements of two types: literal bytes (of strings that have not been
|
|
||||||
detected as duplicated within the previous 32K input bytes), and
|
|
||||||
pointers to duplicated strings, where a pointer is represented as a
|
|
||||||
pair <length, backward distance>. The representation used in the
|
|
||||||
"deflate" format limits distances to 32K bytes and lengths to 258
|
|
||||||
bytes, but does not limit the size of a block, except for
|
|
||||||
uncompressible blocks, which are limited as noted above.
|
|
||||||
|
|
||||||
Each type of value (literals, distances, and lengths) in the
|
|
||||||
compressed data is represented using a Huffman code, using one code
|
|
||||||
tree for literals and lengths and a separate code tree for distances.
|
|
||||||
The code trees for each block appear in a compact form just before
|
|
||||||
the compressed data for that block.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 4]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
3. Detailed specification
|
|
||||||
|
|
||||||
3.1. Overall conventions In the diagrams below, a box like this:
|
|
||||||
|
|
||||||
+---+
|
|
||||||
| | <-- the vertical bars might be missing
|
|
||||||
+---+
|
|
||||||
|
|
||||||
represents one byte; a box like this:
|
|
||||||
|
|
||||||
+==============+
|
|
||||||
| |
|
|
||||||
+==============+
|
|
||||||
|
|
||||||
represents a variable number of bytes.
|
|
||||||
|
|
||||||
Bytes stored within a computer do not have a "bit order", since
|
|
||||||
they are always treated as a unit. However, a byte considered as
|
|
||||||
an integer between 0 and 255 does have a most- and least-
|
|
||||||
significant bit, and since we write numbers with the most-
|
|
||||||
significant digit on the left, we also write bytes with the most-
|
|
||||||
significant bit on the left. In the diagrams below, we number the
|
|
||||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
|
||||||
the bits are numbered:
|
|
||||||
|
|
||||||
+--------+
|
|
||||||
|76543210|
|
|
||||||
+--------+
|
|
||||||
|
|
||||||
Within a computer, a number may occupy multiple bytes. All
|
|
||||||
multi-byte numbers in the format described here are stored with
|
|
||||||
the least-significant byte first (at the lower memory address).
|
|
||||||
For example, the decimal number 520 is stored as:
|
|
||||||
|
|
||||||
0 1
|
|
||||||
+--------+--------+
|
|
||||||
|00001000|00000010|
|
|
||||||
+--------+--------+
|
|
||||||
^ ^
|
|
||||||
| |
|
|
||||||
| + more significant byte = 2 x 256
|
|
||||||
+ less significant byte = 8
|
|
||||||
|
|
||||||
3.1.1. Packing into bytes
|
|
||||||
|
|
||||||
This document does not address the issue of the order in which
|
|
||||||
bits of a byte are transmitted on a bit-sequential medium,
|
|
||||||
since the final data format described here is byte- rather than
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 5]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
bit-oriented. However, we describe the compressed block format
|
|
||||||
in below, as a sequence of data elements of various bit
|
|
||||||
lengths, not a sequence of bytes. We must therefore specify
|
|
||||||
how to pack these data elements into bytes to form the final
|
|
||||||
compressed byte sequence:
|
|
||||||
|
|
||||||
* Data elements are packed into bytes in order of
|
|
||||||
increasing bit number within the byte, i.e., starting
|
|
||||||
with the least-significant bit of the byte.
|
|
||||||
* Data elements other than Huffman codes are packed
|
|
||||||
starting with the least-significant bit of the data
|
|
||||||
element.
|
|
||||||
* Huffman codes are packed starting with the most-
|
|
||||||
significant bit of the code.
|
|
||||||
|
|
||||||
In other words, if one were to print out the compressed data as
|
|
||||||
a sequence of bytes, starting with the first byte at the
|
|
||||||
*right* margin and proceeding to the *left*, with the most-
|
|
||||||
significant bit of each byte on the left as usual, one would be
|
|
||||||
able to parse the result from right to left, with fixed-width
|
|
||||||
elements in the correct MSB-to-LSB order and Huffman codes in
|
|
||||||
bit-reversed order (i.e., with the first bit of the code in the
|
|
||||||
relative LSB position).
|
|
||||||
|
|
||||||
3.2. Compressed block format
|
|
||||||
|
|
||||||
3.2.1. Synopsis of prefix and Huffman coding
|
|
||||||
|
|
||||||
Prefix coding represents symbols from an a priori known
|
|
||||||
alphabet by bit sequences (codes), one code for each symbol, in
|
|
||||||
a manner such that different symbols may be represented by bit
|
|
||||||
sequences of different lengths, but a parser can always parse
|
|
||||||
an encoded string unambiguously symbol-by-symbol.
|
|
||||||
|
|
||||||
We define a prefix code in terms of a binary tree in which the
|
|
||||||
two edges descending from each non-leaf node are labeled 0 and
|
|
||||||
1 and in which the leaf nodes correspond one-for-one with (are
|
|
||||||
labeled with) the symbols of the alphabet; then the code for a
|
|
||||||
symbol is the sequence of 0's and 1's on the edges leading from
|
|
||||||
the root to the leaf labeled with that symbol. For example:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 6]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
/\ Symbol Code
|
|
||||||
0 1 ------ ----
|
|
||||||
/ \ A 00
|
|
||||||
/\ B B 1
|
|
||||||
0 1 C 011
|
|
||||||
/ \ D 010
|
|
||||||
A /\
|
|
||||||
0 1
|
|
||||||
/ \
|
|
||||||
D C
|
|
||||||
|
|
||||||
A parser can decode the next symbol from an encoded input
|
|
||||||
stream by walking down the tree from the root, at each step
|
|
||||||
choosing the edge corresponding to the next input bit.
|
|
||||||
|
|
||||||
Given an alphabet with known symbol frequencies, the Huffman
|
|
||||||
algorithm allows the construction of an optimal prefix code
|
|
||||||
(one which represents strings with those symbol frequencies
|
|
||||||
using the fewest bits of any possible prefix codes for that
|
|
||||||
alphabet). Such a code is called a Huffman code. (See
|
|
||||||
reference [1] in Chapter 5, references for additional
|
|
||||||
information on Huffman codes.)
|
|
||||||
|
|
||||||
Note that in the "deflate" format, the Huffman codes for the
|
|
||||||
various alphabets must not exceed certain maximum code lengths.
|
|
||||||
This constraint complicates the algorithm for computing code
|
|
||||||
lengths from symbol frequencies. Again, see Chapter 5,
|
|
||||||
references for details.
|
|
||||||
|
|
||||||
3.2.2. Use of Huffman coding in the "deflate" format
|
|
||||||
|
|
||||||
The Huffman codes used for each alphabet in the "deflate"
|
|
||||||
format have two additional rules:
|
|
||||||
|
|
||||||
* All codes of a given bit length have lexicographically
|
|
||||||
consecutive values, in the same order as the symbols
|
|
||||||
they represent;
|
|
||||||
|
|
||||||
* Shorter codes lexicographically precede longer codes.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 7]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
We could recode the example above to follow this rule as
|
|
||||||
follows, assuming that the order of the alphabet is ABCD:
|
|
||||||
|
|
||||||
Symbol Code
|
|
||||||
------ ----
|
|
||||||
A 10
|
|
||||||
B 0
|
|
||||||
C 110
|
|
||||||
D 111
|
|
||||||
|
|
||||||
I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
|
|
||||||
lexicographically consecutive.
|
|
||||||
|
|
||||||
Given this rule, we can define the Huffman code for an alphabet
|
|
||||||
just by giving the bit lengths of the codes for each symbol of
|
|
||||||
the alphabet in order; this is sufficient to determine the
|
|
||||||
actual codes. In our example, the code is completely defined
|
|
||||||
by the sequence of bit lengths (2, 1, 3, 3). The following
|
|
||||||
algorithm generates the codes as integers, intended to be read
|
|
||||||
from most- to least-significant bit. The code lengths are
|
|
||||||
initially in tree[I].Len; the codes are produced in
|
|
||||||
tree[I].Code.
|
|
||||||
|
|
||||||
1) Count the number of codes for each code length. Let
|
|
||||||
bl_count[N] be the number of codes of length N, N >= 1.
|
|
||||||
|
|
||||||
2) Find the numerical value of the smallest code for each
|
|
||||||
code length:
|
|
||||||
|
|
||||||
code = 0;
|
|
||||||
bl_count[0] = 0;
|
|
||||||
for (bits = 1; bits <= MAX_BITS; bits++) {
|
|
||||||
code = (code + bl_count[bits-1]) << 1;
|
|
||||||
next_code[bits] = code;
|
|
||||||
}
|
|
||||||
|
|
||||||
3) Assign numerical values to all codes, using consecutive
|
|
||||||
values for all codes of the same length with the base
|
|
||||||
values determined at step 2. Codes that are never used
|
|
||||||
(which have a bit length of zero) must not be assigned a
|
|
||||||
value.
|
|
||||||
|
|
||||||
for (n = 0; n <= max_code; n++) {
|
|
||||||
len = tree[n].Len;
|
|
||||||
if (len != 0) {
|
|
||||||
tree[n].Code = next_code[len];
|
|
||||||
next_code[len]++;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 8]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
|
|
||||||
3, 2, 4, 4). After step 1, we have:
|
|
||||||
|
|
||||||
N bl_count[N]
|
|
||||||
- -----------
|
|
||||||
2 1
|
|
||||||
3 5
|
|
||||||
4 2
|
|
||||||
|
|
||||||
Step 2 computes the following next_code values:
|
|
||||||
|
|
||||||
N next_code[N]
|
|
||||||
- ------------
|
|
||||||
1 0
|
|
||||||
2 0
|
|
||||||
3 2
|
|
||||||
4 14
|
|
||||||
|
|
||||||
Step 3 produces the following code values:
|
|
||||||
|
|
||||||
Symbol Length Code
|
|
||||||
------ ------ ----
|
|
||||||
A 3 010
|
|
||||||
B 3 011
|
|
||||||
C 3 100
|
|
||||||
D 3 101
|
|
||||||
E 3 110
|
|
||||||
F 2 00
|
|
||||||
G 4 1110
|
|
||||||
H 4 1111
|
|
||||||
|
|
||||||
3.2.3. Details of block format
|
|
||||||
|
|
||||||
Each block of compressed data begins with 3 header bits
|
|
||||||
containing the following data:
|
|
||||||
|
|
||||||
first bit BFINAL
|
|
||||||
next 2 bits BTYPE
|
|
||||||
|
|
||||||
Note that the header bits do not necessarily begin on a byte
|
|
||||||
boundary, since a block does not necessarily occupy an integral
|
|
||||||
number of bytes.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 9]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
BFINAL is set if and only if this is the last block of the data
|
|
||||||
set.
|
|
||||||
|
|
||||||
BTYPE specifies how the data are compressed, as follows:
|
|
||||||
|
|
||||||
00 - no compression
|
|
||||||
01 - compressed with fixed Huffman codes
|
|
||||||
10 - compressed with dynamic Huffman codes
|
|
||||||
11 - reserved (error)
|
|
||||||
|
|
||||||
The only difference between the two compressed cases is how the
|
|
||||||
Huffman codes for the literal/length and distance alphabets are
|
|
||||||
defined.
|
|
||||||
|
|
||||||
In all cases, the decoding algorithm for the actual data is as
|
|
||||||
follows:
|
|
||||||
|
|
||||||
do
|
|
||||||
read block header from input stream.
|
|
||||||
if stored with no compression
|
|
||||||
skip any remaining bits in current partially
|
|
||||||
processed byte
|
|
||||||
read LEN and NLEN (see next section)
|
|
||||||
copy LEN bytes of data to output
|
|
||||||
otherwise
|
|
||||||
if compressed with dynamic Huffman codes
|
|
||||||
read representation of code trees (see
|
|
||||||
subsection below)
|
|
||||||
loop (until end of block code recognized)
|
|
||||||
decode literal/length value from input stream
|
|
||||||
if value < 256
|
|
||||||
copy value (literal byte) to output stream
|
|
||||||
otherwise
|
|
||||||
if value = end of block (256)
|
|
||||||
break from loop
|
|
||||||
otherwise (value = 257..285)
|
|
||||||
decode distance from input stream
|
|
||||||
|
|
||||||
move backwards distance bytes in the output
|
|
||||||
stream, and copy length bytes from this
|
|
||||||
position to the output stream.
|
|
||||||
end loop
|
|
||||||
while not last block
|
|
||||||
|
|
||||||
Note that a duplicated string reference may refer to a string
|
|
||||||
in a previous block; i.e., the backward distance may cross one
|
|
||||||
or more block boundaries. However a distance cannot refer past
|
|
||||||
the beginning of the output stream. (An application using a
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 10]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
preset dictionary might discard part of the output stream; a
|
|
||||||
distance can refer to that part of the output stream anyway)
|
|
||||||
Note also that the referenced string may overlap the current
|
|
||||||
position; for example, if the last 2 bytes decoded have values
|
|
||||||
X and Y, a string reference with <length = 5, distance = 2>
|
|
||||||
adds X,Y,X,Y,X to the output stream.
|
|
||||||
|
|
||||||
We now specify each compression method in turn.
|
|
||||||
|
|
||||||
3.2.4. Non-compressed blocks (BTYPE=00)
|
|
||||||
|
|
||||||
Any bits of input up to the next byte boundary are ignored.
|
|
||||||
The rest of the block consists of the following information:
|
|
||||||
|
|
||||||
0 1 2 3 4...
|
|
||||||
+---+---+---+---+================================+
|
|
||||||
| LEN | NLEN |... LEN bytes of literal data...|
|
|
||||||
+---+---+---+---+================================+
|
|
||||||
|
|
||||||
LEN is the number of data bytes in the block. NLEN is the
|
|
||||||
one's complement of LEN.
|
|
||||||
|
|
||||||
3.2.5. Compressed blocks (length and distance codes)
|
|
||||||
|
|
||||||
As noted above, encoded data blocks in the "deflate" format
|
|
||||||
consist of sequences of symbols drawn from three conceptually
|
|
||||||
distinct alphabets: either literal bytes, from the alphabet of
|
|
||||||
byte values (0..255), or <length, backward distance> pairs,
|
|
||||||
where the length is drawn from (3..258) and the distance is
|
|
||||||
drawn from (1..32,768). In fact, the literal and length
|
|
||||||
alphabets are merged into a single alphabet (0..285), where
|
|
||||||
values 0..255 represent literal bytes, the value 256 indicates
|
|
||||||
end-of-block, and values 257..285 represent length codes
|
|
||||||
(possibly in conjunction with extra bits following the symbol
|
|
||||||
code) as follows:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 11]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
Extra Extra Extra
|
|
||||||
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)
|
|
||||||
---- ---- ------ ---- ---- ------- ---- ---- -------
|
|
||||||
257 0 3 267 1 15,16 277 4 67-82
|
|
||||||
258 0 4 268 1 17,18 278 4 83-98
|
|
||||||
259 0 5 269 2 19-22 279 4 99-114
|
|
||||||
260 0 6 270 2 23-26 280 4 115-130
|
|
||||||
261 0 7 271 2 27-30 281 5 131-162
|
|
||||||
262 0 8 272 2 31-34 282 5 163-194
|
|
||||||
263 0 9 273 3 35-42 283 5 195-226
|
|
||||||
264 0 10 274 3 43-50 284 5 227-257
|
|
||||||
265 1 11,12 275 3 51-58 285 0 258
|
|
||||||
266 1 13,14 276 3 59-66
|
|
||||||
|
|
||||||
The extra bits should be interpreted as a machine integer
|
|
||||||
stored with the most-significant bit first, e.g., bits 1110
|
|
||||||
represent the value 14.
|
|
||||||
|
|
||||||
Extra Extra Extra
|
|
||||||
Code Bits Dist Code Bits Dist Code Bits Distance
|
|
||||||
---- ---- ---- ---- ---- ------ ---- ---- --------
|
|
||||||
0 0 1 10 4 33-48 20 9 1025-1536
|
|
||||||
1 0 2 11 4 49-64 21 9 1537-2048
|
|
||||||
2 0 3 12 5 65-96 22 10 2049-3072
|
|
||||||
3 0 4 13 5 97-128 23 10 3073-4096
|
|
||||||
4 1 5,6 14 6 129-192 24 11 4097-6144
|
|
||||||
5 1 7,8 15 6 193-256 25 11 6145-8192
|
|
||||||
6 2 9-12 16 7 257-384 26 12 8193-12288
|
|
||||||
7 2 13-16 17 7 385-512 27 12 12289-16384
|
|
||||||
8 3 17-24 18 8 513-768 28 13 16385-24576
|
|
||||||
9 3 25-32 19 8 769-1024 29 13 24577-32768
|
|
||||||
|
|
||||||
3.2.6. Compression with fixed Huffman codes (BTYPE=01)
|
|
||||||
|
|
||||||
The Huffman codes for the two alphabets are fixed, and are not
|
|
||||||
represented explicitly in the data. The Huffman code lengths
|
|
||||||
for the literal/length alphabet are:
|
|
||||||
|
|
||||||
Lit Value Bits Codes
|
|
||||||
--------- ---- -----
|
|
||||||
0 - 143 8 00110000 through
|
|
||||||
10111111
|
|
||||||
144 - 255 9 110010000 through
|
|
||||||
111111111
|
|
||||||
256 - 279 7 0000000 through
|
|
||||||
0010111
|
|
||||||
280 - 287 8 11000000 through
|
|
||||||
11000111
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 12]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
The code lengths are sufficient to generate the actual codes,
|
|
||||||
as described above; we show the codes in the table for added
|
|
||||||
clarity. Literal/length values 286-287 will never actually
|
|
||||||
occur in the compressed data, but participate in the code
|
|
||||||
construction.
|
|
||||||
|
|
||||||
Distance codes 0-31 are represented by (fixed-length) 5-bit
|
|
||||||
codes, with possible additional bits as shown in the table
|
|
||||||
shown in Paragraph 3.2.5, above. Note that distance codes 30-
|
|
||||||
31 will never actually occur in the compressed data.
|
|
||||||
|
|
||||||
3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
|
|
||||||
|
|
||||||
The Huffman codes for the two alphabets appear in the block
|
|
||||||
immediately after the header bits and before the actual
|
|
||||||
compressed data, first the literal/length code and then the
|
|
||||||
distance code. Each code is defined by a sequence of code
|
|
||||||
lengths, as discussed in Paragraph 3.2.2, above. For even
|
|
||||||
greater compactness, the code length sequences themselves are
|
|
||||||
compressed using a Huffman code. The alphabet for code lengths
|
|
||||||
is as follows:
|
|
||||||
|
|
||||||
0 - 15: Represent code lengths of 0 - 15
|
|
||||||
16: Copy the previous code length 3 - 6 times.
|
|
||||||
The next 2 bits indicate repeat length
|
|
||||||
(0 = 3, ... , 3 = 6)
|
|
||||||
Example: Codes 8, 16 (+2 bits 11),
|
|
||||||
16 (+2 bits 10) will expand to
|
|
||||||
12 code lengths of 8 (1 + 6 + 5)
|
|
||||||
17: Repeat a code length of 0 for 3 - 10 times.
|
|
||||||
(3 bits of length)
|
|
||||||
18: Repeat a code length of 0 for 11 - 138 times
|
|
||||||
(7 bits of length)
|
|
||||||
|
|
||||||
A code length of 0 indicates that the corresponding symbol in
|
|
||||||
the literal/length or distance alphabet will not occur in the
|
|
||||||
block, and should not participate in the Huffman code
|
|
||||||
construction algorithm given earlier. If only one distance
|
|
||||||
code is used, it is encoded using one bit, not zero bits; in
|
|
||||||
this case there is a single code length of one, with one unused
|
|
||||||
code. One distance code of zero bits means that there are no
|
|
||||||
distance codes used at all (the data is all literals).
|
|
||||||
|
|
||||||
We can now define the format of the block:
|
|
||||||
|
|
||||||
5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
|
|
||||||
5 Bits: HDIST, # of Distance codes - 1 (1 - 32)
|
|
||||||
4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 13]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
(HCLEN + 4) x 3 bits: code lengths for the code length
|
|
||||||
alphabet given just above, in the order: 16, 17, 18,
|
|
||||||
0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
|
|
||||||
|
|
||||||
These code lengths are interpreted as 3-bit integers
|
|
||||||
(0-7); as above, a code length of 0 means the
|
|
||||||
corresponding symbol (literal/length or distance code
|
|
||||||
length) is not used.
|
|
||||||
|
|
||||||
HLIT + 257 code lengths for the literal/length alphabet,
|
|
||||||
encoded using the code length Huffman code
|
|
||||||
|
|
||||||
HDIST + 1 code lengths for the distance alphabet,
|
|
||||||
encoded using the code length Huffman code
|
|
||||||
|
|
||||||
The actual compressed data of the block,
|
|
||||||
encoded using the literal/length and distance Huffman
|
|
||||||
codes
|
|
||||||
|
|
||||||
The literal/length symbol 256 (end of data),
|
|
||||||
encoded using the literal/length Huffman code
|
|
||||||
|
|
||||||
The code length repeat codes can cross from HLIT + 257 to the
|
|
||||||
HDIST + 1 code lengths. In other words, all code lengths form
|
|
||||||
a single sequence of HLIT + HDIST + 258 values.
|
|
||||||
|
|
||||||
3.3. Compliance
|
|
||||||
|
|
||||||
A compressor may limit further the ranges of values specified in
|
|
||||||
the previous section and still be compliant; for example, it may
|
|
||||||
limit the range of backward pointers to some value smaller than
|
|
||||||
32K. Similarly, a compressor may limit the size of blocks so that
|
|
||||||
a compressible block fits in memory.
|
|
||||||
|
|
||||||
A compliant decompressor must accept the full range of possible
|
|
||||||
values defined in the previous section, and must accept blocks of
|
|
||||||
arbitrary size.
|
|
||||||
|
|
||||||
4. Compression algorithm details
|
|
||||||
|
|
||||||
While it is the intent of this document to define the "deflate"
|
|
||||||
compressed data format without reference to any particular
|
|
||||||
compression algorithm, the format is related to the compressed
|
|
||||||
formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
|
|
||||||
since many variations of LZ77 are patented, it is strongly
|
|
||||||
recommended that the implementor of a compressor follow the general
|
|
||||||
algorithm presented here, which is known not to be patented per se.
|
|
||||||
The material in this section is not part of the definition of the
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 14]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
specification per se, and a compressor need not follow it in order to
|
|
||||||
be compliant.
|
|
||||||
|
|
||||||
The compressor terminates a block when it determines that starting a
|
|
||||||
new block with fresh trees would be useful, or when the block size
|
|
||||||
fills up the compressor's block buffer.
|
|
||||||
|
|
||||||
The compressor uses a chained hash table to find duplicated strings,
|
|
||||||
using a hash function that operates on 3-byte sequences. At any
|
|
||||||
given point during compression, let XYZ be the next 3 input bytes to
|
|
||||||
be examined (not necessarily all different, of course). First, the
|
|
||||||
compressor examines the hash chain for XYZ. If the chain is empty,
|
|
||||||
the compressor simply writes out X as a literal byte and advances one
|
|
||||||
byte in the input. If the hash chain is not empty, indicating that
|
|
||||||
the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
|
|
||||||
same hash function value) has occurred recently, the compressor
|
|
||||||
compares all strings on the XYZ hash chain with the actual input data
|
|
||||||
sequence starting at the current point, and selects the longest
|
|
||||||
match.
|
|
||||||
|
|
||||||
The compressor searches the hash chains starting with the most recent
|
|
||||||
strings, to favor small distances and thus take advantage of the
|
|
||||||
Huffman encoding. The hash chains are singly linked. There are no
|
|
||||||
deletions from the hash chains; the algorithm simply discards matches
|
|
||||||
that are too old. To avoid a worst-case situation, very long hash
|
|
||||||
chains are arbitrarily truncated at a certain length, determined by a
|
|
||||||
run-time parameter.
|
|
||||||
|
|
||||||
To improve overall compression, the compressor optionally defers the
|
|
||||||
selection of matches ("lazy matching"): after a match of length N has
|
|
||||||
been found, the compressor searches for a longer match starting at
|
|
||||||
the next input byte. If it finds a longer match, it truncates the
|
|
||||||
previous match to a length of one (thus producing a single literal
|
|
||||||
byte) and then emits the longer match. Otherwise, it emits the
|
|
||||||
original match, and, as described above, advances N bytes before
|
|
||||||
continuing.
|
|
||||||
|
|
||||||
Run-time parameters also control this "lazy match" procedure. If
|
|
||||||
compression ratio is most important, the compressor attempts a
|
|
||||||
complete second search regardless of the length of the first match.
|
|
||||||
In the normal case, if the current match is "long enough", the
|
|
||||||
compressor reduces the search for a longer match, thus speeding up
|
|
||||||
the process. If speed is most important, the compressor inserts new
|
|
||||||
strings in the hash table only when no match was found, or when the
|
|
||||||
match is not "too long". This degrades the compression ratio but
|
|
||||||
saves time since there are both fewer insertions and fewer searches.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 15]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
5. References
|
|
||||||
|
|
||||||
[1] Huffman, D. A., "A Method for the Construction of Minimum
|
|
||||||
Redundancy Codes", Proceedings of the Institute of Radio
|
|
||||||
Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
|
|
||||||
|
|
||||||
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
|
|
||||||
Compression", IEEE Transactions on Information Theory, Vol. 23,
|
|
||||||
No. 3, pp. 337-343.
|
|
||||||
|
|
||||||
[3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
|
|
||||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
|
||||||
|
|
||||||
[4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
|
|
||||||
available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
|
|
||||||
|
|
||||||
[5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
|
|
||||||
encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
|
|
||||||
|
|
||||||
[6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
|
|
||||||
Comm. ACM, 33,4, April 1990, pp. 449-459.
|
|
||||||
|
|
||||||
6. Security Considerations
|
|
||||||
|
|
||||||
Any data compression method involves the reduction of redundancy in
|
|
||||||
the data. Consequently, any corruption of the data is likely to have
|
|
||||||
severe effects and be difficult to correct. Uncompressed text, on
|
|
||||||
the other hand, will probably still be readable despite the presence
|
|
||||||
of some corrupted bytes.
|
|
||||||
|
|
||||||
It is recommended that systems using this data format provide some
|
|
||||||
means of validating the integrity of the compressed data. See
|
|
||||||
reference [3], for example.
|
|
||||||
|
|
||||||
7. Source code
|
|
||||||
|
|
||||||
Source code for a C language implementation of a "deflate" compliant
|
|
||||||
compressor and decompressor is available within the zlib package at
|
|
||||||
ftp://ftp.uu.net/pub/archiving/zip/zlib/.
|
|
||||||
|
|
||||||
8. Acknowledgements
|
|
||||||
|
|
||||||
Trademarks cited in this document are the property of their
|
|
||||||
respective owners.
|
|
||||||
|
|
||||||
Phil Katz designed the deflate format. Jean-Loup Gailly and Mark
|
|
||||||
Adler wrote the related software described in this specification.
|
|
||||||
Glenn Randers-Pehrson converted this document to RFC and HTML format.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 16]
|
|
||||||
|
|
||||||
RFC 1951 DEFLATE Compressed Data Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
9. Author's Address
|
|
||||||
|
|
||||||
L. Peter Deutsch
|
|
||||||
Aladdin Enterprises
|
|
||||||
203 Santa Margarita Ave.
|
|
||||||
Menlo Park, CA 94025
|
|
||||||
|
|
||||||
Phone: (415) 322-0103 (AM only)
|
|
||||||
FAX: (415) 322-1734
|
|
||||||
EMail: <ghost@aladdin.com>
|
|
||||||
|
|
||||||
Questions about the technical content of this specification can be
|
|
||||||
sent by email to:
|
|
||||||
|
|
||||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
|
||||||
Mark Adler <madler@alumni.caltech.edu>
|
|
||||||
|
|
||||||
Editorial comments on this specification can be sent by email to:
|
|
||||||
|
|
||||||
L. Peter Deutsch <ghost@aladdin.com> and
|
|
||||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 17]
|
|
||||||
|
|
||||||
@@ -1,675 +0,0 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Network Working Group P. Deutsch
|
|
||||||
Request for Comments: 1952 Aladdin Enterprises
|
|
||||||
Category: Informational May 1996
|
|
||||||
|
|
||||||
|
|
||||||
GZIP file format specification version 4.3
|
|
||||||
|
|
||||||
Status of This Memo
|
|
||||||
|
|
||||||
This memo provides information for the Internet community. This memo
|
|
||||||
does not specify an Internet standard of any kind. Distribution of
|
|
||||||
this memo is unlimited.
|
|
||||||
|
|
||||||
IESG Note:
|
|
||||||
|
|
||||||
The IESG takes no position on the validity of any Intellectual
|
|
||||||
Property Rights statements contained in this document.
|
|
||||||
|
|
||||||
Notices
|
|
||||||
|
|
||||||
Copyright (c) 1996 L. Peter Deutsch
|
|
||||||
|
|
||||||
Permission is granted to copy and distribute this document for any
|
|
||||||
purpose and without charge, including translations into other
|
|
||||||
languages and incorporation into compilations, provided that the
|
|
||||||
copyright notice and this notice are preserved, and that any
|
|
||||||
substantive changes or deletions from the original are clearly
|
|
||||||
marked.
|
|
||||||
|
|
||||||
A pointer to the latest version of this and related documentation in
|
|
||||||
HTML format can be found at the URL
|
|
||||||
<ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
|
|
||||||
|
|
||||||
Abstract
|
|
||||||
|
|
||||||
This specification defines a lossless compressed data format that is
|
|
||||||
compatible with the widely used GZIP utility. The format includes a
|
|
||||||
cyclic redundancy check value for detecting data corruption. The
|
|
||||||
format presently uses the DEFLATE method of compression but can be
|
|
||||||
easily extended to use other compression methods. The format can be
|
|
||||||
implemented readily in a manner not covered by patents.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 1]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
Table of Contents
|
|
||||||
|
|
||||||
1. Introduction ................................................... 2
|
|
||||||
1.1. Purpose ................................................... 2
|
|
||||||
1.2. Intended audience ......................................... 3
|
|
||||||
1.3. Scope ..................................................... 3
|
|
||||||
1.4. Compliance ................................................ 3
|
|
||||||
1.5. Definitions of terms and conventions used ................. 3
|
|
||||||
1.6. Changes from previous versions ............................ 3
|
|
||||||
2. Detailed specification ......................................... 4
|
|
||||||
2.1. Overall conventions ....................................... 4
|
|
||||||
2.2. File format ............................................... 5
|
|
||||||
2.3. Member format ............................................. 5
|
|
||||||
2.3.1. Member header and trailer ........................... 6
|
|
||||||
2.3.1.1. Extra field ................................... 8
|
|
||||||
2.3.1.2. Compliance .................................... 9
|
|
||||||
3. References .................................................. 9
|
|
||||||
4. Security Considerations .................................... 10
|
|
||||||
5. Acknowledgements ........................................... 10
|
|
||||||
6. Author's Address ........................................... 10
|
|
||||||
7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
|
|
||||||
8. Appendix: Sample CRC Code .................................. 11
|
|
||||||
|
|
||||||
1. Introduction
|
|
||||||
|
|
||||||
1.1. Purpose
|
|
||||||
|
|
||||||
The purpose of this specification is to define a lossless
|
|
||||||
compressed data format that:
|
|
||||||
|
|
||||||
* Is independent of CPU type, operating system, file system,
|
|
||||||
and character set, and hence can be used for interchange;
|
|
||||||
* Can compress or decompress a data stream (as opposed to a
|
|
||||||
randomly accessible file) to produce another data stream,
|
|
||||||
using only an a priori bounded amount of intermediate
|
|
||||||
storage, and hence can be used in data communications or
|
|
||||||
similar structures such as Unix filters;
|
|
||||||
* Compresses data with efficiency comparable to the best
|
|
||||||
currently available general-purpose compression methods,
|
|
||||||
and in particular considerably better than the "compress"
|
|
||||||
program;
|
|
||||||
* Can be implemented readily in a manner not covered by
|
|
||||||
patents, and hence can be practiced freely;
|
|
||||||
* Is compatible with the file format produced by the current
|
|
||||||
widely used gzip utility, in that conforming decompressors
|
|
||||||
will be able to read data produced by the existing gzip
|
|
||||||
compressor.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 2]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
The data format defined by this specification does not attempt to:
|
|
||||||
|
|
||||||
* Provide random access to compressed data;
|
|
||||||
* Compress specialized data (e.g., raster graphics) as well as
|
|
||||||
the best currently available specialized algorithms.
|
|
||||||
|
|
||||||
1.2. Intended audience
|
|
||||||
|
|
||||||
This specification is intended for use by implementors of software
|
|
||||||
to compress data into gzip format and/or decompress data from gzip
|
|
||||||
format.
|
|
||||||
|
|
||||||
The text of the specification assumes a basic background in
|
|
||||||
programming at the level of bits and other primitive data
|
|
||||||
representations.
|
|
||||||
|
|
||||||
1.3. Scope
|
|
||||||
|
|
||||||
The specification specifies a compression method and a file format
|
|
||||||
(the latter assuming only that a file can store a sequence of
|
|
||||||
arbitrary bytes). It does not specify any particular interface to
|
|
||||||
a file system or anything about character sets or encodings
|
|
||||||
(except for file names and comments, which are optional).
|
|
||||||
|
|
||||||
1.4. Compliance
|
|
||||||
|
|
||||||
Unless otherwise indicated below, a compliant decompressor must be
|
|
||||||
able to accept and decompress any file that conforms to all the
|
|
||||||
specifications presented here; a compliant compressor must produce
|
|
||||||
files that conform to all the specifications presented here. The
|
|
||||||
material in the appendices is not part of the specification per se
|
|
||||||
and is not relevant to compliance.
|
|
||||||
|
|
||||||
1.5. Definitions of terms and conventions used
|
|
||||||
|
|
||||||
byte: 8 bits stored or transmitted as a unit (same as an octet).
|
|
||||||
(For this specification, a byte is exactly 8 bits, even on
|
|
||||||
machines which store a character on a number of bits different
|
|
||||||
from 8.) See below for the numbering of bits within a byte.
|
|
||||||
|
|
||||||
1.6. Changes from previous versions
|
|
||||||
|
|
||||||
There have been no technical changes to the gzip format since
|
|
||||||
version 4.1 of this specification. In version 4.2, some
|
|
||||||
terminology was changed, and the sample CRC code was rewritten for
|
|
||||||
clarity and to eliminate the requirement for the caller to do pre-
|
|
||||||
and post-conditioning. Version 4.3 is a conversion of the
|
|
||||||
specification to RFC style.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 3]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
2. Detailed specification
|
|
||||||
|
|
||||||
2.1. Overall conventions
|
|
||||||
|
|
||||||
In the diagrams below, a box like this:
|
|
||||||
|
|
||||||
+---+
|
|
||||||
| | <-- the vertical bars might be missing
|
|
||||||
+---+
|
|
||||||
|
|
||||||
represents one byte; a box like this:
|
|
||||||
|
|
||||||
+==============+
|
|
||||||
| |
|
|
||||||
+==============+
|
|
||||||
|
|
||||||
represents a variable number of bytes.
|
|
||||||
|
|
||||||
Bytes stored within a computer do not have a "bit order", since
|
|
||||||
they are always treated as a unit. However, a byte considered as
|
|
||||||
an integer between 0 and 255 does have a most- and least-
|
|
||||||
significant bit, and since we write numbers with the most-
|
|
||||||
significant digit on the left, we also write bytes with the most-
|
|
||||||
significant bit on the left. In the diagrams below, we number the
|
|
||||||
bits of a byte so that bit 0 is the least-significant bit, i.e.,
|
|
||||||
the bits are numbered:
|
|
||||||
|
|
||||||
+--------+
|
|
||||||
|76543210|
|
|
||||||
+--------+
|
|
||||||
|
|
||||||
This document does not address the issue of the order in which
|
|
||||||
bits of a byte are transmitted on a bit-sequential medium, since
|
|
||||||
the data format described here is byte- rather than bit-oriented.
|
|
||||||
|
|
||||||
Within a computer, a number may occupy multiple bytes. All
|
|
||||||
multi-byte numbers in the format described here are stored with
|
|
||||||
the least-significant byte first (at the lower memory address).
|
|
||||||
For example, the decimal number 520 is stored as:
|
|
||||||
|
|
||||||
0 1
|
|
||||||
+--------+--------+
|
|
||||||
|00001000|00000010|
|
|
||||||
+--------+--------+
|
|
||||||
^ ^
|
|
||||||
| |
|
|
||||||
| + more significant byte = 2 x 256
|
|
||||||
+ less significant byte = 8
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 4]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
2.2. File format
|
|
||||||
|
|
||||||
A gzip file consists of a series of "members" (compressed data
|
|
||||||
sets). The format of each member is specified in the following
|
|
||||||
section. The members simply appear one after another in the file,
|
|
||||||
with no additional information before, between, or after them.
|
|
||||||
|
|
||||||
2.3. Member format
|
|
||||||
|
|
||||||
Each member has the following structure:
|
|
||||||
|
|
||||||
+---+---+---+---+---+---+---+---+---+---+
|
|
||||||
|ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
|
|
||||||
+---+---+---+---+---+---+---+---+---+---+
|
|
||||||
|
|
||||||
(if FLG.FEXTRA set)
|
|
||||||
|
|
||||||
+---+---+=================================+
|
|
||||||
| XLEN |...XLEN bytes of "extra field"...| (more-->)
|
|
||||||
+---+---+=================================+
|
|
||||||
|
|
||||||
(if FLG.FNAME set)
|
|
||||||
|
|
||||||
+=========================================+
|
|
||||||
|...original file name, zero-terminated...| (more-->)
|
|
||||||
+=========================================+
|
|
||||||
|
|
||||||
(if FLG.FCOMMENT set)
|
|
||||||
|
|
||||||
+===================================+
|
|
||||||
|...file comment, zero-terminated...| (more-->)
|
|
||||||
+===================================+
|
|
||||||
|
|
||||||
(if FLG.FHCRC set)
|
|
||||||
|
|
||||||
+---+---+
|
|
||||||
| CRC16 |
|
|
||||||
+---+---+
|
|
||||||
|
|
||||||
+=======================+
|
|
||||||
|...compressed blocks...| (more-->)
|
|
||||||
+=======================+
|
|
||||||
|
|
||||||
0 1 2 3 4 5 6 7
|
|
||||||
+---+---+---+---+---+---+---+---+
|
|
||||||
| CRC32 | ISIZE |
|
|
||||||
+---+---+---+---+---+---+---+---+
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 5]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
2.3.1. Member header and trailer
|
|
||||||
|
|
||||||
ID1 (IDentification 1)
|
|
||||||
ID2 (IDentification 2)
|
|
||||||
These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
|
|
||||||
(0x8b, \213), to identify the file as being in gzip format.
|
|
||||||
|
|
||||||
CM (Compression Method)
|
|
||||||
This identifies the compression method used in the file. CM
|
|
||||||
= 0-7 are reserved. CM = 8 denotes the "deflate"
|
|
||||||
compression method, which is the one customarily used by
|
|
||||||
gzip and which is documented elsewhere.
|
|
||||||
|
|
||||||
FLG (FLaGs)
|
|
||||||
This flag byte is divided into individual bits as follows:
|
|
||||||
|
|
||||||
bit 0 FTEXT
|
|
||||||
bit 1 FHCRC
|
|
||||||
bit 2 FEXTRA
|
|
||||||
bit 3 FNAME
|
|
||||||
bit 4 FCOMMENT
|
|
||||||
bit 5 reserved
|
|
||||||
bit 6 reserved
|
|
||||||
bit 7 reserved
|
|
||||||
|
|
||||||
If FTEXT is set, the file is probably ASCII text. This is
|
|
||||||
an optional indication, which the compressor may set by
|
|
||||||
checking a small amount of the input data to see whether any
|
|
||||||
non-ASCII characters are present. In case of doubt, FTEXT
|
|
||||||
is cleared, indicating binary data. For systems which have
|
|
||||||
different file formats for ascii text and binary data, the
|
|
||||||
decompressor can use FTEXT to choose the appropriate format.
|
|
||||||
We deliberately do not specify the algorithm used to set
|
|
||||||
this bit, since a compressor always has the option of
|
|
||||||
leaving it cleared and a decompressor always has the option
|
|
||||||
of ignoring it and letting some other program handle issues
|
|
||||||
of data conversion.
|
|
||||||
|
|
||||||
If FHCRC is set, a CRC16 for the gzip header is present,
|
|
||||||
immediately before the compressed data. The CRC16 consists
|
|
||||||
of the two least significant bytes of the CRC32 for all
|
|
||||||
bytes of the gzip header up to and not including the CRC16.
|
|
||||||
[The FHCRC bit was never set by versions of gzip up to
|
|
||||||
1.2.4, even though it was documented with a different
|
|
||||||
meaning in gzip 1.2.4.]
|
|
||||||
|
|
||||||
If FEXTRA is set, optional extra fields are present, as
|
|
||||||
described in a following section.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 6]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
If FNAME is set, an original file name is present,
|
|
||||||
terminated by a zero byte. The name must consist of ISO
|
|
||||||
8859-1 (LATIN-1) characters; on operating systems using
|
|
||||||
EBCDIC or any other character set for file names, the name
|
|
||||||
must be translated to the ISO LATIN-1 character set. This
|
|
||||||
is the original name of the file being compressed, with any
|
|
||||||
directory components removed, and, if the file being
|
|
||||||
compressed is on a file system with case insensitive names,
|
|
||||||
forced to lower case. There is no original file name if the
|
|
||||||
data was compressed from a source other than a named file;
|
|
||||||
for example, if the source was stdin on a Unix system, there
|
|
||||||
is no file name.
|
|
||||||
|
|
||||||
If FCOMMENT is set, a zero-terminated file comment is
|
|
||||||
present. This comment is not interpreted; it is only
|
|
||||||
intended for human consumption. The comment must consist of
|
|
||||||
ISO 8859-1 (LATIN-1) characters. Line breaks should be
|
|
||||||
denoted by a single line feed character (10 decimal).
|
|
||||||
|
|
||||||
Reserved FLG bits must be zero.
|
|
||||||
|
|
||||||
MTIME (Modification TIME)
|
|
||||||
This gives the most recent modification time of the original
|
|
||||||
file being compressed. The time is in Unix format, i.e.,
|
|
||||||
seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this
|
|
||||||
may cause problems for MS-DOS and other systems that use
|
|
||||||
local rather than Universal time.) If the compressed data
|
|
||||||
did not come from a file, MTIME is set to the time at which
|
|
||||||
compression started. MTIME = 0 means no time stamp is
|
|
||||||
available.
|
|
||||||
|
|
||||||
XFL (eXtra FLags)
|
|
||||||
These flags are available for use by specific compression
|
|
||||||
methods. The "deflate" method (CM = 8) sets these flags as
|
|
||||||
follows:
|
|
||||||
|
|
||||||
XFL = 2 - compressor used maximum compression,
|
|
||||||
slowest algorithm
|
|
||||||
XFL = 4 - compressor used fastest algorithm
|
|
||||||
|
|
||||||
OS (Operating System)
|
|
||||||
This identifies the type of file system on which compression
|
|
||||||
took place. This may be useful in determining end-of-line
|
|
||||||
convention for text files. The currently defined values are
|
|
||||||
as follows:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 7]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
|
|
||||||
1 - Amiga
|
|
||||||
2 - VMS (or OpenVMS)
|
|
||||||
3 - Unix
|
|
||||||
4 - VM/CMS
|
|
||||||
5 - Atari TOS
|
|
||||||
6 - HPFS filesystem (OS/2, NT)
|
|
||||||
7 - Macintosh
|
|
||||||
8 - Z-System
|
|
||||||
9 - CP/M
|
|
||||||
10 - TOPS-20
|
|
||||||
11 - NTFS filesystem (NT)
|
|
||||||
12 - QDOS
|
|
||||||
13 - Acorn RISCOS
|
|
||||||
255 - unknown
|
|
||||||
|
|
||||||
XLEN (eXtra LENgth)
|
|
||||||
If FLG.FEXTRA is set, this gives the length of the optional
|
|
||||||
extra field. See below for details.
|
|
||||||
|
|
||||||
CRC32 (CRC-32)
|
|
||||||
This contains a Cyclic Redundancy Check value of the
|
|
||||||
uncompressed data computed according to CRC-32 algorithm
|
|
||||||
used in the ISO 3309 standard and in section 8.1.1.6.2 of
|
|
||||||
ITU-T recommendation V.42. (See http://www.iso.ch for
|
|
||||||
ordering ISO documents. See gopher://info.itu.ch for an
|
|
||||||
online version of ITU-T V.42.)
|
|
||||||
|
|
||||||
ISIZE (Input SIZE)
|
|
||||||
This contains the size of the original (uncompressed) input
|
|
||||||
data modulo 2^32.
|
|
||||||
|
|
||||||
2.3.1.1. Extra field
|
|
||||||
|
|
||||||
If the FLG.FEXTRA bit is set, an "extra field" is present in
|
|
||||||
the header, with total length XLEN bytes. It consists of a
|
|
||||||
series of subfields, each of the form:
|
|
||||||
|
|
||||||
+---+---+---+---+==================================+
|
|
||||||
|SI1|SI2| LEN |... LEN bytes of subfield data ...|
|
|
||||||
+---+---+---+---+==================================+
|
|
||||||
|
|
||||||
SI1 and SI2 provide a subfield ID, typically two ASCII letters
|
|
||||||
with some mnemonic value. Jean-Loup Gailly
|
|
||||||
<gzip@prep.ai.mit.edu> is maintaining a registry of subfield
|
|
||||||
IDs; please send him any subfield ID you wish to use. Subfield
|
|
||||||
IDs with SI2 = 0 are reserved for future use. The following
|
|
||||||
IDs are currently defined:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 8]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
SI1 SI2 Data
|
|
||||||
---------- ---------- ----
|
|
||||||
0x41 ('A') 0x70 ('P') Apollo file type information
|
|
||||||
|
|
||||||
LEN gives the length of the subfield data, excluding the 4
|
|
||||||
initial bytes.
|
|
||||||
|
|
||||||
2.3.1.2. Compliance
|
|
||||||
|
|
||||||
A compliant compressor must produce files with correct ID1,
|
|
||||||
ID2, CM, CRC32, and ISIZE, but may set all the other fields in
|
|
||||||
the fixed-length part of the header to default values (255 for
|
|
||||||
OS, 0 for all others). The compressor must set all reserved
|
|
||||||
bits to zero.
|
|
||||||
|
|
||||||
A compliant decompressor must check ID1, ID2, and CM, and
|
|
||||||
provide an error indication if any of these have incorrect
|
|
||||||
values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
|
|
||||||
at least so it can skip over the optional fields if they are
|
|
||||||
present. It need not examine any other part of the header or
|
|
||||||
trailer; in particular, a decompressor may ignore FTEXT and OS
|
|
||||||
and always produce binary output, and still be compliant. A
|
|
||||||
compliant decompressor must give an error indication if any
|
|
||||||
reserved bit is non-zero, since such a bit could indicate the
|
|
||||||
presence of a new field that would cause subsequent data to be
|
|
||||||
interpreted incorrectly.
|
|
||||||
|
|
||||||
3. References
|
|
||||||
|
|
||||||
[1] "Information Processing - 8-bit single-byte coded graphic
|
|
||||||
character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
|
|
||||||
The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
|
|
||||||
ASCII. Files defining this character set are available as
|
|
||||||
iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
|
|
||||||
|
|
||||||
[2] ISO 3309
|
|
||||||
|
|
||||||
[3] ITU-T recommendation V.42
|
|
||||||
|
|
||||||
[4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
|
|
||||||
available in ftp://ftp.uu.net/pub/archiving/zip/doc/
|
|
||||||
|
|
||||||
[5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
|
|
||||||
ftp://prep.ai.mit.edu/pub/gnu/
|
|
||||||
|
|
||||||
[6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
|
|
||||||
Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 9]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
[7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
|
|
||||||
pp.118-133.
|
|
||||||
|
|
||||||
[8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
|
|
||||||
describing the CRC concept.
|
|
||||||
|
|
||||||
4. Security Considerations
|
|
||||||
|
|
||||||
Any data compression method involves the reduction of redundancy in
|
|
||||||
the data. Consequently, any corruption of the data is likely to have
|
|
||||||
severe effects and be difficult to correct. Uncompressed text, on
|
|
||||||
the other hand, will probably still be readable despite the presence
|
|
||||||
of some corrupted bytes.
|
|
||||||
|
|
||||||
It is recommended that systems using this data format provide some
|
|
||||||
means of validating the integrity of the compressed data, such as by
|
|
||||||
setting and checking the CRC-32 check value.
|
|
||||||
|
|
||||||
5. Acknowledgements
|
|
||||||
|
|
||||||
Trademarks cited in this document are the property of their
|
|
||||||
respective owners.
|
|
||||||
|
|
||||||
Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
|
|
||||||
the related software described in this specification. Glenn
|
|
||||||
Randers-Pehrson converted this document to RFC and HTML format.
|
|
||||||
|
|
||||||
6. Author's Address
|
|
||||||
|
|
||||||
L. Peter Deutsch
|
|
||||||
Aladdin Enterprises
|
|
||||||
203 Santa Margarita Ave.
|
|
||||||
Menlo Park, CA 94025
|
|
||||||
|
|
||||||
Phone: (415) 322-0103 (AM only)
|
|
||||||
FAX: (415) 322-1734
|
|
||||||
EMail: <ghost@aladdin.com>
|
|
||||||
|
|
||||||
Questions about the technical content of this specification can be
|
|
||||||
sent by email to:
|
|
||||||
|
|
||||||
Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
|
|
||||||
Mark Adler <madler@alumni.caltech.edu>
|
|
||||||
|
|
||||||
Editorial comments on this specification can be sent by email to:
|
|
||||||
|
|
||||||
L. Peter Deutsch <ghost@aladdin.com> and
|
|
||||||
Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 10]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
7. Appendix: Jean-Loup Gailly's gzip utility
|
|
||||||
|
|
||||||
The most widely used implementation of gzip compression, and the
|
|
||||||
original documentation on which this specification is based, were
|
|
||||||
created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since this
|
|
||||||
implementation is a de facto standard, we mention some more of its
|
|
||||||
features here. Again, the material in this section is not part of
|
|
||||||
the specification per se, and implementations need not follow it to
|
|
||||||
be compliant.
|
|
||||||
|
|
||||||
When compressing or decompressing a file, gzip preserves the
|
|
||||||
protection, ownership, and modification time attributes on the local
|
|
||||||
file system, since there is no provision for representing protection
|
|
||||||
attributes in the gzip file format itself. Since the file format
|
|
||||||
includes a modification time, the gzip decompressor provides a
|
|
||||||
command line switch that assigns the modification time from the file,
|
|
||||||
rather than the local modification time of the compressed input, to
|
|
||||||
the decompressed output.
|
|
||||||
|
|
||||||
8. Appendix: Sample CRC Code
|
|
||||||
|
|
||||||
The following sample code represents a practical implementation of
|
|
||||||
the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
|
|
||||||
for a formal specification.)
|
|
||||||
|
|
||||||
The sample code is in the ANSI C programming language. Non C users
|
|
||||||
may find it easier to read with these hints:
|
|
||||||
|
|
||||||
& Bitwise AND operator.
|
|
||||||
^ Bitwise exclusive-OR operator.
|
|
||||||
>> Bitwise right shift operator. When applied to an
|
|
||||||
unsigned quantity, as here, right shift inserts zero
|
|
||||||
bit(s) at the left.
|
|
||||||
! Logical NOT operator.
|
|
||||||
++ "n++" increments the variable n.
|
|
||||||
0xNNN 0x introduces a hexadecimal (base 16) constant.
|
|
||||||
Suffix L indicates a long value (at least 32 bits).
|
|
||||||
|
|
||||||
/* Table of CRCs of all 8-bit messages. */
|
|
||||||
unsigned long crc_table[256];
|
|
||||||
|
|
||||||
/* Flag: has the table been computed? Initially false. */
|
|
||||||
int crc_table_computed = 0;
|
|
||||||
|
|
||||||
/* Make the table for a fast CRC. */
|
|
||||||
void make_crc_table(void)
|
|
||||||
{
|
|
||||||
unsigned long c;
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 11]
|
|
||||||
|
|
||||||
RFC 1952 GZIP File Format Specification May 1996
|
|
||||||
|
|
||||||
|
|
||||||
int n, k;
|
|
||||||
for (n = 0; n < 256; n++) {
|
|
||||||
c = (unsigned long) n;
|
|
||||||
for (k = 0; k < 8; k++) {
|
|
||||||
if (c & 1) {
|
|
||||||
c = 0xedb88320L ^ (c >> 1);
|
|
||||||
} else {
|
|
||||||
c = c >> 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
crc_table[n] = c;
|
|
||||||
}
|
|
||||||
crc_table_computed = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
Update a running crc with the bytes buf[0..len-1] and return
|
|
||||||
the updated crc. The crc should be initialized to zero. Pre- and
|
|
||||||
post-conditioning (one's complement) is performed within this
|
|
||||||
function so it shouldn't be done by the caller. Usage example:
|
|
||||||
|
|
||||||
unsigned long crc = 0L;
|
|
||||||
|
|
||||||
while (read_buffer(buffer, length) != EOF) {
|
|
||||||
crc = update_crc(crc, buffer, length);
|
|
||||||
}
|
|
||||||
if (crc != original_crc) error();
|
|
||||||
*/
|
|
||||||
unsigned long update_crc(unsigned long crc,
|
|
||||||
unsigned char *buf, int len)
|
|
||||||
{
|
|
||||||
unsigned long c = crc ^ 0xffffffffL;
|
|
||||||
int n;
|
|
||||||
|
|
||||||
if (!crc_table_computed)
|
|
||||||
make_crc_table();
|
|
||||||
for (n = 0; n < len; n++) {
|
|
||||||
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
|
|
||||||
}
|
|
||||||
return c ^ 0xffffffffL;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Return the CRC of the bytes buf[0..len-1]. */
|
|
||||||
unsigned long crc(unsigned char *buf, int len)
|
|
||||||
{
|
|
||||||
return update_crc(0L, buf, len);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Deutsch Informational [Page 12]
|
|
||||||
|
|
||||||
@@ -1,107 +0,0 @@
|
|||||||
A Fast Method for Identifying Plain Text Files
|
|
||||||
==============================================
|
|
||||||
|
|
||||||
|
|
||||||
Introduction
|
|
||||||
------------
|
|
||||||
|
|
||||||
Given a file coming from an unknown source, it is sometimes desirable
|
|
||||||
to find out whether the format of that file is plain text. Although
|
|
||||||
this may appear like a simple task, a fully accurate detection of the
|
|
||||||
file type requires heavy-duty semantic analysis on the file contents.
|
|
||||||
It is, however, possible to obtain satisfactory results by employing
|
|
||||||
various heuristics.
|
|
||||||
|
|
||||||
Previous versions of PKZip and other zip-compatible compression tools
|
|
||||||
were using a crude detection scheme: if more than 80% (4/5) of the bytes
|
|
||||||
found in a certain buffer are within the range [7..127], the file is
|
|
||||||
labeled as plain text, otherwise it is labeled as binary. A prominent
|
|
||||||
limitation of this scheme is the restriction to Latin-based alphabets.
|
|
||||||
Other alphabets, like Greek, Cyrillic or Asian, make extensive use of
|
|
||||||
the bytes within the range [128..255], and texts using these alphabets
|
|
||||||
are most often misidentified by this scheme; in other words, the rate
|
|
||||||
of false negatives is sometimes too high, which means that the recall
|
|
||||||
is low. Another weakness of this scheme is a reduced precision, due to
|
|
||||||
the false positives that may occur when binary files containing large
|
|
||||||
amounts of textual characters are misidentified as plain text.
|
|
||||||
|
|
||||||
In this article we propose a new, simple detection scheme that features
|
|
||||||
a much increased precision and a near-100% recall. This scheme is
|
|
||||||
designed to work on ASCII, Unicode and other ASCII-derived alphabets,
|
|
||||||
and it handles single-byte encodings (ISO-8859, MacRoman, KOI8, etc.)
|
|
||||||
and variable-sized encodings (ISO-2022, UTF-8, etc.). Wider encodings
|
|
||||||
(UCS-2/UTF-16 and UCS-4/UTF-32) are not handled, however.
|
|
||||||
|
|
||||||
|
|
||||||
The Algorithm
|
|
||||||
-------------
|
|
||||||
|
|
||||||
The algorithm works by dividing the set of bytecodes [0..255] into three
|
|
||||||
categories:
|
|
||||||
- The allow list of textual bytecodes:
|
|
||||||
9 (TAB), 10 (LF), 13 (CR), 32 (SPACE) to 255.
|
|
||||||
- The gray list of tolerated bytecodes:
|
|
||||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB), 27 (ESC).
|
|
||||||
- The block list of undesired, non-textual bytecodes:
|
|
||||||
0 (NUL) to 6, 14 to 31.
|
|
||||||
|
|
||||||
If a file contains at least one byte that belongs to the allow list and
|
|
||||||
no byte that belongs to the block list, then the file is categorized as
|
|
||||||
plain text; otherwise, it is categorized as binary. (The boundary case,
|
|
||||||
when the file is empty, automatically falls into the latter category.)
|
|
||||||
|
|
||||||
|
|
||||||
Rationale
|
|
||||||
---------
|
|
||||||
|
|
||||||
The idea behind this algorithm relies on two observations.
|
|
||||||
|
|
||||||
The first observation is that, although the full range of 7-bit codes
|
|
||||||
[0..127] is properly specified by the ASCII standard, most control
|
|
||||||
characters in the range [0..31] are not used in practice. The only
|
|
||||||
widely-used, almost universally-portable control codes are 9 (TAB),
|
|
||||||
10 (LF) and 13 (CR). There are a few more control codes that are
|
|
||||||
recognized on a reduced range of platforms and text viewers/editors:
|
|
||||||
7 (BEL), 8 (BS), 11 (VT), 12 (FF), 26 (SUB) and 27 (ESC); but these
|
|
||||||
codes are rarely (if ever) used alone, without being accompanied by
|
|
||||||
some printable text. Even the newer, portable text formats such as
|
|
||||||
XML avoid using control characters outside the list mentioned here.
|
|
||||||
|
|
||||||
The second observation is that most of the binary files tend to contain
|
|
||||||
control characters, especially 0 (NUL). Even though the older text
|
|
||||||
detection schemes observe the presence of non-ASCII codes from the range
|
|
||||||
[128..255], the precision rarely has to suffer if this upper range is
|
|
||||||
labeled as textual, because the files that are genuinely binary tend to
|
|
||||||
contain both control characters and codes from the upper range. On the
|
|
||||||
other hand, the upper range needs to be labeled as textual, because it
|
|
||||||
is used by virtually all ASCII extensions. In particular, this range is
|
|
||||||
used for encoding non-Latin scripts.
|
|
||||||
|
|
||||||
Since there is no counting involved, other than simply observing the
|
|
||||||
presence or the absence of some byte values, the algorithm produces
|
|
||||||
consistent results, regardless what alphabet encoding is being used.
|
|
||||||
(If counting were involved, it could be possible to obtain different
|
|
||||||
results on a text encoded, say, using ISO-8859-16 versus UTF-8.)
|
|
||||||
|
|
||||||
There is an extra category of plain text files that are "polluted" with
|
|
||||||
one or more block-listed codes, either by mistake or by peculiar design
|
|
||||||
considerations. In such cases, a scheme that tolerates a small fraction
|
|
||||||
of block-listed codes would provide an increased recall (i.e. more true
|
|
||||||
positives). This, however, incurs a reduced precision overall, since
|
|
||||||
false positives are more likely to appear in binary files that contain
|
|
||||||
large chunks of textual data. Furthermore, "polluted" plain text should
|
|
||||||
be regarded as binary by general-purpose text detection schemes, because
|
|
||||||
general-purpose text processing algorithms might not be applicable.
|
|
||||||
Under this premise, it is safe to say that our detection method provides
|
|
||||||
a near-100% recall.
|
|
||||||
|
|
||||||
Experiments have been run on many files coming from various platforms
|
|
||||||
and applications. We tried plain text files, system logs, source code,
|
|
||||||
formatted office documents, compiled object code, etc. The results
|
|
||||||
confirm the optimistic assumptions about the capabilities of this
|
|
||||||
algorithm.
|
|
||||||
|
|
||||||
|
|
||||||
--
|
|
||||||
Cosmin Truta
|
|
||||||
Last updated: 2006-May-28
|
|
||||||
@@ -1,23 +0,0 @@
|
|||||||
/* gzclose.c -- zlib gzclose() function
|
|
||||||
* Copyright (C) 2004, 2010 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "gzguts.h"
|
|
||||||
|
|
||||||
/* gzclose() is in a separate file so that it is linked in only if it is used.
|
|
||||||
That way the other gzclose functions can be used instead to avoid linking in
|
|
||||||
unneeded compression or decompression routines. */
|
|
||||||
int ZEXPORT gzclose(gzFile file) {
|
|
||||||
#ifndef NO_GZCOMPRESS
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
return state->mode == GZ_READ ? gzclose_r(file) : gzclose_w(file);
|
|
||||||
#else
|
|
||||||
return gzclose_r(file);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
@@ -1,214 +0,0 @@
|
|||||||
/* gzguts.h -- zlib internal header definitions for gz* operations
|
|
||||||
* Copyright (C) 2004-2024 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifdef _LARGEFILE64_SOURCE
|
|
||||||
# ifndef _LARGEFILE_SOURCE
|
|
||||||
# define _LARGEFILE_SOURCE 1
|
|
||||||
# endif
|
|
||||||
# undef _FILE_OFFSET_BITS
|
|
||||||
# undef _TIME_BITS
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef HAVE_HIDDEN
|
|
||||||
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
|
|
||||||
#else
|
|
||||||
# define ZLIB_INTERNAL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <stdio.h>
|
|
||||||
#include "zlib.h"
|
|
||||||
#ifdef STDC
|
|
||||||
# include <string.h>
|
|
||||||
# include <stdlib.h>
|
|
||||||
# include <limits.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef _POSIX_SOURCE
|
|
||||||
# define _POSIX_SOURCE
|
|
||||||
#endif
|
|
||||||
#include <fcntl.h>
|
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
# include <stddef.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__TURBOC__) || defined(_MSC_VER) || defined(_WIN32)
|
|
||||||
# include <io.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_WIN32)
|
|
||||||
# define WIDECHAR
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef WINAPI_FAMILY
|
|
||||||
# define open _open
|
|
||||||
# define read _read
|
|
||||||
# define write _write
|
|
||||||
# define close _close
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef NO_DEFLATE /* for compatibility with old definition */
|
|
||||||
# define NO_GZCOMPRESS
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(STDC99) || (defined(__TURBOC__) && __TURBOC__ >= 0x550)
|
|
||||||
# ifndef HAVE_VSNPRINTF
|
|
||||||
# define HAVE_VSNPRINTF
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__CYGWIN__)
|
|
||||||
# ifndef HAVE_VSNPRINTF
|
|
||||||
# define HAVE_VSNPRINTF
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(MSDOS) && defined(__BORLANDC__) && (BORLANDC > 0x410)
|
|
||||||
# ifndef HAVE_VSNPRINTF
|
|
||||||
# define HAVE_VSNPRINTF
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef HAVE_VSNPRINTF
|
|
||||||
# ifdef MSDOS
|
|
||||||
/* vsnprintf may exist on some MS-DOS compilers (DJGPP?),
|
|
||||||
but for now we just assume it doesn't. */
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
# ifdef __TURBOC__
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
# ifdef WIN32
|
|
||||||
/* In Win32, vsnprintf is available as the "non-ANSI" _vsnprintf. */
|
|
||||||
# if !defined(vsnprintf) && !defined(NO_vsnprintf)
|
|
||||||
# if !defined(_MSC_VER) || ( defined(_MSC_VER) && _MSC_VER < 1500 )
|
|
||||||
# define vsnprintf _vsnprintf
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
# ifdef __SASC
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
# ifdef VMS
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
# ifdef __OS400__
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
# ifdef __MVS__
|
|
||||||
# define NO_vsnprintf
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* unlike snprintf (which is required in C99), _snprintf does not guarantee
|
|
||||||
null termination of the result -- however this is only used in gzlib.c where
|
|
||||||
the result is assured to fit in the space provided */
|
|
||||||
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
||||||
# define snprintf _snprintf
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef local
|
|
||||||
# define local static
|
|
||||||
#endif
|
|
||||||
/* since "static" is used to mean two completely different things in C, we
|
|
||||||
define "local" for the non-static meaning of "static", for readability
|
|
||||||
(compile with -Dlocal if your debugger can't find static symbols) */
|
|
||||||
|
|
||||||
/* gz* functions always use library allocation functions */
|
|
||||||
#ifndef STDC
|
|
||||||
extern voidp malloc(uInt size);
|
|
||||||
extern void free(voidpf ptr);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* get errno and strerror definition */
|
|
||||||
#if defined UNDER_CE
|
|
||||||
# include <windows.h>
|
|
||||||
# define zstrerror() gz_strwinerror((DWORD)GetLastError())
|
|
||||||
#else
|
|
||||||
# ifndef NO_STRERROR
|
|
||||||
# include <errno.h>
|
|
||||||
# define zstrerror() strerror(errno)
|
|
||||||
# else
|
|
||||||
# define zstrerror() "stdio error (consult errno)"
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* provide prototypes for these when building zlib without LFS */
|
|
||||||
#if !defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0
|
|
||||||
ZEXTERN gzFile ZEXPORT gzopen64(const char *, const char *);
|
|
||||||
ZEXTERN z_off64_t ZEXPORT gzseek64(gzFile, z_off64_t, int);
|
|
||||||
ZEXTERN z_off64_t ZEXPORT gztell64(gzFile);
|
|
||||||
ZEXTERN z_off64_t ZEXPORT gzoffset64(gzFile);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* default memLevel */
|
|
||||||
#if MAX_MEM_LEVEL >= 8
|
|
||||||
# define DEF_MEM_LEVEL 8
|
|
||||||
#else
|
|
||||||
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* default i/o buffer size -- double this for output when reading (this and
|
|
||||||
twice this must be able to fit in an unsigned type) */
|
|
||||||
#define GZBUFSIZE 8192
|
|
||||||
|
|
||||||
/* gzip modes, also provide a little integrity check on the passed structure */
|
|
||||||
#define GZ_NONE 0
|
|
||||||
#define GZ_READ 7247
|
|
||||||
#define GZ_WRITE 31153
|
|
||||||
#define GZ_APPEND 1 /* mode set to GZ_WRITE after the file is opened */
|
|
||||||
|
|
||||||
/* values for gz_state how */
|
|
||||||
#define LOOK 0 /* look for a gzip header */
|
|
||||||
#define COPY 1 /* copy input directly */
|
|
||||||
#define GZIP 2 /* decompress a gzip stream */
|
|
||||||
|
|
||||||
/* internal gzip file state data structure */
|
|
||||||
typedef struct {
|
|
||||||
/* exposed contents for gzgetc() macro */
|
|
||||||
struct gzFile_s x; /* "x" for exposed */
|
|
||||||
/* x.have: number of bytes available at x.next */
|
|
||||||
/* x.next: next output data to deliver or write */
|
|
||||||
/* x.pos: current position in uncompressed data */
|
|
||||||
/* used for both reading and writing */
|
|
||||||
int mode; /* see gzip modes above */
|
|
||||||
int fd; /* file descriptor */
|
|
||||||
char *path; /* path or fd for error messages */
|
|
||||||
unsigned size; /* buffer size, zero if not allocated yet */
|
|
||||||
unsigned want; /* requested buffer size, default is GZBUFSIZE */
|
|
||||||
unsigned char *in; /* input buffer (double-sized when writing) */
|
|
||||||
unsigned char *out; /* output buffer (double-sized when reading) */
|
|
||||||
int direct; /* 0 if processing gzip, 1 if transparent */
|
|
||||||
/* just for reading */
|
|
||||||
int how; /* 0: get header, 1: copy, 2: decompress */
|
|
||||||
z_off64_t start; /* where the gzip data started, for rewinding */
|
|
||||||
int eof; /* true if end of input file reached */
|
|
||||||
int past; /* true if read requested past end */
|
|
||||||
/* just for writing */
|
|
||||||
int level; /* compression level */
|
|
||||||
int strategy; /* compression strategy */
|
|
||||||
int reset; /* true if a reset is pending after a Z_FINISH */
|
|
||||||
/* seek request */
|
|
||||||
z_off64_t skip; /* amount to skip (already rewound if backwards) */
|
|
||||||
int seek; /* true if seek request pending */
|
|
||||||
/* error information */
|
|
||||||
int err; /* error code */
|
|
||||||
char *msg; /* error message */
|
|
||||||
/* zlib inflate or deflate stream */
|
|
||||||
z_stream strm; /* stream structure in-place (not a pointer) */
|
|
||||||
} gz_state;
|
|
||||||
typedef gz_state FAR *gz_statep;
|
|
||||||
|
|
||||||
/* shared functions */
|
|
||||||
void ZLIB_INTERNAL gz_error(gz_statep, int, const char *);
|
|
||||||
#if defined UNDER_CE
|
|
||||||
char ZLIB_INTERNAL *gz_strwinerror(DWORD error);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* GT_OFF(x), where x is an unsigned value, is true if x > maximum z_off64_t
|
|
||||||
value -- needed when comparing unsigned to z_off64_t, which is signed
|
|
||||||
(possible z_off64_t types off_t, off64_t, and long are all signed) */
|
|
||||||
unsigned ZLIB_INTERNAL gz_intmax(void);
|
|
||||||
#define GT_OFF(x) (sizeof(int) == sizeof(z_off64_t) && (x) > gz_intmax())
|
|
||||||
@@ -1,582 +0,0 @@
|
|||||||
/* gzlib.c -- zlib functions common to reading and writing gzip files
|
|
||||||
* Copyright (C) 2004-2024 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "gzguts.h"
|
|
||||||
|
|
||||||
#if defined(_WIN32) && !defined(__BORLANDC__)
|
|
||||||
# define LSEEK _lseeki64
|
|
||||||
#else
|
|
||||||
#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
|
|
||||||
# define LSEEK lseek64
|
|
||||||
#else
|
|
||||||
# define LSEEK lseek
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined UNDER_CE
|
|
||||||
|
|
||||||
/* Map the Windows error number in ERROR to a locale-dependent error message
|
|
||||||
string and return a pointer to it. Typically, the values for ERROR come
|
|
||||||
from GetLastError.
|
|
||||||
|
|
||||||
The string pointed to shall not be modified by the application, but may be
|
|
||||||
overwritten by a subsequent call to gz_strwinerror
|
|
||||||
|
|
||||||
The gz_strwinerror function does not change the current setting of
|
|
||||||
GetLastError. */
|
|
||||||
char ZLIB_INTERNAL *gz_strwinerror(DWORD error) {
|
|
||||||
static char buf[1024];
|
|
||||||
|
|
||||||
wchar_t *msgbuf;
|
|
||||||
DWORD lasterr = GetLastError();
|
|
||||||
DWORD chars = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
|
|
||||||
| FORMAT_MESSAGE_ALLOCATE_BUFFER,
|
|
||||||
NULL,
|
|
||||||
error,
|
|
||||||
0, /* Default language */
|
|
||||||
(LPVOID)&msgbuf,
|
|
||||||
0,
|
|
||||||
NULL);
|
|
||||||
if (chars != 0) {
|
|
||||||
/* If there is an \r\n appended, zap it. */
|
|
||||||
if (chars >= 2
|
|
||||||
&& msgbuf[chars - 2] == '\r' && msgbuf[chars - 1] == '\n') {
|
|
||||||
chars -= 2;
|
|
||||||
msgbuf[chars] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (chars > sizeof (buf) - 1) {
|
|
||||||
chars = sizeof (buf) - 1;
|
|
||||||
msgbuf[chars] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
wcstombs(buf, msgbuf, chars + 1);
|
|
||||||
LocalFree(msgbuf);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
sprintf(buf, "unknown win32 error (%ld)", error);
|
|
||||||
}
|
|
||||||
|
|
||||||
SetLastError(lasterr);
|
|
||||||
return buf;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif /* UNDER_CE */
|
|
||||||
|
|
||||||
/* Reset gzip file state */
|
|
||||||
local void gz_reset(gz_statep state) {
|
|
||||||
state->x.have = 0; /* no output data available */
|
|
||||||
if (state->mode == GZ_READ) { /* for reading ... */
|
|
||||||
state->eof = 0; /* not at end of file */
|
|
||||||
state->past = 0; /* have not read past end yet */
|
|
||||||
state->how = LOOK; /* look for gzip header */
|
|
||||||
}
|
|
||||||
else /* for writing ... */
|
|
||||||
state->reset = 0; /* no deflateReset pending */
|
|
||||||
state->seek = 0; /* no seek request pending */
|
|
||||||
gz_error(state, Z_OK, NULL); /* clear error */
|
|
||||||
state->x.pos = 0; /* no uncompressed data yet */
|
|
||||||
state->strm.avail_in = 0; /* no input data yet */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Open a gzip file either by name or file descriptor. */
|
|
||||||
local gzFile gz_open(const void *path, int fd, const char *mode) {
|
|
||||||
gz_statep state;
|
|
||||||
z_size_t len;
|
|
||||||
int oflag;
|
|
||||||
#ifdef O_CLOEXEC
|
|
||||||
int cloexec = 0;
|
|
||||||
#endif
|
|
||||||
#ifdef O_EXCL
|
|
||||||
int exclusive = 0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* check input */
|
|
||||||
if (path == NULL)
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
/* allocate gzFile structure to return */
|
|
||||||
state = (gz_statep)malloc(sizeof(gz_state));
|
|
||||||
if (state == NULL)
|
|
||||||
return NULL;
|
|
||||||
state->size = 0; /* no buffers allocated yet */
|
|
||||||
state->want = GZBUFSIZE; /* requested buffer size */
|
|
||||||
state->msg = NULL; /* no error message yet */
|
|
||||||
|
|
||||||
/* interpret mode */
|
|
||||||
state->mode = GZ_NONE;
|
|
||||||
state->level = Z_DEFAULT_COMPRESSION;
|
|
||||||
state->strategy = Z_DEFAULT_STRATEGY;
|
|
||||||
state->direct = 0;
|
|
||||||
while (*mode) {
|
|
||||||
if (*mode >= '0' && *mode <= '9')
|
|
||||||
state->level = *mode - '0';
|
|
||||||
else
|
|
||||||
switch (*mode) {
|
|
||||||
case 'r':
|
|
||||||
state->mode = GZ_READ;
|
|
||||||
break;
|
|
||||||
#ifndef NO_GZCOMPRESS
|
|
||||||
case 'w':
|
|
||||||
state->mode = GZ_WRITE;
|
|
||||||
break;
|
|
||||||
case 'a':
|
|
||||||
state->mode = GZ_APPEND;
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
case '+': /* can't read and write at the same time */
|
|
||||||
free(state);
|
|
||||||
return NULL;
|
|
||||||
case 'b': /* ignore -- will request binary anyway */
|
|
||||||
break;
|
|
||||||
#ifdef O_CLOEXEC
|
|
||||||
case 'e':
|
|
||||||
cloexec = 1;
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
#ifdef O_EXCL
|
|
||||||
case 'x':
|
|
||||||
exclusive = 1;
|
|
||||||
break;
|
|
||||||
#endif
|
|
||||||
case 'f':
|
|
||||||
state->strategy = Z_FILTERED;
|
|
||||||
break;
|
|
||||||
case 'h':
|
|
||||||
state->strategy = Z_HUFFMAN_ONLY;
|
|
||||||
break;
|
|
||||||
case 'R':
|
|
||||||
state->strategy = Z_RLE;
|
|
||||||
break;
|
|
||||||
case 'F':
|
|
||||||
state->strategy = Z_FIXED;
|
|
||||||
break;
|
|
||||||
case 'T':
|
|
||||||
state->direct = 1;
|
|
||||||
break;
|
|
||||||
default: /* could consider as an error, but just ignore */
|
|
||||||
;
|
|
||||||
}
|
|
||||||
mode++;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* must provide an "r", "w", or "a" */
|
|
||||||
if (state->mode == GZ_NONE) {
|
|
||||||
free(state);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* can't force transparent read */
|
|
||||||
if (state->mode == GZ_READ) {
|
|
||||||
if (state->direct) {
|
|
||||||
free(state);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
state->direct = 1; /* for empty file */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* save the path name for error messages */
|
|
||||||
#ifdef WIDECHAR
|
|
||||||
if (fd == -2) {
|
|
||||||
len = wcstombs(NULL, path, 0);
|
|
||||||
if (len == (z_size_t)-1)
|
|
||||||
len = 0;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
#endif
|
|
||||||
len = strlen((const char *)path);
|
|
||||||
state->path = (char *)malloc(len + 1);
|
|
||||||
if (state->path == NULL) {
|
|
||||||
free(state);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
#ifdef WIDECHAR
|
|
||||||
if (fd == -2)
|
|
||||||
if (len)
|
|
||||||
wcstombs(state->path, path, len + 1);
|
|
||||||
else
|
|
||||||
*(state->path) = 0;
|
|
||||||
else
|
|
||||||
#endif
|
|
||||||
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
|
|
||||||
(void)snprintf(state->path, len + 1, "%s", (const char *)path);
|
|
||||||
#else
|
|
||||||
strcpy(state->path, path);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* compute the flags for open() */
|
|
||||||
oflag =
|
|
||||||
#ifdef O_LARGEFILE
|
|
||||||
O_LARGEFILE |
|
|
||||||
#endif
|
|
||||||
#ifdef O_BINARY
|
|
||||||
O_BINARY |
|
|
||||||
#endif
|
|
||||||
#ifdef O_CLOEXEC
|
|
||||||
(cloexec ? O_CLOEXEC : 0) |
|
|
||||||
#endif
|
|
||||||
(state->mode == GZ_READ ?
|
|
||||||
O_RDONLY :
|
|
||||||
(O_WRONLY | O_CREAT |
|
|
||||||
#ifdef O_EXCL
|
|
||||||
(exclusive ? O_EXCL : 0) |
|
|
||||||
#endif
|
|
||||||
(state->mode == GZ_WRITE ?
|
|
||||||
O_TRUNC :
|
|
||||||
O_APPEND)));
|
|
||||||
|
|
||||||
/* open the file with the appropriate flags (or just use fd) */
|
|
||||||
state->fd = fd > -1 ? fd : (
|
|
||||||
#ifdef WIDECHAR
|
|
||||||
fd == -2 ? _wopen(path, oflag, 0666) :
|
|
||||||
#endif
|
|
||||||
open((const char *)path, oflag, 0666));
|
|
||||||
if (state->fd == -1) {
|
|
||||||
free(state->path);
|
|
||||||
free(state);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
if (state->mode == GZ_APPEND) {
|
|
||||||
LSEEK(state->fd, 0, SEEK_END); /* so gzoffset() is correct */
|
|
||||||
state->mode = GZ_WRITE; /* simplify later checks */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* save the current position for rewinding (only if reading) */
|
|
||||||
if (state->mode == GZ_READ) {
|
|
||||||
state->start = LSEEK(state->fd, 0, SEEK_CUR);
|
|
||||||
if (state->start == -1) state->start = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* initialize stream */
|
|
||||||
gz_reset(state);
|
|
||||||
|
|
||||||
/* return stream */
|
|
||||||
return (gzFile)state;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
gzFile ZEXPORT gzopen(const char *path, const char *mode) {
|
|
||||||
return gz_open(path, -1, mode);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
gzFile ZEXPORT gzopen64(const char *path, const char *mode) {
|
|
||||||
return gz_open(path, -1, mode);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
gzFile ZEXPORT gzdopen(int fd, const char *mode) {
|
|
||||||
char *path; /* identifier for error messages */
|
|
||||||
gzFile gz;
|
|
||||||
|
|
||||||
if (fd == -1 || (path = (char *)malloc(7 + 3 * sizeof(int))) == NULL)
|
|
||||||
return NULL;
|
|
||||||
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
|
|
||||||
(void)snprintf(path, 7 + 3 * sizeof(int), "<fd:%d>", fd);
|
|
||||||
#else
|
|
||||||
sprintf(path, "<fd:%d>", fd); /* for debugging */
|
|
||||||
#endif
|
|
||||||
gz = gz_open(path, fd, mode);
|
|
||||||
free(path);
|
|
||||||
return gz;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
#ifdef WIDECHAR
|
|
||||||
gzFile ZEXPORT gzopen_w(const wchar_t *path, const char *mode) {
|
|
||||||
return gz_open(path, -2, mode);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzbuffer(gzFile file, unsigned size) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* make sure we haven't already allocated memory */
|
|
||||||
if (state->size != 0)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* check and set requested size */
|
|
||||||
if ((size << 1) < size)
|
|
||||||
return -1; /* need to be able to double it */
|
|
||||||
if (size < 8)
|
|
||||||
size = 8; /* needed to behave well with flushing */
|
|
||||||
state->want = size;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzrewind(gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* back up and start over */
|
|
||||||
if (LSEEK(state->fd, state->start, SEEK_SET) == -1)
|
|
||||||
return -1;
|
|
||||||
gz_reset(state);
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off64_t ZEXPORT gzseek64(gzFile file, z_off64_t offset, int whence) {
|
|
||||||
unsigned n;
|
|
||||||
z_off64_t ret;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* check that there's no error */
|
|
||||||
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* can only seek from start or relative to current position */
|
|
||||||
if (whence != SEEK_SET && whence != SEEK_CUR)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* normalize offset to a SEEK_CUR specification */
|
|
||||||
if (whence == SEEK_SET)
|
|
||||||
offset -= state->x.pos;
|
|
||||||
else if (state->seek)
|
|
||||||
offset += state->skip;
|
|
||||||
state->seek = 0;
|
|
||||||
|
|
||||||
/* if within raw area while reading, just go there */
|
|
||||||
if (state->mode == GZ_READ && state->how == COPY &&
|
|
||||||
state->x.pos + offset >= 0) {
|
|
||||||
ret = LSEEK(state->fd, offset - (z_off64_t)state->x.have, SEEK_CUR);
|
|
||||||
if (ret == -1)
|
|
||||||
return -1;
|
|
||||||
state->x.have = 0;
|
|
||||||
state->eof = 0;
|
|
||||||
state->past = 0;
|
|
||||||
state->seek = 0;
|
|
||||||
gz_error(state, Z_OK, NULL);
|
|
||||||
state->strm.avail_in = 0;
|
|
||||||
state->x.pos += offset;
|
|
||||||
return state->x.pos;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* calculate skip amount, rewinding if needed for back seek when reading */
|
|
||||||
if (offset < 0) {
|
|
||||||
if (state->mode != GZ_READ) /* writing -- can't go backwards */
|
|
||||||
return -1;
|
|
||||||
offset += state->x.pos;
|
|
||||||
if (offset < 0) /* before start of file! */
|
|
||||||
return -1;
|
|
||||||
if (gzrewind(file) == -1) /* rewind, then skip to offset */
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* if reading, skip what's in output buffer (one less gzgetc() check) */
|
|
||||||
if (state->mode == GZ_READ) {
|
|
||||||
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > offset ?
|
|
||||||
(unsigned)offset : state->x.have;
|
|
||||||
state->x.have -= n;
|
|
||||||
state->x.next += n;
|
|
||||||
state->x.pos += n;
|
|
||||||
offset -= n;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* request skip (if not zero) */
|
|
||||||
if (offset) {
|
|
||||||
state->seek = 1;
|
|
||||||
state->skip = offset;
|
|
||||||
}
|
|
||||||
return state->x.pos + offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off_t ZEXPORT gzseek(gzFile file, z_off_t offset, int whence) {
|
|
||||||
z_off64_t ret;
|
|
||||||
|
|
||||||
ret = gzseek64(file, (z_off64_t)offset, whence);
|
|
||||||
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off64_t ZEXPORT gztell64(gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* return position */
|
|
||||||
return state->x.pos + (state->seek ? state->skip : 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off_t ZEXPORT gztell(gzFile file) {
|
|
||||||
z_off64_t ret;
|
|
||||||
|
|
||||||
ret = gztell64(file);
|
|
||||||
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off64_t ZEXPORT gzoffset64(gzFile file) {
|
|
||||||
z_off64_t offset;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* compute and return effective offset in file */
|
|
||||||
offset = LSEEK(state->fd, 0, SEEK_CUR);
|
|
||||||
if (offset == -1)
|
|
||||||
return -1;
|
|
||||||
if (state->mode == GZ_READ) /* reading */
|
|
||||||
offset -= state->strm.avail_in; /* don't count buffered input */
|
|
||||||
return offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_off_t ZEXPORT gzoffset(gzFile file) {
|
|
||||||
z_off64_t ret;
|
|
||||||
|
|
||||||
ret = gzoffset64(file);
|
|
||||||
return ret == (z_off_t)ret ? (z_off_t)ret : -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzeof(gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return 0;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* return end-of-file state */
|
|
||||||
return state->mode == GZ_READ ? state->past : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
const char * ZEXPORT gzerror(gzFile file, int *errnum) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return NULL;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
/* return error information */
|
|
||||||
if (errnum != NULL)
|
|
||||||
*errnum = state->err;
|
|
||||||
return state->err == Z_MEM_ERROR ? "out of memory" :
|
|
||||||
(state->msg == NULL ? "" : state->msg);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
void ZEXPORT gzclearerr(gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure and check integrity */
|
|
||||||
if (file == NULL)
|
|
||||||
return;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
if (state->mode != GZ_READ && state->mode != GZ_WRITE)
|
|
||||||
return;
|
|
||||||
|
|
||||||
/* clear error and end-of-file */
|
|
||||||
if (state->mode == GZ_READ) {
|
|
||||||
state->eof = 0;
|
|
||||||
state->past = 0;
|
|
||||||
}
|
|
||||||
gz_error(state, Z_OK, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Create an error message in allocated memory and set state->err and
|
|
||||||
state->msg accordingly. Free any previous error message already there. Do
|
|
||||||
not try to free or allocate space if the error is Z_MEM_ERROR (out of
|
|
||||||
memory). Simply save the error message as a static string. If there is an
|
|
||||||
allocation failure constructing the error message, then convert the error to
|
|
||||||
out of memory. */
|
|
||||||
void ZLIB_INTERNAL gz_error(gz_statep state, int err, const char *msg) {
|
|
||||||
/* free previously allocated message and clear */
|
|
||||||
if (state->msg != NULL) {
|
|
||||||
if (state->err != Z_MEM_ERROR)
|
|
||||||
free(state->msg);
|
|
||||||
state->msg = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* if fatal, set state->x.have to 0 so that the gzgetc() macro fails */
|
|
||||||
if (err != Z_OK && err != Z_BUF_ERROR)
|
|
||||||
state->x.have = 0;
|
|
||||||
|
|
||||||
/* set error code, and if no message, then done */
|
|
||||||
state->err = err;
|
|
||||||
if (msg == NULL)
|
|
||||||
return;
|
|
||||||
|
|
||||||
/* for an out of memory error, return literal string when requested */
|
|
||||||
if (err == Z_MEM_ERROR)
|
|
||||||
return;
|
|
||||||
|
|
||||||
/* construct error message with path */
|
|
||||||
if ((state->msg = (char *)malloc(strlen(state->path) + strlen(msg) + 3)) ==
|
|
||||||
NULL) {
|
|
||||||
state->err = Z_MEM_ERROR;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
#if !defined(NO_snprintf) && !defined(NO_vsnprintf)
|
|
||||||
(void)snprintf(state->msg, strlen(state->path) + strlen(msg) + 3,
|
|
||||||
"%s%s%s", state->path, ": ", msg);
|
|
||||||
#else
|
|
||||||
strcpy(state->msg, state->path);
|
|
||||||
strcat(state->msg, ": ");
|
|
||||||
strcat(state->msg, msg);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
/* portably return maximum value for an int (when limits.h presumed not
|
|
||||||
available) -- we need to do this to cover cases where 2's complement not
|
|
||||||
used, since C standard permits 1's complement and sign-bit representations,
|
|
||||||
otherwise we could just use ((unsigned)-1) >> 1 */
|
|
||||||
unsigned ZLIB_INTERNAL gz_intmax(void) {
|
|
||||||
#ifdef INT_MAX
|
|
||||||
return INT_MAX;
|
|
||||||
#else
|
|
||||||
unsigned p = 1, q;
|
|
||||||
do {
|
|
||||||
q = p;
|
|
||||||
p <<= 1;
|
|
||||||
p++;
|
|
||||||
} while (p > q);
|
|
||||||
return q >> 1;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
@@ -1,602 +0,0 @@
|
|||||||
/* gzread.c -- zlib functions for reading gzip files
|
|
||||||
* Copyright (C) 2004-2017 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "gzguts.h"
|
|
||||||
|
|
||||||
/* Use read() to load a buffer -- return -1 on error, otherwise 0. Read from
|
|
||||||
state->fd, and update state->eof, state->err, and state->msg as appropriate.
|
|
||||||
This function needs to loop on read(), since read() is not guaranteed to
|
|
||||||
read the number of bytes requested, depending on the type of descriptor. */
|
|
||||||
local int gz_load(gz_statep state, unsigned char *buf, unsigned len,
|
|
||||||
unsigned *have) {
|
|
||||||
int ret;
|
|
||||||
unsigned get, max = ((unsigned)-1 >> 2) + 1;
|
|
||||||
|
|
||||||
*have = 0;
|
|
||||||
do {
|
|
||||||
get = len - *have;
|
|
||||||
if (get > max)
|
|
||||||
get = max;
|
|
||||||
ret = read(state->fd, buf + *have, get);
|
|
||||||
if (ret <= 0)
|
|
||||||
break;
|
|
||||||
*have += (unsigned)ret;
|
|
||||||
} while (*have < len);
|
|
||||||
if (ret < 0) {
|
|
||||||
gz_error(state, Z_ERRNO, zstrerror());
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
if (ret == 0)
|
|
||||||
state->eof = 1;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Load up input buffer and set eof flag if last data loaded -- return -1 on
|
|
||||||
error, 0 otherwise. Note that the eof flag is set when the end of the input
|
|
||||||
file is reached, even though there may be unused data in the buffer. Once
|
|
||||||
that data has been used, no more attempts will be made to read the file.
|
|
||||||
If strm->avail_in != 0, then the current data is moved to the beginning of
|
|
||||||
the input buffer, and then the remainder of the buffer is loaded with the
|
|
||||||
available data from the input file. */
|
|
||||||
local int gz_avail(gz_statep state) {
|
|
||||||
unsigned got;
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
if (state->err != Z_OK && state->err != Z_BUF_ERROR)
|
|
||||||
return -1;
|
|
||||||
if (state->eof == 0) {
|
|
||||||
if (strm->avail_in) { /* copy what's there to the start */
|
|
||||||
unsigned char *p = state->in;
|
|
||||||
unsigned const char *q = strm->next_in;
|
|
||||||
unsigned n = strm->avail_in;
|
|
||||||
do {
|
|
||||||
*p++ = *q++;
|
|
||||||
} while (--n);
|
|
||||||
}
|
|
||||||
if (gz_load(state, state->in + strm->avail_in,
|
|
||||||
state->size - strm->avail_in, &got) == -1)
|
|
||||||
return -1;
|
|
||||||
strm->avail_in += got;
|
|
||||||
strm->next_in = state->in;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Look for gzip header, set up for inflate or copy. state->x.have must be 0.
|
|
||||||
If this is the first time in, allocate required memory. state->how will be
|
|
||||||
left unchanged if there is no more input data available, will be set to COPY
|
|
||||||
if there is no gzip header and direct copying will be performed, or it will
|
|
||||||
be set to GZIP for decompression. If direct copying, then leftover input
|
|
||||||
data from the input buffer will be copied to the output buffer. In that
|
|
||||||
case, all further file reads will be directly to either the output buffer or
|
|
||||||
a user buffer. If decompressing, the inflate state will be initialized.
|
|
||||||
gz_look() will return 0 on success or -1 on failure. */
|
|
||||||
local int gz_look(gz_statep state) {
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
/* allocate read buffers and inflate memory */
|
|
||||||
if (state->size == 0) {
|
|
||||||
/* allocate buffers */
|
|
||||||
state->in = (unsigned char *)malloc(state->want);
|
|
||||||
state->out = (unsigned char *)malloc(state->want << 1);
|
|
||||||
if (state->in == NULL || state->out == NULL) {
|
|
||||||
free(state->out);
|
|
||||||
free(state->in);
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
state->size = state->want;
|
|
||||||
|
|
||||||
/* allocate inflate memory */
|
|
||||||
state->strm.zalloc = Z_NULL;
|
|
||||||
state->strm.zfree = Z_NULL;
|
|
||||||
state->strm.opaque = Z_NULL;
|
|
||||||
state->strm.avail_in = 0;
|
|
||||||
state->strm.next_in = Z_NULL;
|
|
||||||
if (inflateInit2(&(state->strm), 15 + 16) != Z_OK) { /* gunzip */
|
|
||||||
free(state->out);
|
|
||||||
free(state->in);
|
|
||||||
state->size = 0;
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* get at least the magic bytes in the input buffer */
|
|
||||||
if (strm->avail_in < 2) {
|
|
||||||
if (gz_avail(state) == -1)
|
|
||||||
return -1;
|
|
||||||
if (strm->avail_in == 0)
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* look for gzip magic bytes -- if there, do gzip decoding (note: there is
|
|
||||||
a logical dilemma here when considering the case of a partially written
|
|
||||||
gzip file, to wit, if a single 31 byte is written, then we cannot tell
|
|
||||||
whether this is a single-byte file, or just a partially written gzip
|
|
||||||
file -- for here we assume that if a gzip file is being written, then
|
|
||||||
the header will be written in a single operation, so that reading a
|
|
||||||
single byte is sufficient indication that it is not a gzip file) */
|
|
||||||
if (strm->avail_in > 1 &&
|
|
||||||
strm->next_in[0] == 31 && strm->next_in[1] == 139) {
|
|
||||||
inflateReset(strm);
|
|
||||||
state->how = GZIP;
|
|
||||||
state->direct = 0;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* no gzip header -- if we were decoding gzip before, then this is trailing
|
|
||||||
garbage. Ignore the trailing garbage and finish. */
|
|
||||||
if (state->direct == 0) {
|
|
||||||
strm->avail_in = 0;
|
|
||||||
state->eof = 1;
|
|
||||||
state->x.have = 0;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* doing raw i/o, copy any leftover input to output -- this assumes that
|
|
||||||
the output buffer is larger than the input buffer, which also assures
|
|
||||||
space for gzungetc() */
|
|
||||||
state->x.next = state->out;
|
|
||||||
memcpy(state->x.next, strm->next_in, strm->avail_in);
|
|
||||||
state->x.have = strm->avail_in;
|
|
||||||
strm->avail_in = 0;
|
|
||||||
state->how = COPY;
|
|
||||||
state->direct = 1;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Decompress from input to the provided next_out and avail_out in the state.
|
|
||||||
On return, state->x.have and state->x.next point to the just decompressed
|
|
||||||
data. If the gzip stream completes, state->how is reset to LOOK to look for
|
|
||||||
the next gzip stream or raw data, once state->x.have is depleted. Returns 0
|
|
||||||
on success, -1 on failure. */
|
|
||||||
local int gz_decomp(gz_statep state) {
|
|
||||||
int ret = Z_OK;
|
|
||||||
unsigned had;
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
/* fill output buffer up to end of deflate stream */
|
|
||||||
had = strm->avail_out;
|
|
||||||
do {
|
|
||||||
/* get more input for inflate() */
|
|
||||||
if (strm->avail_in == 0 && gz_avail(state) == -1)
|
|
||||||
return -1;
|
|
||||||
if (strm->avail_in == 0) {
|
|
||||||
gz_error(state, Z_BUF_ERROR, "unexpected end of file");
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* decompress and handle errors */
|
|
||||||
ret = inflate(strm, Z_NO_FLUSH);
|
|
||||||
if (ret == Z_STREAM_ERROR || ret == Z_NEED_DICT) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR,
|
|
||||||
"internal error: inflate stream corrupt");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
if (ret == Z_MEM_ERROR) {
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
if (ret == Z_DATA_ERROR) { /* deflate stream invalid */
|
|
||||||
gz_error(state, Z_DATA_ERROR,
|
|
||||||
strm->msg == NULL ? "compressed data error" : strm->msg);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
} while (strm->avail_out && ret != Z_STREAM_END);
|
|
||||||
|
|
||||||
/* update available output */
|
|
||||||
state->x.have = had - strm->avail_out;
|
|
||||||
state->x.next = strm->next_out - state->x.have;
|
|
||||||
|
|
||||||
/* if the gzip stream completed successfully, look for another */
|
|
||||||
if (ret == Z_STREAM_END)
|
|
||||||
state->how = LOOK;
|
|
||||||
|
|
||||||
/* good decompression */
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Fetch data and put it in the output buffer. Assumes state->x.have is 0.
|
|
||||||
Data is either copied from the input file or decompressed from the input
|
|
||||||
file depending on state->how. If state->how is LOOK, then a gzip header is
|
|
||||||
looked for to determine whether to copy or decompress. Returns -1 on error,
|
|
||||||
otherwise 0. gz_fetch() will leave state->how as COPY or GZIP unless the
|
|
||||||
end of the input file has been reached and all data has been processed. */
|
|
||||||
local int gz_fetch(gz_statep state) {
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
do {
|
|
||||||
switch(state->how) {
|
|
||||||
case LOOK: /* -> LOOK, COPY (only if never GZIP), or GZIP */
|
|
||||||
if (gz_look(state) == -1)
|
|
||||||
return -1;
|
|
||||||
if (state->how == LOOK)
|
|
||||||
return 0;
|
|
||||||
break;
|
|
||||||
case COPY: /* -> COPY */
|
|
||||||
if (gz_load(state, state->out, state->size << 1, &(state->x.have))
|
|
||||||
== -1)
|
|
||||||
return -1;
|
|
||||||
state->x.next = state->out;
|
|
||||||
return 0;
|
|
||||||
case GZIP: /* -> GZIP or LOOK (if end of gzip stream) */
|
|
||||||
strm->avail_out = state->size << 1;
|
|
||||||
strm->next_out = state->out;
|
|
||||||
if (gz_decomp(state) == -1)
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
} while (state->x.have == 0 && (!state->eof || strm->avail_in));
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Skip len uncompressed bytes of output. Return -1 on error, 0 on success. */
|
|
||||||
local int gz_skip(gz_statep state, z_off64_t len) {
|
|
||||||
unsigned n;
|
|
||||||
|
|
||||||
/* skip over len bytes or reach end-of-file, whichever comes first */
|
|
||||||
while (len)
|
|
||||||
/* skip over whatever is in output buffer */
|
|
||||||
if (state->x.have) {
|
|
||||||
n = GT_OFF(state->x.have) || (z_off64_t)state->x.have > len ?
|
|
||||||
(unsigned)len : state->x.have;
|
|
||||||
state->x.have -= n;
|
|
||||||
state->x.next += n;
|
|
||||||
state->x.pos += n;
|
|
||||||
len -= n;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* output buffer empty -- return if we're at the end of the input */
|
|
||||||
else if (state->eof && state->strm.avail_in == 0)
|
|
||||||
break;
|
|
||||||
|
|
||||||
/* need more data to skip -- load up output buffer */
|
|
||||||
else {
|
|
||||||
/* get more output, looking for header if required */
|
|
||||||
if (gz_fetch(state) == -1)
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Read len bytes into buf from file, or less than len up to the end of the
|
|
||||||
input. Return the number of bytes read. If zero is returned, either the
|
|
||||||
end of file was reached, or there was an error. state->err must be
|
|
||||||
consulted in that case to determine which. */
|
|
||||||
local z_size_t gz_read(gz_statep state, voidp buf, z_size_t len) {
|
|
||||||
z_size_t got;
|
|
||||||
unsigned n;
|
|
||||||
|
|
||||||
/* if len is zero, avoid unnecessary operations */
|
|
||||||
if (len == 0)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* process a skip request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_skip(state, state->skip) == -1)
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* get len bytes to buf, or less than len if at the end */
|
|
||||||
got = 0;
|
|
||||||
do {
|
|
||||||
/* set n to the maximum amount of len that fits in an unsigned int */
|
|
||||||
n = (unsigned)-1;
|
|
||||||
if (n > len)
|
|
||||||
n = (unsigned)len;
|
|
||||||
|
|
||||||
/* first just try copying data from the output buffer */
|
|
||||||
if (state->x.have) {
|
|
||||||
if (state->x.have < n)
|
|
||||||
n = state->x.have;
|
|
||||||
memcpy(buf, state->x.next, n);
|
|
||||||
state->x.next += n;
|
|
||||||
state->x.have -= n;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* output buffer empty -- return if we're at the end of the input */
|
|
||||||
else if (state->eof && state->strm.avail_in == 0) {
|
|
||||||
state->past = 1; /* tried to read past end */
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* need output data -- for small len or new stream load up our output
|
|
||||||
buffer */
|
|
||||||
else if (state->how == LOOK || n < (state->size << 1)) {
|
|
||||||
/* get more output, looking for header if required */
|
|
||||||
if (gz_fetch(state) == -1)
|
|
||||||
return 0;
|
|
||||||
continue; /* no progress yet -- go back to copy above */
|
|
||||||
/* the copy above assures that we will leave with space in the
|
|
||||||
output buffer, allowing at least one gzungetc() to succeed */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* large len -- read directly into user buffer */
|
|
||||||
else if (state->how == COPY) { /* read directly */
|
|
||||||
if (gz_load(state, (unsigned char *)buf, n, &n) == -1)
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* large len -- decompress directly into user buffer */
|
|
||||||
else { /* state->how == GZIP */
|
|
||||||
state->strm.avail_out = n;
|
|
||||||
state->strm.next_out = (unsigned char *)buf;
|
|
||||||
if (gz_decomp(state) == -1)
|
|
||||||
return 0;
|
|
||||||
n = state->x.have;
|
|
||||||
state->x.have = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* update progress */
|
|
||||||
len -= n;
|
|
||||||
buf = (char *)buf + n;
|
|
||||||
got += n;
|
|
||||||
state->x.pos += n;
|
|
||||||
} while (len);
|
|
||||||
|
|
||||||
/* return number of bytes read into user buffer */
|
|
||||||
return got;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzread(gzFile file, voidp buf, unsigned len) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no (serious) error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* since an int is returned, make sure len fits in one, otherwise return
|
|
||||||
with an error (this avoids a flaw in the interface) */
|
|
||||||
if ((int)len < 0) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR, "request does not fit in an int");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* read len or fewer bytes to buf */
|
|
||||||
len = (unsigned)gz_read(state, buf, len);
|
|
||||||
|
|
||||||
/* check for an error */
|
|
||||||
if (len == 0 && state->err != Z_OK && state->err != Z_BUF_ERROR)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* return the number of bytes read (this is assured to fit in an int) */
|
|
||||||
return (int)len;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_size_t ZEXPORT gzfread(voidp buf, z_size_t size, z_size_t nitems, gzFile file) {
|
|
||||||
z_size_t len;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return 0;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no (serious) error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* compute bytes to read -- error on overflow */
|
|
||||||
len = nitems * size;
|
|
||||||
if (size && len / size != nitems) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR, "request does not fit in a size_t");
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* read len or fewer bytes to buf, return the number of full items read */
|
|
||||||
return len ? gz_read(state, buf, len) / size : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
#ifdef Z_PREFIX_SET
|
|
||||||
# undef z_gzgetc
|
|
||||||
#else
|
|
||||||
# undef gzgetc
|
|
||||||
#endif
|
|
||||||
int ZEXPORT gzgetc(gzFile file) {
|
|
||||||
unsigned char buf[1];
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no (serious) error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* try output buffer (no need to check for skip request) */
|
|
||||||
if (state->x.have) {
|
|
||||||
state->x.have--;
|
|
||||||
state->x.pos++;
|
|
||||||
return *(state->x.next)++;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* nothing there -- try gz_read() */
|
|
||||||
return gz_read(state, buf, 1) < 1 ? -1 : buf[0];
|
|
||||||
}
|
|
||||||
|
|
||||||
int ZEXPORT gzgetc_(gzFile file) {
|
|
||||||
return gzgetc(file);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzungetc(int c, gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* in case this was just opened, set up the input buffer */
|
|
||||||
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
|
|
||||||
(void)gz_look(state);
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no (serious) error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* process a skip request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_skip(state, state->skip) == -1)
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* can't push EOF */
|
|
||||||
if (c < 0)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* if output buffer empty, put byte at end (allows more pushing) */
|
|
||||||
if (state->x.have == 0) {
|
|
||||||
state->x.have = 1;
|
|
||||||
state->x.next = state->out + (state->size << 1) - 1;
|
|
||||||
state->x.next[0] = (unsigned char)c;
|
|
||||||
state->x.pos--;
|
|
||||||
state->past = 0;
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* if no room, give up (must have already done a gzungetc()) */
|
|
||||||
if (state->x.have == (state->size << 1)) {
|
|
||||||
gz_error(state, Z_DATA_ERROR, "out of room to push characters");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* slide output data if needed and insert byte before existing data */
|
|
||||||
if (state->x.next == state->out) {
|
|
||||||
unsigned char *src = state->out + state->x.have;
|
|
||||||
unsigned char *dest = state->out + (state->size << 1);
|
|
||||||
while (src > state->out)
|
|
||||||
*--dest = *--src;
|
|
||||||
state->x.next = dest;
|
|
||||||
}
|
|
||||||
state->x.have++;
|
|
||||||
state->x.next--;
|
|
||||||
state->x.next[0] = (unsigned char)c;
|
|
||||||
state->x.pos--;
|
|
||||||
state->past = 0;
|
|
||||||
return c;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
char * ZEXPORT gzgets(gzFile file, char *buf, int len) {
|
|
||||||
unsigned left, n;
|
|
||||||
char *str;
|
|
||||||
unsigned char *eol;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* check parameters and get internal structure */
|
|
||||||
if (file == NULL || buf == NULL || len < 1)
|
|
||||||
return NULL;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading and that there's no (serious) error */
|
|
||||||
if (state->mode != GZ_READ ||
|
|
||||||
(state->err != Z_OK && state->err != Z_BUF_ERROR))
|
|
||||||
return NULL;
|
|
||||||
|
|
||||||
/* process a skip request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_skip(state, state->skip) == -1)
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* copy output bytes up to new line or len - 1, whichever comes first --
|
|
||||||
append a terminating zero to the string (we don't check for a zero in
|
|
||||||
the contents, let the user worry about that) */
|
|
||||||
str = buf;
|
|
||||||
left = (unsigned)len - 1;
|
|
||||||
if (left) do {
|
|
||||||
/* assure that something is in the output buffer */
|
|
||||||
if (state->x.have == 0 && gz_fetch(state) == -1)
|
|
||||||
return NULL; /* error */
|
|
||||||
if (state->x.have == 0) { /* end of file */
|
|
||||||
state->past = 1; /* read past end */
|
|
||||||
break; /* return what we have */
|
|
||||||
}
|
|
||||||
|
|
||||||
/* look for end-of-line in current output buffer */
|
|
||||||
n = state->x.have > left ? left : state->x.have;
|
|
||||||
eol = (unsigned char *)memchr(state->x.next, '\n', n);
|
|
||||||
if (eol != NULL)
|
|
||||||
n = (unsigned)(eol - state->x.next) + 1;
|
|
||||||
|
|
||||||
/* copy through end-of-line, or remainder if not found */
|
|
||||||
memcpy(buf, state->x.next, n);
|
|
||||||
state->x.have -= n;
|
|
||||||
state->x.next += n;
|
|
||||||
state->x.pos += n;
|
|
||||||
left -= n;
|
|
||||||
buf += n;
|
|
||||||
} while (left && eol == NULL);
|
|
||||||
|
|
||||||
/* return terminated string, or if nothing, end of file */
|
|
||||||
if (buf == str)
|
|
||||||
return NULL;
|
|
||||||
buf[0] = 0;
|
|
||||||
return str;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzdirect(gzFile file) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return 0;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* if the state is not known, but we can find out, then do so (this is
|
|
||||||
mainly for right after a gzopen() or gzdopen()) */
|
|
||||||
if (state->mode == GZ_READ && state->how == LOOK && state->x.have == 0)
|
|
||||||
(void)gz_look(state);
|
|
||||||
|
|
||||||
/* return 1 if transparent, 0 if processing a gzip stream */
|
|
||||||
return state->direct;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzclose_r(gzFile file) {
|
|
||||||
int ret, err;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're reading */
|
|
||||||
if (state->mode != GZ_READ)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* free memory and close file */
|
|
||||||
if (state->size) {
|
|
||||||
inflateEnd(&(state->strm));
|
|
||||||
free(state->out);
|
|
||||||
free(state->in);
|
|
||||||
}
|
|
||||||
err = state->err == Z_BUF_ERROR ? Z_BUF_ERROR : Z_OK;
|
|
||||||
gz_error(state, Z_OK, NULL);
|
|
||||||
free(state->path);
|
|
||||||
ret = close(state->fd);
|
|
||||||
free(state);
|
|
||||||
return ret ? Z_ERRNO : err;
|
|
||||||
}
|
|
||||||
@@ -1,631 +0,0 @@
|
|||||||
/* gzwrite.c -- zlib functions for writing gzip files
|
|
||||||
* Copyright (C) 2004-2019 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "gzguts.h"
|
|
||||||
|
|
||||||
/* Initialize state for writing a gzip file. Mark initialization by setting
|
|
||||||
state->size to non-zero. Return -1 on a memory allocation failure, or 0 on
|
|
||||||
success. */
|
|
||||||
local int gz_init(gz_statep state) {
|
|
||||||
int ret;
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
/* allocate input buffer (double size for gzprintf) */
|
|
||||||
state->in = (unsigned char *)malloc(state->want << 1);
|
|
||||||
if (state->in == NULL) {
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* only need output buffer and deflate state if compressing */
|
|
||||||
if (!state->direct) {
|
|
||||||
/* allocate output buffer */
|
|
||||||
state->out = (unsigned char *)malloc(state->want);
|
|
||||||
if (state->out == NULL) {
|
|
||||||
free(state->in);
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* allocate deflate memory, set up for gzip compression */
|
|
||||||
strm->zalloc = Z_NULL;
|
|
||||||
strm->zfree = Z_NULL;
|
|
||||||
strm->opaque = Z_NULL;
|
|
||||||
ret = deflateInit2(strm, state->level, Z_DEFLATED,
|
|
||||||
MAX_WBITS + 16, DEF_MEM_LEVEL, state->strategy);
|
|
||||||
if (ret != Z_OK) {
|
|
||||||
free(state->out);
|
|
||||||
free(state->in);
|
|
||||||
gz_error(state, Z_MEM_ERROR, "out of memory");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
strm->next_in = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* mark state as initialized */
|
|
||||||
state->size = state->want;
|
|
||||||
|
|
||||||
/* initialize write buffer if compressing */
|
|
||||||
if (!state->direct) {
|
|
||||||
strm->avail_out = state->size;
|
|
||||||
strm->next_out = state->out;
|
|
||||||
state->x.next = strm->next_out;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Compress whatever is at avail_in and next_in and write to the output file.
|
|
||||||
Return -1 if there is an error writing to the output file or if gz_init()
|
|
||||||
fails to allocate memory, otherwise 0. flush is assumed to be a valid
|
|
||||||
deflate() flush value. If flush is Z_FINISH, then the deflate() state is
|
|
||||||
reset to start a new gzip stream. If gz->direct is true, then simply write
|
|
||||||
to the output file without compressing, and ignore flush. */
|
|
||||||
local int gz_comp(gz_statep state, int flush) {
|
|
||||||
int ret, writ;
|
|
||||||
unsigned have, put, max = ((unsigned)-1 >> 2) + 1;
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
/* allocate memory if this is the first time through */
|
|
||||||
if (state->size == 0 && gz_init(state) == -1)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* write directly if requested */
|
|
||||||
if (state->direct) {
|
|
||||||
while (strm->avail_in) {
|
|
||||||
put = strm->avail_in > max ? max : strm->avail_in;
|
|
||||||
writ = write(state->fd, strm->next_in, put);
|
|
||||||
if (writ < 0) {
|
|
||||||
gz_error(state, Z_ERRNO, zstrerror());
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
strm->avail_in -= (unsigned)writ;
|
|
||||||
strm->next_in += writ;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* check for a pending reset */
|
|
||||||
if (state->reset) {
|
|
||||||
/* don't start a new gzip member unless there is data to write */
|
|
||||||
if (strm->avail_in == 0)
|
|
||||||
return 0;
|
|
||||||
deflateReset(strm);
|
|
||||||
state->reset = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* run deflate() on provided input until it produces no more output */
|
|
||||||
ret = Z_OK;
|
|
||||||
do {
|
|
||||||
/* write out current buffer contents if full, or if flushing, but if
|
|
||||||
doing Z_FINISH then don't write until we get to Z_STREAM_END */
|
|
||||||
if (strm->avail_out == 0 || (flush != Z_NO_FLUSH &&
|
|
||||||
(flush != Z_FINISH || ret == Z_STREAM_END))) {
|
|
||||||
while (strm->next_out > state->x.next) {
|
|
||||||
put = strm->next_out - state->x.next > (int)max ? max :
|
|
||||||
(unsigned)(strm->next_out - state->x.next);
|
|
||||||
writ = write(state->fd, state->x.next, put);
|
|
||||||
if (writ < 0) {
|
|
||||||
gz_error(state, Z_ERRNO, zstrerror());
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
state->x.next += writ;
|
|
||||||
}
|
|
||||||
if (strm->avail_out == 0) {
|
|
||||||
strm->avail_out = state->size;
|
|
||||||
strm->next_out = state->out;
|
|
||||||
state->x.next = state->out;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* compress */
|
|
||||||
have = strm->avail_out;
|
|
||||||
ret = deflate(strm, flush);
|
|
||||||
if (ret == Z_STREAM_ERROR) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR,
|
|
||||||
"internal error: deflate stream corrupt");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
have -= strm->avail_out;
|
|
||||||
} while (have);
|
|
||||||
|
|
||||||
/* if that completed a deflate stream, allow another to start */
|
|
||||||
if (flush == Z_FINISH)
|
|
||||||
state->reset = 1;
|
|
||||||
|
|
||||||
/* all done, no errors */
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Compress len zeros to output. Return -1 on a write error or memory
|
|
||||||
allocation failure by gz_comp(), or 0 on success. */
|
|
||||||
local int gz_zero(gz_statep state, z_off64_t len) {
|
|
||||||
int first;
|
|
||||||
unsigned n;
|
|
||||||
z_streamp strm = &(state->strm);
|
|
||||||
|
|
||||||
/* consume whatever's left in the input buffer */
|
|
||||||
if (strm->avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* compress len zeros (len guaranteed > 0) */
|
|
||||||
first = 1;
|
|
||||||
while (len) {
|
|
||||||
n = GT_OFF(state->size) || (z_off64_t)state->size > len ?
|
|
||||||
(unsigned)len : state->size;
|
|
||||||
if (first) {
|
|
||||||
memset(state->in, 0, n);
|
|
||||||
first = 0;
|
|
||||||
}
|
|
||||||
strm->avail_in = n;
|
|
||||||
strm->next_in = state->in;
|
|
||||||
state->x.pos += n;
|
|
||||||
if (gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return -1;
|
|
||||||
len -= n;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Write len bytes from buf to file. Return the number of bytes written. If
|
|
||||||
the returned value is less than len, then there was an error. */
|
|
||||||
local z_size_t gz_write(gz_statep state, voidpc buf, z_size_t len) {
|
|
||||||
z_size_t put = len;
|
|
||||||
|
|
||||||
/* if len is zero, avoid unnecessary operations */
|
|
||||||
if (len == 0)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* allocate memory if this is the first time through */
|
|
||||||
if (state->size == 0 && gz_init(state) == -1)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* for small len, copy to input buffer, otherwise compress directly */
|
|
||||||
if (len < state->size) {
|
|
||||||
/* copy to input buffer, compress when full */
|
|
||||||
do {
|
|
||||||
unsigned have, copy;
|
|
||||||
|
|
||||||
if (state->strm.avail_in == 0)
|
|
||||||
state->strm.next_in = state->in;
|
|
||||||
have = (unsigned)((state->strm.next_in + state->strm.avail_in) -
|
|
||||||
state->in);
|
|
||||||
copy = state->size - have;
|
|
||||||
if (copy > len)
|
|
||||||
copy = (unsigned)len;
|
|
||||||
memcpy(state->in + have, buf, copy);
|
|
||||||
state->strm.avail_in += copy;
|
|
||||||
state->x.pos += copy;
|
|
||||||
buf = (const char *)buf + copy;
|
|
||||||
len -= copy;
|
|
||||||
if (len && gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return 0;
|
|
||||||
} while (len);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
/* consume whatever's left in the input buffer */
|
|
||||||
if (state->strm.avail_in && gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* directly compress user buffer to file */
|
|
||||||
state->strm.next_in = (z_const Bytef *)buf;
|
|
||||||
do {
|
|
||||||
unsigned n = (unsigned)-1;
|
|
||||||
if (n > len)
|
|
||||||
n = (unsigned)len;
|
|
||||||
state->strm.avail_in = n;
|
|
||||||
state->x.pos += n;
|
|
||||||
if (gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return 0;
|
|
||||||
len -= n;
|
|
||||||
} while (len);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* input was all buffered or compressed */
|
|
||||||
return put;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzwrite(gzFile file, voidpc buf, unsigned len) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return 0;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* since an int is returned, make sure len fits in one, otherwise return
|
|
||||||
with an error (this avoids a flaw in the interface) */
|
|
||||||
if ((int)len < 0) {
|
|
||||||
gz_error(state, Z_DATA_ERROR, "requested length does not fit in int");
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* write len bytes from buf (the return value will fit in an int) */
|
|
||||||
return (int)gz_write(state, buf, len);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
z_size_t ZEXPORT gzfwrite(voidpc buf, z_size_t size, z_size_t nitems,
|
|
||||||
gzFile file) {
|
|
||||||
z_size_t len;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return 0;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* compute bytes to read -- error on overflow */
|
|
||||||
len = nitems * size;
|
|
||||||
if (size && len / size != nitems) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR, "request does not fit in a size_t");
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* write len bytes to buf, return the number of full items written */
|
|
||||||
return len ? gz_write(state, buf, len) / size : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzputc(gzFile file, int c) {
|
|
||||||
unsigned have;
|
|
||||||
unsigned char buf[1];
|
|
||||||
gz_statep state;
|
|
||||||
z_streamp strm;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
strm = &(state->strm);
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* try writing to input buffer for speed (state->size == 0 if buffer not
|
|
||||||
initialized) */
|
|
||||||
if (state->size) {
|
|
||||||
if (strm->avail_in == 0)
|
|
||||||
strm->next_in = state->in;
|
|
||||||
have = (unsigned)((strm->next_in + strm->avail_in) - state->in);
|
|
||||||
if (have < state->size) {
|
|
||||||
state->in[have] = (unsigned char)c;
|
|
||||||
strm->avail_in++;
|
|
||||||
state->x.pos++;
|
|
||||||
return c & 0xff;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* no room in buffer or not initialized, use gz_write() */
|
|
||||||
buf[0] = (unsigned char)c;
|
|
||||||
if (gz_write(state, buf, 1) != 1)
|
|
||||||
return -1;
|
|
||||||
return c & 0xff;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzputs(gzFile file, const char *s) {
|
|
||||||
z_size_t len, put;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return -1;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return -1;
|
|
||||||
|
|
||||||
/* write string */
|
|
||||||
len = strlen(s);
|
|
||||||
if ((int)len < 0 || (unsigned)len != len) {
|
|
||||||
gz_error(state, Z_STREAM_ERROR, "string length does not fit in int");
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
put = gz_write(state, s, len);
|
|
||||||
return put < len ? -1 : (int)len;
|
|
||||||
}
|
|
||||||
|
|
||||||
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
|
|
||||||
#include <stdarg.h>
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORTVA gzvprintf(gzFile file, const char *format, va_list va) {
|
|
||||||
int len;
|
|
||||||
unsigned left;
|
|
||||||
char *next;
|
|
||||||
gz_statep state;
|
|
||||||
z_streamp strm;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
strm = &(state->strm);
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* make sure we have some buffer space */
|
|
||||||
if (state->size == 0 && gz_init(state) == -1)
|
|
||||||
return state->err;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return state->err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* do the printf() into the input buffer, put length in len -- the input
|
|
||||||
buffer is double-sized just for this function, so there is guaranteed to
|
|
||||||
be state->size bytes available after the current contents */
|
|
||||||
if (strm->avail_in == 0)
|
|
||||||
strm->next_in = state->in;
|
|
||||||
next = (char *)(state->in + (strm->next_in - state->in) + strm->avail_in);
|
|
||||||
next[state->size - 1] = 0;
|
|
||||||
#ifdef NO_vsnprintf
|
|
||||||
# ifdef HAS_vsprintf_void
|
|
||||||
(void)vsprintf(next, format, va);
|
|
||||||
for (len = 0; len < state->size; len++)
|
|
||||||
if (next[len] == 0) break;
|
|
||||||
# else
|
|
||||||
len = vsprintf(next, format, va);
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
# ifdef HAS_vsnprintf_void
|
|
||||||
(void)vsnprintf(next, state->size, format, va);
|
|
||||||
len = strlen(next);
|
|
||||||
# else
|
|
||||||
len = vsnprintf(next, state->size, format, va);
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* check that printf() results fit in buffer */
|
|
||||||
if (len == 0 || (unsigned)len >= state->size || next[state->size - 1] != 0)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* update buffer and position, compress first half if past that */
|
|
||||||
strm->avail_in += (unsigned)len;
|
|
||||||
state->x.pos += len;
|
|
||||||
if (strm->avail_in >= state->size) {
|
|
||||||
left = strm->avail_in - state->size;
|
|
||||||
strm->avail_in = state->size;
|
|
||||||
if (gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return state->err;
|
|
||||||
memmove(state->in, state->in + state->size, left);
|
|
||||||
strm->next_in = state->in;
|
|
||||||
strm->avail_in = left;
|
|
||||||
}
|
|
||||||
return len;
|
|
||||||
}
|
|
||||||
|
|
||||||
int ZEXPORTVA gzprintf(gzFile file, const char *format, ...) {
|
|
||||||
va_list va;
|
|
||||||
int ret;
|
|
||||||
|
|
||||||
va_start(va, format);
|
|
||||||
ret = gzvprintf(file, format, va);
|
|
||||||
va_end(va);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
#else /* !STDC && !Z_HAVE_STDARG_H */
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORTVA gzprintf(gzFile file, const char *format, int a1, int a2, int a3,
|
|
||||||
int a4, int a5, int a6, int a7, int a8, int a9, int a10,
|
|
||||||
int a11, int a12, int a13, int a14, int a15, int a16,
|
|
||||||
int a17, int a18, int a19, int a20) {
|
|
||||||
unsigned len, left;
|
|
||||||
char *next;
|
|
||||||
gz_statep state;
|
|
||||||
z_streamp strm;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
strm = &(state->strm);
|
|
||||||
|
|
||||||
/* check that can really pass pointer in ints */
|
|
||||||
if (sizeof(int) != sizeof(void *))
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* make sure we have some buffer space */
|
|
||||||
if (state->size == 0 && gz_init(state) == -1)
|
|
||||||
return state->error;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return state->error;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* do the printf() into the input buffer, put length in len -- the input
|
|
||||||
buffer is double-sized just for this function, so there is guaranteed to
|
|
||||||
be state->size bytes available after the current contents */
|
|
||||||
if (strm->avail_in == 0)
|
|
||||||
strm->next_in = state->in;
|
|
||||||
next = (char *)(strm->next_in + strm->avail_in);
|
|
||||||
next[state->size - 1] = 0;
|
|
||||||
#ifdef NO_snprintf
|
|
||||||
# ifdef HAS_sprintf_void
|
|
||||||
sprintf(next, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12,
|
|
||||||
a13, a14, a15, a16, a17, a18, a19, a20);
|
|
||||||
for (len = 0; len < size; len++)
|
|
||||||
if (next[len] == 0)
|
|
||||||
break;
|
|
||||||
# else
|
|
||||||
len = sprintf(next, format, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11,
|
|
||||||
a12, a13, a14, a15, a16, a17, a18, a19, a20);
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
# ifdef HAS_snprintf_void
|
|
||||||
snprintf(next, state->size, format, a1, a2, a3, a4, a5, a6, a7, a8, a9,
|
|
||||||
a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
|
|
||||||
len = strlen(next);
|
|
||||||
# else
|
|
||||||
len = snprintf(next, state->size, format, a1, a2, a3, a4, a5, a6, a7, a8,
|
|
||||||
a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20);
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* check that printf() results fit in buffer */
|
|
||||||
if (len == 0 || len >= state->size || next[state->size - 1] != 0)
|
|
||||||
return 0;
|
|
||||||
|
|
||||||
/* update buffer and position, compress first half if past that */
|
|
||||||
strm->avail_in += len;
|
|
||||||
state->x.pos += len;
|
|
||||||
if (strm->avail_in >= state->size) {
|
|
||||||
left = strm->avail_in - state->size;
|
|
||||||
strm->avail_in = state->size;
|
|
||||||
if (gz_comp(state, Z_NO_FLUSH) == -1)
|
|
||||||
return state->err;
|
|
||||||
memmove(state->in, state->in + state->size, left);
|
|
||||||
strm->next_in = state->in;
|
|
||||||
strm->avail_in = left;
|
|
||||||
}
|
|
||||||
return (int)len;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzflush(gzFile file, int flush) {
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* check flush parameter */
|
|
||||||
if (flush < 0 || flush > Z_FINISH)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return state->err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* compress remaining data with requested flush */
|
|
||||||
(void)gz_comp(state, flush);
|
|
||||||
return state->err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzsetparams(gzFile file, int level, int strategy) {
|
|
||||||
gz_statep state;
|
|
||||||
z_streamp strm;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
strm = &(state->strm);
|
|
||||||
|
|
||||||
/* check that we're writing and that there's no error */
|
|
||||||
if (state->mode != GZ_WRITE || state->err != Z_OK || state->direct)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* if no change is requested, then do nothing */
|
|
||||||
if (level == state->level && strategy == state->strategy)
|
|
||||||
return Z_OK;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
return state->err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* change compression parameters for subsequent input */
|
|
||||||
if (state->size) {
|
|
||||||
/* flush previous input with previous parameters before changing */
|
|
||||||
if (strm->avail_in && gz_comp(state, Z_BLOCK) == -1)
|
|
||||||
return state->err;
|
|
||||||
deflateParams(strm, level, strategy);
|
|
||||||
}
|
|
||||||
state->level = level;
|
|
||||||
state->strategy = strategy;
|
|
||||||
return Z_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* -- see zlib.h -- */
|
|
||||||
int ZEXPORT gzclose_w(gzFile file) {
|
|
||||||
int ret = Z_OK;
|
|
||||||
gz_statep state;
|
|
||||||
|
|
||||||
/* get internal structure */
|
|
||||||
if (file == NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (gz_statep)file;
|
|
||||||
|
|
||||||
/* check that we're writing */
|
|
||||||
if (state->mode != GZ_WRITE)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
|
|
||||||
/* check for seek request */
|
|
||||||
if (state->seek) {
|
|
||||||
state->seek = 0;
|
|
||||||
if (gz_zero(state, state->skip) == -1)
|
|
||||||
ret = state->err;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* flush, free memory, and close file */
|
|
||||||
if (gz_comp(state, Z_FINISH) == -1)
|
|
||||||
ret = state->err;
|
|
||||||
if (state->size) {
|
|
||||||
if (!state->direct) {
|
|
||||||
(void)deflateEnd(&(state->strm));
|
|
||||||
free(state->out);
|
|
||||||
}
|
|
||||||
free(state->in);
|
|
||||||
}
|
|
||||||
gz_error(state, Z_OK, NULL);
|
|
||||||
free(state->path);
|
|
||||||
if (close(state->fd) == -1)
|
|
||||||
ret = Z_ERRNO;
|
|
||||||
free(state);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
@@ -1,628 +0,0 @@
|
|||||||
/* infback.c -- inflate using a call-back interface
|
|
||||||
* Copyright (C) 1995-2022 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
This code is largely copied from inflate.c. Normally either infback.o or
|
|
||||||
inflate.o would be linked into an application--not both. The interface
|
|
||||||
with inffast.c is retained so that optimized assembler-coded versions of
|
|
||||||
inflate_fast() can be used with either inflate.c or infback.c.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
#include "inftrees.h"
|
|
||||||
#include "inflate.h"
|
|
||||||
#include "inffast.h"
|
|
||||||
|
|
||||||
/*
|
|
||||||
strm provides memory allocation functions in zalloc and zfree, or
|
|
||||||
Z_NULL to use the library memory allocation functions.
|
|
||||||
|
|
||||||
windowBits is in the range 8..15, and window is a user-supplied
|
|
||||||
window and output buffer that is 2**windowBits bytes.
|
|
||||||
*/
|
|
||||||
int ZEXPORT inflateBackInit_(z_streamp strm, int windowBits,
|
|
||||||
unsigned char FAR *window, const char *version,
|
|
||||||
int stream_size) {
|
|
||||||
struct inflate_state FAR *state;
|
|
||||||
|
|
||||||
if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
|
|
||||||
stream_size != (int)(sizeof(z_stream)))
|
|
||||||
return Z_VERSION_ERROR;
|
|
||||||
if (strm == Z_NULL || window == Z_NULL ||
|
|
||||||
windowBits < 8 || windowBits > 15)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
strm->msg = Z_NULL; /* in case we return an error */
|
|
||||||
if (strm->zalloc == (alloc_func)0) {
|
|
||||||
#ifdef Z_SOLO
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
#else
|
|
||||||
strm->zalloc = zcalloc;
|
|
||||||
strm->opaque = (voidpf)0;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
if (strm->zfree == (free_func)0)
|
|
||||||
#ifdef Z_SOLO
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
#else
|
|
||||||
strm->zfree = zcfree;
|
|
||||||
#endif
|
|
||||||
state = (struct inflate_state FAR *)ZALLOC(strm, 1,
|
|
||||||
sizeof(struct inflate_state));
|
|
||||||
if (state == Z_NULL) return Z_MEM_ERROR;
|
|
||||||
Tracev((stderr, "inflate: allocated\n"));
|
|
||||||
strm->state = (struct internal_state FAR *)state;
|
|
||||||
state->dmax = 32768U;
|
|
||||||
state->wbits = (uInt)windowBits;
|
|
||||||
state->wsize = 1U << windowBits;
|
|
||||||
state->window = window;
|
|
||||||
state->wnext = 0;
|
|
||||||
state->whave = 0;
|
|
||||||
state->sane = 1;
|
|
||||||
return Z_OK;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
Return state with length and distance decoding tables and index sizes set to
|
|
||||||
fixed code decoding. Normally this returns fixed tables from inffixed.h.
|
|
||||||
If BUILDFIXED is defined, then instead this routine builds the tables the
|
|
||||||
first time it's called, and returns those tables the first time and
|
|
||||||
thereafter. This reduces the size of the code by about 2K bytes, in
|
|
||||||
exchange for a little execution time. However, BUILDFIXED should not be
|
|
||||||
used for threaded applications, since the rewriting of the tables and virgin
|
|
||||||
may not be thread-safe.
|
|
||||||
*/
|
|
||||||
local void fixedtables(struct inflate_state FAR *state) {
|
|
||||||
#ifdef BUILDFIXED
|
|
||||||
static int virgin = 1;
|
|
||||||
static code *lenfix, *distfix;
|
|
||||||
static code fixed[544];
|
|
||||||
|
|
||||||
/* build fixed huffman tables if first call (may not be thread safe) */
|
|
||||||
if (virgin) {
|
|
||||||
unsigned sym, bits;
|
|
||||||
static code *next;
|
|
||||||
|
|
||||||
/* literal/length table */
|
|
||||||
sym = 0;
|
|
||||||
while (sym < 144) state->lens[sym++] = 8;
|
|
||||||
while (sym < 256) state->lens[sym++] = 9;
|
|
||||||
while (sym < 280) state->lens[sym++] = 7;
|
|
||||||
while (sym < 288) state->lens[sym++] = 8;
|
|
||||||
next = fixed;
|
|
||||||
lenfix = next;
|
|
||||||
bits = 9;
|
|
||||||
inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work);
|
|
||||||
|
|
||||||
/* distance table */
|
|
||||||
sym = 0;
|
|
||||||
while (sym < 32) state->lens[sym++] = 5;
|
|
||||||
distfix = next;
|
|
||||||
bits = 5;
|
|
||||||
inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work);
|
|
||||||
|
|
||||||
/* do this just once */
|
|
||||||
virgin = 0;
|
|
||||||
}
|
|
||||||
#else /* !BUILDFIXED */
|
|
||||||
# include "inffixed.h"
|
|
||||||
#endif /* BUILDFIXED */
|
|
||||||
state->lencode = lenfix;
|
|
||||||
state->lenbits = 9;
|
|
||||||
state->distcode = distfix;
|
|
||||||
state->distbits = 5;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Macros for inflateBack(): */
|
|
||||||
|
|
||||||
/* Load returned state from inflate_fast() */
|
|
||||||
#define LOAD() \
|
|
||||||
do { \
|
|
||||||
put = strm->next_out; \
|
|
||||||
left = strm->avail_out; \
|
|
||||||
next = strm->next_in; \
|
|
||||||
have = strm->avail_in; \
|
|
||||||
hold = state->hold; \
|
|
||||||
bits = state->bits; \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Set state from registers for inflate_fast() */
|
|
||||||
#define RESTORE() \
|
|
||||||
do { \
|
|
||||||
strm->next_out = put; \
|
|
||||||
strm->avail_out = left; \
|
|
||||||
strm->next_in = next; \
|
|
||||||
strm->avail_in = have; \
|
|
||||||
state->hold = hold; \
|
|
||||||
state->bits = bits; \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Clear the input bit accumulator */
|
|
||||||
#define INITBITS() \
|
|
||||||
do { \
|
|
||||||
hold = 0; \
|
|
||||||
bits = 0; \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Assure that some input is available. If input is requested, but denied,
|
|
||||||
then return a Z_BUF_ERROR from inflateBack(). */
|
|
||||||
#define PULL() \
|
|
||||||
do { \
|
|
||||||
if (have == 0) { \
|
|
||||||
have = in(in_desc, &next); \
|
|
||||||
if (have == 0) { \
|
|
||||||
next = Z_NULL; \
|
|
||||||
ret = Z_BUF_ERROR; \
|
|
||||||
goto inf_leave; \
|
|
||||||
} \
|
|
||||||
} \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Get a byte of input into the bit accumulator, or return from inflateBack()
|
|
||||||
with an error if there is no input available. */
|
|
||||||
#define PULLBYTE() \
|
|
||||||
do { \
|
|
||||||
PULL(); \
|
|
||||||
have--; \
|
|
||||||
hold += (unsigned long)(*next++) << bits; \
|
|
||||||
bits += 8; \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Assure that there are at least n bits in the bit accumulator. If there is
|
|
||||||
not enough available input to do that, then return from inflateBack() with
|
|
||||||
an error. */
|
|
||||||
#define NEEDBITS(n) \
|
|
||||||
do { \
|
|
||||||
while (bits < (unsigned)(n)) \
|
|
||||||
PULLBYTE(); \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Return the low n bits of the bit accumulator (n < 16) */
|
|
||||||
#define BITS(n) \
|
|
||||||
((unsigned)hold & ((1U << (n)) - 1))
|
|
||||||
|
|
||||||
/* Remove n bits from the bit accumulator */
|
|
||||||
#define DROPBITS(n) \
|
|
||||||
do { \
|
|
||||||
hold >>= (n); \
|
|
||||||
bits -= (unsigned)(n); \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Remove zero to seven bits as needed to go to a byte boundary */
|
|
||||||
#define BYTEBITS() \
|
|
||||||
do { \
|
|
||||||
hold >>= bits & 7; \
|
|
||||||
bits -= bits & 7; \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/* Assure that some output space is available, by writing out the window
|
|
||||||
if it's full. If the write fails, return from inflateBack() with a
|
|
||||||
Z_BUF_ERROR. */
|
|
||||||
#define ROOM() \
|
|
||||||
do { \
|
|
||||||
if (left == 0) { \
|
|
||||||
put = state->window; \
|
|
||||||
left = state->wsize; \
|
|
||||||
state->whave = left; \
|
|
||||||
if (out(out_desc, put, left)) { \
|
|
||||||
ret = Z_BUF_ERROR; \
|
|
||||||
goto inf_leave; \
|
|
||||||
} \
|
|
||||||
} \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
/*
|
|
||||||
strm provides the memory allocation functions and window buffer on input,
|
|
||||||
and provides information on the unused input on return. For Z_DATA_ERROR
|
|
||||||
returns, strm will also provide an error message.
|
|
||||||
|
|
||||||
in() and out() are the call-back input and output functions. When
|
|
||||||
inflateBack() needs more input, it calls in(). When inflateBack() has
|
|
||||||
filled the window with output, or when it completes with data in the
|
|
||||||
window, it calls out() to write out the data. The application must not
|
|
||||||
change the provided input until in() is called again or inflateBack()
|
|
||||||
returns. The application must not change the window/output buffer until
|
|
||||||
inflateBack() returns.
|
|
||||||
|
|
||||||
in() and out() are called with a descriptor parameter provided in the
|
|
||||||
inflateBack() call. This parameter can be a structure that provides the
|
|
||||||
information required to do the read or write, as well as accumulated
|
|
||||||
information on the input and output such as totals and check values.
|
|
||||||
|
|
||||||
in() should return zero on failure. out() should return non-zero on
|
|
||||||
failure. If either in() or out() fails, than inflateBack() returns a
|
|
||||||
Z_BUF_ERROR. strm->next_in can be checked for Z_NULL to see whether it
|
|
||||||
was in() or out() that caused in the error. Otherwise, inflateBack()
|
|
||||||
returns Z_STREAM_END on success, Z_DATA_ERROR for an deflate format
|
|
||||||
error, or Z_MEM_ERROR if it could not allocate memory for the state.
|
|
||||||
inflateBack() can also return Z_STREAM_ERROR if the input parameters
|
|
||||||
are not correct, i.e. strm is Z_NULL or the state was not initialized.
|
|
||||||
*/
|
|
||||||
int ZEXPORT inflateBack(z_streamp strm, in_func in, void FAR *in_desc,
|
|
||||||
out_func out, void FAR *out_desc) {
|
|
||||||
struct inflate_state FAR *state;
|
|
||||||
z_const unsigned char FAR *next; /* next input */
|
|
||||||
unsigned char FAR *put; /* next output */
|
|
||||||
unsigned have, left; /* available input and output */
|
|
||||||
unsigned long hold; /* bit buffer */
|
|
||||||
unsigned bits; /* bits in bit buffer */
|
|
||||||
unsigned copy; /* number of stored or match bytes to copy */
|
|
||||||
unsigned char FAR *from; /* where to copy match bytes from */
|
|
||||||
code here; /* current decoding table entry */
|
|
||||||
code last; /* parent table entry */
|
|
||||||
unsigned len; /* length to copy for repeats, bits to drop */
|
|
||||||
int ret; /* return code */
|
|
||||||
static const unsigned short order[19] = /* permutation of code lengths */
|
|
||||||
{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
|
|
||||||
|
|
||||||
/* Check that the strm exists and that the state was initialized */
|
|
||||||
if (strm == Z_NULL || strm->state == Z_NULL)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
state = (struct inflate_state FAR *)strm->state;
|
|
||||||
|
|
||||||
/* Reset the state */
|
|
||||||
strm->msg = Z_NULL;
|
|
||||||
state->mode = TYPE;
|
|
||||||
state->last = 0;
|
|
||||||
state->whave = 0;
|
|
||||||
next = strm->next_in;
|
|
||||||
have = next != Z_NULL ? strm->avail_in : 0;
|
|
||||||
hold = 0;
|
|
||||||
bits = 0;
|
|
||||||
put = state->window;
|
|
||||||
left = state->wsize;
|
|
||||||
|
|
||||||
/* Inflate until end of block marked as last */
|
|
||||||
for (;;)
|
|
||||||
switch (state->mode) {
|
|
||||||
case TYPE:
|
|
||||||
/* determine and dispatch block type */
|
|
||||||
if (state->last) {
|
|
||||||
BYTEBITS();
|
|
||||||
state->mode = DONE;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
NEEDBITS(3);
|
|
||||||
state->last = BITS(1);
|
|
||||||
DROPBITS(1);
|
|
||||||
switch (BITS(2)) {
|
|
||||||
case 0: /* stored block */
|
|
||||||
Tracev((stderr, "inflate: stored block%s\n",
|
|
||||||
state->last ? " (last)" : ""));
|
|
||||||
state->mode = STORED;
|
|
||||||
break;
|
|
||||||
case 1: /* fixed block */
|
|
||||||
fixedtables(state);
|
|
||||||
Tracev((stderr, "inflate: fixed codes block%s\n",
|
|
||||||
state->last ? " (last)" : ""));
|
|
||||||
state->mode = LEN; /* decode codes */
|
|
||||||
break;
|
|
||||||
case 2: /* dynamic block */
|
|
||||||
Tracev((stderr, "inflate: dynamic codes block%s\n",
|
|
||||||
state->last ? " (last)" : ""));
|
|
||||||
state->mode = TABLE;
|
|
||||||
break;
|
|
||||||
case 3:
|
|
||||||
strm->msg = (char *)"invalid block type";
|
|
||||||
state->mode = BAD;
|
|
||||||
}
|
|
||||||
DROPBITS(2);
|
|
||||||
break;
|
|
||||||
|
|
||||||
case STORED:
|
|
||||||
/* get and verify stored block length */
|
|
||||||
BYTEBITS(); /* go to byte boundary */
|
|
||||||
NEEDBITS(32);
|
|
||||||
if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
|
|
||||||
strm->msg = (char *)"invalid stored block lengths";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
state->length = (unsigned)hold & 0xffff;
|
|
||||||
Tracev((stderr, "inflate: stored length %u\n",
|
|
||||||
state->length));
|
|
||||||
INITBITS();
|
|
||||||
|
|
||||||
/* copy stored block from input to output */
|
|
||||||
while (state->length != 0) {
|
|
||||||
copy = state->length;
|
|
||||||
PULL();
|
|
||||||
ROOM();
|
|
||||||
if (copy > have) copy = have;
|
|
||||||
if (copy > left) copy = left;
|
|
||||||
zmemcpy(put, next, copy);
|
|
||||||
have -= copy;
|
|
||||||
next += copy;
|
|
||||||
left -= copy;
|
|
||||||
put += copy;
|
|
||||||
state->length -= copy;
|
|
||||||
}
|
|
||||||
Tracev((stderr, "inflate: stored end\n"));
|
|
||||||
state->mode = TYPE;
|
|
||||||
break;
|
|
||||||
|
|
||||||
case TABLE:
|
|
||||||
/* get dynamic table entries descriptor */
|
|
||||||
NEEDBITS(14);
|
|
||||||
state->nlen = BITS(5) + 257;
|
|
||||||
DROPBITS(5);
|
|
||||||
state->ndist = BITS(5) + 1;
|
|
||||||
DROPBITS(5);
|
|
||||||
state->ncode = BITS(4) + 4;
|
|
||||||
DROPBITS(4);
|
|
||||||
#ifndef PKZIP_BUG_WORKAROUND
|
|
||||||
if (state->nlen > 286 || state->ndist > 30) {
|
|
||||||
strm->msg = (char *)"too many length or distance symbols";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
Tracev((stderr, "inflate: table sizes ok\n"));
|
|
||||||
|
|
||||||
/* get code length code lengths (not a typo) */
|
|
||||||
state->have = 0;
|
|
||||||
while (state->have < state->ncode) {
|
|
||||||
NEEDBITS(3);
|
|
||||||
state->lens[order[state->have++]] = (unsigned short)BITS(3);
|
|
||||||
DROPBITS(3);
|
|
||||||
}
|
|
||||||
while (state->have < 19)
|
|
||||||
state->lens[order[state->have++]] = 0;
|
|
||||||
state->next = state->codes;
|
|
||||||
state->lencode = (code const FAR *)(state->next);
|
|
||||||
state->lenbits = 7;
|
|
||||||
ret = inflate_table(CODES, state->lens, 19, &(state->next),
|
|
||||||
&(state->lenbits), state->work);
|
|
||||||
if (ret) {
|
|
||||||
strm->msg = (char *)"invalid code lengths set";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
Tracev((stderr, "inflate: code lengths ok\n"));
|
|
||||||
|
|
||||||
/* get length and distance code code lengths */
|
|
||||||
state->have = 0;
|
|
||||||
while (state->have < state->nlen + state->ndist) {
|
|
||||||
for (;;) {
|
|
||||||
here = state->lencode[BITS(state->lenbits)];
|
|
||||||
if ((unsigned)(here.bits) <= bits) break;
|
|
||||||
PULLBYTE();
|
|
||||||
}
|
|
||||||
if (here.val < 16) {
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
state->lens[state->have++] = here.val;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if (here.val == 16) {
|
|
||||||
NEEDBITS(here.bits + 2);
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
if (state->have == 0) {
|
|
||||||
strm->msg = (char *)"invalid bit length repeat";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
len = (unsigned)(state->lens[state->have - 1]);
|
|
||||||
copy = 3 + BITS(2);
|
|
||||||
DROPBITS(2);
|
|
||||||
}
|
|
||||||
else if (here.val == 17) {
|
|
||||||
NEEDBITS(here.bits + 3);
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
len = 0;
|
|
||||||
copy = 3 + BITS(3);
|
|
||||||
DROPBITS(3);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
NEEDBITS(here.bits + 7);
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
len = 0;
|
|
||||||
copy = 11 + BITS(7);
|
|
||||||
DROPBITS(7);
|
|
||||||
}
|
|
||||||
if (state->have + copy > state->nlen + state->ndist) {
|
|
||||||
strm->msg = (char *)"invalid bit length repeat";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
while (copy--)
|
|
||||||
state->lens[state->have++] = (unsigned short)len;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* handle error breaks in while */
|
|
||||||
if (state->mode == BAD) break;
|
|
||||||
|
|
||||||
/* check for end-of-block code (better have one) */
|
|
||||||
if (state->lens[256] == 0) {
|
|
||||||
strm->msg = (char *)"invalid code -- missing end-of-block";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* build code tables -- note: do not change the lenbits or distbits
|
|
||||||
values here (9 and 6) without reading the comments in inftrees.h
|
|
||||||
concerning the ENOUGH constants, which depend on those values */
|
|
||||||
state->next = state->codes;
|
|
||||||
state->lencode = (code const FAR *)(state->next);
|
|
||||||
state->lenbits = 9;
|
|
||||||
ret = inflate_table(LENS, state->lens, state->nlen, &(state->next),
|
|
||||||
&(state->lenbits), state->work);
|
|
||||||
if (ret) {
|
|
||||||
strm->msg = (char *)"invalid literal/lengths set";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
state->distcode = (code const FAR *)(state->next);
|
|
||||||
state->distbits = 6;
|
|
||||||
ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist,
|
|
||||||
&(state->next), &(state->distbits), state->work);
|
|
||||||
if (ret) {
|
|
||||||
strm->msg = (char *)"invalid distances set";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
Tracev((stderr, "inflate: codes ok\n"));
|
|
||||||
state->mode = LEN;
|
|
||||||
/* fallthrough */
|
|
||||||
|
|
||||||
case LEN:
|
|
||||||
/* use inflate_fast() if we have enough input and output */
|
|
||||||
if (have >= 6 && left >= 258) {
|
|
||||||
RESTORE();
|
|
||||||
if (state->whave < state->wsize)
|
|
||||||
state->whave = state->wsize - left;
|
|
||||||
inflate_fast(strm, state->wsize);
|
|
||||||
LOAD();
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* get a literal, length, or end-of-block code */
|
|
||||||
for (;;) {
|
|
||||||
here = state->lencode[BITS(state->lenbits)];
|
|
||||||
if ((unsigned)(here.bits) <= bits) break;
|
|
||||||
PULLBYTE();
|
|
||||||
}
|
|
||||||
if (here.op && (here.op & 0xf0) == 0) {
|
|
||||||
last = here;
|
|
||||||
for (;;) {
|
|
||||||
here = state->lencode[last.val +
|
|
||||||
(BITS(last.bits + last.op) >> last.bits)];
|
|
||||||
if ((unsigned)(last.bits + here.bits) <= bits) break;
|
|
||||||
PULLBYTE();
|
|
||||||
}
|
|
||||||
DROPBITS(last.bits);
|
|
||||||
}
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
state->length = (unsigned)here.val;
|
|
||||||
|
|
||||||
/* process literal */
|
|
||||||
if (here.op == 0) {
|
|
||||||
Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ?
|
|
||||||
"inflate: literal '%c'\n" :
|
|
||||||
"inflate: literal 0x%02x\n", here.val));
|
|
||||||
ROOM();
|
|
||||||
*put++ = (unsigned char)(state->length);
|
|
||||||
left--;
|
|
||||||
state->mode = LEN;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* process end of block */
|
|
||||||
if (here.op & 32) {
|
|
||||||
Tracevv((stderr, "inflate: end of block\n"));
|
|
||||||
state->mode = TYPE;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* invalid code */
|
|
||||||
if (here.op & 64) {
|
|
||||||
strm->msg = (char *)"invalid literal/length code";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* length code -- get extra bits, if any */
|
|
||||||
state->extra = (unsigned)(here.op) & 15;
|
|
||||||
if (state->extra != 0) {
|
|
||||||
NEEDBITS(state->extra);
|
|
||||||
state->length += BITS(state->extra);
|
|
||||||
DROPBITS(state->extra);
|
|
||||||
}
|
|
||||||
Tracevv((stderr, "inflate: length %u\n", state->length));
|
|
||||||
|
|
||||||
/* get distance code */
|
|
||||||
for (;;) {
|
|
||||||
here = state->distcode[BITS(state->distbits)];
|
|
||||||
if ((unsigned)(here.bits) <= bits) break;
|
|
||||||
PULLBYTE();
|
|
||||||
}
|
|
||||||
if ((here.op & 0xf0) == 0) {
|
|
||||||
last = here;
|
|
||||||
for (;;) {
|
|
||||||
here = state->distcode[last.val +
|
|
||||||
(BITS(last.bits + last.op) >> last.bits)];
|
|
||||||
if ((unsigned)(last.bits + here.bits) <= bits) break;
|
|
||||||
PULLBYTE();
|
|
||||||
}
|
|
||||||
DROPBITS(last.bits);
|
|
||||||
}
|
|
||||||
DROPBITS(here.bits);
|
|
||||||
if (here.op & 64) {
|
|
||||||
strm->msg = (char *)"invalid distance code";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
state->offset = (unsigned)here.val;
|
|
||||||
|
|
||||||
/* get distance extra bits, if any */
|
|
||||||
state->extra = (unsigned)(here.op) & 15;
|
|
||||||
if (state->extra != 0) {
|
|
||||||
NEEDBITS(state->extra);
|
|
||||||
state->offset += BITS(state->extra);
|
|
||||||
DROPBITS(state->extra);
|
|
||||||
}
|
|
||||||
if (state->offset > state->wsize - (state->whave < state->wsize ?
|
|
||||||
left : 0)) {
|
|
||||||
strm->msg = (char *)"invalid distance too far back";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
Tracevv((stderr, "inflate: distance %u\n", state->offset));
|
|
||||||
|
|
||||||
/* copy match from window to output */
|
|
||||||
do {
|
|
||||||
ROOM();
|
|
||||||
copy = state->wsize - state->offset;
|
|
||||||
if (copy < left) {
|
|
||||||
from = put + copy;
|
|
||||||
copy = left - copy;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
from = put - state->offset;
|
|
||||||
copy = left;
|
|
||||||
}
|
|
||||||
if (copy > state->length) copy = state->length;
|
|
||||||
state->length -= copy;
|
|
||||||
left -= copy;
|
|
||||||
do {
|
|
||||||
*put++ = *from++;
|
|
||||||
} while (--copy);
|
|
||||||
} while (state->length != 0);
|
|
||||||
break;
|
|
||||||
|
|
||||||
case DONE:
|
|
||||||
/* inflate stream terminated properly */
|
|
||||||
ret = Z_STREAM_END;
|
|
||||||
goto inf_leave;
|
|
||||||
|
|
||||||
case BAD:
|
|
||||||
ret = Z_DATA_ERROR;
|
|
||||||
goto inf_leave;
|
|
||||||
|
|
||||||
default:
|
|
||||||
/* can't happen, but makes compilers happy */
|
|
||||||
ret = Z_STREAM_ERROR;
|
|
||||||
goto inf_leave;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Write leftover output and return unused input */
|
|
||||||
inf_leave:
|
|
||||||
if (left < state->wsize) {
|
|
||||||
if (out(out_desc, state->window, state->wsize - left) &&
|
|
||||||
ret == Z_STREAM_END)
|
|
||||||
ret = Z_BUF_ERROR;
|
|
||||||
}
|
|
||||||
strm->next_in = next;
|
|
||||||
strm->avail_in = have;
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
int ZEXPORT inflateBackEnd(z_streamp strm) {
|
|
||||||
if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0)
|
|
||||||
return Z_STREAM_ERROR;
|
|
||||||
ZFREE(strm, strm->state);
|
|
||||||
strm->state = Z_NULL;
|
|
||||||
Tracev((stderr, "inflate: end\n"));
|
|
||||||
return Z_OK;
|
|
||||||
}
|
|
||||||
@@ -1,320 +0,0 @@
|
|||||||
/* inffast.c -- fast decoding
|
|
||||||
* Copyright (C) 1995-2017 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
#include "inftrees.h"
|
|
||||||
#include "inflate.h"
|
|
||||||
#include "inffast.h"
|
|
||||||
|
|
||||||
#ifdef ASMINF
|
|
||||||
# pragma message("Assembler code may have bugs -- use at your own risk")
|
|
||||||
#else
|
|
||||||
|
|
||||||
/*
|
|
||||||
Decode literal, length, and distance codes and write out the resulting
|
|
||||||
literal and match bytes until either not enough input or output is
|
|
||||||
available, an end-of-block is encountered, or a data error is encountered.
|
|
||||||
When large enough input and output buffers are supplied to inflate(), for
|
|
||||||
example, a 16K input buffer and a 64K output buffer, more than 95% of the
|
|
||||||
inflate execution time is spent in this routine.
|
|
||||||
|
|
||||||
Entry assumptions:
|
|
||||||
|
|
||||||
state->mode == LEN
|
|
||||||
strm->avail_in >= 6
|
|
||||||
strm->avail_out >= 258
|
|
||||||
start >= strm->avail_out
|
|
||||||
state->bits < 8
|
|
||||||
|
|
||||||
On return, state->mode is one of:
|
|
||||||
|
|
||||||
LEN -- ran out of enough output space or enough available input
|
|
||||||
TYPE -- reached end of block code, inflate() to interpret next block
|
|
||||||
BAD -- error in block data
|
|
||||||
|
|
||||||
Notes:
|
|
||||||
|
|
||||||
- The maximum input bits used by a length/distance pair is 15 bits for the
|
|
||||||
length code, 5 bits for the length extra, 15 bits for the distance code,
|
|
||||||
and 13 bits for the distance extra. This totals 48 bits, or six bytes.
|
|
||||||
Therefore if strm->avail_in >= 6, then there is enough input to avoid
|
|
||||||
checking for available input while decoding.
|
|
||||||
|
|
||||||
- The maximum bytes that a single length/distance pair can output is 258
|
|
||||||
bytes, which is the maximum length that can be coded. inflate_fast()
|
|
||||||
requires strm->avail_out >= 258 for each loop to avoid checking for
|
|
||||||
output space.
|
|
||||||
*/
|
|
||||||
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start) {
|
|
||||||
struct inflate_state FAR *state;
|
|
||||||
z_const unsigned char FAR *in; /* local strm->next_in */
|
|
||||||
z_const unsigned char FAR *last; /* have enough input while in < last */
|
|
||||||
unsigned char FAR *out; /* local strm->next_out */
|
|
||||||
unsigned char FAR *beg; /* inflate()'s initial strm->next_out */
|
|
||||||
unsigned char FAR *end; /* while out < end, enough space available */
|
|
||||||
#ifdef INFLATE_STRICT
|
|
||||||
unsigned dmax; /* maximum distance from zlib header */
|
|
||||||
#endif
|
|
||||||
unsigned wsize; /* window size or zero if not using window */
|
|
||||||
unsigned whave; /* valid bytes in the window */
|
|
||||||
unsigned wnext; /* window write index */
|
|
||||||
unsigned char FAR *window; /* allocated sliding window, if wsize != 0 */
|
|
||||||
unsigned long hold; /* local strm->hold */
|
|
||||||
unsigned bits; /* local strm->bits */
|
|
||||||
code const FAR *lcode; /* local strm->lencode */
|
|
||||||
code const FAR *dcode; /* local strm->distcode */
|
|
||||||
unsigned lmask; /* mask for first level of length codes */
|
|
||||||
unsigned dmask; /* mask for first level of distance codes */
|
|
||||||
code const *here; /* retrieved table entry */
|
|
||||||
unsigned op; /* code bits, operation, extra bits, or */
|
|
||||||
/* window position, window bytes to copy */
|
|
||||||
unsigned len; /* match length, unused bytes */
|
|
||||||
unsigned dist; /* match distance */
|
|
||||||
unsigned char FAR *from; /* where to copy match from */
|
|
||||||
|
|
||||||
/* copy state to local variables */
|
|
||||||
state = (struct inflate_state FAR *)strm->state;
|
|
||||||
in = strm->next_in;
|
|
||||||
last = in + (strm->avail_in - 5);
|
|
||||||
out = strm->next_out;
|
|
||||||
beg = out - (start - strm->avail_out);
|
|
||||||
end = out + (strm->avail_out - 257);
|
|
||||||
#ifdef INFLATE_STRICT
|
|
||||||
dmax = state->dmax;
|
|
||||||
#endif
|
|
||||||
wsize = state->wsize;
|
|
||||||
whave = state->whave;
|
|
||||||
wnext = state->wnext;
|
|
||||||
window = state->window;
|
|
||||||
hold = state->hold;
|
|
||||||
bits = state->bits;
|
|
||||||
lcode = state->lencode;
|
|
||||||
dcode = state->distcode;
|
|
||||||
lmask = (1U << state->lenbits) - 1;
|
|
||||||
dmask = (1U << state->distbits) - 1;
|
|
||||||
|
|
||||||
/* decode literals and length/distances until end-of-block or not enough
|
|
||||||
input data or output space */
|
|
||||||
do {
|
|
||||||
if (bits < 15) {
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
}
|
|
||||||
here = lcode + (hold & lmask);
|
|
||||||
dolen:
|
|
||||||
op = (unsigned)(here->bits);
|
|
||||||
hold >>= op;
|
|
||||||
bits -= op;
|
|
||||||
op = (unsigned)(here->op);
|
|
||||||
if (op == 0) { /* literal */
|
|
||||||
Tracevv((stderr, here->val >= 0x20 && here->val < 0x7f ?
|
|
||||||
"inflate: literal '%c'\n" :
|
|
||||||
"inflate: literal 0x%02x\n", here->val));
|
|
||||||
*out++ = (unsigned char)(here->val);
|
|
||||||
}
|
|
||||||
else if (op & 16) { /* length base */
|
|
||||||
len = (unsigned)(here->val);
|
|
||||||
op &= 15; /* number of extra bits */
|
|
||||||
if (op) {
|
|
||||||
if (bits < op) {
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
}
|
|
||||||
len += (unsigned)hold & ((1U << op) - 1);
|
|
||||||
hold >>= op;
|
|
||||||
bits -= op;
|
|
||||||
}
|
|
||||||
Tracevv((stderr, "inflate: length %u\n", len));
|
|
||||||
if (bits < 15) {
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
}
|
|
||||||
here = dcode + (hold & dmask);
|
|
||||||
dodist:
|
|
||||||
op = (unsigned)(here->bits);
|
|
||||||
hold >>= op;
|
|
||||||
bits -= op;
|
|
||||||
op = (unsigned)(here->op);
|
|
||||||
if (op & 16) { /* distance base */
|
|
||||||
dist = (unsigned)(here->val);
|
|
||||||
op &= 15; /* number of extra bits */
|
|
||||||
if (bits < op) {
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
if (bits < op) {
|
|
||||||
hold += (unsigned long)(*in++) << bits;
|
|
||||||
bits += 8;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
dist += (unsigned)hold & ((1U << op) - 1);
|
|
||||||
#ifdef INFLATE_STRICT
|
|
||||||
if (dist > dmax) {
|
|
||||||
strm->msg = (char *)"invalid distance too far back";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
hold >>= op;
|
|
||||||
bits -= op;
|
|
||||||
Tracevv((stderr, "inflate: distance %u\n", dist));
|
|
||||||
op = (unsigned)(out - beg); /* max distance in output */
|
|
||||||
if (dist > op) { /* see if copy from window */
|
|
||||||
op = dist - op; /* distance back in window */
|
|
||||||
if (op > whave) {
|
|
||||||
if (state->sane) {
|
|
||||||
strm->msg =
|
|
||||||
(char *)"invalid distance too far back";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR
|
|
||||||
if (len <= op - whave) {
|
|
||||||
do {
|
|
||||||
*out++ = 0;
|
|
||||||
} while (--len);
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
len -= op - whave;
|
|
||||||
do {
|
|
||||||
*out++ = 0;
|
|
||||||
} while (--op > whave);
|
|
||||||
if (op == 0) {
|
|
||||||
from = out - dist;
|
|
||||||
do {
|
|
||||||
*out++ = *from++;
|
|
||||||
} while (--len);
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
from = window;
|
|
||||||
if (wnext == 0) { /* very common case */
|
|
||||||
from += wsize - op;
|
|
||||||
if (op < len) { /* some from window */
|
|
||||||
len -= op;
|
|
||||||
do {
|
|
||||||
*out++ = *from++;
|
|
||||||
} while (--op);
|
|
||||||
from = out - dist; /* rest from output */
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (wnext < op) { /* wrap around window */
|
|
||||||
from += wsize + wnext - op;
|
|
||||||
op -= wnext;
|
|
||||||
if (op < len) { /* some from end of window */
|
|
||||||
len -= op;
|
|
||||||
do {
|
|
||||||
*out++ = *from++;
|
|
||||||
} while (--op);
|
|
||||||
from = window;
|
|
||||||
if (wnext < len) { /* some from start of window */
|
|
||||||
op = wnext;
|
|
||||||
len -= op;
|
|
||||||
do {
|
|
||||||
*out++ = *from++;
|
|
||||||
} while (--op);
|
|
||||||
from = out - dist; /* rest from output */
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else { /* contiguous in window */
|
|
||||||
from += wnext - op;
|
|
||||||
if (op < len) { /* some from window */
|
|
||||||
len -= op;
|
|
||||||
do {
|
|
||||||
*out++ = *from++;
|
|
||||||
} while (--op);
|
|
||||||
from = out - dist; /* rest from output */
|
|
||||||
}
|
|
||||||
}
|
|
||||||
while (len > 2) {
|
|
||||||
*out++ = *from++;
|
|
||||||
*out++ = *from++;
|
|
||||||
*out++ = *from++;
|
|
||||||
len -= 3;
|
|
||||||
}
|
|
||||||
if (len) {
|
|
||||||
*out++ = *from++;
|
|
||||||
if (len > 1)
|
|
||||||
*out++ = *from++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
from = out - dist; /* copy direct from output */
|
|
||||||
do { /* minimum length is three */
|
|
||||||
*out++ = *from++;
|
|
||||||
*out++ = *from++;
|
|
||||||
*out++ = *from++;
|
|
||||||
len -= 3;
|
|
||||||
} while (len > 2);
|
|
||||||
if (len) {
|
|
||||||
*out++ = *from++;
|
|
||||||
if (len > 1)
|
|
||||||
*out++ = *from++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if ((op & 64) == 0) { /* 2nd level distance code */
|
|
||||||
here = dcode + here->val + (hold & ((1U << op) - 1));
|
|
||||||
goto dodist;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
strm->msg = (char *)"invalid distance code";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if ((op & 64) == 0) { /* 2nd level length code */
|
|
||||||
here = lcode + here->val + (hold & ((1U << op) - 1));
|
|
||||||
goto dolen;
|
|
||||||
}
|
|
||||||
else if (op & 32) { /* end-of-block */
|
|
||||||
Tracevv((stderr, "inflate: end of block\n"));
|
|
||||||
state->mode = TYPE;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
strm->msg = (char *)"invalid literal/length code";
|
|
||||||
state->mode = BAD;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
} while (in < last && out < end);
|
|
||||||
|
|
||||||
/* return unused bytes (on entry, bits < 8, so in won't go too far back) */
|
|
||||||
len = bits >> 3;
|
|
||||||
in -= len;
|
|
||||||
bits -= len << 3;
|
|
||||||
hold &= (1U << bits) - 1;
|
|
||||||
|
|
||||||
/* update state and return */
|
|
||||||
strm->next_in = in;
|
|
||||||
strm->next_out = out;
|
|
||||||
strm->avail_in = (unsigned)(in < last ? 5 + (last - in) : 5 - (in - last));
|
|
||||||
strm->avail_out = (unsigned)(out < end ?
|
|
||||||
257 + (end - out) : 257 - (out - end));
|
|
||||||
state->hold = hold;
|
|
||||||
state->bits = bits;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
inflate_fast() speedups that turned out slower (on a PowerPC G3 750CXe):
|
|
||||||
- Using bit fields for code structure
|
|
||||||
- Different op definition to avoid & for extra bits (do & for table bits)
|
|
||||||
- Three separate decoding do-loops for direct, window, and wnext == 0
|
|
||||||
- Special case for distance > 1 copies to do overlapped load and store copy
|
|
||||||
- Explicit branch predictions (based on measured branch probabilities)
|
|
||||||
- Deferring match copy and interspersed it with decoding subsequent codes
|
|
||||||
- Swapping literal/length else
|
|
||||||
- Swapping window/direct else
|
|
||||||
- Larger unrolled copy loops (three is about right)
|
|
||||||
- Moving len -= 3 statement into middle of loop
|
|
||||||
*/
|
|
||||||
|
|
||||||
#endif /* !ASMINF */
|
|
||||||
@@ -1,11 +0,0 @@
|
|||||||
/* inffast.h -- header to use inffast.c
|
|
||||||
* Copyright (C) 1995-2003, 2010 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications. It is
|
|
||||||
part of the implementation of the compression library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL inflate_fast(z_streamp strm, unsigned start);
|
|
||||||
@@ -1,94 +0,0 @@
|
|||||||
/* inffixed.h -- table for decoding fixed codes
|
|
||||||
* Generated automatically by makefixed().
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications.
|
|
||||||
It is part of the implementation of this library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
static const code lenfix[512] = {
|
|
||||||
{96,7,0},{0,8,80},{0,8,16},{20,8,115},{18,7,31},{0,8,112},{0,8,48},
|
|
||||||
{0,9,192},{16,7,10},{0,8,96},{0,8,32},{0,9,160},{0,8,0},{0,8,128},
|
|
||||||
{0,8,64},{0,9,224},{16,7,6},{0,8,88},{0,8,24},{0,9,144},{19,7,59},
|
|
||||||
{0,8,120},{0,8,56},{0,9,208},{17,7,17},{0,8,104},{0,8,40},{0,9,176},
|
|
||||||
{0,8,8},{0,8,136},{0,8,72},{0,9,240},{16,7,4},{0,8,84},{0,8,20},
|
|
||||||
{21,8,227},{19,7,43},{0,8,116},{0,8,52},{0,9,200},{17,7,13},{0,8,100},
|
|
||||||
{0,8,36},{0,9,168},{0,8,4},{0,8,132},{0,8,68},{0,9,232},{16,7,8},
|
|
||||||
{0,8,92},{0,8,28},{0,9,152},{20,7,83},{0,8,124},{0,8,60},{0,9,216},
|
|
||||||
{18,7,23},{0,8,108},{0,8,44},{0,9,184},{0,8,12},{0,8,140},{0,8,76},
|
|
||||||
{0,9,248},{16,7,3},{0,8,82},{0,8,18},{21,8,163},{19,7,35},{0,8,114},
|
|
||||||
{0,8,50},{0,9,196},{17,7,11},{0,8,98},{0,8,34},{0,9,164},{0,8,2},
|
|
||||||
{0,8,130},{0,8,66},{0,9,228},{16,7,7},{0,8,90},{0,8,26},{0,9,148},
|
|
||||||
{20,7,67},{0,8,122},{0,8,58},{0,9,212},{18,7,19},{0,8,106},{0,8,42},
|
|
||||||
{0,9,180},{0,8,10},{0,8,138},{0,8,74},{0,9,244},{16,7,5},{0,8,86},
|
|
||||||
{0,8,22},{64,8,0},{19,7,51},{0,8,118},{0,8,54},{0,9,204},{17,7,15},
|
|
||||||
{0,8,102},{0,8,38},{0,9,172},{0,8,6},{0,8,134},{0,8,70},{0,9,236},
|
|
||||||
{16,7,9},{0,8,94},{0,8,30},{0,9,156},{20,7,99},{0,8,126},{0,8,62},
|
|
||||||
{0,9,220},{18,7,27},{0,8,110},{0,8,46},{0,9,188},{0,8,14},{0,8,142},
|
|
||||||
{0,8,78},{0,9,252},{96,7,0},{0,8,81},{0,8,17},{21,8,131},{18,7,31},
|
|
||||||
{0,8,113},{0,8,49},{0,9,194},{16,7,10},{0,8,97},{0,8,33},{0,9,162},
|
|
||||||
{0,8,1},{0,8,129},{0,8,65},{0,9,226},{16,7,6},{0,8,89},{0,8,25},
|
|
||||||
{0,9,146},{19,7,59},{0,8,121},{0,8,57},{0,9,210},{17,7,17},{0,8,105},
|
|
||||||
{0,8,41},{0,9,178},{0,8,9},{0,8,137},{0,8,73},{0,9,242},{16,7,4},
|
|
||||||
{0,8,85},{0,8,21},{16,8,258},{19,7,43},{0,8,117},{0,8,53},{0,9,202},
|
|
||||||
{17,7,13},{0,8,101},{0,8,37},{0,9,170},{0,8,5},{0,8,133},{0,8,69},
|
|
||||||
{0,9,234},{16,7,8},{0,8,93},{0,8,29},{0,9,154},{20,7,83},{0,8,125},
|
|
||||||
{0,8,61},{0,9,218},{18,7,23},{0,8,109},{0,8,45},{0,9,186},{0,8,13},
|
|
||||||
{0,8,141},{0,8,77},{0,9,250},{16,7,3},{0,8,83},{0,8,19},{21,8,195},
|
|
||||||
{19,7,35},{0,8,115},{0,8,51},{0,9,198},{17,7,11},{0,8,99},{0,8,35},
|
|
||||||
{0,9,166},{0,8,3},{0,8,131},{0,8,67},{0,9,230},{16,7,7},{0,8,91},
|
|
||||||
{0,8,27},{0,9,150},{20,7,67},{0,8,123},{0,8,59},{0,9,214},{18,7,19},
|
|
||||||
{0,8,107},{0,8,43},{0,9,182},{0,8,11},{0,8,139},{0,8,75},{0,9,246},
|
|
||||||
{16,7,5},{0,8,87},{0,8,23},{64,8,0},{19,7,51},{0,8,119},{0,8,55},
|
|
||||||
{0,9,206},{17,7,15},{0,8,103},{0,8,39},{0,9,174},{0,8,7},{0,8,135},
|
|
||||||
{0,8,71},{0,9,238},{16,7,9},{0,8,95},{0,8,31},{0,9,158},{20,7,99},
|
|
||||||
{0,8,127},{0,8,63},{0,9,222},{18,7,27},{0,8,111},{0,8,47},{0,9,190},
|
|
||||||
{0,8,15},{0,8,143},{0,8,79},{0,9,254},{96,7,0},{0,8,80},{0,8,16},
|
|
||||||
{20,8,115},{18,7,31},{0,8,112},{0,8,48},{0,9,193},{16,7,10},{0,8,96},
|
|
||||||
{0,8,32},{0,9,161},{0,8,0},{0,8,128},{0,8,64},{0,9,225},{16,7,6},
|
|
||||||
{0,8,88},{0,8,24},{0,9,145},{19,7,59},{0,8,120},{0,8,56},{0,9,209},
|
|
||||||
{17,7,17},{0,8,104},{0,8,40},{0,9,177},{0,8,8},{0,8,136},{0,8,72},
|
|
||||||
{0,9,241},{16,7,4},{0,8,84},{0,8,20},{21,8,227},{19,7,43},{0,8,116},
|
|
||||||
{0,8,52},{0,9,201},{17,7,13},{0,8,100},{0,8,36},{0,9,169},{0,8,4},
|
|
||||||
{0,8,132},{0,8,68},{0,9,233},{16,7,8},{0,8,92},{0,8,28},{0,9,153},
|
|
||||||
{20,7,83},{0,8,124},{0,8,60},{0,9,217},{18,7,23},{0,8,108},{0,8,44},
|
|
||||||
{0,9,185},{0,8,12},{0,8,140},{0,8,76},{0,9,249},{16,7,3},{0,8,82},
|
|
||||||
{0,8,18},{21,8,163},{19,7,35},{0,8,114},{0,8,50},{0,9,197},{17,7,11},
|
|
||||||
{0,8,98},{0,8,34},{0,9,165},{0,8,2},{0,8,130},{0,8,66},{0,9,229},
|
|
||||||
{16,7,7},{0,8,90},{0,8,26},{0,9,149},{20,7,67},{0,8,122},{0,8,58},
|
|
||||||
{0,9,213},{18,7,19},{0,8,106},{0,8,42},{0,9,181},{0,8,10},{0,8,138},
|
|
||||||
{0,8,74},{0,9,245},{16,7,5},{0,8,86},{0,8,22},{64,8,0},{19,7,51},
|
|
||||||
{0,8,118},{0,8,54},{0,9,205},{17,7,15},{0,8,102},{0,8,38},{0,9,173},
|
|
||||||
{0,8,6},{0,8,134},{0,8,70},{0,9,237},{16,7,9},{0,8,94},{0,8,30},
|
|
||||||
{0,9,157},{20,7,99},{0,8,126},{0,8,62},{0,9,221},{18,7,27},{0,8,110},
|
|
||||||
{0,8,46},{0,9,189},{0,8,14},{0,8,142},{0,8,78},{0,9,253},{96,7,0},
|
|
||||||
{0,8,81},{0,8,17},{21,8,131},{18,7,31},{0,8,113},{0,8,49},{0,9,195},
|
|
||||||
{16,7,10},{0,8,97},{0,8,33},{0,9,163},{0,8,1},{0,8,129},{0,8,65},
|
|
||||||
{0,9,227},{16,7,6},{0,8,89},{0,8,25},{0,9,147},{19,7,59},{0,8,121},
|
|
||||||
{0,8,57},{0,9,211},{17,7,17},{0,8,105},{0,8,41},{0,9,179},{0,8,9},
|
|
||||||
{0,8,137},{0,8,73},{0,9,243},{16,7,4},{0,8,85},{0,8,21},{16,8,258},
|
|
||||||
{19,7,43},{0,8,117},{0,8,53},{0,9,203},{17,7,13},{0,8,101},{0,8,37},
|
|
||||||
{0,9,171},{0,8,5},{0,8,133},{0,8,69},{0,9,235},{16,7,8},{0,8,93},
|
|
||||||
{0,8,29},{0,9,155},{20,7,83},{0,8,125},{0,8,61},{0,9,219},{18,7,23},
|
|
||||||
{0,8,109},{0,8,45},{0,9,187},{0,8,13},{0,8,141},{0,8,77},{0,9,251},
|
|
||||||
{16,7,3},{0,8,83},{0,8,19},{21,8,195},{19,7,35},{0,8,115},{0,8,51},
|
|
||||||
{0,9,199},{17,7,11},{0,8,99},{0,8,35},{0,9,167},{0,8,3},{0,8,131},
|
|
||||||
{0,8,67},{0,9,231},{16,7,7},{0,8,91},{0,8,27},{0,9,151},{20,7,67},
|
|
||||||
{0,8,123},{0,8,59},{0,9,215},{18,7,19},{0,8,107},{0,8,43},{0,9,183},
|
|
||||||
{0,8,11},{0,8,139},{0,8,75},{0,9,247},{16,7,5},{0,8,87},{0,8,23},
|
|
||||||
{64,8,0},{19,7,51},{0,8,119},{0,8,55},{0,9,207},{17,7,15},{0,8,103},
|
|
||||||
{0,8,39},{0,9,175},{0,8,7},{0,8,135},{0,8,71},{0,9,239},{16,7,9},
|
|
||||||
{0,8,95},{0,8,31},{0,9,159},{20,7,99},{0,8,127},{0,8,63},{0,9,223},
|
|
||||||
{18,7,27},{0,8,111},{0,8,47},{0,9,191},{0,8,15},{0,8,143},{0,8,79},
|
|
||||||
{0,9,255}
|
|
||||||
};
|
|
||||||
|
|
||||||
static const code distfix[32] = {
|
|
||||||
{16,5,1},{23,5,257},{19,5,17},{27,5,4097},{17,5,5},{25,5,1025},
|
|
||||||
{21,5,65},{29,5,16385},{16,5,3},{24,5,513},{20,5,33},{28,5,8193},
|
|
||||||
{18,5,9},{26,5,2049},{22,5,129},{64,5,0},{16,5,2},{23,5,385},
|
|
||||||
{19,5,25},{27,5,6145},{17,5,7},{25,5,1537},{21,5,97},{29,5,24577},
|
|
||||||
{16,5,4},{24,5,769},{20,5,49},{28,5,12289},{18,5,13},{26,5,3073},
|
|
||||||
{22,5,193},{64,5,0}
|
|
||||||
};
|
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -1,126 +0,0 @@
|
|||||||
/* inflate.h -- internal inflate state definition
|
|
||||||
* Copyright (C) 1995-2019 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications. It is
|
|
||||||
part of the implementation of the compression library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* define NO_GZIP when compiling if you want to disable gzip header and
|
|
||||||
trailer decoding by inflate(). NO_GZIP would be used to avoid linking in
|
|
||||||
the crc code when it is not needed. For shared libraries, gzip decoding
|
|
||||||
should be left enabled. */
|
|
||||||
#ifndef NO_GZIP
|
|
||||||
# define GUNZIP
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* Possible inflate modes between inflate() calls */
|
|
||||||
typedef enum {
|
|
||||||
HEAD = 16180, /* i: waiting for magic header */
|
|
||||||
FLAGS, /* i: waiting for method and flags (gzip) */
|
|
||||||
TIME, /* i: waiting for modification time (gzip) */
|
|
||||||
OS, /* i: waiting for extra flags and operating system (gzip) */
|
|
||||||
EXLEN, /* i: waiting for extra length (gzip) */
|
|
||||||
EXTRA, /* i: waiting for extra bytes (gzip) */
|
|
||||||
NAME, /* i: waiting for end of file name (gzip) */
|
|
||||||
COMMENT, /* i: waiting for end of comment (gzip) */
|
|
||||||
HCRC, /* i: waiting for header crc (gzip) */
|
|
||||||
DICTID, /* i: waiting for dictionary check value */
|
|
||||||
DICT, /* waiting for inflateSetDictionary() call */
|
|
||||||
TYPE, /* i: waiting for type bits, including last-flag bit */
|
|
||||||
TYPEDO, /* i: same, but skip check to exit inflate on new block */
|
|
||||||
STORED, /* i: waiting for stored size (length and complement) */
|
|
||||||
COPY_, /* i/o: same as COPY below, but only first time in */
|
|
||||||
COPY, /* i/o: waiting for input or output to copy stored block */
|
|
||||||
TABLE, /* i: waiting for dynamic block table lengths */
|
|
||||||
LENLENS, /* i: waiting for code length code lengths */
|
|
||||||
CODELENS, /* i: waiting for length/lit and distance code lengths */
|
|
||||||
LEN_, /* i: same as LEN below, but only first time in */
|
|
||||||
LEN, /* i: waiting for length/lit/eob code */
|
|
||||||
LENEXT, /* i: waiting for length extra bits */
|
|
||||||
DIST, /* i: waiting for distance code */
|
|
||||||
DISTEXT, /* i: waiting for distance extra bits */
|
|
||||||
MATCH, /* o: waiting for output space to copy string */
|
|
||||||
LIT, /* o: waiting for output space to write literal */
|
|
||||||
CHECK, /* i: waiting for 32-bit check value */
|
|
||||||
LENGTH, /* i: waiting for 32-bit length (gzip) */
|
|
||||||
DONE, /* finished check, done -- remain here until reset */
|
|
||||||
BAD, /* got a data error -- remain here until reset */
|
|
||||||
MEM, /* got an inflate() memory error -- remain here until reset */
|
|
||||||
SYNC /* looking for synchronization bytes to restart inflate() */
|
|
||||||
} inflate_mode;
|
|
||||||
|
|
||||||
/*
|
|
||||||
State transitions between above modes -
|
|
||||||
|
|
||||||
(most modes can go to BAD or MEM on error -- not shown for clarity)
|
|
||||||
|
|
||||||
Process header:
|
|
||||||
HEAD -> (gzip) or (zlib) or (raw)
|
|
||||||
(gzip) -> FLAGS -> TIME -> OS -> EXLEN -> EXTRA -> NAME -> COMMENT ->
|
|
||||||
HCRC -> TYPE
|
|
||||||
(zlib) -> DICTID or TYPE
|
|
||||||
DICTID -> DICT -> TYPE
|
|
||||||
(raw) -> TYPEDO
|
|
||||||
Read deflate blocks:
|
|
||||||
TYPE -> TYPEDO -> STORED or TABLE or LEN_ or CHECK
|
|
||||||
STORED -> COPY_ -> COPY -> TYPE
|
|
||||||
TABLE -> LENLENS -> CODELENS -> LEN_
|
|
||||||
LEN_ -> LEN
|
|
||||||
Read deflate codes in fixed or dynamic block:
|
|
||||||
LEN -> LENEXT or LIT or TYPE
|
|
||||||
LENEXT -> DIST -> DISTEXT -> MATCH -> LEN
|
|
||||||
LIT -> LEN
|
|
||||||
Process trailer:
|
|
||||||
CHECK -> LENGTH -> DONE
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* State maintained between inflate() calls -- approximately 7K bytes, not
|
|
||||||
including the allocated sliding window, which is up to 32K bytes. */
|
|
||||||
struct inflate_state {
|
|
||||||
z_streamp strm; /* pointer back to this zlib stream */
|
|
||||||
inflate_mode mode; /* current inflate mode */
|
|
||||||
int last; /* true if processing last block */
|
|
||||||
int wrap; /* bit 0 true for zlib, bit 1 true for gzip,
|
|
||||||
bit 2 true to validate check value */
|
|
||||||
int havedict; /* true if dictionary provided */
|
|
||||||
int flags; /* gzip header method and flags, 0 if zlib, or
|
|
||||||
-1 if raw or no header yet */
|
|
||||||
unsigned dmax; /* zlib header max distance (INFLATE_STRICT) */
|
|
||||||
unsigned long check; /* protected copy of check value */
|
|
||||||
unsigned long total; /* protected copy of output count */
|
|
||||||
gz_headerp head; /* where to save gzip header information */
|
|
||||||
/* sliding window */
|
|
||||||
unsigned wbits; /* log base 2 of requested window size */
|
|
||||||
unsigned wsize; /* window size or zero if not using window */
|
|
||||||
unsigned whave; /* valid bytes in the window */
|
|
||||||
unsigned wnext; /* window write index */
|
|
||||||
unsigned char FAR *window; /* allocated sliding window, if needed */
|
|
||||||
/* bit accumulator */
|
|
||||||
unsigned long hold; /* input bit accumulator */
|
|
||||||
unsigned bits; /* number of bits in "in" */
|
|
||||||
/* for string and stored block copying */
|
|
||||||
unsigned length; /* literal or length of data to copy */
|
|
||||||
unsigned offset; /* distance back to copy string from */
|
|
||||||
/* for table and code decoding */
|
|
||||||
unsigned extra; /* extra bits needed */
|
|
||||||
/* fixed and dynamic code tables */
|
|
||||||
code const FAR *lencode; /* starting table for length/literal codes */
|
|
||||||
code const FAR *distcode; /* starting table for distance codes */
|
|
||||||
unsigned lenbits; /* index bits for lencode */
|
|
||||||
unsigned distbits; /* index bits for distcode */
|
|
||||||
/* dynamic table building */
|
|
||||||
unsigned ncode; /* number of code length code lengths */
|
|
||||||
unsigned nlen; /* number of length code lengths */
|
|
||||||
unsigned ndist; /* number of distance code lengths */
|
|
||||||
unsigned have; /* number of code lengths in lens[] */
|
|
||||||
code FAR *next; /* next available space in codes[] */
|
|
||||||
unsigned short lens[320]; /* temporary storage for code lengths */
|
|
||||||
unsigned short work[288]; /* work area for code table building */
|
|
||||||
code codes[ENOUGH]; /* space for code tables */
|
|
||||||
int sane; /* if false, allow invalid distance too far */
|
|
||||||
int back; /* bits back of last unprocessed length/lit */
|
|
||||||
unsigned was; /* initial length of match */
|
|
||||||
};
|
|
||||||
@@ -1,299 +0,0 @@
|
|||||||
/* inftrees.c -- generate Huffman trees for efficient decoding
|
|
||||||
* Copyright (C) 1995-2024 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
#include "inftrees.h"
|
|
||||||
|
|
||||||
#define MAXBITS 15
|
|
||||||
|
|
||||||
const char inflate_copyright[] =
|
|
||||||
" inflate 1.3.1 Copyright 1995-2024 Mark Adler ";
|
|
||||||
/*
|
|
||||||
If you use the zlib library in a product, an acknowledgment is welcome
|
|
||||||
in the documentation of your product. If for some reason you cannot
|
|
||||||
include such an acknowledgment, I would appreciate that you keep this
|
|
||||||
copyright string in the executable of your product.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
Build a set of tables to decode the provided canonical Huffman code.
|
|
||||||
The code lengths are lens[0..codes-1]. The result starts at *table,
|
|
||||||
whose indices are 0..2^bits-1. work is a writable array of at least
|
|
||||||
lens shorts, which is used as a work area. type is the type of code
|
|
||||||
to be generated, CODES, LENS, or DISTS. On return, zero is success,
|
|
||||||
-1 is an invalid code, and +1 means that ENOUGH isn't enough. table
|
|
||||||
on return points to the next available entry's address. bits is the
|
|
||||||
requested root table index bits, and on return it is the actual root
|
|
||||||
table index bits. It will differ if the request is greater than the
|
|
||||||
longest code or if it is less than the shortest code.
|
|
||||||
*/
|
|
||||||
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
|
|
||||||
unsigned codes, code FAR * FAR *table,
|
|
||||||
unsigned FAR *bits, unsigned short FAR *work) {
|
|
||||||
unsigned len; /* a code's length in bits */
|
|
||||||
unsigned sym; /* index of code symbols */
|
|
||||||
unsigned min, max; /* minimum and maximum code lengths */
|
|
||||||
unsigned root; /* number of index bits for root table */
|
|
||||||
unsigned curr; /* number of index bits for current table */
|
|
||||||
unsigned drop; /* code bits to drop for sub-table */
|
|
||||||
int left; /* number of prefix codes available */
|
|
||||||
unsigned used; /* code entries in table used */
|
|
||||||
unsigned huff; /* Huffman code */
|
|
||||||
unsigned incr; /* for incrementing code, index */
|
|
||||||
unsigned fill; /* index for replicating entries */
|
|
||||||
unsigned low; /* low bits for current root entry */
|
|
||||||
unsigned mask; /* mask for low root bits */
|
|
||||||
code here; /* table entry for duplication */
|
|
||||||
code FAR *next; /* next available space in table */
|
|
||||||
const unsigned short FAR *base; /* base value table to use */
|
|
||||||
const unsigned short FAR *extra; /* extra bits table to use */
|
|
||||||
unsigned match; /* use base and extra for symbol >= match */
|
|
||||||
unsigned short count[MAXBITS+1]; /* number of codes of each length */
|
|
||||||
unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
|
|
||||||
static const unsigned short lbase[31] = { /* Length codes 257..285 base */
|
|
||||||
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
|
||||||
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
|
||||||
static const unsigned short lext[31] = { /* Length codes 257..285 extra */
|
|
||||||
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
|
|
||||||
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 203, 77};
|
|
||||||
static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
|
|
||||||
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
|
||||||
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
|
||||||
8193, 12289, 16385, 24577, 0, 0};
|
|
||||||
static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
|
|
||||||
16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
|
|
||||||
23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
|
|
||||||
28, 28, 29, 29, 64, 64};
|
|
||||||
|
|
||||||
/*
|
|
||||||
Process a set of code lengths to create a canonical Huffman code. The
|
|
||||||
code lengths are lens[0..codes-1]. Each length corresponds to the
|
|
||||||
symbols 0..codes-1. The Huffman code is generated by first sorting the
|
|
||||||
symbols by length from short to long, and retaining the symbol order
|
|
||||||
for codes with equal lengths. Then the code starts with all zero bits
|
|
||||||
for the first code of the shortest length, and the codes are integer
|
|
||||||
increments for the same length, and zeros are appended as the length
|
|
||||||
increases. For the deflate format, these bits are stored backwards
|
|
||||||
from their more natural integer increment ordering, and so when the
|
|
||||||
decoding tables are built in the large loop below, the integer codes
|
|
||||||
are incremented backwards.
|
|
||||||
|
|
||||||
This routine assumes, but does not check, that all of the entries in
|
|
||||||
lens[] are in the range 0..MAXBITS. The caller must assure this.
|
|
||||||
1..MAXBITS is interpreted as that code length. zero means that that
|
|
||||||
symbol does not occur in this code.
|
|
||||||
|
|
||||||
The codes are sorted by computing a count of codes for each length,
|
|
||||||
creating from that a table of starting indices for each length in the
|
|
||||||
sorted table, and then entering the symbols in order in the sorted
|
|
||||||
table. The sorted table is work[], with that space being provided by
|
|
||||||
the caller.
|
|
||||||
|
|
||||||
The length counts are used for other purposes as well, i.e. finding
|
|
||||||
the minimum and maximum length codes, determining if there are any
|
|
||||||
codes at all, checking for a valid set of lengths, and looking ahead
|
|
||||||
at length counts to determine sub-table sizes when building the
|
|
||||||
decoding tables.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
|
|
||||||
for (len = 0; len <= MAXBITS; len++)
|
|
||||||
count[len] = 0;
|
|
||||||
for (sym = 0; sym < codes; sym++)
|
|
||||||
count[lens[sym]]++;
|
|
||||||
|
|
||||||
/* bound code lengths, force root to be within code lengths */
|
|
||||||
root = *bits;
|
|
||||||
for (max = MAXBITS; max >= 1; max--)
|
|
||||||
if (count[max] != 0) break;
|
|
||||||
if (root > max) root = max;
|
|
||||||
if (max == 0) { /* no symbols to code at all */
|
|
||||||
here.op = (unsigned char)64; /* invalid code marker */
|
|
||||||
here.bits = (unsigned char)1;
|
|
||||||
here.val = (unsigned short)0;
|
|
||||||
*(*table)++ = here; /* make a table to force an error */
|
|
||||||
*(*table)++ = here;
|
|
||||||
*bits = 1;
|
|
||||||
return 0; /* no symbols, but wait for decoding to report error */
|
|
||||||
}
|
|
||||||
for (min = 1; min < max; min++)
|
|
||||||
if (count[min] != 0) break;
|
|
||||||
if (root < min) root = min;
|
|
||||||
|
|
||||||
/* check for an over-subscribed or incomplete set of lengths */
|
|
||||||
left = 1;
|
|
||||||
for (len = 1; len <= MAXBITS; len++) {
|
|
||||||
left <<= 1;
|
|
||||||
left -= count[len];
|
|
||||||
if (left < 0) return -1; /* over-subscribed */
|
|
||||||
}
|
|
||||||
if (left > 0 && (type == CODES || max != 1))
|
|
||||||
return -1; /* incomplete set */
|
|
||||||
|
|
||||||
/* generate offsets into symbol table for each length for sorting */
|
|
||||||
offs[1] = 0;
|
|
||||||
for (len = 1; len < MAXBITS; len++)
|
|
||||||
offs[len + 1] = offs[len] + count[len];
|
|
||||||
|
|
||||||
/* sort symbols by length, by symbol order within each length */
|
|
||||||
for (sym = 0; sym < codes; sym++)
|
|
||||||
if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
|
|
||||||
|
|
||||||
/*
|
|
||||||
Create and fill in decoding tables. In this loop, the table being
|
|
||||||
filled is at next and has curr index bits. The code being used is huff
|
|
||||||
with length len. That code is converted to an index by dropping drop
|
|
||||||
bits off of the bottom. For codes where len is less than drop + curr,
|
|
||||||
those top drop + curr - len bits are incremented through all values to
|
|
||||||
fill the table with replicated entries.
|
|
||||||
|
|
||||||
root is the number of index bits for the root table. When len exceeds
|
|
||||||
root, sub-tables are created pointed to by the root entry with an index
|
|
||||||
of the low root bits of huff. This is saved in low to check for when a
|
|
||||||
new sub-table should be started. drop is zero when the root table is
|
|
||||||
being filled, and drop is root when sub-tables are being filled.
|
|
||||||
|
|
||||||
When a new sub-table is needed, it is necessary to look ahead in the
|
|
||||||
code lengths to determine what size sub-table is needed. The length
|
|
||||||
counts are used for this, and so count[] is decremented as codes are
|
|
||||||
entered in the tables.
|
|
||||||
|
|
||||||
used keeps track of how many table entries have been allocated from the
|
|
||||||
provided *table space. It is checked for LENS and DIST tables against
|
|
||||||
the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
|
|
||||||
the initial root table size constants. See the comments in inftrees.h
|
|
||||||
for more information.
|
|
||||||
|
|
||||||
sym increments through all symbols, and the loop terminates when
|
|
||||||
all codes of length max, i.e. all codes, have been processed. This
|
|
||||||
routine permits incomplete codes, so another loop after this one fills
|
|
||||||
in the rest of the decoding tables with invalid code markers.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* set up for code type */
|
|
||||||
switch (type) {
|
|
||||||
case CODES:
|
|
||||||
base = extra = work; /* dummy value--not used */
|
|
||||||
match = 20;
|
|
||||||
break;
|
|
||||||
case LENS:
|
|
||||||
base = lbase;
|
|
||||||
extra = lext;
|
|
||||||
match = 257;
|
|
||||||
break;
|
|
||||||
default: /* DISTS */
|
|
||||||
base = dbase;
|
|
||||||
extra = dext;
|
|
||||||
match = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* initialize state for loop */
|
|
||||||
huff = 0; /* starting code */
|
|
||||||
sym = 0; /* starting code symbol */
|
|
||||||
len = min; /* starting code length */
|
|
||||||
next = *table; /* current table to fill in */
|
|
||||||
curr = root; /* current table index bits */
|
|
||||||
drop = 0; /* current bits to drop from code for index */
|
|
||||||
low = (unsigned)(-1); /* trigger new sub-table when len > root */
|
|
||||||
used = 1U << root; /* use root table entries */
|
|
||||||
mask = used - 1; /* mask for comparing low */
|
|
||||||
|
|
||||||
/* check available table space */
|
|
||||||
if ((type == LENS && used > ENOUGH_LENS) ||
|
|
||||||
(type == DISTS && used > ENOUGH_DISTS))
|
|
||||||
return 1;
|
|
||||||
|
|
||||||
/* process all codes and make table entries */
|
|
||||||
for (;;) {
|
|
||||||
/* create table entry */
|
|
||||||
here.bits = (unsigned char)(len - drop);
|
|
||||||
if (work[sym] + 1U < match) {
|
|
||||||
here.op = (unsigned char)0;
|
|
||||||
here.val = work[sym];
|
|
||||||
}
|
|
||||||
else if (work[sym] >= match) {
|
|
||||||
here.op = (unsigned char)(extra[work[sym] - match]);
|
|
||||||
here.val = base[work[sym] - match];
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
here.op = (unsigned char)(32 + 64); /* end of block */
|
|
||||||
here.val = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* replicate for those indices with low len bits equal to huff */
|
|
||||||
incr = 1U << (len - drop);
|
|
||||||
fill = 1U << curr;
|
|
||||||
min = fill; /* save offset to next table */
|
|
||||||
do {
|
|
||||||
fill -= incr;
|
|
||||||
next[(huff >> drop) + fill] = here;
|
|
||||||
} while (fill != 0);
|
|
||||||
|
|
||||||
/* backwards increment the len-bit code huff */
|
|
||||||
incr = 1U << (len - 1);
|
|
||||||
while (huff & incr)
|
|
||||||
incr >>= 1;
|
|
||||||
if (incr != 0) {
|
|
||||||
huff &= incr - 1;
|
|
||||||
huff += incr;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
huff = 0;
|
|
||||||
|
|
||||||
/* go to next symbol, update count, len */
|
|
||||||
sym++;
|
|
||||||
if (--(count[len]) == 0) {
|
|
||||||
if (len == max) break;
|
|
||||||
len = lens[work[sym]];
|
|
||||||
}
|
|
||||||
|
|
||||||
/* create new sub-table if needed */
|
|
||||||
if (len > root && (huff & mask) != low) {
|
|
||||||
/* if first time, transition to sub-tables */
|
|
||||||
if (drop == 0)
|
|
||||||
drop = root;
|
|
||||||
|
|
||||||
/* increment past last table */
|
|
||||||
next += min; /* here min is 1 << curr */
|
|
||||||
|
|
||||||
/* determine length of next table */
|
|
||||||
curr = len - drop;
|
|
||||||
left = (int)(1 << curr);
|
|
||||||
while (curr + drop < max) {
|
|
||||||
left -= count[curr + drop];
|
|
||||||
if (left <= 0) break;
|
|
||||||
curr++;
|
|
||||||
left <<= 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* check for enough space */
|
|
||||||
used += 1U << curr;
|
|
||||||
if ((type == LENS && used > ENOUGH_LENS) ||
|
|
||||||
(type == DISTS && used > ENOUGH_DISTS))
|
|
||||||
return 1;
|
|
||||||
|
|
||||||
/* point entry in root table to sub-table */
|
|
||||||
low = huff & mask;
|
|
||||||
(*table)[low].op = (unsigned char)curr;
|
|
||||||
(*table)[low].bits = (unsigned char)root;
|
|
||||||
(*table)[low].val = (unsigned short)(next - *table);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* fill in remaining table entry if code is incomplete (guaranteed to have
|
|
||||||
at most one remaining entry, since if the code is incomplete, the
|
|
||||||
maximum code length that was allowed to get this far is one bit) */
|
|
||||||
if (huff != 0) {
|
|
||||||
here.op = (unsigned char)64; /* invalid code marker */
|
|
||||||
here.bits = (unsigned char)(len - drop);
|
|
||||||
here.val = (unsigned short)0;
|
|
||||||
next[huff] = here;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* set return parameters */
|
|
||||||
*table += used;
|
|
||||||
*bits = root;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
@@ -1,62 +0,0 @@
|
|||||||
/* inftrees.h -- header to use inftrees.c
|
|
||||||
* Copyright (C) 1995-2005, 2010 Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications. It is
|
|
||||||
part of the implementation of the compression library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* Structure for decoding tables. Each entry provides either the
|
|
||||||
information needed to do the operation requested by the code that
|
|
||||||
indexed that table entry, or it provides a pointer to another
|
|
||||||
table that indexes more bits of the code. op indicates whether
|
|
||||||
the entry is a pointer to another table, a literal, a length or
|
|
||||||
distance, an end-of-block, or an invalid code. For a table
|
|
||||||
pointer, the low four bits of op is the number of index bits of
|
|
||||||
that table. For a length or distance, the low four bits of op
|
|
||||||
is the number of extra bits to get after the code. bits is
|
|
||||||
the number of bits in this code or part of the code to drop off
|
|
||||||
of the bit buffer. val is the actual byte to output in the case
|
|
||||||
of a literal, the base length or distance, or the offset from
|
|
||||||
the current table to the next table. Each entry is four bytes. */
|
|
||||||
typedef struct {
|
|
||||||
unsigned char op; /* operation, extra bits, table bits */
|
|
||||||
unsigned char bits; /* bits in this part of the code */
|
|
||||||
unsigned short val; /* offset in table or code value */
|
|
||||||
} code;
|
|
||||||
|
|
||||||
/* op values as set by inflate_table():
|
|
||||||
00000000 - literal
|
|
||||||
0000tttt - table link, tttt != 0 is the number of table index bits
|
|
||||||
0001eeee - length or distance, eeee is the number of extra bits
|
|
||||||
01100000 - end of block
|
|
||||||
01000000 - invalid code
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* Maximum size of the dynamic table. The maximum number of code structures is
|
|
||||||
1444, which is the sum of 852 for literal/length codes and 592 for distance
|
|
||||||
codes. These values were found by exhaustive searches using the program
|
|
||||||
examples/enough.c found in the zlib distribution. The arguments to that
|
|
||||||
program are the number of symbols, the initial root table size, and the
|
|
||||||
maximum bit length of a code. "enough 286 9 15" for literal/length codes
|
|
||||||
returns 852, and "enough 30 6 15" for distance codes returns 592. The
|
|
||||||
initial root table size (9 or 6) is found in the fifth argument of the
|
|
||||||
inflate_table() calls in inflate.c and infback.c. If the root table size is
|
|
||||||
changed, then these maximum sizes would be need to be recalculated and
|
|
||||||
updated. */
|
|
||||||
#define ENOUGH_LENS 852
|
|
||||||
#define ENOUGH_DISTS 592
|
|
||||||
#define ENOUGH (ENOUGH_LENS+ENOUGH_DISTS)
|
|
||||||
|
|
||||||
/* Type of code to build for inflate_table() */
|
|
||||||
typedef enum {
|
|
||||||
CODES,
|
|
||||||
LENS,
|
|
||||||
DISTS
|
|
||||||
} codetype;
|
|
||||||
|
|
||||||
int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
|
|
||||||
unsigned codes, code FAR * FAR *table,
|
|
||||||
unsigned FAR *bits, unsigned short FAR *work);
|
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -1,128 +0,0 @@
|
|||||||
/* header created automatically with -DGEN_TREES_H */
|
|
||||||
|
|
||||||
local const ct_data static_ltree[L_CODES+2] = {
|
|
||||||
{{ 12},{ 8}}, {{140},{ 8}}, {{ 76},{ 8}}, {{204},{ 8}}, {{ 44},{ 8}},
|
|
||||||
{{172},{ 8}}, {{108},{ 8}}, {{236},{ 8}}, {{ 28},{ 8}}, {{156},{ 8}},
|
|
||||||
{{ 92},{ 8}}, {{220},{ 8}}, {{ 60},{ 8}}, {{188},{ 8}}, {{124},{ 8}},
|
|
||||||
{{252},{ 8}}, {{ 2},{ 8}}, {{130},{ 8}}, {{ 66},{ 8}}, {{194},{ 8}},
|
|
||||||
{{ 34},{ 8}}, {{162},{ 8}}, {{ 98},{ 8}}, {{226},{ 8}}, {{ 18},{ 8}},
|
|
||||||
{{146},{ 8}}, {{ 82},{ 8}}, {{210},{ 8}}, {{ 50},{ 8}}, {{178},{ 8}},
|
|
||||||
{{114},{ 8}}, {{242},{ 8}}, {{ 10},{ 8}}, {{138},{ 8}}, {{ 74},{ 8}},
|
|
||||||
{{202},{ 8}}, {{ 42},{ 8}}, {{170},{ 8}}, {{106},{ 8}}, {{234},{ 8}},
|
|
||||||
{{ 26},{ 8}}, {{154},{ 8}}, {{ 90},{ 8}}, {{218},{ 8}}, {{ 58},{ 8}},
|
|
||||||
{{186},{ 8}}, {{122},{ 8}}, {{250},{ 8}}, {{ 6},{ 8}}, {{134},{ 8}},
|
|
||||||
{{ 70},{ 8}}, {{198},{ 8}}, {{ 38},{ 8}}, {{166},{ 8}}, {{102},{ 8}},
|
|
||||||
{{230},{ 8}}, {{ 22},{ 8}}, {{150},{ 8}}, {{ 86},{ 8}}, {{214},{ 8}},
|
|
||||||
{{ 54},{ 8}}, {{182},{ 8}}, {{118},{ 8}}, {{246},{ 8}}, {{ 14},{ 8}},
|
|
||||||
{{142},{ 8}}, {{ 78},{ 8}}, {{206},{ 8}}, {{ 46},{ 8}}, {{174},{ 8}},
|
|
||||||
{{110},{ 8}}, {{238},{ 8}}, {{ 30},{ 8}}, {{158},{ 8}}, {{ 94},{ 8}},
|
|
||||||
{{222},{ 8}}, {{ 62},{ 8}}, {{190},{ 8}}, {{126},{ 8}}, {{254},{ 8}},
|
|
||||||
{{ 1},{ 8}}, {{129},{ 8}}, {{ 65},{ 8}}, {{193},{ 8}}, {{ 33},{ 8}},
|
|
||||||
{{161},{ 8}}, {{ 97},{ 8}}, {{225},{ 8}}, {{ 17},{ 8}}, {{145},{ 8}},
|
|
||||||
{{ 81},{ 8}}, {{209},{ 8}}, {{ 49},{ 8}}, {{177},{ 8}}, {{113},{ 8}},
|
|
||||||
{{241},{ 8}}, {{ 9},{ 8}}, {{137},{ 8}}, {{ 73},{ 8}}, {{201},{ 8}},
|
|
||||||
{{ 41},{ 8}}, {{169},{ 8}}, {{105},{ 8}}, {{233},{ 8}}, {{ 25},{ 8}},
|
|
||||||
{{153},{ 8}}, {{ 89},{ 8}}, {{217},{ 8}}, {{ 57},{ 8}}, {{185},{ 8}},
|
|
||||||
{{121},{ 8}}, {{249},{ 8}}, {{ 5},{ 8}}, {{133},{ 8}}, {{ 69},{ 8}},
|
|
||||||
{{197},{ 8}}, {{ 37},{ 8}}, {{165},{ 8}}, {{101},{ 8}}, {{229},{ 8}},
|
|
||||||
{{ 21},{ 8}}, {{149},{ 8}}, {{ 85},{ 8}}, {{213},{ 8}}, {{ 53},{ 8}},
|
|
||||||
{{181},{ 8}}, {{117},{ 8}}, {{245},{ 8}}, {{ 13},{ 8}}, {{141},{ 8}},
|
|
||||||
{{ 77},{ 8}}, {{205},{ 8}}, {{ 45},{ 8}}, {{173},{ 8}}, {{109},{ 8}},
|
|
||||||
{{237},{ 8}}, {{ 29},{ 8}}, {{157},{ 8}}, {{ 93},{ 8}}, {{221},{ 8}},
|
|
||||||
{{ 61},{ 8}}, {{189},{ 8}}, {{125},{ 8}}, {{253},{ 8}}, {{ 19},{ 9}},
|
|
||||||
{{275},{ 9}}, {{147},{ 9}}, {{403},{ 9}}, {{ 83},{ 9}}, {{339},{ 9}},
|
|
||||||
{{211},{ 9}}, {{467},{ 9}}, {{ 51},{ 9}}, {{307},{ 9}}, {{179},{ 9}},
|
|
||||||
{{435},{ 9}}, {{115},{ 9}}, {{371},{ 9}}, {{243},{ 9}}, {{499},{ 9}},
|
|
||||||
{{ 11},{ 9}}, {{267},{ 9}}, {{139},{ 9}}, {{395},{ 9}}, {{ 75},{ 9}},
|
|
||||||
{{331},{ 9}}, {{203},{ 9}}, {{459},{ 9}}, {{ 43},{ 9}}, {{299},{ 9}},
|
|
||||||
{{171},{ 9}}, {{427},{ 9}}, {{107},{ 9}}, {{363},{ 9}}, {{235},{ 9}},
|
|
||||||
{{491},{ 9}}, {{ 27},{ 9}}, {{283},{ 9}}, {{155},{ 9}}, {{411},{ 9}},
|
|
||||||
{{ 91},{ 9}}, {{347},{ 9}}, {{219},{ 9}}, {{475},{ 9}}, {{ 59},{ 9}},
|
|
||||||
{{315},{ 9}}, {{187},{ 9}}, {{443},{ 9}}, {{123},{ 9}}, {{379},{ 9}},
|
|
||||||
{{251},{ 9}}, {{507},{ 9}}, {{ 7},{ 9}}, {{263},{ 9}}, {{135},{ 9}},
|
|
||||||
{{391},{ 9}}, {{ 71},{ 9}}, {{327},{ 9}}, {{199},{ 9}}, {{455},{ 9}},
|
|
||||||
{{ 39},{ 9}}, {{295},{ 9}}, {{167},{ 9}}, {{423},{ 9}}, {{103},{ 9}},
|
|
||||||
{{359},{ 9}}, {{231},{ 9}}, {{487},{ 9}}, {{ 23},{ 9}}, {{279},{ 9}},
|
|
||||||
{{151},{ 9}}, {{407},{ 9}}, {{ 87},{ 9}}, {{343},{ 9}}, {{215},{ 9}},
|
|
||||||
{{471},{ 9}}, {{ 55},{ 9}}, {{311},{ 9}}, {{183},{ 9}}, {{439},{ 9}},
|
|
||||||
{{119},{ 9}}, {{375},{ 9}}, {{247},{ 9}}, {{503},{ 9}}, {{ 15},{ 9}},
|
|
||||||
{{271},{ 9}}, {{143},{ 9}}, {{399},{ 9}}, {{ 79},{ 9}}, {{335},{ 9}},
|
|
||||||
{{207},{ 9}}, {{463},{ 9}}, {{ 47},{ 9}}, {{303},{ 9}}, {{175},{ 9}},
|
|
||||||
{{431},{ 9}}, {{111},{ 9}}, {{367},{ 9}}, {{239},{ 9}}, {{495},{ 9}},
|
|
||||||
{{ 31},{ 9}}, {{287},{ 9}}, {{159},{ 9}}, {{415},{ 9}}, {{ 95},{ 9}},
|
|
||||||
{{351},{ 9}}, {{223},{ 9}}, {{479},{ 9}}, {{ 63},{ 9}}, {{319},{ 9}},
|
|
||||||
{{191},{ 9}}, {{447},{ 9}}, {{127},{ 9}}, {{383},{ 9}}, {{255},{ 9}},
|
|
||||||
{{511},{ 9}}, {{ 0},{ 7}}, {{ 64},{ 7}}, {{ 32},{ 7}}, {{ 96},{ 7}},
|
|
||||||
{{ 16},{ 7}}, {{ 80},{ 7}}, {{ 48},{ 7}}, {{112},{ 7}}, {{ 8},{ 7}},
|
|
||||||
{{ 72},{ 7}}, {{ 40},{ 7}}, {{104},{ 7}}, {{ 24},{ 7}}, {{ 88},{ 7}},
|
|
||||||
{{ 56},{ 7}}, {{120},{ 7}}, {{ 4},{ 7}}, {{ 68},{ 7}}, {{ 36},{ 7}},
|
|
||||||
{{100},{ 7}}, {{ 20},{ 7}}, {{ 84},{ 7}}, {{ 52},{ 7}}, {{116},{ 7}},
|
|
||||||
{{ 3},{ 8}}, {{131},{ 8}}, {{ 67},{ 8}}, {{195},{ 8}}, {{ 35},{ 8}},
|
|
||||||
{{163},{ 8}}, {{ 99},{ 8}}, {{227},{ 8}}
|
|
||||||
};
|
|
||||||
|
|
||||||
local const ct_data static_dtree[D_CODES] = {
|
|
||||||
{{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
|
|
||||||
{{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
|
|
||||||
{{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
|
|
||||||
{{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
|
|
||||||
{{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
|
|
||||||
{{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
|
|
||||||
};
|
|
||||||
|
|
||||||
const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {
|
|
||||||
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
|
|
||||||
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
||||||
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
||||||
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
|
|
||||||
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
|
|
||||||
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
|
|
||||||
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
||||||
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
||||||
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
|
|
||||||
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
||||||
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
||||||
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
|
||||||
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
|
|
||||||
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
||||||
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
||||||
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
|
||||||
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
||||||
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
||||||
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
||||||
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
||||||
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
||||||
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
|
|
||||||
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
||||||
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
||||||
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
|
|
||||||
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
|
|
||||||
};
|
|
||||||
|
|
||||||
const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {
|
|
||||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
|
|
||||||
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
|
|
||||||
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
|
|
||||||
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
|
|
||||||
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
|
|
||||||
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
|
|
||||||
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
||||||
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
|
|
||||||
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
|
|
||||||
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
||||||
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
|
|
||||||
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
|
|
||||||
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
|
|
||||||
};
|
|
||||||
|
|
||||||
local const int base_length[LENGTH_CODES] = {
|
|
||||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
|
|
||||||
64, 80, 96, 112, 128, 160, 192, 224, 0
|
|
||||||
};
|
|
||||||
|
|
||||||
local const int base_dist[D_CODES] = {
|
|
||||||
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
|
|
||||||
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
|
|
||||||
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
|
|
||||||
};
|
|
||||||
|
|
||||||
@@ -1,85 +0,0 @@
|
|||||||
/* uncompr.c -- decompress a memory buffer
|
|
||||||
* Copyright (C) 1995-2003, 2010, 2014, 2016 Jean-loup Gailly, Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#define ZLIB_INTERNAL
|
|
||||||
#include "zlib.h"
|
|
||||||
|
|
||||||
/* ===========================================================================
|
|
||||||
Decompresses the source buffer into the destination buffer. *sourceLen is
|
|
||||||
the byte length of the source buffer. Upon entry, *destLen is the total size
|
|
||||||
of the destination buffer, which must be large enough to hold the entire
|
|
||||||
uncompressed data. (The size of the uncompressed data must have been saved
|
|
||||||
previously by the compressor and transmitted to the decompressor by some
|
|
||||||
mechanism outside the scope of this compression library.) Upon exit,
|
|
||||||
*destLen is the size of the decompressed data and *sourceLen is the number
|
|
||||||
of source bytes consumed. Upon return, source + *sourceLen points to the
|
|
||||||
first unused input byte.
|
|
||||||
|
|
||||||
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not enough
|
|
||||||
memory, Z_BUF_ERROR if there was not enough room in the output buffer, or
|
|
||||||
Z_DATA_ERROR if the input data was corrupted, including if the input data is
|
|
||||||
an incomplete zlib stream.
|
|
||||||
*/
|
|
||||||
int ZEXPORT uncompress2(Bytef *dest, uLongf *destLen, const Bytef *source,
|
|
||||||
uLong *sourceLen) {
|
|
||||||
z_stream stream;
|
|
||||||
int err;
|
|
||||||
const uInt max = (uInt)-1;
|
|
||||||
uLong len, left;
|
|
||||||
Byte buf[1]; /* for detection of incomplete stream when *destLen == 0 */
|
|
||||||
|
|
||||||
len = *sourceLen;
|
|
||||||
if (*destLen) {
|
|
||||||
left = *destLen;
|
|
||||||
*destLen = 0;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
left = 1;
|
|
||||||
dest = buf;
|
|
||||||
}
|
|
||||||
|
|
||||||
stream.next_in = (z_const Bytef *)source;
|
|
||||||
stream.avail_in = 0;
|
|
||||||
stream.zalloc = (alloc_func)0;
|
|
||||||
stream.zfree = (free_func)0;
|
|
||||||
stream.opaque = (voidpf)0;
|
|
||||||
|
|
||||||
err = inflateInit(&stream);
|
|
||||||
if (err != Z_OK) return err;
|
|
||||||
|
|
||||||
stream.next_out = dest;
|
|
||||||
stream.avail_out = 0;
|
|
||||||
|
|
||||||
do {
|
|
||||||
if (stream.avail_out == 0) {
|
|
||||||
stream.avail_out = left > (uLong)max ? max : (uInt)left;
|
|
||||||
left -= stream.avail_out;
|
|
||||||
}
|
|
||||||
if (stream.avail_in == 0) {
|
|
||||||
stream.avail_in = len > (uLong)max ? max : (uInt)len;
|
|
||||||
len -= stream.avail_in;
|
|
||||||
}
|
|
||||||
err = inflate(&stream, Z_NO_FLUSH);
|
|
||||||
} while (err == Z_OK);
|
|
||||||
|
|
||||||
*sourceLen -= len + stream.avail_in;
|
|
||||||
if (dest != buf)
|
|
||||||
*destLen = stream.total_out;
|
|
||||||
else if (stream.total_out && err == Z_BUF_ERROR)
|
|
||||||
left = 1;
|
|
||||||
|
|
||||||
inflateEnd(&stream);
|
|
||||||
return err == Z_STREAM_END ? Z_OK :
|
|
||||||
err == Z_NEED_DICT ? Z_DATA_ERROR :
|
|
||||||
err == Z_BUF_ERROR && left + stream.avail_out ? Z_DATA_ERROR :
|
|
||||||
err;
|
|
||||||
}
|
|
||||||
|
|
||||||
int ZEXPORT uncompress(Bytef *dest, uLongf *destLen, const Bytef *source,
|
|
||||||
uLong sourceLen) {
|
|
||||||
return uncompress2(dest, destLen, source, &sourceLen);
|
|
||||||
}
|
|
||||||
@@ -1,299 +0,0 @@
|
|||||||
/* zutil.c -- target dependent utility functions for the compression library
|
|
||||||
* Copyright (C) 1995-2017 Jean-loup Gailly
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#include "zutil.h"
|
|
||||||
#ifndef Z_SOLO
|
|
||||||
# include "gzguts.h"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
z_const char * const z_errmsg[10] = {
|
|
||||||
(z_const char *)"need dictionary", /* Z_NEED_DICT 2 */
|
|
||||||
(z_const char *)"stream end", /* Z_STREAM_END 1 */
|
|
||||||
(z_const char *)"", /* Z_OK 0 */
|
|
||||||
(z_const char *)"file error", /* Z_ERRNO (-1) */
|
|
||||||
(z_const char *)"stream error", /* Z_STREAM_ERROR (-2) */
|
|
||||||
(z_const char *)"data error", /* Z_DATA_ERROR (-3) */
|
|
||||||
(z_const char *)"insufficient memory", /* Z_MEM_ERROR (-4) */
|
|
||||||
(z_const char *)"buffer error", /* Z_BUF_ERROR (-5) */
|
|
||||||
(z_const char *)"incompatible version",/* Z_VERSION_ERROR (-6) */
|
|
||||||
(z_const char *)""
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
const char * ZEXPORT zlibVersion(void) {
|
|
||||||
return ZLIB_VERSION;
|
|
||||||
}
|
|
||||||
|
|
||||||
uLong ZEXPORT zlibCompileFlags(void) {
|
|
||||||
uLong flags;
|
|
||||||
|
|
||||||
flags = 0;
|
|
||||||
switch ((int)(sizeof(uInt))) {
|
|
||||||
case 2: break;
|
|
||||||
case 4: flags += 1; break;
|
|
||||||
case 8: flags += 2; break;
|
|
||||||
default: flags += 3;
|
|
||||||
}
|
|
||||||
switch ((int)(sizeof(uLong))) {
|
|
||||||
case 2: break;
|
|
||||||
case 4: flags += 1 << 2; break;
|
|
||||||
case 8: flags += 2 << 2; break;
|
|
||||||
default: flags += 3 << 2;
|
|
||||||
}
|
|
||||||
switch ((int)(sizeof(voidpf))) {
|
|
||||||
case 2: break;
|
|
||||||
case 4: flags += 1 << 4; break;
|
|
||||||
case 8: flags += 2 << 4; break;
|
|
||||||
default: flags += 3 << 4;
|
|
||||||
}
|
|
||||||
switch ((int)(sizeof(z_off_t))) {
|
|
||||||
case 2: break;
|
|
||||||
case 4: flags += 1 << 6; break;
|
|
||||||
case 8: flags += 2 << 6; break;
|
|
||||||
default: flags += 3 << 6;
|
|
||||||
}
|
|
||||||
#ifdef ZLIB_DEBUG
|
|
||||||
flags += 1 << 8;
|
|
||||||
#endif
|
|
||||||
/*
|
|
||||||
#if defined(ASMV) || defined(ASMINF)
|
|
||||||
flags += 1 << 9;
|
|
||||||
#endif
|
|
||||||
*/
|
|
||||||
#ifdef ZLIB_WINAPI
|
|
||||||
flags += 1 << 10;
|
|
||||||
#endif
|
|
||||||
#ifdef BUILDFIXED
|
|
||||||
flags += 1 << 12;
|
|
||||||
#endif
|
|
||||||
#ifdef DYNAMIC_CRC_TABLE
|
|
||||||
flags += 1 << 13;
|
|
||||||
#endif
|
|
||||||
#ifdef NO_GZCOMPRESS
|
|
||||||
flags += 1L << 16;
|
|
||||||
#endif
|
|
||||||
#ifdef NO_GZIP
|
|
||||||
flags += 1L << 17;
|
|
||||||
#endif
|
|
||||||
#ifdef PKZIP_BUG_WORKAROUND
|
|
||||||
flags += 1L << 20;
|
|
||||||
#endif
|
|
||||||
#ifdef FASTEST
|
|
||||||
flags += 1L << 21;
|
|
||||||
#endif
|
|
||||||
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
|
|
||||||
# ifdef NO_vsnprintf
|
|
||||||
flags += 1L << 25;
|
|
||||||
# ifdef HAS_vsprintf_void
|
|
||||||
flags += 1L << 26;
|
|
||||||
# endif
|
|
||||||
# else
|
|
||||||
# ifdef HAS_vsnprintf_void
|
|
||||||
flags += 1L << 26;
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
flags += 1L << 24;
|
|
||||||
# ifdef NO_snprintf
|
|
||||||
flags += 1L << 25;
|
|
||||||
# ifdef HAS_sprintf_void
|
|
||||||
flags += 1L << 26;
|
|
||||||
# endif
|
|
||||||
# else
|
|
||||||
# ifdef HAS_snprintf_void
|
|
||||||
flags += 1L << 26;
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
return flags;
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef ZLIB_DEBUG
|
|
||||||
#include <stdlib.h>
|
|
||||||
# ifndef verbose
|
|
||||||
# define verbose 0
|
|
||||||
# endif
|
|
||||||
int ZLIB_INTERNAL z_verbose = verbose;
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL z_error(char *m) {
|
|
||||||
fprintf(stderr, "%s\n", m);
|
|
||||||
exit(1);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* exported to allow conversion of error code to string for compress() and
|
|
||||||
* uncompress()
|
|
||||||
*/
|
|
||||||
const char * ZEXPORT zError(int err) {
|
|
||||||
return ERR_MSG(err);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if defined(_WIN32_WCE) && _WIN32_WCE < 0x800
|
|
||||||
/* The older Microsoft C Run-Time Library for Windows CE doesn't have
|
|
||||||
* errno. We define it as a global variable to simplify porting.
|
|
||||||
* Its value is always 0 and should not be used.
|
|
||||||
*/
|
|
||||||
int errno = 0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef HAVE_MEMCPY
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len) {
|
|
||||||
if (len == 0) return;
|
|
||||||
do {
|
|
||||||
*dest++ = *source++; /* ??? to be unrolled */
|
|
||||||
} while (--len != 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len) {
|
|
||||||
uInt j;
|
|
||||||
|
|
||||||
for (j = 0; j < len; j++) {
|
|
||||||
if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
|
|
||||||
}
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len) {
|
|
||||||
if (len == 0) return;
|
|
||||||
do {
|
|
||||||
*dest++ = 0; /* ??? to be unrolled */
|
|
||||||
} while (--len != 0);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef Z_SOLO
|
|
||||||
|
|
||||||
#ifdef SYS16BIT
|
|
||||||
|
|
||||||
#ifdef __TURBOC__
|
|
||||||
/* Turbo C in 16-bit mode */
|
|
||||||
|
|
||||||
# define MY_ZCALLOC
|
|
||||||
|
|
||||||
/* Turbo C malloc() does not allow dynamic allocation of 64K bytes
|
|
||||||
* and farmalloc(64K) returns a pointer with an offset of 8, so we
|
|
||||||
* must fix the pointer. Warning: the pointer must be put back to its
|
|
||||||
* original form in order to free it, use zcfree().
|
|
||||||
*/
|
|
||||||
|
|
||||||
#define MAX_PTR 10
|
|
||||||
/* 10*64K = 640K */
|
|
||||||
|
|
||||||
local int next_ptr = 0;
|
|
||||||
|
|
||||||
typedef struct ptr_table_s {
|
|
||||||
voidpf org_ptr;
|
|
||||||
voidpf new_ptr;
|
|
||||||
} ptr_table;
|
|
||||||
|
|
||||||
local ptr_table table[MAX_PTR];
|
|
||||||
/* This table is used to remember the original form of pointers
|
|
||||||
* to large buffers (64K). Such pointers are normalized with a zero offset.
|
|
||||||
* Since MSDOS is not a preemptive multitasking OS, this table is not
|
|
||||||
* protected from concurrent access. This hack doesn't work anyway on
|
|
||||||
* a protected system like OS/2. Use Microsoft C instead.
|
|
||||||
*/
|
|
||||||
|
|
||||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
|
|
||||||
voidpf buf;
|
|
||||||
ulg bsize = (ulg)items*size;
|
|
||||||
|
|
||||||
(void)opaque;
|
|
||||||
|
|
||||||
/* If we allocate less than 65520 bytes, we assume that farmalloc
|
|
||||||
* will return a usable pointer which doesn't have to be normalized.
|
|
||||||
*/
|
|
||||||
if (bsize < 65520L) {
|
|
||||||
buf = farmalloc(bsize);
|
|
||||||
if (*(ush*)&buf != 0) return buf;
|
|
||||||
} else {
|
|
||||||
buf = farmalloc(bsize + 16L);
|
|
||||||
}
|
|
||||||
if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
|
|
||||||
table[next_ptr].org_ptr = buf;
|
|
||||||
|
|
||||||
/* Normalize the pointer to seg:0 */
|
|
||||||
*((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
|
|
||||||
*(ush*)&buf = 0;
|
|
||||||
table[next_ptr++].new_ptr = buf;
|
|
||||||
return buf;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
|
||||||
int n;
|
|
||||||
|
|
||||||
(void)opaque;
|
|
||||||
|
|
||||||
if (*(ush*)&ptr != 0) { /* object < 64K */
|
|
||||||
farfree(ptr);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
/* Find the original pointer */
|
|
||||||
for (n = 0; n < next_ptr; n++) {
|
|
||||||
if (ptr != table[n].new_ptr) continue;
|
|
||||||
|
|
||||||
farfree(table[n].org_ptr);
|
|
||||||
while (++n < next_ptr) {
|
|
||||||
table[n-1] = table[n];
|
|
||||||
}
|
|
||||||
next_ptr--;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
Assert(0, "zcfree: ptr not found");
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif /* __TURBOC__ */
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef M_I86
|
|
||||||
/* Microsoft C in 16-bit mode */
|
|
||||||
|
|
||||||
# define MY_ZCALLOC
|
|
||||||
|
|
||||||
#if (!defined(_MSC_VER) || (_MSC_VER <= 600))
|
|
||||||
# define _halloc halloc
|
|
||||||
# define _hfree hfree
|
|
||||||
#endif
|
|
||||||
|
|
||||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, uInt items, uInt size) {
|
|
||||||
(void)opaque;
|
|
||||||
return _halloc((long)items, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
|
||||||
(void)opaque;
|
|
||||||
_hfree(ptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif /* M_I86 */
|
|
||||||
|
|
||||||
#endif /* SYS16BIT */
|
|
||||||
|
|
||||||
|
|
||||||
#ifndef MY_ZCALLOC /* Any system without a special alloc function */
|
|
||||||
|
|
||||||
#ifndef STDC
|
|
||||||
extern voidp malloc(uInt size);
|
|
||||||
extern voidp calloc(uInt items, uInt size);
|
|
||||||
extern void free(voidpf ptr);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items, unsigned size) {
|
|
||||||
(void)opaque;
|
|
||||||
return sizeof(uInt) > 2 ? (voidpf)malloc(items * size) :
|
|
||||||
(voidpf)calloc(items, size);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr) {
|
|
||||||
(void)opaque;
|
|
||||||
free(ptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif /* MY_ZCALLOC */
|
|
||||||
|
|
||||||
#endif /* !Z_SOLO */
|
|
||||||
@@ -1,254 +0,0 @@
|
|||||||
/* zutil.h -- internal interface and configuration of the compression library
|
|
||||||
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* WARNING: this file should *not* be used by applications. It is
|
|
||||||
part of the implementation of the compression library and is
|
|
||||||
subject to change. Applications should only use zlib.h.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#ifndef ZUTIL_H
|
|
||||||
#define ZUTIL_H
|
|
||||||
|
|
||||||
#ifdef HAVE_HIDDEN
|
|
||||||
# define ZLIB_INTERNAL __attribute__((visibility ("hidden")))
|
|
||||||
#else
|
|
||||||
# define ZLIB_INTERNAL
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "zlib.h"
|
|
||||||
|
|
||||||
#if defined(STDC) && !defined(Z_SOLO)
|
|
||||||
# if !(defined(_WIN32_WCE) && defined(_MSC_VER))
|
|
||||||
# include <stddef.h>
|
|
||||||
# endif
|
|
||||||
# include <string.h>
|
|
||||||
# include <stdlib.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef local
|
|
||||||
# define local static
|
|
||||||
#endif
|
|
||||||
/* since "static" is used to mean two completely different things in C, we
|
|
||||||
define "local" for the non-static meaning of "static", for readability
|
|
||||||
(compile with -Dlocal if your debugger can't find static symbols) */
|
|
||||||
|
|
||||||
typedef unsigned char uch;
|
|
||||||
typedef uch FAR uchf;
|
|
||||||
typedef unsigned short ush;
|
|
||||||
typedef ush FAR ushf;
|
|
||||||
typedef unsigned long ulg;
|
|
||||||
|
|
||||||
#if !defined(Z_U8) && !defined(Z_SOLO) && defined(STDC)
|
|
||||||
# include <limits.h>
|
|
||||||
# if (ULONG_MAX == 0xffffffffffffffff)
|
|
||||||
# define Z_U8 unsigned long
|
|
||||||
# elif (ULLONG_MAX == 0xffffffffffffffff)
|
|
||||||
# define Z_U8 unsigned long long
|
|
||||||
# elif (UINT_MAX == 0xffffffffffffffff)
|
|
||||||
# define Z_U8 unsigned
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
extern z_const char * const z_errmsg[10]; /* indexed by 2-zlib_error */
|
|
||||||
/* (size given to avoid silly warnings with Visual C++) */
|
|
||||||
|
|
||||||
#define ERR_MSG(err) z_errmsg[(err) < -6 || (err) > 2 ? 9 : 2 - (err)]
|
|
||||||
|
|
||||||
#define ERR_RETURN(strm,err) \
|
|
||||||
return (strm->msg = ERR_MSG(err), (err))
|
|
||||||
/* To be used only when the state is known to be valid */
|
|
||||||
|
|
||||||
/* common constants */
|
|
||||||
|
|
||||||
#ifndef DEF_WBITS
|
|
||||||
# define DEF_WBITS MAX_WBITS
|
|
||||||
#endif
|
|
||||||
/* default windowBits for decompression. MAX_WBITS is for compression only */
|
|
||||||
|
|
||||||
#if MAX_MEM_LEVEL >= 8
|
|
||||||
# define DEF_MEM_LEVEL 8
|
|
||||||
#else
|
|
||||||
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
|
|
||||||
#endif
|
|
||||||
/* default memLevel */
|
|
||||||
|
|
||||||
#define STORED_BLOCK 0
|
|
||||||
#define STATIC_TREES 1
|
|
||||||
#define DYN_TREES 2
|
|
||||||
/* The three kinds of block type */
|
|
||||||
|
|
||||||
#define MIN_MATCH 3
|
|
||||||
#define MAX_MATCH 258
|
|
||||||
/* The minimum and maximum match lengths */
|
|
||||||
|
|
||||||
#define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
|
|
||||||
|
|
||||||
/* target dependencies */
|
|
||||||
|
|
||||||
#if defined(MSDOS) || (defined(WINDOWS) && !defined(WIN32))
|
|
||||||
# define OS_CODE 0x00
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# if defined(__TURBOC__) || defined(__BORLANDC__)
|
|
||||||
# if (__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
|
|
||||||
/* Allow compilation with ANSI keywords only enabled */
|
|
||||||
void _Cdecl farfree( void *block );
|
|
||||||
void *_Cdecl farmalloc( unsigned long nbytes );
|
|
||||||
# else
|
|
||||||
# include <alloc.h>
|
|
||||||
# endif
|
|
||||||
# else /* MSC or DJGPP */
|
|
||||||
# include <malloc.h>
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef AMIGA
|
|
||||||
# define OS_CODE 1
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(VAXC) || defined(VMS)
|
|
||||||
# define OS_CODE 2
|
|
||||||
# define F_OPEN(name, mode) \
|
|
||||||
fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __370__
|
|
||||||
# if __TARGET_LIB__ < 0x20000000
|
|
||||||
# define OS_CODE 4
|
|
||||||
# elif __TARGET_LIB__ < 0x40000000
|
|
||||||
# define OS_CODE 11
|
|
||||||
# else
|
|
||||||
# define OS_CODE 8
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(ATARI) || defined(atarist)
|
|
||||||
# define OS_CODE 5
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef OS2
|
|
||||||
# define OS_CODE 6
|
|
||||||
# if defined(M_I86) && !defined(Z_SOLO)
|
|
||||||
# include <malloc.h>
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(MACOS)
|
|
||||||
# define OS_CODE 7
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __acorn
|
|
||||||
# define OS_CODE 13
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(WIN32) && !defined(__CYGWIN__)
|
|
||||||
# define OS_CODE 10
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef _BEOS_
|
|
||||||
# define OS_CODE 16
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __TOS_OS400__
|
|
||||||
# define OS_CODE 18
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __APPLE__
|
|
||||||
# define OS_CODE 19
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__BORLANDC__) && !defined(MSDOS)
|
|
||||||
#pragma warn -8004
|
|
||||||
#pragma warn -8008
|
|
||||||
#pragma warn -8066
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* provide prototypes for these when building zlib without LFS */
|
|
||||||
#if !defined(_WIN32) && \
|
|
||||||
(!defined(_LARGEFILE64_SOURCE) || _LFS64_LARGEFILE-0 == 0)
|
|
||||||
ZEXTERN uLong ZEXPORT adler32_combine64(uLong, uLong, z_off_t);
|
|
||||||
ZEXTERN uLong ZEXPORT crc32_combine64(uLong, uLong, z_off_t);
|
|
||||||
ZEXTERN uLong ZEXPORT crc32_combine_gen64(z_off_t);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* common defaults */
|
|
||||||
|
|
||||||
#ifndef OS_CODE
|
|
||||||
# define OS_CODE 3 /* assume Unix */
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef F_OPEN
|
|
||||||
# define F_OPEN(name, mode) fopen((name), (mode))
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* functions */
|
|
||||||
|
|
||||||
#if defined(pyr) || defined(Z_SOLO)
|
|
||||||
# define NO_MEMCPY
|
|
||||||
#endif
|
|
||||||
#if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
|
|
||||||
/* Use our own functions for small and medium model with MSC <= 5.0.
|
|
||||||
* You may have to use the same strategy for Borland C (untested).
|
|
||||||
* The __SC__ check is for Symantec.
|
|
||||||
*/
|
|
||||||
# define NO_MEMCPY
|
|
||||||
#endif
|
|
||||||
#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
|
|
||||||
# define HAVE_MEMCPY
|
|
||||||
#endif
|
|
||||||
#ifdef HAVE_MEMCPY
|
|
||||||
# ifdef SMALL_MEDIUM /* MSDOS small or medium model */
|
|
||||||
# define zmemcpy _fmemcpy
|
|
||||||
# define zmemcmp _fmemcmp
|
|
||||||
# define zmemzero(dest, len) _fmemset(dest, 0, len)
|
|
||||||
# else
|
|
||||||
# define zmemcpy memcpy
|
|
||||||
# define zmemcmp memcmp
|
|
||||||
# define zmemzero(dest, len) memset(dest, 0, len)
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
void ZLIB_INTERNAL zmemcpy(Bytef* dest, const Bytef* source, uInt len);
|
|
||||||
int ZLIB_INTERNAL zmemcmp(const Bytef* s1, const Bytef* s2, uInt len);
|
|
||||||
void ZLIB_INTERNAL zmemzero(Bytef* dest, uInt len);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* Diagnostic functions */
|
|
||||||
#ifdef ZLIB_DEBUG
|
|
||||||
# include <stdio.h>
|
|
||||||
extern int ZLIB_INTERNAL z_verbose;
|
|
||||||
extern void ZLIB_INTERNAL z_error(char *m);
|
|
||||||
# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
|
|
||||||
# define Trace(x) {if (z_verbose>=0) fprintf x ;}
|
|
||||||
# define Tracev(x) {if (z_verbose>0) fprintf x ;}
|
|
||||||
# define Tracevv(x) {if (z_verbose>1) fprintf x ;}
|
|
||||||
# define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
|
|
||||||
# define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
|
|
||||||
#else
|
|
||||||
# define Assert(cond,msg)
|
|
||||||
# define Trace(x)
|
|
||||||
# define Tracev(x)
|
|
||||||
# define Tracevv(x)
|
|
||||||
# define Tracec(c,x)
|
|
||||||
# define Tracecv(c,x)
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef Z_SOLO
|
|
||||||
voidpf ZLIB_INTERNAL zcalloc(voidpf opaque, unsigned items,
|
|
||||||
unsigned size);
|
|
||||||
void ZLIB_INTERNAL zcfree(voidpf opaque, voidpf ptr);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define ZALLOC(strm, items, size) \
|
|
||||||
(*((strm)->zalloc))((strm)->opaque, (items), (size))
|
|
||||||
#define ZFREE(strm, addr) (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
|
|
||||||
#define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
|
|
||||||
|
|
||||||
/* Reverse the bytes in a 32-bit value */
|
|
||||||
#define ZSWAP32(q) ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
|
|
||||||
(((q) & 0xff00) << 8) + (((q) & 0xff) << 24))
|
|
||||||
|
|
||||||
#endif /* ZUTIL_H */
|
|
||||||
@@ -1,560 +0,0 @@
|
|||||||
/* zconf.h -- configuration of the zlib compression library
|
|
||||||
* Copyright (C) 1995-2024 Jean-loup Gailly, Mark Adler
|
|
||||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* @(#) $Id$ */
|
|
||||||
|
|
||||||
#ifndef ZCONF_H
|
|
||||||
#define ZCONF_H
|
|
||||||
#ifdef __rtems__
|
|
||||||
#define ZLIB_CONST 1
|
|
||||||
#define Z_PREFIX 1
|
|
||||||
#endif /* __rtems__ */
|
|
||||||
|
|
||||||
/*
|
|
||||||
* If you *really* need a unique prefix for all types and library functions,
|
|
||||||
* compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
|
|
||||||
* Even better than compiling with -DZ_PREFIX would be to use configure to set
|
|
||||||
* this permanently in zconf.h using "./configure --zprefix".
|
|
||||||
*/
|
|
||||||
#ifdef Z_PREFIX /* may be set to #if 1 by ./configure */
|
|
||||||
# define Z_PREFIX_SET
|
|
||||||
|
|
||||||
/* all linked symbols and init macros */
|
|
||||||
# define _dist_code z__dist_code
|
|
||||||
# define _length_code z__length_code
|
|
||||||
# define _tr_align z__tr_align
|
|
||||||
# define _tr_flush_bits z__tr_flush_bits
|
|
||||||
# define _tr_flush_block z__tr_flush_block
|
|
||||||
# define _tr_init z__tr_init
|
|
||||||
# define _tr_stored_block z__tr_stored_block
|
|
||||||
# define _tr_tally z__tr_tally
|
|
||||||
# define adler32 z_adler32
|
|
||||||
# define adler32_combine z_adler32_combine
|
|
||||||
# define adler32_combine64 z_adler32_combine64
|
|
||||||
# define adler32_z z_adler32_z
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# define compress z_compress
|
|
||||||
# define compress2 z_compress2
|
|
||||||
# define compressBound z_compressBound
|
|
||||||
# endif
|
|
||||||
# define crc32 z_crc32
|
|
||||||
# define crc32_combine z_crc32_combine
|
|
||||||
# define crc32_combine64 z_crc32_combine64
|
|
||||||
# define crc32_combine_gen z_crc32_combine_gen
|
|
||||||
# define crc32_combine_gen64 z_crc32_combine_gen64
|
|
||||||
# define crc32_combine_op z_crc32_combine_op
|
|
||||||
# define crc32_z z_crc32_z
|
|
||||||
# define deflate z_deflate
|
|
||||||
# define deflateBound z_deflateBound
|
|
||||||
# define deflateCopy z_deflateCopy
|
|
||||||
# define deflateEnd z_deflateEnd
|
|
||||||
# define deflateGetDictionary z_deflateGetDictionary
|
|
||||||
# define deflateInit z_deflateInit
|
|
||||||
# define deflateInit2 z_deflateInit2
|
|
||||||
# define deflateInit2_ z_deflateInit2_
|
|
||||||
# define deflateInit_ z_deflateInit_
|
|
||||||
# define deflateParams z_deflateParams
|
|
||||||
# define deflatePending z_deflatePending
|
|
||||||
# define deflatePrime z_deflatePrime
|
|
||||||
# define deflateReset z_deflateReset
|
|
||||||
# define deflateResetKeep z_deflateResetKeep
|
|
||||||
# define deflateSetDictionary z_deflateSetDictionary
|
|
||||||
# define deflateSetHeader z_deflateSetHeader
|
|
||||||
# define deflateTune z_deflateTune
|
|
||||||
# define deflate_copyright z_deflate_copyright
|
|
||||||
# define get_crc_table z_get_crc_table
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# define gz_error z_gz_error
|
|
||||||
# define gz_intmax z_gz_intmax
|
|
||||||
# define gz_strwinerror z_gz_strwinerror
|
|
||||||
# define gzbuffer z_gzbuffer
|
|
||||||
# define gzclearerr z_gzclearerr
|
|
||||||
# define gzclose z_gzclose
|
|
||||||
# define gzclose_r z_gzclose_r
|
|
||||||
# define gzclose_w z_gzclose_w
|
|
||||||
# define gzdirect z_gzdirect
|
|
||||||
# define gzdopen z_gzdopen
|
|
||||||
# define gzeof z_gzeof
|
|
||||||
# define gzerror z_gzerror
|
|
||||||
# define gzflush z_gzflush
|
|
||||||
# define gzfread z_gzfread
|
|
||||||
# define gzfwrite z_gzfwrite
|
|
||||||
# define gzgetc z_gzgetc
|
|
||||||
# define gzgetc_ z_gzgetc_
|
|
||||||
# define gzgets z_gzgets
|
|
||||||
# define gzoffset z_gzoffset
|
|
||||||
# define gzoffset64 z_gzoffset64
|
|
||||||
# define gzopen z_gzopen
|
|
||||||
# define gzopen64 z_gzopen64
|
|
||||||
# ifdef _WIN32
|
|
||||||
# define gzopen_w z_gzopen_w
|
|
||||||
# endif
|
|
||||||
# define gzprintf z_gzprintf
|
|
||||||
# define gzputc z_gzputc
|
|
||||||
# define gzputs z_gzputs
|
|
||||||
# define gzread z_gzread
|
|
||||||
# define gzrewind z_gzrewind
|
|
||||||
# define gzseek z_gzseek
|
|
||||||
# define gzseek64 z_gzseek64
|
|
||||||
# define gzsetparams z_gzsetparams
|
|
||||||
# define gztell z_gztell
|
|
||||||
# define gztell64 z_gztell64
|
|
||||||
# define gzungetc z_gzungetc
|
|
||||||
# define gzvprintf z_gzvprintf
|
|
||||||
# define gzwrite z_gzwrite
|
|
||||||
# endif
|
|
||||||
# define inflate z_inflate
|
|
||||||
# define inflateBack z_inflateBack
|
|
||||||
# define inflateBackEnd z_inflateBackEnd
|
|
||||||
# define inflateBackInit z_inflateBackInit
|
|
||||||
# define inflateBackInit_ z_inflateBackInit_
|
|
||||||
# define inflateCodesUsed z_inflateCodesUsed
|
|
||||||
# define inflateCopy z_inflateCopy
|
|
||||||
# define inflateEnd z_inflateEnd
|
|
||||||
# define inflateGetDictionary z_inflateGetDictionary
|
|
||||||
# define inflateGetHeader z_inflateGetHeader
|
|
||||||
# define inflateInit z_inflateInit
|
|
||||||
# define inflateInit2 z_inflateInit2
|
|
||||||
# define inflateInit2_ z_inflateInit2_
|
|
||||||
# define inflateInit_ z_inflateInit_
|
|
||||||
# define inflateMark z_inflateMark
|
|
||||||
# define inflatePrime z_inflatePrime
|
|
||||||
# define inflateReset z_inflateReset
|
|
||||||
# define inflateReset2 z_inflateReset2
|
|
||||||
# define inflateResetKeep z_inflateResetKeep
|
|
||||||
# define inflateSetDictionary z_inflateSetDictionary
|
|
||||||
# define inflateSync z_inflateSync
|
|
||||||
# define inflateSyncPoint z_inflateSyncPoint
|
|
||||||
# define inflateUndermine z_inflateUndermine
|
|
||||||
# define inflateValidate z_inflateValidate
|
|
||||||
# define inflate_copyright z_inflate_copyright
|
|
||||||
# define inflate_fast z_inflate_fast
|
|
||||||
# define inflate_table z_inflate_table
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# define uncompress z_uncompress
|
|
||||||
# define uncompress2 z_uncompress2
|
|
||||||
# endif
|
|
||||||
# define zError z_zError
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# define zcalloc z_zcalloc
|
|
||||||
# define zcfree z_zcfree
|
|
||||||
# endif
|
|
||||||
# define zlibCompileFlags z_zlibCompileFlags
|
|
||||||
# define zlibVersion z_zlibVersion
|
|
||||||
|
|
||||||
/* all zlib typedefs in zlib.h and zconf.h */
|
|
||||||
# define Byte z_Byte
|
|
||||||
# define Bytef z_Bytef
|
|
||||||
# define alloc_func z_alloc_func
|
|
||||||
# define charf z_charf
|
|
||||||
# define free_func z_free_func
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# define gzFile z_gzFile
|
|
||||||
# endif
|
|
||||||
# define gz_header z_gz_header
|
|
||||||
# define gz_headerp z_gz_headerp
|
|
||||||
# define in_func z_in_func
|
|
||||||
# define intf z_intf
|
|
||||||
# define out_func z_out_func
|
|
||||||
# define uInt z_uInt
|
|
||||||
# define uIntf z_uIntf
|
|
||||||
# define uLong z_uLong
|
|
||||||
# define uLongf z_uLongf
|
|
||||||
# define voidp z_voidp
|
|
||||||
# define voidpc z_voidpc
|
|
||||||
# define voidpf z_voidpf
|
|
||||||
|
|
||||||
/* all zlib structs in zlib.h and zconf.h */
|
|
||||||
# define gz_header_s z_gz_header_s
|
|
||||||
# define internal_state z_internal_state
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__MSDOS__) && !defined(MSDOS)
|
|
||||||
# define MSDOS
|
|
||||||
#endif
|
|
||||||
#if (defined(OS_2) || defined(__OS2__)) && !defined(OS2)
|
|
||||||
# define OS2
|
|
||||||
#endif
|
|
||||||
#if defined(_WINDOWS) && !defined(WINDOWS)
|
|
||||||
# define WINDOWS
|
|
||||||
#endif
|
|
||||||
#if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__)
|
|
||||||
# ifndef WIN32
|
|
||||||
# define WIN32
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
#if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32)
|
|
||||||
# if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__)
|
|
||||||
# ifndef SYS16BIT
|
|
||||||
# define SYS16BIT
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Compile with -DMAXSEG_64K if the alloc function cannot allocate more
|
|
||||||
* than 64k bytes at a time (needed on systems with 16-bit int).
|
|
||||||
*/
|
|
||||||
#ifdef SYS16BIT
|
|
||||||
# define MAXSEG_64K
|
|
||||||
#endif
|
|
||||||
#ifdef MSDOS
|
|
||||||
# define UNALIGNED_OK
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __STDC_VERSION__
|
|
||||||
# ifndef STDC
|
|
||||||
# define STDC
|
|
||||||
# endif
|
|
||||||
# if __STDC_VERSION__ >= 199901L
|
|
||||||
# ifndef STDC99
|
|
||||||
# define STDC99
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
#if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus))
|
|
||||||
# define STDC
|
|
||||||
#endif
|
|
||||||
#if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__))
|
|
||||||
# define STDC
|
|
||||||
#endif
|
|
||||||
#if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32))
|
|
||||||
# define STDC
|
|
||||||
#endif
|
|
||||||
#if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__))
|
|
||||||
# define STDC
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(__OS400__) && !defined(STDC) /* iSeries (formerly AS/400). */
|
|
||||||
# define STDC
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef STDC
|
|
||||||
# ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
|
|
||||||
# define const /* note: need a more gentle solution here */
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(ZLIB_CONST) && !defined(z_const)
|
|
||||||
# define z_const const
|
|
||||||
#else
|
|
||||||
# define z_const
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef Z_SOLO
|
|
||||||
# ifdef _WIN64
|
|
||||||
typedef unsigned long long z_size_t;
|
|
||||||
# else
|
|
||||||
typedef unsigned long z_size_t;
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
# define z_longlong long long
|
|
||||||
# if defined(NO_SIZE_T)
|
|
||||||
typedef unsigned NO_SIZE_T z_size_t;
|
|
||||||
# elif defined(STDC)
|
|
||||||
# include <stddef.h>
|
|
||||||
typedef size_t z_size_t;
|
|
||||||
# else
|
|
||||||
typedef unsigned long z_size_t;
|
|
||||||
# endif
|
|
||||||
# undef z_longlong
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* Maximum value for memLevel in deflateInit2 */
|
|
||||||
#ifndef MAX_MEM_LEVEL
|
|
||||||
# ifdef MAXSEG_64K
|
|
||||||
# define MAX_MEM_LEVEL 8
|
|
||||||
# else
|
|
||||||
# define MAX_MEM_LEVEL 9
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* Maximum value for windowBits in deflateInit2 and inflateInit2.
|
|
||||||
* WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
|
|
||||||
* created by gzip. (Files created by minigzip can still be extracted by
|
|
||||||
* gzip.)
|
|
||||||
*/
|
|
||||||
#ifndef MAX_WBITS
|
|
||||||
# define MAX_WBITS 15 /* 32K LZ77 window */
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* The memory requirements for deflate are (in bytes):
|
|
||||||
(1 << (windowBits+2)) + (1 << (memLevel+9))
|
|
||||||
that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
|
|
||||||
plus a few kilobytes for small objects. For example, if you want to reduce
|
|
||||||
the default memory requirements from 256K to 128K, compile with
|
|
||||||
make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
|
|
||||||
Of course this will generally degrade compression (there's no free lunch).
|
|
||||||
|
|
||||||
The memory requirements for inflate are (in bytes) 1 << windowBits
|
|
||||||
that is, 32K for windowBits=15 (default value) plus about 7 kilobytes
|
|
||||||
for small objects.
|
|
||||||
*/
|
|
||||||
|
|
||||||
/* Type declarations */
|
|
||||||
|
|
||||||
#ifndef OF /* function prototypes */
|
|
||||||
# ifdef STDC
|
|
||||||
# define OF(args) args
|
|
||||||
# else
|
|
||||||
# define OF(args) ()
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* The following definitions for FAR are needed only for MSDOS mixed
|
|
||||||
* model programming (small or medium model with some far allocations).
|
|
||||||
* This was tested only with MSC; for other MSDOS compilers you may have
|
|
||||||
* to define NO_MEMCPY in zutil.h. If you don't need the mixed model,
|
|
||||||
* just define FAR to be empty.
|
|
||||||
*/
|
|
||||||
#ifdef SYS16BIT
|
|
||||||
# if defined(M_I86SM) || defined(M_I86MM)
|
|
||||||
/* MSC small or medium model */
|
|
||||||
# define SMALL_MEDIUM
|
|
||||||
# ifdef _MSC_VER
|
|
||||||
# define FAR _far
|
|
||||||
# else
|
|
||||||
# define FAR far
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
# if (defined(__SMALL__) || defined(__MEDIUM__))
|
|
||||||
/* Turbo C small or medium model */
|
|
||||||
# define SMALL_MEDIUM
|
|
||||||
# ifdef __BORLANDC__
|
|
||||||
# define FAR _far
|
|
||||||
# else
|
|
||||||
# define FAR far
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(WINDOWS) || defined(WIN32)
|
|
||||||
/* If building or using zlib as a DLL, define ZLIB_DLL.
|
|
||||||
* This is not mandatory, but it offers a little performance increase.
|
|
||||||
*/
|
|
||||||
# ifdef ZLIB_DLL
|
|
||||||
# if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500))
|
|
||||||
# ifdef ZLIB_INTERNAL
|
|
||||||
# define ZEXTERN extern __declspec(dllexport)
|
|
||||||
# else
|
|
||||||
# define ZEXTERN extern __declspec(dllimport)
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
# endif /* ZLIB_DLL */
|
|
||||||
/* If building or using zlib with the WINAPI/WINAPIV calling convention,
|
|
||||||
* define ZLIB_WINAPI.
|
|
||||||
* Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI.
|
|
||||||
*/
|
|
||||||
# ifdef ZLIB_WINAPI
|
|
||||||
# ifdef FAR
|
|
||||||
# undef FAR
|
|
||||||
# endif
|
|
||||||
# ifndef WIN32_LEAN_AND_MEAN
|
|
||||||
# define WIN32_LEAN_AND_MEAN
|
|
||||||
# endif
|
|
||||||
# include <windows.h>
|
|
||||||
/* No need for _export, use ZLIB.DEF instead. */
|
|
||||||
/* For complete Windows compatibility, use WINAPI, not __stdcall. */
|
|
||||||
# define ZEXPORT WINAPI
|
|
||||||
# ifdef WIN32
|
|
||||||
# define ZEXPORTVA WINAPIV
|
|
||||||
# else
|
|
||||||
# define ZEXPORTVA FAR CDECL
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined (__BEOS__)
|
|
||||||
# ifdef ZLIB_DLL
|
|
||||||
# ifdef ZLIB_INTERNAL
|
|
||||||
# define ZEXPORT __declspec(dllexport)
|
|
||||||
# define ZEXPORTVA __declspec(dllexport)
|
|
||||||
# else
|
|
||||||
# define ZEXPORT __declspec(dllimport)
|
|
||||||
# define ZEXPORTVA __declspec(dllimport)
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef ZEXTERN
|
|
||||||
# define ZEXTERN extern
|
|
||||||
#endif
|
|
||||||
#ifndef ZEXPORT
|
|
||||||
# define ZEXPORT
|
|
||||||
#endif
|
|
||||||
#ifndef ZEXPORTVA
|
|
||||||
# define ZEXPORTVA
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef FAR
|
|
||||||
# define FAR
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if !defined(__MACTYPES__)
|
|
||||||
typedef unsigned char Byte; /* 8 bits */
|
|
||||||
#endif
|
|
||||||
typedef unsigned int uInt; /* 16 bits or more */
|
|
||||||
typedef unsigned long uLong; /* 32 bits or more */
|
|
||||||
|
|
||||||
#ifdef SMALL_MEDIUM
|
|
||||||
/* Borland C/C++ and some old MSC versions ignore FAR inside typedef */
|
|
||||||
# define Bytef Byte FAR
|
|
||||||
#else
|
|
||||||
typedef Byte FAR Bytef;
|
|
||||||
#endif
|
|
||||||
typedef char FAR charf;
|
|
||||||
typedef int FAR intf;
|
|
||||||
typedef uInt FAR uIntf;
|
|
||||||
typedef uLong FAR uLongf;
|
|
||||||
|
|
||||||
#ifdef STDC
|
|
||||||
typedef void const *voidpc;
|
|
||||||
typedef void FAR *voidpf;
|
|
||||||
typedef void *voidp;
|
|
||||||
#else
|
|
||||||
typedef Byte const *voidpc;
|
|
||||||
typedef Byte FAR *voidpf;
|
|
||||||
typedef Byte *voidp;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef __rtems__
|
|
||||||
#if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC)
|
|
||||||
# include <limits.h>
|
|
||||||
# if (UINT_MAX == 0xffffffffUL)
|
|
||||||
# define Z_U4 unsigned
|
|
||||||
# elif (ULONG_MAX == 0xffffffffUL)
|
|
||||||
# define Z_U4 unsigned long
|
|
||||||
# elif (USHRT_MAX == 0xffffffffUL)
|
|
||||||
# define Z_U4 unsigned short
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
#else /* __rtems__ */
|
|
||||||
#include <stdint.h>
|
|
||||||
#define Z_U4 uint32_t
|
|
||||||
#endif /* __rtems__ */
|
|
||||||
|
|
||||||
#ifdef Z_U4
|
|
||||||
typedef Z_U4 z_crc_t;
|
|
||||||
#else
|
|
||||||
typedef unsigned long z_crc_t;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __rtems__
|
|
||||||
# define Z_HAVE_UNISTD_H
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __rtems__
|
|
||||||
# define Z_HAVE_STDARG_H
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef HAVE_UNISTD_H /* may be set to #if 1 by ./configure */
|
|
||||||
# define Z_HAVE_UNISTD_H
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef HAVE_STDARG_H /* may be set to #if 1 by ./configure */
|
|
||||||
# define Z_HAVE_STDARG_H
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef STDC
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# include <sys/types.h> /* for off_t */
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(STDC) || defined(Z_HAVE_STDARG_H)
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# include <stdarg.h> /* for va_list */
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef _WIN32
|
|
||||||
# ifndef Z_SOLO
|
|
||||||
# include <stddef.h> /* for wchar_t */
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
|
|
||||||
* "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
|
|
||||||
* though the former does not conform to the LFS document), but considering
|
|
||||||
* both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
|
|
||||||
* equivalently requesting no 64-bit operations
|
|
||||||
*/
|
|
||||||
#if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1
|
|
||||||
# undef _LARGEFILE64_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef Z_HAVE_UNISTD_H
|
|
||||||
# ifdef __WATCOMC__
|
|
||||||
# define Z_HAVE_UNISTD_H
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
#ifndef Z_HAVE_UNISTD_H
|
|
||||||
# if defined(_LARGEFILE64_SOURCE) && !defined(_WIN32)
|
|
||||||
# define Z_HAVE_UNISTD_H
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
#ifndef Z_SOLO
|
|
||||||
# if defined(Z_HAVE_UNISTD_H)
|
|
||||||
# include <unistd.h> /* for SEEK_*, off_t, and _LFS64_LARGEFILE */
|
|
||||||
# ifdef VMS
|
|
||||||
# include <unixio.h> /* for off_t */
|
|
||||||
# endif
|
|
||||||
# ifndef z_off_t
|
|
||||||
# define z_off_t off_t
|
|
||||||
# endif
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0
|
|
||||||
# define Z_LFS64
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64)
|
|
||||||
# define Z_LARGE64
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64)
|
|
||||||
# define Z_WANT64
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if !defined(SEEK_SET) && !defined(Z_SOLO)
|
|
||||||
# define SEEK_SET 0 /* Seek from beginning of file. */
|
|
||||||
# define SEEK_CUR 1 /* Seek from current position. */
|
|
||||||
# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef z_off_t
|
|
||||||
# define z_off_t long
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if !defined(_WIN32) && defined(Z_LARGE64)
|
|
||||||
# define z_off64_t off64_t
|
|
||||||
#else
|
|
||||||
# if defined(_WIN32) && !defined(__GNUC__)
|
|
||||||
# define z_off64_t __int64
|
|
||||||
# else
|
|
||||||
# define z_off64_t z_off_t
|
|
||||||
# endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
/* MVS linker does not support external names larger than 8 bytes */
|
|
||||||
#if defined(__MVS__)
|
|
||||||
#pragma map(deflateInit_,"DEIN")
|
|
||||||
#pragma map(deflateInit2_,"DEIN2")
|
|
||||||
#pragma map(deflateEnd,"DEEND")
|
|
||||||
#pragma map(deflateBound,"DEBND")
|
|
||||||
#pragma map(inflateInit_,"ININ")
|
|
||||||
#pragma map(inflateInit2_,"ININ2")
|
|
||||||
#pragma map(inflateEnd,"INEND")
|
|
||||||
#pragma map(inflateSync,"INSY")
|
|
||||||
#pragma map(inflateSetDictionary,"INSEDI")
|
|
||||||
#pragma map(compressBound,"CMBND")
|
|
||||||
#pragma map(inflate_table,"INTABL")
|
|
||||||
#pragma map(inflate_fast,"INFA")
|
|
||||||
#pragma map(inflate_copyright,"INCOPY")
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif /* ZCONF_H */
|
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -11,6 +11,7 @@ cxxflags:
|
|||||||
enabled-by: true
|
enabled-by: true
|
||||||
includes:
|
includes:
|
||||||
- cpukit/libfs/src/jffs2/include
|
- cpukit/libfs/src/jffs2/include
|
||||||
|
- contrib/cpukit/zlib
|
||||||
install:
|
install:
|
||||||
- destination: ${BSP_INCLUDEDIR}/rtems
|
- destination: ${BSP_INCLUDEDIR}/rtems
|
||||||
source:
|
source:
|
||||||
|
|||||||
@@ -8,29 +8,30 @@ cppflags: []
|
|||||||
cxxflags:
|
cxxflags:
|
||||||
- ${COVERAGE_COMPILER_FLAGS}
|
- ${COVERAGE_COMPILER_FLAGS}
|
||||||
enabled-by: true
|
enabled-by: true
|
||||||
includes: []
|
includes:
|
||||||
|
- contrib/cpukit/libz
|
||||||
install:
|
install:
|
||||||
- destination: ${BSP_INCLUDEDIR}
|
- destination: ${BSP_INCLUDEDIR}
|
||||||
source:
|
source:
|
||||||
- cpukit/include/zconf.h
|
- contrib/cpukit/zlib/zconf.h
|
||||||
- cpukit/include/zlib.h
|
- contrib/cpukit/zlib/zlib.h
|
||||||
install-path: ${BSP_LIBDIR}
|
install-path: ${BSP_LIBDIR}
|
||||||
links: []
|
links: []
|
||||||
source:
|
source:
|
||||||
- cpukit/compression/zlib/adler32.c
|
- contrib/cpukit/zlib/adler32.c
|
||||||
- cpukit/compression/zlib/compress.c
|
- contrib/cpukit/zlib/compress.c
|
||||||
- cpukit/compression/zlib/crc32.c
|
- contrib/cpukit/zlib/crc32.c
|
||||||
- cpukit/compression/zlib/deflate.c
|
- contrib/cpukit/zlib/deflate.c
|
||||||
- cpukit/compression/zlib/gzclose.c
|
- contrib/cpukit/zlib/gzclose.c
|
||||||
- cpukit/compression/zlib/gzlib.c
|
- contrib/cpukit/zlib/gzlib.c
|
||||||
- cpukit/compression/zlib/gzread.c
|
- contrib/cpukit/zlib/gzread.c
|
||||||
- cpukit/compression/zlib/gzwrite.c
|
- contrib/cpukit/zlib/gzwrite.c
|
||||||
- cpukit/compression/zlib/infback.c
|
- contrib/cpukit/zlib/infback.c
|
||||||
- cpukit/compression/zlib/inffast.c
|
- contrib/cpukit/zlib/inffast.c
|
||||||
- cpukit/compression/zlib/inflate.c
|
- contrib/cpukit/zlib/inflate.c
|
||||||
- cpukit/compression/zlib/inftrees.c
|
- contrib/cpukit/zlib/inftrees.c
|
||||||
- cpukit/compression/zlib/trees.c
|
- contrib/cpukit/zlib/trees.c
|
||||||
- cpukit/compression/zlib/uncompr.c
|
- contrib/cpukit/zlib/uncompr.c
|
||||||
- cpukit/compression/zlib/zutil.c
|
- contrib/cpukit/zlib/zutil.c
|
||||||
target: z
|
target: z
|
||||||
type: build
|
type: build
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
|
SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
|
||||||
actions:
|
actions:
|
||||||
- set-value: cpukit/include cpukit/score/cpu/${ARCH}/include contrib/cpukit/fastlz/
|
- set-value: cpukit/include cpukit/score/cpu/${ARCH}/include contrib/cpukit/fastlz/ contrib/cpukit/zlib/
|
||||||
- substitute: null
|
- substitute: null
|
||||||
- env-assign: null
|
- env-assign: null
|
||||||
build-type: option
|
build-type: option
|
||||||
|
|||||||
Reference in New Issue
Block a user