Files
rt-thread/libcpu/aarch64/common/setup.c
GuEe-GUI 77fbed5744 [libcpu][aarch64] Update for DM
1. PSCI port to system power.
2. Support builtin fdt.
3. Update system aspace size.
4. Support DMA memory probe.
5. Fixup not backtrace in Serror for device bus fault.

Signed-off-by: GuEe-GUI <2991707448@qq.com>
2025-12-19 21:18:54 +08:00

514 lines
12 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-21 GuEe-GUI first version
*/
#include <rtthread.h>
#define DBG_TAG "cpu.aa64"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <smp_call.h>
#include <cpu.h>
#include <mmu.h>
#include <cpuport.h>
#include <interrupt.h>
#include <gtimer.h>
#include <setup.h>
#include <stdlib.h>
#include <ioremap.h>
#include <rtdevice.h>
#include <gic.h>
#include <gicv3.h>
#include <mm_memblock.h>
#include <dt-bindings/size.h>
extern rt_ubase_t _start, _end;
extern void _secondary_cpu_entry(void);
extern void rt_hw_builtin_fdt();
extern size_t MMUTable[];
extern void *system_vectors;
static void *fdt_ptr = RT_NULL;
static rt_size_t fdt_size = 0;
#ifdef RT_USING_SMP
extern struct cpu_ops_t cpu_psci_ops;
extern struct cpu_ops_t cpu_spin_table_ops;
#else
extern int rt_hw_cpu_id(void);
#endif
rt_uint64_t rt_cpu_mpidr_table[] =
{
[RT_CPUS_NR] = 0,
};
static struct cpu_ops_t *cpu_ops[] =
{
#ifdef RT_USING_SMP
&cpu_psci_ops,
&cpu_spin_table_ops,
#endif
};
static struct rt_ofw_node *cpu_np[RT_CPUS_NR] = { };
void rt_hw_fdt_install_early(void *fdt)
{
#ifndef RT_USING_BUILTIN_FDT
if (fdt != RT_NULL && !fdt_check_header(fdt))
{
fdt_ptr = fdt;
fdt_size = fdt_totalsize(fdt);
}
#else
(void)fdt;
#endif
}
#ifdef RT_USING_HWTIMER
static rt_ubase_t loops_per_tick[RT_CPUS_NR];
static rt_ubase_t cpu_get_cycles(void)
{
rt_ubase_t cycles;
rt_hw_sysreg_read(cntpct_el0, cycles);
return cycles;
}
static void cpu_loops_per_tick_init(void)
{
rt_ubase_t offset;
volatile rt_ubase_t freq, step, cycles_end1, cycles_end2;
volatile rt_uint32_t cycles_count1 = 0, cycles_count2 = 0;
rt_hw_sysreg_read(cntfrq_el0, freq);
step = freq / RT_TICK_PER_SECOND;
cycles_end1 = cpu_get_cycles() + step;
while (cpu_get_cycles() < cycles_end1)
{
__asm__ volatile ("nop");
__asm__ volatile ("add %0, %0, #1":"=r"(cycles_count1));
}
cycles_end2 = cpu_get_cycles() + step;
while (cpu_get_cycles() < cycles_end2)
{
__asm__ volatile ("add %0, %0, #1":"=r"(cycles_count2));
}
if ((rt_int32_t)(cycles_count2 - cycles_count1) > 0)
{
offset = cycles_count2 - cycles_count1;
}
else
{
/* Impossible, but prepared for any eventualities */
offset = cycles_count2 / 4;
}
loops_per_tick[rt_hw_cpu_id()] = offset;
}
static void cpu_us_delay(rt_uint32_t us)
{
volatile rt_base_t start = cpu_get_cycles(), cycles;
cycles = ((us * 0x10c7UL) * loops_per_tick[rt_hw_cpu_id()] * RT_TICK_PER_SECOND) >> 32;
while ((cpu_get_cycles() - start) < cycles)
{
rt_hw_cpu_relax();
}
}
#endif /* RT_USING_HWTIMER */
rt_weak void rt_hw_idle_wfi(void)
{
__asm__ volatile ("wfi");
}
static void system_vectors_init(void)
{
rt_hw_set_current_vbar((rt_ubase_t)&system_vectors);
}
rt_inline void cpu_info_init(void)
{
int i = 0;
rt_uint64_t mpidr;
struct rt_ofw_node *np;
/* get boot cpu info */
rt_hw_sysreg_read(mpidr_el1, mpidr);
rt_ofw_foreach_cpu_node(np)
{
rt_uint64_t hwid = rt_ofw_get_cpu_hwid(np, 0);
if ((mpidr & MPIDR_AFFINITY_MASK) != hwid)
{
/* Only save affinity and res make smp boot can check */
hwid |= 1ULL << 31;
}
else
{
hwid = mpidr;
}
cpu_np[i] = np;
rt_cpu_mpidr_table[i] = hwid;
for (int idx = 0; idx < RT_ARRAY_SIZE(cpu_ops); ++idx)
{
struct cpu_ops_t *ops = cpu_ops[idx];
if (ops->cpu_init)
{
ops->cpu_init(i, np);
}
}
if (++i >= RT_CPUS_NR)
{
break;
}
}
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, rt_cpu_mpidr_table, sizeof(rt_cpu_mpidr_table));
#ifdef RT_USING_HWTIMER
cpu_loops_per_tick_init();
if (!rt_device_hwtimer_us_delay)
{
rt_device_hwtimer_us_delay = &cpu_us_delay;
}
#endif /* RT_USING_HWTIMER */
}
rt_inline rt_size_t string_to_size(const char *string, const char *who)
{
char unit;
rt_size_t size;
const char *cp = string;
size = atoi(cp);
while (*cp >= '0' && *cp <= '9')
{
++cp;
}
unit = *cp & '_';
if (unit == 'M')
{
size *= SIZE_MB;
}
else if (unit == 'K')
{
size *= SIZE_KB;
}
else if (unit == 'G')
{
size *= SIZE_GB;
}
else
{
LOG_W("Unknown unit of '%c' in `%s`", unit, who);
}
return size;
}
void rt_hw_common_setup(void)
{
rt_uint64_t initrd_ranges[3];
rt_size_t kernel_start, kernel_end;
rt_size_t heap_start, heap_end;
rt_size_t init_page_start, init_page_end;
rt_size_t fdt_start, fdt_end;
rt_region_t init_page_region = { 0 };
rt_region_t platform_mem_region = { 0 };
static struct mem_desc platform_mem_desc;
const rt_ubase_t pv_off = PV_OFFSET;
system_vectors_init();
#ifdef RT_USING_SMART
rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xffffffff00000000, 0x20000000, MMUTable, pv_off);
#else
rt_hw_mmu_map_init(&rt_kernel_space, (void*)0xffffd0000000, 0x20000000, MMUTable, 0);
#endif
kernel_start = RT_ALIGN_DOWN((rt_size_t)rt_kmem_v2p((void *)&_start) - 64, ARCH_PAGE_SIZE);
kernel_end = RT_ALIGN((rt_size_t)rt_kmem_v2p((void *)&_end), ARCH_PAGE_SIZE);
heap_start = kernel_end;
heap_end = RT_ALIGN(heap_start + ARCH_HEAP_SIZE, ARCH_PAGE_SIZE);
init_page_start = heap_end;
init_page_end = RT_ALIGN(init_page_start + ARCH_INIT_PAGE_SIZE, ARCH_PAGE_SIZE);
fdt_start = init_page_end;
fdt_end = RT_ALIGN(fdt_start + fdt_size, ARCH_PAGE_SIZE);
platform_mem_region.start = kernel_start;
#ifndef RT_USING_BUILTIN_FDT
platform_mem_region.end = fdt_end;
#else
platform_mem_region.end = init_page_end;
(void)fdt_start;
(void)fdt_end;
#endif
rt_memblock_reserve_memory("kernel", kernel_start, kernel_end, MEMBLOCK_NONE);
rt_memblock_reserve_memory("memheap", heap_start, heap_end, MEMBLOCK_NONE);
rt_memblock_reserve_memory("init-page", init_page_start, init_page_end, MEMBLOCK_NONE);
#ifndef RT_USING_BUILTIN_FDT
rt_memblock_reserve_memory("fdt", fdt_start, fdt_end, MEMBLOCK_NONE);
/* To virtual address */
fdt_ptr = (void *)(fdt_ptr - pv_off);
#ifdef KERNEL_VADDR_START
if ((rt_ubase_t)fdt_ptr + fdt_size - KERNEL_VADDR_START > ARCH_EARLY_MAP_SIZE)
{
fdt_ptr = rt_ioremap_early(fdt_ptr + pv_off, fdt_size);
RT_ASSERT(fdt_ptr != RT_NULL);
}
#endif /* KERNEL_VADDR_START */
rt_memmove((void *)(fdt_start - pv_off), fdt_ptr, fdt_size);
fdt_ptr = (void *)fdt_start - pv_off;
#else
fdt_ptr = &rt_hw_builtin_fdt;
fdt_size = fdt_totalsize(fdt_ptr);
#endif /* RT_USING_BUILTIN_FDT */
rt_system_heap_init((void *)(heap_start - pv_off), (void *)(heap_end - pv_off));
init_page_region.start = init_page_start - pv_off;
init_page_region.end = init_page_end - pv_off;
rt_page_init(init_page_region);
/* create MMU mapping of kernel memory */
platform_mem_region.start = RT_ALIGN_DOWN(platform_mem_region.start, ARCH_PAGE_SIZE);
platform_mem_region.end = RT_ALIGN(platform_mem_region.end, ARCH_PAGE_SIZE);
platform_mem_desc.paddr_start = platform_mem_region.start;
platform_mem_desc.vaddr_start = platform_mem_region.start - pv_off;
platform_mem_desc.vaddr_end = platform_mem_region.end - pv_off - 1;
platform_mem_desc.attr = NORMAL_MEM;
rt_hw_mmu_setup(&rt_kernel_space, &platform_mem_desc, 1);
if (rt_fdt_prefetch(fdt_ptr))
{
/* Platform cannot be initialized */
RT_ASSERT(0);
}
rt_fdt_scan_chosen_stdout();
rt_fdt_scan_initrd(initrd_ranges);
rt_fdt_scan_memory();
#ifdef RT_USING_DMA
do {
const char *bootargs;
rt_ubase_t dma_pool_base;
rt_size_t cma_size = 0, coherent_pool_size = 0;
if (!rt_fdt_bootargs_select("cma=", 0, &bootargs))
{
cma_size = string_to_size(bootargs, "cma");
}
if (!rt_fdt_bootargs_select("coherent_pool=", 0, &bootargs))
{
coherent_pool_size = string_to_size(bootargs, "coherent-pool");
}
if (cma_size <= coherent_pool_size)
{
if (cma_size || coherent_pool_size)
{
LOG_W("DMA pool %s=%u > %s=%u",
"CMA", cma_size, "coherent-pool", coherent_pool_size);
}
cma_size = 8 * SIZE_MB;
coherent_pool_size = 2 * SIZE_MB;
}
dma_pool_base = platform_mem_region.end;
rt_memblock_reserve_memory("dma-pool",
dma_pool_base, dma_pool_base + cma_size + coherent_pool_size, MEMBLOCK_NONE);
if (rt_dma_pool_extract(cma_size, coherent_pool_size))
{
LOG_E("Alloc DMA pool %s=%u, %s=%u fail",
"CMA", cma_size, "coherent-pool", coherent_pool_size);
}
} while (0);
#endif /* RT_USING_DMA */
rt_memblock_setup_memory_environment();
rt_fdt_earlycon_kick(FDT_EARLYCON_KICK_UPDATE);
rt_fdt_unflatten();
cpu_info_init();
#ifdef RT_USING_PIC
rt_pic_init();
rt_pic_irq_init();
#else
/* initialize hardware interrupt */
rt_hw_interrupt_init();
/* initialize uart */
rt_hw_uart_init();
#endif
#ifndef RT_HWTIMER_ARM_ARCH
/* initialize timer for os tick */
rt_hw_gtimer_init();
#endif /* !RT_HWTIMER_ARM_ARCH */
#ifdef RT_USING_COMPONENTS_INIT
rt_components_board_init();
#endif
#if defined(RT_USING_CONSOLE) && defined(RT_USING_DEVICE)
rt_ofw_console_setup();
#endif
rt_thread_idle_sethook(rt_hw_idle_wfi);
#ifdef RT_USING_SMP
rt_smp_call_init();
/* Install the IPI handle */
rt_hw_ipi_handler_install(RT_SCHEDULE_IPI, rt_scheduler_ipi_handler);
rt_hw_ipi_handler_install(RT_STOP_IPI, rt_scheduler_ipi_handler);
rt_hw_ipi_handler_install(RT_SMP_CALL_IPI, rt_smp_call_ipi_handler);
rt_hw_interrupt_umask(RT_SCHEDULE_IPI);
rt_hw_interrupt_umask(RT_STOP_IPI);
rt_hw_interrupt_umask(RT_SMP_CALL_IPI);
#endif
}
#ifdef RT_USING_SMP
rt_weak void rt_hw_secondary_cpu_up(void)
{
int cpu_id = rt_hw_cpu_id();
rt_uint64_t entry = (rt_uint64_t)rt_kmem_v2p(_secondary_cpu_entry);
if (!entry)
{
LOG_E("Failed to translate '_secondary_cpu_entry' to physical address");
RT_ASSERT(0);
}
/* Maybe we are no in the first cpu */
for (int i = 0; i < RT_ARRAY_SIZE(cpu_np); ++i)
{
int err;
const char *enable_method;
if (!cpu_np[i] || i == cpu_id)
{
continue;
}
err = rt_ofw_prop_read_string(cpu_np[i], "enable-method", &enable_method);
for (int idx = 0; !err && idx < RT_ARRAY_SIZE(cpu_ops); ++idx)
{
struct cpu_ops_t *ops = cpu_ops[idx];
if (ops->method && !rt_strcmp(ops->method, enable_method) && ops->cpu_boot)
{
err = ops->cpu_boot(i, entry);
break;
}
}
if (err)
{
LOG_W("Call cpu %d on %s", i, "failed");
}
}
}
rt_weak void rt_hw_secondary_cpu_bsp_start(void)
{
int cpu_id = rt_hw_cpu_id();
system_vectors_init();
rt_hw_spin_lock(&_cpus_lock);
/* Save all mpidr */
rt_hw_sysreg_read(mpidr_el1, rt_cpu_mpidr_table[cpu_id]);
rt_hw_mmu_ktbl_set((unsigned long)MMUTable);
#ifdef RT_USING_PIC
rt_pic_irq_init();
#else
/* initialize vector table */
rt_hw_vector_init();
arm_gic_cpu_init(0, 0);
#ifdef BSP_USING_GICV3
arm_gic_redist_init(0, 0);
#endif /* BSP_USING_GICV3 */
#endif
#ifndef RT_HWTIMER_ARM_ARCH
/* initialize timer for os tick */
rt_hw_gtimer_local_enable();
#endif /* !RT_HWTIMER_ARM_ARCH */
rt_dm_secondary_cpu_init();
rt_hw_interrupt_umask(RT_SCHEDULE_IPI);
rt_hw_interrupt_umask(RT_STOP_IPI);
rt_hw_interrupt_umask(RT_SMP_CALL_IPI);
LOG_I("Call cpu %d on %s", cpu_id, "success");
#ifdef RT_USING_HWTIMER
if (rt_device_hwtimer_us_delay == &cpu_us_delay)
{
cpu_loops_per_tick_init();
}
#endif
rt_system_scheduler_start();
}
rt_weak void rt_hw_secondary_cpu_idle_exec(void)
{
rt_hw_wfe();
}
#endif
void rt_hw_console_output(const char *str)
{
rt_fdt_earlycon_output(str);
}