Files
rt-thread/components/drivers/serial/utest/v2/uart_overflow_rxb_txb.c

282 lines
8.4 KiB
C

/*
* Copyright (c) 2006-2025 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-11-13 CYFS Add standardized utest documentation block
*/
/**
* Test Case Name: UART RX Buffer Overflow Handling Test
*
* Test Objectives:
* - Validate UART behavior when RX FIFO exceeds configured buffer size under blocking operation
* - Verify APIs: rt_device_find, rt_device_control(RT_DEVICE_CTRL_CONFIG / RT_SERIAL_CTRL_SET_RX_TIMEOUT),
* rt_device_open with RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING,
* rt_device_read, rt_device_write, rt_thread_create/startup
*
* Test Scenarios:
* - **Scenario 1 (Overflow Stress / tc_uart_api):**
* 1. Configure UART buffers and spawn sender thread to push large monotonic sequences while receiver drains in buffer-sized chunks.
* 2. Delay receiver startup to force RX queue saturation, then verify data either restarts from zero (drop strategy) or continues modulo 256.
* 3. Iterate across deterministic and random payload lengths, monitoring flags for misordered data.
*
* Verification Metrics:
* - Receiver reads exactly `RT_SERIAL_TC_RXBUF_SIZE` bytes per chunk.
* - Data pattern matches expected strategy (`RT_SERIAL_BUF_STRATEGY_DROP` or wraparound).
* - `uart_result` remains `RT_TRUE`; `uart_over_flag` set before loop exit.
*
* Dependencies:
* - Requires `RT_UTEST_SERIAL_V2` with loopback wiring and optional DMA ping buffer support.
* - UART driver must implement overflow strategy macros and blocking modes.
* - Adequate heap for large TX/RX buffers and 2 KB thread stacks.
*
* Expected Results:
* - No assertions triggered; logs report pass counts for each length.
* - Utest harness prints `[ PASSED ] [ result ] testcase (components.drivers.serial.v2.uart_overflow_rxb_txb)`.
*/
#include <rtthread.h>
#include "utest.h"
#include <rtdevice.h>
#include <stdlib.h>
#ifdef RT_UTEST_SERIAL_V2
static struct rt_serial_device *serial;
static rt_uint8_t uart_over_flag = RT_FALSE;
static rt_bool_t uart_result = RT_TRUE;
static rt_err_t uart_find(void)
{
serial = (struct rt_serial_device *)rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
if (serial == RT_NULL)
{
LOG_E("find %s device failed!\n", RT_SERIAL_TC_DEVICE_NAME);
return -RT_ERROR;
}
return RT_EOK;
}
static void uart_send_entry(void *parameter)
{
rt_uint32_t send_len;
rt_uint8_t *uart_write_buffer = RT_NULL;
rt_uint32_t i = 0;
send_len = *(rt_uint32_t *)parameter;
/* assign send buffer */
uart_write_buffer = (rt_uint8_t *)rt_malloc(send_len);
if (uart_write_buffer == RT_NULL)
{
LOG_E("Without spare memory for uart dma!");
uart_result = RT_FALSE;
return;
}
rt_memset(uart_write_buffer, 0, send_len);
for (i = 0; i < send_len; i++)
{
uart_write_buffer[i] = (rt_uint8_t)i;
}
/* send buffer */
if (rt_device_write(&serial->parent, 0, uart_write_buffer, send_len) != send_len)
{
LOG_E("device write failed\r\n");
}
rt_free(uart_write_buffer);
}
static void uart_rec_entry(void *parameter)
{
rt_uint32_t rev_len;
rt_uint8_t *uart_write_buffer;
rt_int32_t cnt, i;
rev_len = *(rt_uint32_t *)parameter;
uart_write_buffer = (rt_uint8_t *)rt_malloc(rev_len + 1);
while (1)
{
cnt = rt_device_read(&serial->parent, 0, (void *)uart_write_buffer, RT_SERIAL_TC_RXBUF_SIZE);
if (cnt != RT_SERIAL_TC_RXBUF_SIZE)
{
uart_result = RT_FALSE;
rt_free(uart_write_buffer);
return;
}
#ifdef RT_SERIAL_BUF_STRATEGY_DROP
for (i = 0; i < cnt; i++)
{
if (uart_write_buffer[i] != i)
{
LOG_E("Read Different data2 -> former data: %x, current data: %x.", uart_write_buffer[i], i);
uart_result = RT_FALSE;
rt_free(uart_write_buffer);
return;
}
}
#else
for (i = cnt - 1; i >= 0; i--)
{
if (uart_write_buffer[i] != ((rev_len - (cnt - i)) % (UINT8_MAX + 1)))
{
LOG_E("Read Different data2 -> former data: %x, current data: %x.", uart_write_buffer[i], ((rev_len - (cnt - i)) % (UINT8_MAX + 1)));
uart_result = RT_FALSE;
rt_free(uart_write_buffer);
return;
}
}
#endif /* RT_SERIAL_BUF_STRATEGY_DROP */
break;
}
rt_free(uart_write_buffer);
uart_over_flag = RT_TRUE;
}
static rt_err_t uart_api(rt_uint32_t length)
{
rt_thread_t thread_send = RT_NULL;
rt_thread_t thread_recv = RT_NULL;
rt_err_t result = RT_EOK;
uart_over_flag = RT_FALSE;
result = uart_find();
if (result != RT_EOK)
{
return -RT_ERROR;
}
/* Reinitialize */
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
config.baud_rate = BAUD_RATE_115200;
config.rx_bufsz = RT_SERIAL_TC_RXBUF_SIZE;
config.tx_bufsz = RT_SERIAL_TC_TXBUF_SIZE;
#ifdef RT_SERIAL_USING_DMA
config.dma_ping_bufsz = RT_SERIAL_TC_RXBUF_SIZE / 2;
#endif
rt_device_control(&serial->parent, RT_DEVICE_CTRL_CONFIG, &config);
result = rt_device_open(&serial->parent, RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
if (result != RT_EOK)
{
LOG_E("Open uart device failed.");
uart_result = RT_FALSE;
return -RT_ERROR;
}
rt_int32_t timeout = 5000;
rt_device_control(&serial->parent, RT_SERIAL_CTRL_SET_RX_TIMEOUT, (void *)&timeout);
thread_send = rt_thread_create("uart_send", uart_send_entry, &length, 2048, RT_THREAD_PRIORITY_MAX - 4, 10);
thread_recv = rt_thread_create("uart_recv", uart_rec_entry, &length, 2048, RT_THREAD_PRIORITY_MAX - 5, 10);
if ((thread_send != RT_NULL) && (thread_recv != RT_NULL))
{
rt_thread_startup(thread_send);
/* waiting for data transmission to complete*/
rt_thread_mdelay(length * 0.0868 + 10);
rt_thread_startup(thread_recv);
}
else
{
result = -RT_ERROR;
goto __exit;
}
while (1)
{
if (uart_result != RT_TRUE)
{
LOG_E("The test for uart dma is failure.");
result = -RT_ERROR;
goto __exit;
}
if (uart_over_flag == RT_TRUE)
{
goto __exit;
}
/* waiting for test over */
rt_thread_mdelay(5);
}
__exit:
rt_device_close(&serial->parent);
rt_thread_mdelay(5);
return result;
}
static void tc_uart_api(void)
{
rt_uint32_t count = 0;
rt_uint16_t num = 0;
rt_uint32_t i = 0;
for (i = 1; i < 10; i++)
{
if (uart_api(RT_SERIAL_TC_TXBUF_SIZE * i + i % 2) == RT_EOK)
LOG_I("data_lens [%4d], it is correct to read and write data. [%d] count testing.", RT_SERIAL_TC_TXBUF_SIZE * i + i % 2, ++count);
else
{
LOG_E("uart test error");
goto __exit;
}
}
for (i = 1; i < 10; i++)
{
if (uart_api(RT_SERIAL_TC_RXBUF_SIZE * i + i % 2) == RT_EOK)
LOG_I("data_lens [%4d], it is correct to read and write data. [%d] count testing.", RT_SERIAL_TC_RXBUF_SIZE * i + i % 2, ++count);
else
{
LOG_E("uart test error");
goto __exit;
}
}
srand(rt_tick_get());
while (RT_SERIAL_TC_SEND_ITERATIONS - count)
{
num = (rand() % RT_SERIAL_TC_RXBUF_SIZE) + 1;
if (uart_api(num + RT_SERIAL_TC_RXBUF_SIZE) == RT_EOK)
LOG_I("data_lens [%3d], it is correct to read and write data. [%d] count testing.", num, ++count);
else
{
LOG_E("uart test error");
break;
}
}
__exit:
uassert_true(uart_result == RT_TRUE);
}
static rt_err_t utest_tc_init(void)
{
LOG_I("UART TEST: Please connect Tx and Rx directly for self testing.");
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
uart_result = RT_TRUE;
uart_over_flag = RT_FALSE;
rt_device_t uart_dev = rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
while (rt_device_close(uart_dev) != -RT_ERROR);
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(tc_uart_api);
}
UTEST_TC_EXPORT(testcase, "components.drivers.serial.v2.uart_overflow_rxb_txb", utest_tc_init, utest_tc_cleanup, 30);
#endif /* TC_UART_USING_TC */