Files
rt-thread/components/drivers/serial/utest/v2/qemu/uart_qemu_echo.c

211 lines
6.2 KiB
C

/*
* Copyright (c) 2006-2025 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-11-13 CYFS Add standardized utest documentation block
*/
/**
* Test Case Name: UART QEMU Echo Loopback Test
*
* Test Objectives:
* - Validate dual-UART echo behavior under QEMU by cross-linking uart1 and uart2
* - Verify APIs: rt_device_find, rt_device_open, rt_device_write, rt_device_read,
* rt_device_control(RT_SERIAL_CTRL_GET_UNREAD_BYTES_COUNT), rt_thread_create/startup
*
* Test Scenarios:
* - **Scenario 1 (Cross-Echo Stress / uart_test_nonblocking_tx):**
* 1. Open uart1/uart2 in blocking mode and spawn threads to mirror RX→TX on uart2 while recording statistics.
* 2. Simultaneously read uart1 in a dedicated thread to monitor inbound bytes.
* 3. Send random-length payloads up to 1 KB for 1000 iterations, periodically comparing TX/RX counters across both devices.
* 4. Signal threads to exit once validation completes and ensure device handles close cleanly.
*
* Verification Metrics:
* - u1/u2 TX and RX counters remain equal; send total matches aggregated transmit length.
* - No allocation failures; `echo_test()` returns RT_TRUE when counters align.
*
* Dependencies:
* - Requires `RT_UTEST_SERIAL_V2` running under QEMU with uart1↔uart2 interconnected.
* - UART driver must support unread-bytes query and blocking modes.
* - Threads need 2 KB stacks; dynamic buffers sized at 1 KB per UART.
*
* Expected Results:
* - Test completes without assertions; logs show synchronized counter updates.
* - Utest harness prints `[ PASSED ] [ result ] testcase (components.drivers.serial.v2.uart_qemu_echo)`.
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "utest.h"
#define UART_SEND_TIMES 100
#define UART_TEST_NUMBER 6
#ifdef RT_UTEST_SERIAL_V2
#define echo_test_buffer_size (1024)
static rt_device_t u1serial;
static rt_device_t u2serial;
static rt_uint32_t u2rx_length = 0;
static rt_uint32_t u2tx_length = 0;
static rt_uint32_t u1rx_length = 0;
static rt_uint32_t u1tx_length = 0;
static rt_uint8_t uart_over_flag = RT_FALSE;
static void echo_test_u2_thread_entry(void *parameter)
{
char *uart_name = "uart2";
u2serial = rt_device_find(uart_name);
if (!u2serial)
{
LOG_I("find %s failed!\n", uart_name);
return;
}
rt_uint8_t *rx_buffer = rt_malloc(echo_test_buffer_size);
rt_device_open(u2serial, RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
rt_ssize_t buf_datalen = 0;
while (1)
{
rt_device_control(u2serial, RT_SERIAL_CTRL_GET_UNREAD_BYTES_COUNT, (void *)&buf_datalen);
int32_t recbLen = rt_device_read(u2serial, 0, rx_buffer, buf_datalen > 0 ? buf_datalen : 1);
if (recbLen > 0)
{
u2rx_length += recbLen;
u2tx_length += rt_device_write(u2serial, 0, rx_buffer, recbLen);
if (uart_over_flag)
break;
}
}
rt_free(rx_buffer);
}
static void echo_test_u1_thread_entry(void *parameter)
{
rt_uint8_t *rx_buffer = rt_malloc(echo_test_buffer_size);
rt_ssize_t buf_datalen = 0;
while (1)
{
rt_device_control(u1serial, RT_SERIAL_CTRL_GET_UNREAD_BYTES_COUNT, (void *)&buf_datalen);
int32_t recbLen = rt_device_read(u1serial, 0, rx_buffer, buf_datalen > 0 ? buf_datalen : 1);
if (recbLen > 0)
{
u1rx_length += recbLen;
if (uart_over_flag)
break;
}
}
rt_free(rx_buffer);
}
static rt_bool_t echo_test()
{
rt_bool_t result = RT_TRUE;
char *uart_name = "uart1";
u1serial = rt_device_find(uart_name);
if (!u1serial)
{
LOG_I("find %s failed!\n", uart_name);
return RT_FALSE;
}
rt_uint8_t *tx_buffer = rt_malloc(echo_test_buffer_size);
rt_device_open(u1serial, RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
rt_thread_startup(rt_thread_create("serial2", echo_test_u2_thread_entry, RT_NULL, 2048, RT_THREAD_PRIORITY_MAX - 4, 5));
rt_thread_startup(rt_thread_create("serial1", echo_test_u1_thread_entry, RT_NULL, 2048, RT_THREAD_PRIORITY_MAX - 5, 5));
uint32_t sendTotalCount = 0;
srand(rt_tick_get());
for (uint32_t count = 0; count < 1000; count++)
{
// Indefinite length of data is sent
uint32_t sendCount = rand() % echo_test_buffer_size;
u1tx_length += rt_device_write(u1serial, 0, tx_buffer, sendCount);
sendTotalCount += sendCount;
// Wait for the cross-send to complete
rt_thread_mdelay(UART_SEND_TIMES);
if (count % 50 == 0)
{
LOG_I("echo, uart2: tx: %ld, rx: %ld", u2tx_length, u2rx_length);
LOG_I("echo, uart1: tx: %ld, rx: %ld", u1tx_length, u1rx_length);
if (u2tx_length != u2rx_length || u1tx_length != u1rx_length || u2tx_length != u1tx_length)
{
LOG_I("echo test error!!!");
result = RT_FALSE;
break;
}
if (u2tx_length != sendTotalCount)
{
LOG_I("u2tx_length != sendTotalCount echo test error!!!");
result = RT_FALSE;
break;
}
}
}
uart_over_flag = RT_TRUE;
// Notify the thread to exit
rt_device_write(u1serial, 0, tx_buffer, echo_test_buffer_size);
rt_thread_mdelay(30);
{
rt_device_t uart_dev = rt_device_find("uart2");
while (rt_device_close(uart_dev) != -RT_ERROR);
}
{
rt_device_t uart_dev = rt_device_find("uart1");
while (rt_device_close(uart_dev) != -RT_ERROR);
}
rt_free(tx_buffer);
return result;
}
static void uart_test_nonblocking_tx(void)
{
uassert_true(echo_test());
}
static rt_err_t utest_tc_init(void)
{
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
u1serial = RT_NULL;
u2serial = RT_NULL;
u2rx_length = 0;
u2tx_length = 0;
u1rx_length = 0;
u1tx_length = 0;
uart_over_flag = RT_FALSE;
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(uart_test_nonblocking_tx);
}
UTEST_TC_EXPORT(testcase, "components.drivers.serial.v2.uart_qemu_echo", utest_tc_init, utest_tc_cleanup, 10);
#endif