Files
rt-thread/components/drivers/serial/utest/v2/uart_flush_rx.c

203 lines
5.9 KiB
C

/*
* Copyright (c) 2006-2025 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-11-13 CYFS Add standardized utest documentation block
*/
/**
* Test Case Name: UART RX Buffer Flush Test
*
* Test Objectives:
* - Verify RX flush control clears buffered data and preserves integrity of subsequent transfers
* - Confirm APIs: rt_device_find, rt_device_control(RT_DEVICE_CTRL_CONFIG / RT_SERIAL_CTRL_RX_FLUSH),
* rt_device_open with RT_DEVICE_FLAG_RX_NON_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING,
* rt_device_read, rt_device_write
*
* Test Scenarios:
* - **Scenario 1 (Flush Validation / tc_uart_api):**
* 1. Configure UART buffers and allocate test pattern spanning multiple RX buffer lengths.
* 2. Send payload, consume a single byte, invoke RX flush, and ensure next read returns no residual data.
* 3. Resend partial payloads of varying sizes to confirm data after flush matches original pattern.
*
* Verification Metrics:
* - Initial read after flush returns zero bytes; subsequent reads match transmitted data byte-for-byte.
* - All iterations across deterministic and random lengths complete with RT_EOK.
*
* Dependencies:
* - Requires `RT_UTEST_SERIAL_V2`, loopback wiring, and RX flush support on `RT_SERIAL_TC_DEVICE_NAME`.
* - Optional DMA ping buffer configuration honored when `RT_SERIAL_USING_DMA` enabled.
*
* Expected Results:
* - No assertions triggered; logs show flush operations with payload sizes.
* - Utest harness prints `[ PASSED ] [ result ] testcase (components.drivers.serial.v2.uart_flush_rx)`.
*/
#include <rtthread.h>
#include "utest.h"
#include <rtdevice.h>
#include <stdlib.h>
#ifdef RT_UTEST_SERIAL_V2
static struct rt_serial_device *serial;
static rt_err_t uart_find(void)
{
serial = (struct rt_serial_device *)rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
if (serial == RT_NULL)
{
LOG_E("find %s device failed!\n", RT_SERIAL_TC_DEVICE_NAME);
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t test_item(rt_uint8_t *uart_write_buffer, rt_uint32_t send_size)
{
rt_uint8_t readBuf[16] = {0};
rt_uint32_t readSize = 0;
if (send_size >= sizeof(readBuf))
{
readSize = sizeof(readBuf);
}
else
{
readSize = send_size;
}
rt_ssize_t size = rt_device_write(&serial->parent, 0, uart_write_buffer, send_size);
if (size != send_size)
{
LOG_E("size [%4d], send_size [%4d]", size, send_size);
return -RT_ERROR;
}
rt_thread_mdelay(send_size * 0.0868 + 5);
if (1 != rt_device_read(&serial->parent, 0, uart_write_buffer, 1))
{
LOG_E("read failed.");
return -RT_ERROR;
}
rt_device_control(&serial->parent, RT_SERIAL_CTRL_RX_FLUSH, RT_NULL);
if (0 != rt_device_read(&serial->parent, 0, uart_write_buffer, 1))
{
LOG_E("read failed.");
return -RT_ERROR;
}
/* Resend the data and check for any discrepancies upon reception */
if (readSize > 0)
{
rt_device_write(&serial->parent, 0, uart_write_buffer, readSize);
rt_thread_mdelay(readSize * 0.0868 + 5);
rt_device_read(&serial->parent, 0, readBuf, readSize);
for (rt_uint32_t i = 0; i < readSize; i++)
{
if (readBuf[i] != uart_write_buffer[i])
{
LOG_E("index: %d, Read Different data -> former data: %x, current data: %x.", i, uart_write_buffer[i], readBuf[i]);
return -RT_ERROR;
}
}
}
LOG_I("flush rx send_size [%4d]", send_size);
return RT_EOK;
}
static rt_bool_t uart_api()
{
rt_err_t result = RT_EOK;
result = uart_find();
if (result != RT_EOK)
{
return RT_FALSE;
}
/* Reinitialize */
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
config.baud_rate = BAUD_RATE_115200;
config.rx_bufsz = RT_SERIAL_TC_RXBUF_SIZE;
config.tx_bufsz = RT_SERIAL_TC_TXBUF_SIZE;
#ifdef RT_SERIAL_USING_DMA
config.dma_ping_bufsz = RT_SERIAL_TC_RXBUF_SIZE / 2;
#endif
rt_device_control(&serial->parent, RT_DEVICE_CTRL_CONFIG, &config);
result = rt_device_open(&serial->parent, RT_DEVICE_FLAG_RX_NON_BLOCKING | RT_DEVICE_FLAG_TX_BLOCKING);
if (result != RT_EOK)
{
LOG_E("Open uart device failed.");
return RT_FALSE;
}
rt_uint8_t *uart_write_buffer;
rt_uint32_t i;
uart_write_buffer = (rt_uint8_t *)rt_malloc(RT_SERIAL_TC_RXBUF_SIZE * 5 + 1);
for (rt_uint32_t count = 0; count < (RT_SERIAL_TC_RXBUF_SIZE * 5 + 1); count++)
{
uart_write_buffer[count] = count;
}
srand(rt_tick_get());
for (i = 0; i < RT_SERIAL_TC_SEND_ITERATIONS; i++)
{
if (RT_EOK != test_item(uart_write_buffer, RT_SERIAL_TC_RXBUF_SIZE + RT_SERIAL_TC_RXBUF_SIZE * (rand() % 5)))
{
LOG_E("test_item failed.");
result = -RT_ERROR;
goto __exit;
}
if (RT_EOK != test_item(uart_write_buffer, rand() % (RT_SERIAL_TC_RXBUF_SIZE * 5)))
{
LOG_E("test_item failed.");
result = -RT_ERROR;
goto __exit;
}
}
__exit:
rt_free(uart_write_buffer);
rt_device_close(&serial->parent);
rt_thread_mdelay(5);
return result == RT_EOK ? RT_TRUE : RT_FALSE;
}
static void tc_uart_api(void)
{
uassert_true(uart_api() == RT_TRUE);
}
static rt_err_t utest_tc_init(void)
{
LOG_I("UART TEST: Please connect Tx and Rx directly for self testing.");
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
rt_device_t uart_dev = rt_device_find(RT_SERIAL_TC_DEVICE_NAME);
while (rt_device_close(uart_dev) != -RT_ERROR);
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(tc_uart_api);
}
UTEST_TC_EXPORT(testcase, "components.drivers.serial.v2.uart_flush_rx", utest_tc_init, utest_tc_cleanup, 30);
#endif /* TC_UART_USING_TC */