Files
rt-thread/components/lwp/lwp.c

808 lines
22 KiB
C

/*
* Copyright (c) 2006-2025 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-12 Bernard first version
* 2018-11-02 heyuanjie fix complie error in iar
* 2021-02-03 lizhirui add 64-bit arch support and riscv64 arch support
* 2021-08-26 linzhenxing add lwp_setcwd\lwp_getcwd
* 2023-02-20 wangxiaoyao inv icache before new app startup
* 2023-02-20 wangxiaoyao fix bug on foreground app switch
* 2023-10-16 Shell Support a new backtrace framework
* 2023-11-17 xqyjlj add process group and session support
* 2023-11-30 Shell add lwp_startup()
*/
#define DBG_TAG "lwp"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <rthw.h>
#include <rtthread.h>
#include <dfs_file.h>
#include <unistd.h>
#include <stdio.h> /* rename() */
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/statfs.h> /* statfs() */
#include <lwp_elf.h>
#ifndef RT_USING_DFS
#error "lwp need file system(RT_USING_DFS)"
#endif
#include "lwp_internal.h"
#include "lwp_arch.h"
#include "lwp_arch_comm.h"
#include "lwp_signal.h"
#include "lwp_dbg.h"
#include <terminal/terminal.h>
#ifdef ARCH_MM_MMU
#include <lwp_user_mm.h>
#endif /* end of ARCH_MM_MMU */
#ifndef O_DIRECTORY
#define O_DIRECTORY 0x200000
#endif
#ifndef O_BINARY
#define O_BINARY 0x10000
#endif
#ifdef DFS_USING_WORKDIR
extern char working_directory[];
#endif
/**
* @brief Initializes the LWP (Light-Weight Process) component
*
* @return int Returns RT_EOK if all initializations succeed, otherwise returns
* the error code from the first failed initialization
*
* @note This function performs initialization of various LWP subsystems in sequence:
* 1. Thread ID (TID) initialization
* 2. Process ID (PID) initialization
* 3. Channel component initialization
* 4. Futex (Fast Userspace Mutex) initialization
*/
static int lwp_component_init(void)
{
int rc;
if ((rc = lwp_tid_init()) != RT_EOK)
{
LOG_E("%s: lwp_component_init() failed", __func__);
}
else if ((rc = lwp_pid_init()) != RT_EOK)
{
LOG_E("%s: lwp_pid_init() failed", __func__);
}
else if ((rc = rt_channel_component_init()) != RT_EOK)
{
LOG_E("%s: rt_channel_component_init failed", __func__);
}
else if ((rc = lwp_futex_init()) != RT_EOK)
{
LOG_E("%s: lwp_futex_init() failed", __func__);
}
return rc;
}
INIT_COMPONENT_EXPORT(lwp_component_init);
/**
* @brief Sets the current working directory for the calling LWP or system
*
* @param[in] buf Pointer to the path string to set as working directory
*
* @note This function handles both LWP-specific and system-wide working directories:
* - For LWPs, sets the working_directory in the LWP structure
* - For non-LWP threads, sets the global working_directory variable
*/
void lwp_setcwd(char *buf)
{
struct rt_lwp *lwp = RT_NULL;
if(strlen(buf) >= DFS_PATH_MAX)
{
rt_kprintf("buf too long!\n");
return ;
}
lwp = (struct rt_lwp *)rt_thread_self()->lwp;
if (lwp)
{
rt_strncpy(lwp->working_directory, buf, DFS_PATH_MAX - 1);
}
else
{
rt_strncpy(working_directory, buf, DFS_PATH_MAX - 1);
}
return ;
}
/**
* @brief Get the current working directory for the light-weight process
*
* @return char* Pointer to the current working directory string
*
* @note The function returns either:
* - LWP's working directory (if valid and absolute path)
* - System default working directory (if no LWP or invalid path)
*/
char *lwp_getcwd(void)
{
char *dir_buf = RT_NULL;
struct rt_lwp *lwp = RT_NULL;
rt_thread_t thread = rt_thread_self();
if (thread)
{
lwp = (struct rt_lwp *)thread->lwp;
}
if (lwp)
{
if(lwp->working_directory[0] != '/')
{
dir_buf = &working_directory[0];
}
else
{
dir_buf = &lwp->working_directory[0];
}
}
else
dir_buf = &working_directory[0];
return dir_buf;
}
/**
* @brief Set the kernel stack pointer for the current thread
*
* @param[in] sp Pointer to the new kernel stack location
*
* @note It's typically used during context switching or thread initialization.
*/
void lwp_set_kernel_sp(uint32_t *sp)
{
rt_thread_self()->kernel_sp = (rt_uint32_t *)sp;
}
/**
* @brief Get the kernel stack pointer for the current thread
*
* @return uint32_t* Pointer to the kernel stack
*
* @note Architecture-specific behavior:
* 1. With MMU: Simply returns the current thread's stack pointer
* 2. Without MMU: Checks interrupt context and returns either:
* - Interrupted thread's kernel_sp (if in interrupt)
* - Current thread's kernel_sp (if not in interrupt)
*/
uint32_t *lwp_get_kernel_sp(void)
{
#ifdef ARCH_MM_MMU
return (uint32_t *)rt_thread_self()->sp;
#else
uint32_t* kernel_sp;
extern rt_uint32_t rt_interrupt_from_thread;
extern rt_uint32_t rt_thread_switch_interrupt_flag;
if (rt_thread_switch_interrupt_flag)
{
kernel_sp = (uint32_t *)((rt_thread_t)rt_container_of(rt_interrupt_from_thread, struct rt_thread, sp))->kernel_sp;
}
else
{
kernel_sp = (uint32_t *)rt_thread_self()->kernel_sp;
}
return kernel_sp;
#endif
}
/**
* @brief Clean up resources associated with a light-weight process thread
*
* @param[in] tid Pointer to the thread control block to be cleaned up
*
* @note This function performs cleanup operations for a thread associated with a light-weight process (LWP).
* It handles signal detachment and reference count decrement for the LWP structure.
*
*/
void lwp_cleanup(struct rt_thread *tid)
{
struct rt_lwp *lwp;
if (tid == NULL)
{
LOG_I("%s: invalid parameter tid == NULL", __func__);
return;
}
else
LOG_D("cleanup thread: %s, stack_addr: 0x%x", tid->parent.name, tid->stack_addr);
/**
* Brief: lwp thread cleanup
*
* Note: Critical Section
* - thread control block (RW. It's ensured that no one else can access tcb
* other than itself)
*/
lwp = (struct rt_lwp *)tid->lwp;
lwp_thread_signal_detach(&tid->signal);
/* tty will be release in lwp_ref_dec() if ref is cleared */
lwp_ref_dec(lwp);
return;
}
/**
* @brief Set up standard I/O for a light-weight process
*
* @param[in] lwp Pointer to the light-weight process structure
*
* @note This function initializes the standard input, output, and error streams
* for a light-weight process by opening the console device and associating
* it with file descriptors 0, 1, and 2.
*/
static void lwp_execve_setup_stdio(struct rt_lwp *lwp)
{
struct dfs_fdtable *lwp_fdt;
struct dfs_file *cons_file;
int cons_fd;
lwp_fdt = &lwp->fdt;
/* open console */
cons_fd = open("/dev/console", O_RDWR);
if (cons_fd < 0)
{
LOG_E("%s: Cannot open console tty", __func__);
return ;
}
LOG_D("%s: open console as fd %d", __func__, cons_fd);
/* init 4 fds */
lwp_fdt->fds = rt_calloc(4, sizeof(void *));
if (lwp_fdt->fds)
{
cons_file = fd_get(cons_fd);
lwp_fdt->maxfd = 4;
fdt_fd_associate_file(lwp_fdt, 0, cons_file);
fdt_fd_associate_file(lwp_fdt, 1, cons_file);
fdt_fd_associate_file(lwp_fdt, 2, cons_file);
}
close(cons_fd);
return;
}
/**
* @brief Entry point for light-weight process threads
*
* @param[in] parameter Thread parameter (unused)
*
* @note This function is the main entry point for threads created within a light-weight process.
* It handles thread initialization, debug mode setup, and transitions to user mode.
*/
static void _lwp_thread_entry(void *parameter)
{
rt_thread_t tid;
struct rt_lwp *lwp;
tid = rt_thread_self();
lwp = (struct rt_lwp *)tid->lwp;
tid->cleanup = lwp_cleanup;
tid->user_stack = RT_NULL;
if (lwp->debug)
{
lwp->bak_first_inst = *(uint32_t *)lwp->text_entry;
*(uint32_t *)lwp->text_entry = dbg_get_ins();
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, lwp->text_entry, sizeof(uint32_t));
icache_invalid_all();
}
/**
* without ASID support, it will be a special case when trying to run application
* and exit multiple times and a same page frame allocated to it bound to
* different text segment. Then we are in a situation where icache contains
* out-of-dated data and must be handle by the running core itself.
* with ASID support, this should be a rare case that ASID & page frame both
* identical to previous running application.
*
* For a new application loaded into memory, icache are seen as empty. And there
* should be nothing in the icache entry to match. So this icache invalidation
* operation should have barely influence.
*/
rt_hw_icache_invalidate_all();
#ifdef ARCH_MM_MMU
arch_start_umode(lwp->args, lwp->text_entry, (void *)USER_STACK_VEND, (char *)tid->stack_addr + tid->stack_size);
#else
arch_start_umode(lwp->args, lwp->text_entry, lwp->data_entry, (void *)((uint32_t)lwp->data_entry + lwp->data_size));
#endif /* ARCH_MM_MMU */
}
/**
* @brief Get the current light-weight process
*
* @return Pointer to the current light-weight process structure
* RT_NULL if no process is associated with current thread
*
* @note This function retrieves the light-weight process associated with the
* currently running thread.
*/
struct rt_lwp *lwp_self(void)
{
rt_thread_t tid;
tid = rt_thread_self();
if (tid)
{
return (struct rt_lwp *)tid->lwp;
}
return RT_NULL;
}
/**
* @brief Register a child process with its parent
*
* @param[in] parent Pointer to the parent process structure
* @param[in] child Pointer to the child process structure to register
*
* @return RT_EOK on success
*
* @note This function adds a child process to its parent's children list and
* increases reference counts for both processes.
*/
rt_err_t lwp_children_register(struct rt_lwp *parent, struct rt_lwp *child)
{
/* lwp add to children link */
LWP_LOCK(parent);
child->sibling = parent->first_child;
parent->first_child = child;
child->parent = parent;
LWP_UNLOCK(parent);
LOG_D("%s(parent=%p, child=%p)", __func__, parent, child);
/* parent holds reference to child */
lwp_ref_inc(parent);
/* child holds reference to parent */
lwp_ref_inc(child);
return 0;
}
/**
* @brief Unregister a child process from its parent
*
* @param[in] parent Pointer to the parent process structure
* @param[in] child Pointer to the child process structure to unregister
*
* @return RT_EOK on success
*
* @note This function removes a child process from its parent's children list and
* decreases reference counts for both processes.
*/
rt_err_t lwp_children_unregister(struct rt_lwp *parent, struct rt_lwp *child)
{
struct rt_lwp **lwp_node;
LWP_LOCK(parent);
/* detach from children link */
lwp_node = &parent->first_child;
while (*lwp_node != child)
{
RT_ASSERT(*lwp_node != RT_NULL);
lwp_node = &(*lwp_node)->sibling;
}
(*lwp_node) = child->sibling;
child->parent = RT_NULL;
LWP_UNLOCK(parent);
LOG_D("%s(parent=%p, child=%p)", __func__, parent, child);
lwp_ref_dec(child);
lwp_ref_dec(parent);
return 0;
}
/**
* @brief Copy process arguments and environment variables from kernel space to user space.
*
* @param[in] lwp Pointer to the light-weight process structure
* @param[in] argc Argument count
* @param[in] argv Argument vector
* @param[in] envp Environment variables
*
* @return Pointer to the process auxiliary structure on success
* RT_NULL if memory allocation fails or arguments initialization fails
*
* @note This function performs the following operations:
* 1. Initializes argument information structure
* 2. Copies command line arguments to user space
* 3. Copies environment variables to user space
* 4. Returns the auxiliary structure containing copied data
*/
struct process_aux *argscopy(struct rt_lwp *lwp, int argc, char **argv, char **envp)
{
struct lwp_args_info ai;
rt_err_t error;
struct process_aux *ua;
const char **tail_argv[2] = {0};
error = lwp_args_init(&ai);
if (error)
{
return RT_NULL;
}
if (argc > 0)
{
tail_argv[0] = (void *)argv[argc - 1];
argv[argc - 1] = NULL;
lwp_args_put(&ai, (void *)argv, LWP_ARGS_TYPE_KARG);
lwp_args_put(&ai, (void *)tail_argv, LWP_ARGS_TYPE_KARG);
}
lwp_args_put(&ai, (void *)envp, LWP_ARGS_TYPE_KENVP);
ua = lwp_argscopy(lwp, &ai);
lwp_args_detach(&ai);
return ua;
}
/**
* @brief Creates and starts a new LWP by loading and executing the specified executable file.
*
* @param[in] filename Path to the executable file
* @param[in] debug Debug flag (non-zero to enable debugging)
* @param[in] argc Argument count
* @param[in] argv Argument vector
* @param[in] envp Environment variables
*
* @return Process ID (PID) of the new LWP on success
* -EINVAL if filename is NULL
* -EACCES if file is not executable
* -ENOMEM if memory allocation fails
* -RT_ERROR on other failures
*
* @note This function performs the following operations:
* 1. Validates input parameters
* 2. Creates new LWP structure
* 3. Initializes user space (for MMU systems)
* 4. Copies arguments and environment
* 5. Loads the executable
* 6. Sets up standard I/O
* 7. Creates and starts the main thread
*/
pid_t lwp_execve(char *filename, int debug, int argc, char **argv, char **envp)
{
int result;
struct rt_lwp *lwp;
char *thread_name;
struct process_aux *aux;
int tid = 0;
if (filename == RT_NULL)
{
return -EINVAL;
}
if (access(filename, X_OK) != 0)
{
return -EACCES;
}
lwp = lwp_create(LWP_CREATE_FLAG_ALLOC_PID | LWP_CREATE_FLAG_NOTRACE_EXEC);
if (lwp == RT_NULL)
{
LOG_E("lwp struct out of memory!\n");
return -ENOMEM;
}
LOG_D("lwp malloc : %p, size: %d!", lwp, sizeof(struct rt_lwp));
if ((tid = lwp_tid_get()) == 0)
{
lwp_ref_dec(lwp);
return -ENOMEM;
}
#ifdef ARCH_MM_MMU
if (lwp_user_space_init(lwp, 0) != 0)
{
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -ENOMEM;
}
#endif
if ((aux = argscopy(lwp, argc, argv, envp)) == RT_NULL)
{
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -ENOMEM;
}
result = lwp_load(filename, lwp, RT_NULL, 0, aux);
if (result == RT_EOK)
{
rt_thread_t thread = RT_NULL;
rt_uint32_t priority = 25, tick = 200;
lwp_execve_setup_stdio(lwp);
/* obtain the base name */
thread_name = strrchr(filename, '/');
thread_name = thread_name ? thread_name + 1 : filename;
#ifndef ARCH_MM_MMU
struct lwp_app_head *app_head = lwp->text_entry;
if (app_head->priority)
{
priority = app_head->priority;
}
if (app_head->tick)
{
tick = app_head->tick;
}
#endif /* not defined ARCH_MM_MMU */
thread = rt_thread_create(thread_name, _lwp_thread_entry, RT_NULL,
LWP_TASK_STACK_SIZE, priority, tick);
if (thread != RT_NULL)
{
struct rt_lwp *self_lwp;
rt_session_t session;
rt_processgroup_t group;
thread->tid = tid;
lwp_tid_set_thread(tid, thread);
LOG_D("lwp kernel => (0x%08x, 0x%08x)\n", (rt_size_t)thread->stack_addr,
(rt_size_t)thread->stack_addr + thread->stack_size);
self_lwp = lwp_self();
/* when create init, self_lwp == null */
if (self_lwp == RT_NULL && lwp_to_pid(lwp) != 1)
{
self_lwp = lwp_from_pid_and_lock(1);
}
if (self_lwp)
{
/* lwp add to children link */
lwp_children_register(self_lwp, lwp);
}
session = RT_NULL;
group = RT_NULL;
group = lwp_pgrp_create(lwp);
if (group)
{
lwp_pgrp_insert(group, lwp);
if (self_lwp == RT_NULL)
{
session = lwp_session_create(lwp);
lwp_session_insert(session, group);
}
else
{
session = lwp_session_find(lwp_sid_get_byprocess(self_lwp));
lwp_session_insert(session, group);
}
}
thread->lwp = lwp;
#ifndef ARCH_MM_MMU
struct lwp_app_head *app_head = (struct lwp_app_head*)lwp->text_entry;
thread->user_stack = app_head->stack_offset ?
(void *)(app_head->stack_offset -
app_head->data_offset +
(uint32_t)lwp->data_entry) : RT_NULL;
thread->user_stack_size = app_head->stack_size;
/* init data area */
rt_memset(lwp->data_entry, 0, lwp->data_size);
/* init user stack */
rt_memset(thread->user_stack, '#', thread->user_stack_size);
#endif /* not defined ARCH_MM_MMU */
rt_list_insert_after(&lwp->t_grp, &thread->sibling);
lwp->did_exec = RT_TRUE;
if (debug && rt_dbg_ops)
{
lwp->debug = debug;
rt_thread_control(thread, RT_THREAD_CTRL_BIND_CPU, (void*)0);
}
rt_thread_startup(thread);
return lwp_to_pid(lwp);
}
}
lwp_tid_put(tid);
lwp_ref_dec(lwp);
return -RT_ERROR;
}
#ifdef RT_USING_MUSLLIBC
extern char **__environ;
#else
char **__environ = 0;
#endif
/**
* @brief Execute a new program in the current process context
*
* @param[in] filename Path to the executable file
* @param[in] debug Debug flag (non-zero enables debug mode)
* @param[in] argc Number of command line arguments
* @param[in] argv Array of command line argument strings
*
* @return Process ID (PID) of the new process on success
* Negative error code on failure
*
* @note This is a wrapper function for lwp_execve.
*
* @see lwp_execve()
*/
pid_t exec(char *filename, int debug, int argc, char **argv)
{
setenv("OS", "RT-Thread", 1);
return lwp_execve(filename, debug, argc, argv, __environ);
}
#ifdef ARCH_MM_MMU
/**
* @brief Saves thread-specific user settings (TID register)
*
* @param[in,out] thread Pointer to the thread control block
*
* @note This function stores the architecture-specific TID register
* into the specified thread's control block.This is typically used
* when switching between threads to preserve thread-specific settings
*/
void lwp_user_setting_save(rt_thread_t thread)
{
if (thread)
{
thread->thread_idr = arch_get_tidr();
}
}
/**
* @brief Restores thread-specific user settings (TID register and debug state)
*
* @param[in] thread Pointer to the thread control block
*
* @note This function restores architecture-specific Thread ID Register (TIDR) value
* and debug-related settings for the specified thread.
*/
void lwp_user_setting_restore(rt_thread_t thread)
{
if (!thread)
{
return;
}
#if !defined(ARCH_RISCV64)
/* tidr will be set in RESTORE_ALL in risc-v */
arch_set_tidr(thread->thread_idr);
#endif
if (rt_dbg_ops)
{
struct rt_lwp *l = (struct rt_lwp *)thread->lwp;
if (l != 0)
{
rt_hw_set_process_id((size_t)l->pid);
}
else
{
rt_hw_set_process_id(0);
}
if (l && l->debug)
{
uint32_t step_type = 0;
step_type = dbg_step_type();
if ((step_type == 2) || (thread->step_exec && (step_type == 1)))
{
dbg_activate_step();
}
else
{
dbg_deactivate_step();
}
}
}
}
#endif /* ARCH_MM_MMU */
/**
* @brief Saves user thread context pointer
*
* @param[in] ctx Pointer to user thread context structure to be saved
*
* @note This function stores a pointer to user thread context in the current thread's
* control block for later restoration. The context pointer is typically used
* during thread context switching.
*/
void lwp_uthread_ctx_save(void *ctx)
{
rt_thread_t thread;
thread = rt_thread_self();
thread->user_ctx.ctx = ctx;
}
/**
* @brief Restores the user thread context by clearing the context pointer
*
* @note Typically called during thread context switching to clean up any
* previously saved user context.
*/
void lwp_uthread_ctx_restore(void)
{
rt_thread_t thread;
thread = rt_thread_self();
thread->user_ctx.ctx = RT_NULL;
}
/**
* @brief Prints a backtrace of the current thread's call stack
*
* @param[in] uthread The thread to backtrace (must be associated with an LWP)
* @param[in] frame Pointer to the initial stack frame
*
* @return RT_EOK on success, -RT_ERROR on failure
*
* @note This function prints a backtrace of the call stack for the specified user thread,
* providing addresses that can be used with addr2line to get file and line information.
*/
rt_err_t lwp_backtrace_frame(rt_thread_t uthread, struct rt_hw_backtrace_frame *frame)
{
rt_err_t rc = -RT_ERROR;
long nesting = 0;
char **argv;
rt_lwp_t lwp;
if (uthread && uthread->lwp && rt_scheduler_is_available())
{
lwp = uthread->lwp;
argv = lwp_get_command_line_args(lwp);
if (argv)
{
rt_kprintf("please use: addr2line -e %s -a -f\n", argv[0]);
lwp_free_command_line_args(argv);
}
else
{
rt_kprintf("please use: addr2line -e %s -a -f\n", lwp->cmd);
}
while (nesting < RT_BACKTRACE_LEVEL_MAX_NR)
{
rt_kprintf(" 0x%lx", frame->pc);
if (rt_hw_backtrace_frame_unwind(uthread, frame))
{
break;
}
nesting++;
}
rt_kprintf("\n");
rc = RT_EOK;
}
return rc;
}