mirror of
https://github.com/littlefs-project/littlefs.git
synced 2025-12-06 07:32:43 +00:00
So by default, instead of just using "." for tiles, we use interesting parts of the tile's name: - For treemap.py, we use the first character of the last by-field (so "lfs.c,lfsr_file_write,1234" -> "1"). - For codemap.py, we use the first character of the non-subsystem part of the function name (so "lfsr_file_write" -> "w"). This nice thing about this, is the resulting treemap is somewhat understandable even without colors: $ ./scripts/codemap.py lfs.o lfs_util.o lfs.ci lfs_util.ci -W60 -H8 code 35528 stack 2440 ctx 636 ffffffoooffaaaaaaaaaaaacccccccccttttccccrrrrpgffmmrraifmmcss ffffffwwwttaaaaaaaaaaaacccccccccttttccccrprrpcscmmoommrrcepp ffffffwwwttaaaaaaaaalllcccccccccttttccccrpppccscmmsrmmrrrrss ccccssrrfclaaaaanneeasscccccccccgpppccccrpppsgsummstmmrrlfgf ccccssrrfccaaaaanneeaaaccccccsaagpppcccccrrrfrrcccrrfiiilucs ccccssrrtfcfffffaapplcccccccclssgnnllllcrrffrrrccccifssscmcm ccccssrrtrdfffffaapppapcccfffllsgnnllllcrrrffrrcccorfsssicnu Ok, so maybe the word "somewhat" is doing a lot of heavy lifting...
1339 lines
43 KiB
Python
Executable File
1339 lines
43 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Inspired by d3 and brendangregg's flamegraph svg:
|
|
# - https://d3js.org
|
|
# - https://github.com/brendangregg/FlameGraph
|
|
#
|
|
|
|
# prevent local imports
|
|
if __name__ == "__main__":
|
|
__import__('sys').path.pop(0)
|
|
|
|
import bisect
|
|
import collections as co
|
|
import csv
|
|
import fnmatch
|
|
import itertools as it
|
|
import json
|
|
import math as mt
|
|
import re
|
|
import shutil
|
|
import subprocess as sp
|
|
|
|
|
|
# we don't actually need that many chars/colors thanks to the
|
|
# 4-colorability of all 2d maps
|
|
COLORS = ['34', '31', '32', '35', '33', '36']
|
|
|
|
CHARS_DOTS = " .':"
|
|
CHARS_BRAILLE = (
|
|
'⠀⢀⡀⣀⠠⢠⡠⣠⠄⢄⡄⣄⠤⢤⡤⣤' '⠐⢐⡐⣐⠰⢰⡰⣰⠔⢔⡔⣔⠴⢴⡴⣴'
|
|
'⠂⢂⡂⣂⠢⢢⡢⣢⠆⢆⡆⣆⠦⢦⡦⣦' '⠒⢒⡒⣒⠲⢲⡲⣲⠖⢖⡖⣖⠶⢶⡶⣶'
|
|
'⠈⢈⡈⣈⠨⢨⡨⣨⠌⢌⡌⣌⠬⢬⡬⣬' '⠘⢘⡘⣘⠸⢸⡸⣸⠜⢜⡜⣜⠼⢼⡼⣼'
|
|
'⠊⢊⡊⣊⠪⢪⡪⣪⠎⢎⡎⣎⠮⢮⡮⣮' '⠚⢚⡚⣚⠺⢺⡺⣺⠞⢞⡞⣞⠾⢾⡾⣾'
|
|
'⠁⢁⡁⣁⠡⢡⡡⣡⠅⢅⡅⣅⠥⢥⡥⣥' '⠑⢑⡑⣑⠱⢱⡱⣱⠕⢕⡕⣕⠵⢵⡵⣵'
|
|
'⠃⢃⡃⣃⠣⢣⡣⣣⠇⢇⡇⣇⠧⢧⡧⣧' '⠓⢓⡓⣓⠳⢳⡳⣳⠗⢗⡗⣗⠷⢷⡷⣷'
|
|
'⠉⢉⡉⣉⠩⢩⡩⣩⠍⢍⡍⣍⠭⢭⡭⣭' '⠙⢙⡙⣙⠹⢹⡹⣹⠝⢝⡝⣝⠽⢽⡽⣽'
|
|
'⠋⢋⡋⣋⠫⢫⡫⣫⠏⢏⡏⣏⠯⢯⡯⣯' '⠛⢛⡛⣛⠻⢻⡻⣻⠟⢟⡟⣟⠿⢿⡿⣿')
|
|
|
|
CODE_PATH = ['./scripts/code.py']
|
|
STACK_PATH = ['./scripts/stack.py']
|
|
CTX_PATH = ['./scripts/ctx.py']
|
|
|
|
|
|
def openio(path, mode='r', buffering=-1):
|
|
# allow '-' for stdin/stdout
|
|
if path == '-':
|
|
if 'r' in mode:
|
|
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
|
|
else:
|
|
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
|
|
else:
|
|
return open(path, mode, buffering)
|
|
|
|
def iself(path):
|
|
# check for an elf file's magic string (\x7fELF)
|
|
with open(path, 'rb') as f:
|
|
return f.read(4) == b'\x7fELF'
|
|
|
|
# parse different data representations
|
|
def dat(x, *args):
|
|
try:
|
|
# allow the first part of an a/b fraction
|
|
if '/' in x:
|
|
x, _ = x.split('/', 1)
|
|
|
|
# first try as int
|
|
try:
|
|
return int(x, 0)
|
|
except ValueError:
|
|
pass
|
|
|
|
# then try as float
|
|
try:
|
|
return float(x)
|
|
except ValueError:
|
|
pass
|
|
|
|
# else give up
|
|
raise ValueError("invalid dat %r" % x)
|
|
|
|
# default on error?
|
|
except ValueError as e:
|
|
if args:
|
|
return args[0]
|
|
else:
|
|
raise
|
|
|
|
# a representation of optionally key-mapped attrs
|
|
class Attr:
|
|
def __init__(self, attrs, *,
|
|
defaults=None):
|
|
# include defaults?
|
|
if (defaults is not None
|
|
and not any(
|
|
not isinstance(attr, tuple)
|
|
or attr[0] in {None, (), ('*',)}
|
|
for attr in (attrs or []))):
|
|
attrs = defaults + (attrs or [])
|
|
|
|
# normalize
|
|
self.attrs = []
|
|
self.keyed = co.OrderedDict()
|
|
for attr in (attrs or []):
|
|
if not isinstance(attr, tuple):
|
|
attr = ((), attr)
|
|
elif attr[0] in {None, (), ('*',)}:
|
|
attr = ((), attr[1])
|
|
|
|
self.attrs.append(attr)
|
|
if attr[0] not in self.keyed:
|
|
self.keyed[attr[0]] = []
|
|
self.keyed[attr[0]].append(attr[1])
|
|
|
|
def __repr__(self):
|
|
return 'Attr(%r)' % [
|
|
(','.join(attr[0]), attr[1])
|
|
for attr in self.attrs]
|
|
|
|
def __iter__(self):
|
|
return it.cycle(self.keyed[()])
|
|
|
|
def __bool__(self):
|
|
return bool(self.attrs)
|
|
|
|
def __getitem__(self, key):
|
|
if isinstance(key, tuple):
|
|
if len(key) > 0 and not isinstance(key[0], str):
|
|
i, key = key
|
|
else:
|
|
i, key = 0, key
|
|
else:
|
|
i, key = key, ()
|
|
|
|
# try to lookup by key
|
|
best = None
|
|
for ks, vs in self.keyed.items():
|
|
prefix = []
|
|
for j, k in enumerate(ks):
|
|
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
|
|
prefix.append(k)
|
|
else:
|
|
prefix = None
|
|
break
|
|
|
|
if prefix is not None and (
|
|
best is None or len(prefix) >= len(best[0])):
|
|
best = (prefix, vs)
|
|
|
|
if best is not None:
|
|
# cycle based on index
|
|
return best[1][i % len(best[1])]
|
|
|
|
return None
|
|
|
|
def __contains__(self, key):
|
|
return self.__getitem__(key) is not None
|
|
|
|
# a key function for sorting by key order
|
|
def key(self, key):
|
|
# allow key to be a tuple to make sorting dicts easier
|
|
if (isinstance(key, tuple)
|
|
and len(key) >= 1
|
|
and isinstance(key[0], tuple)):
|
|
key = key[0]
|
|
|
|
best = None
|
|
for i, ks in enumerate(self.keyed.keys()):
|
|
prefix = []
|
|
for j, k in enumerate(ks):
|
|
if j < len(key) and (not k or key[j] == k):
|
|
prefix.append(k)
|
|
else:
|
|
prefix = None
|
|
break
|
|
|
|
if prefix is not None and (
|
|
best is None or len(prefix) >= len(best[0])):
|
|
best = (prefix, i)
|
|
|
|
if best is not None:
|
|
return best[1]
|
|
|
|
return len(self.keyed)
|
|
|
|
# parse %-escaped strings
|
|
def punescape(s, attrs=None):
|
|
if attrs is None:
|
|
attrs = {}
|
|
if isinstance(attrs, dict):
|
|
attrs_ = attrs
|
|
attrs = lambda k: attrs_[k]
|
|
|
|
pattern = re.compile(
|
|
'%[%n]'
|
|
'|' '%x..'
|
|
'|' '%u....'
|
|
'|' '%U........'
|
|
'|' '%\((?P<field>[^)]*)\)'
|
|
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
|
|
def unescape(m):
|
|
if m.group()[1] == '%': return '%'
|
|
elif m.group()[1] == 'n': return '\n'
|
|
elif m.group()[1] == 'x': return chr(int(m.group()[2:], 16))
|
|
elif m.group()[1] == 'u': return chr(int(m.group()[2:], 16))
|
|
elif m.group()[1] == 'U': return chr(int(m.group()[2:], 16))
|
|
elif m.group()[1] == '(':
|
|
try:
|
|
v = attrs(m.group('field'))
|
|
except KeyError:
|
|
return m.group()
|
|
f = m.group('format')
|
|
if f[-1] in 'dboxX':
|
|
if isinstance(v, str):
|
|
v = dat(v, 0)
|
|
v = int(v)
|
|
elif f[-1] in 'fFeEgG':
|
|
if isinstance(v, str):
|
|
v = dat(v, 0)
|
|
v = float(v)
|
|
else:
|
|
f = ('<' if '-' in f else '>') + f.replace('-', '')
|
|
v = str(v)
|
|
# note we need Python's new format syntax for binary
|
|
return ('{:%s}' % f).format(v)
|
|
else: assert False
|
|
return re.sub(pattern, unescape, s)
|
|
|
|
# split %-escaped strings into chars
|
|
def psplit(s):
|
|
pattern = re.compile(
|
|
'%[%n]'
|
|
'|' '%x..'
|
|
'|' '%u....'
|
|
'|' '%U........'
|
|
'|' '%\((?P<field>[^)]*)\)'
|
|
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
|
|
return [m.group() for m in re.finditer(pattern.pattern + '|.', s)]
|
|
|
|
|
|
# a little ascii renderer
|
|
class Canvas:
|
|
def __init__(self, width, height, *,
|
|
color=False,
|
|
dots=False,
|
|
braille=False):
|
|
# scale if we're printing with dots or braille
|
|
if braille:
|
|
xscale, yscale = 2, 4
|
|
elif dots:
|
|
xscale, yscale = 1, 2
|
|
else:
|
|
xscale, yscale = 1, 1
|
|
|
|
self.width = xscale*width
|
|
self.height = yscale*height
|
|
self.xscale = xscale
|
|
self.yscale = yscale
|
|
self.color_ = color
|
|
self.dots = dots
|
|
self.braille = braille
|
|
|
|
# create initial canvas
|
|
self.grid = [False] * (self.width*self.height)
|
|
self.colors = [''] * (self.width*self.height)
|
|
|
|
def __getitem__(self, xy):
|
|
x, y = xy
|
|
# ignore out of bounds
|
|
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
|
return
|
|
|
|
return self.grid[x + y*self.width]
|
|
|
|
def __setitem__(self, xy, char):
|
|
x, y = xy
|
|
# ignore out of bounds
|
|
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
|
return
|
|
|
|
self.grid[x + y*self.width] = char
|
|
|
|
def color(self, x, y, color=None):
|
|
# ignore out of bounds
|
|
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
|
return
|
|
|
|
if color is not None:
|
|
self.colors[x + y*self.width] = color
|
|
else:
|
|
return self.colors[x + y*self.width]
|
|
|
|
def point(self, x, y, *,
|
|
char=True,
|
|
color=''):
|
|
# make sure non-bool chars map attrs to all points under char
|
|
if not isinstance(char, bool):
|
|
xscale, yscale = self.xscale, self.yscale
|
|
else:
|
|
xscale, yscale = 1, 1
|
|
|
|
for i in range(xscale*yscale):
|
|
x_ = x-(x%xscale) + (xscale-1-(i%xscale))
|
|
y_ = y-(y%yscale) + (i//xscale)
|
|
|
|
self[x_, y_] = char
|
|
self.color(x_, y_, color)
|
|
|
|
def line(self, x1, y1, x2, y2, *,
|
|
char=True,
|
|
color=''):
|
|
# incremental error line algorithm
|
|
ex = abs(x2 - x1)
|
|
ey = -abs(y2 - y1)
|
|
dx = +1 if x1 < x2 else -1
|
|
dy = +1 if y1 < y2 else -1
|
|
e = ex + ey
|
|
|
|
while True:
|
|
self.point(x1, y1, color=color, char=char)
|
|
e2 = 2*e
|
|
|
|
if x1 == x2 and y1 == y2:
|
|
break
|
|
|
|
if e2 > ey:
|
|
e += ey
|
|
x1 += dx
|
|
|
|
if x1 == x2 and y1 == y2:
|
|
break
|
|
|
|
if e2 < ex:
|
|
e += ex
|
|
y1 += dy
|
|
|
|
self.point(x2, y2, color=color, char=char)
|
|
|
|
def rect(self, x, y, w, h, *,
|
|
char=True,
|
|
color=''):
|
|
for j in range(h):
|
|
for i in range(w):
|
|
self.point(x+i, y+j, char=char, color=color)
|
|
|
|
def label(self, x, y, label, width=None, height=None, *,
|
|
color=''):
|
|
x_ = x
|
|
y_ = y
|
|
for char in label:
|
|
if char == '\n':
|
|
x_ = x
|
|
y_ -= self.yscale
|
|
else:
|
|
if ((width is None or x_ < x+width)
|
|
and (height is None or y_ > y-height)):
|
|
self.point(x_, y_, char=char, color=color)
|
|
x_ += self.xscale
|
|
|
|
def draw(self, row):
|
|
# scale if needed
|
|
xscale, yscale = self.xscale, self.yscale
|
|
|
|
y = self.height//yscale-1 - row
|
|
row_ = []
|
|
for x in range(self.width//xscale):
|
|
color = ''
|
|
char = False
|
|
byte = 0
|
|
for i in range(xscale*yscale):
|
|
x_ = x*xscale + (xscale-1-(i%xscale))
|
|
y_ = y*yscale + (i//xscale)
|
|
|
|
# calculate char
|
|
char_ = self[x_, y_]
|
|
if char_:
|
|
byte |= 1 << i
|
|
if char_ is not True and char_ is not False:
|
|
char = char_
|
|
|
|
# keep track of best color
|
|
color_ = self.color(x_, y_)
|
|
if color_:
|
|
color = color_
|
|
|
|
# figure out winning char
|
|
if byte:
|
|
if char is not True and char is not False:
|
|
pass
|
|
elif self.braille:
|
|
char = CHARS_BRAILLE[byte]
|
|
else:
|
|
char = CHARS_DOTS[byte]
|
|
else:
|
|
char = ' '
|
|
|
|
# color?
|
|
if byte and self.color_ and color:
|
|
char = '\x1b[%sm%s\x1b[m' % (color, char)
|
|
|
|
row_.append(char)
|
|
|
|
return ''.join(row_)
|
|
|
|
|
|
# a type to represent tiles
|
|
class Tile:
|
|
def __init__(self, key, children,
|
|
x=None, y=None, width=None, height=None, *,
|
|
depth=None,
|
|
attrs=None,
|
|
label=None,
|
|
color=None):
|
|
self.key = key
|
|
if isinstance(children, list):
|
|
self.children = children
|
|
self.value = sum(c.value for c in children)
|
|
else:
|
|
self.children = []
|
|
self.value = children
|
|
|
|
self.x = x
|
|
self.y = y
|
|
self.width = width
|
|
self.height = height
|
|
self.depth = depth
|
|
self.attrs = attrs
|
|
self.label = label
|
|
self.color = color
|
|
|
|
def __repr__(self):
|
|
return 'Tile(%r, %r, %r, %r, %r, %r)' % (
|
|
','.join(self.key), self.value,
|
|
self.x, self.y, self.width, self.height)
|
|
|
|
# recursively build heirarchy
|
|
@staticmethod
|
|
def merge(tiles, prefix=()):
|
|
# organize by 'by' field
|
|
tiles_ = co.OrderedDict()
|
|
for t in tiles:
|
|
if len(prefix)+1 >= len(t.key):
|
|
tiles_[t.key] = t
|
|
else:
|
|
key = prefix + (t.key[len(prefix)],)
|
|
if key not in tiles_:
|
|
tiles_[key] = []
|
|
tiles_[key].append(t)
|
|
|
|
tiles__ = []
|
|
for key, t in tiles_.items():
|
|
if isinstance(t, Tile):
|
|
tiles__.append(t)
|
|
else:
|
|
tiles__.append(Tile.merge(t, key))
|
|
tiles_ = tiles__
|
|
|
|
return Tile(prefix, tiles_, depth=len(prefix))
|
|
|
|
def __lt__(self, other):
|
|
return self.value < other.value
|
|
|
|
# recursive traversals
|
|
def tiles(self):
|
|
yield self
|
|
for child in self.children:
|
|
yield from child.tiles()
|
|
|
|
def leaves(self):
|
|
for t in self.tiles():
|
|
if not t.children:
|
|
yield t
|
|
|
|
# sort recursively
|
|
def sort(self):
|
|
self.children.sort(reverse=True)
|
|
for t in self.children:
|
|
t.sort()
|
|
|
|
# recursive align to int boundaries
|
|
def align(self):
|
|
# this extra +0.1 and using points instead of width/height is
|
|
# to help minimize rounding errors
|
|
x0 = int(self.x+0.1)
|
|
y0 = int(self.y+0.1)
|
|
x1 = int(self.x+self.width+0.1)
|
|
y1 = int(self.y+self.height+0.1)
|
|
self.x = x0
|
|
self.y = y0
|
|
self.width = x1 - x0
|
|
self.height = y1 - y0
|
|
|
|
# recurse
|
|
for t in self.children:
|
|
t.align()
|
|
|
|
# return some interesting info about these tiles
|
|
def stat(self):
|
|
leaves = list(self.leaves())
|
|
mean = self.value / max(len(leaves), 1)
|
|
stddev = mt.sqrt(sum((t.value - mean)**2 for t in leaves)
|
|
/ max(len(leaves), 1))
|
|
min_ = min((t.value for t in leaves), default=0)
|
|
max_ = max((t.value for t in leaves), default=0)
|
|
return {
|
|
'total': self.value,
|
|
'mean': mean,
|
|
'stddev': stddev,
|
|
'min': min_,
|
|
'max': max_,
|
|
}
|
|
|
|
|
|
# bounded division, limits result to dividend, useful for avoiding
|
|
# divide-by-zero issues
|
|
def bdiv(a, b):
|
|
return a / max(b, 1)
|
|
|
|
# our partitioning schemes
|
|
|
|
def partition_binary(children, total, x, y, width, height):
|
|
sums = [0]
|
|
for t in children:
|
|
sums.append(sums[-1] + t.value)
|
|
|
|
# recursively partition into a roughly weight-balanced binary tree
|
|
def partition_(i, j, value, x, y, width, height):
|
|
# no child? guess we're done
|
|
if i == j:
|
|
return
|
|
# single child? assign the partition
|
|
elif i == j-1:
|
|
children[i].x = x
|
|
children[i].y = y
|
|
children[i].width = width
|
|
children[i].height = height
|
|
return
|
|
|
|
# binary search to find best split index
|
|
target = sums[i] + (value / 2)
|
|
k = bisect.bisect(sums, target, i+1, j-1)
|
|
|
|
# nudge split index if it results in less error
|
|
if k > i+1 and (sums[k] - target) > (target - sums[k-1]):
|
|
k -= 1
|
|
|
|
l = sums[k] - sums[i]
|
|
r = value - l
|
|
|
|
# split horizontally?
|
|
if width > height:
|
|
dx = bdiv(sums[k] - sums[i], value) * width
|
|
partition_(i, k, l, x, y, dx, height)
|
|
partition_(k, j, r, x+dx, y, width-dx, height)
|
|
|
|
# split vertically?
|
|
else:
|
|
dy = bdiv(sums[k] - sums[i], value) * height
|
|
partition_(i, k, l, x, y, width, dy)
|
|
partition_(k, j, r, x, y+dy, width, height-dy)
|
|
|
|
partition_(0, len(children), total, x, y, width, height)
|
|
|
|
def partition_slice(children, total, x, y, width, height):
|
|
# give each child a slice
|
|
x_ = x
|
|
for t in children:
|
|
t.x = x_
|
|
t.y = y
|
|
t.width = bdiv(t.value, total) * width
|
|
t.height = height
|
|
|
|
x_ += t.width
|
|
|
|
def partition_dice(children, total, x, y, width, height):
|
|
# give each child a slice
|
|
y_ = y
|
|
for t in children:
|
|
t.x = x
|
|
t.y = y_
|
|
t.width = width
|
|
t.height = bdiv(t.value, total) * height
|
|
|
|
y_ += t.height
|
|
|
|
def partition_squarify(children, total, x, y, width, height, *,
|
|
aspect_ratio=(1,1)):
|
|
# this algorithm is described here:
|
|
# https://www.win.tue.nl/~vanwijk/stm.pdf
|
|
i = 0
|
|
x_ = x
|
|
y_ = y
|
|
total_ = total
|
|
width_ = width
|
|
height_ = height
|
|
# note we don't really care about width vs height until
|
|
# actually slicing
|
|
ratio = max(bdiv(aspect_ratio[0], aspect_ratio[1]),
|
|
bdiv(aspect_ratio[1], aspect_ratio[0]))
|
|
|
|
while i < len(children):
|
|
# calculate initial aspect ratio
|
|
sum_ = children[i].value
|
|
min_ = children[i].value
|
|
max_ = children[i].value
|
|
w = total_ * bdiv(ratio,
|
|
max(bdiv(width_, height_), bdiv(height_, width_)))
|
|
ratio_ = max(bdiv(max_*w, sum_**2), bdiv(sum_**2, min_*w))
|
|
|
|
# keep adding children to this row/col until it starts to hurt
|
|
# our aspect ratio
|
|
j = i + 1
|
|
while j < len(children):
|
|
sum__ = sum_ + children[j].value
|
|
min__ = min(min_, children[j].value)
|
|
max__ = max(max_, children[j].value)
|
|
ratio__ = max(bdiv(max__*w, sum__**2), bdiv(sum__**2, min__*w))
|
|
if ratio__ > ratio_:
|
|
break
|
|
|
|
sum_ = sum__
|
|
min_ = min__
|
|
max_ = max__
|
|
ratio_ = ratio__
|
|
j += 1
|
|
|
|
# vertical col? dice horizontally?
|
|
if width_ > height_:
|
|
dx = bdiv(sum_, total_) * width_
|
|
partition_dice(children[i:j], sum_, x_, y_, dx, height_)
|
|
x_ += dx
|
|
width_ -= dx
|
|
|
|
# horizontal row? slice vertically?
|
|
else:
|
|
dy = bdiv(sum_, total_) * height_
|
|
partition_slice(children[i:j], sum_, x_, y_, width_, dy)
|
|
y_ += dy
|
|
height_ -= dy
|
|
|
|
# start partitioning the other direction
|
|
total_ -= sum_
|
|
i = j
|
|
|
|
|
|
def collect_code(obj_paths, *,
|
|
code_path=CODE_PATH,
|
|
**args):
|
|
# note code-path may contain extra args
|
|
cmd = code_path + ['-O-'] + obj_paths
|
|
if args.get('verbose'):
|
|
print(' '.join(shlex.quote(c) for c in cmd))
|
|
proc = sp.Popen(cmd,
|
|
stdout=sp.PIPE,
|
|
universal_newlines=True,
|
|
errors='replace',
|
|
close_fds=False)
|
|
code = json.load(proc.stdout)
|
|
proc.wait()
|
|
if proc.returncode != 0:
|
|
raise sp.CalledProcessError(proc.returncode, proc.args)
|
|
|
|
return code
|
|
|
|
def collect_stack(ci_paths, *,
|
|
stack_path=STACK_PATH,
|
|
**args):
|
|
# note stack-path may contain extra args
|
|
cmd = stack_path + ['-O-', '--depth=2'] + ci_paths
|
|
if args.get('verbose'):
|
|
print(' '.join(shlex.quote(c) for c in cmd))
|
|
proc = sp.Popen(cmd,
|
|
stdout=sp.PIPE,
|
|
universal_newlines=True,
|
|
errors='replace',
|
|
close_fds=False)
|
|
stack = json.load(proc.stdout)
|
|
proc.wait()
|
|
if proc.returncode != 0:
|
|
raise sp.CalledProcessError(proc.returncode, proc.args)
|
|
|
|
return stack
|
|
|
|
def collect_ctx(obj_paths, *,
|
|
ctx_path=CTX_PATH,
|
|
**args):
|
|
# note stack-path may contain extra args
|
|
cmd = ctx_path + ['-O-', '--depth=2', '--internal'] + obj_paths
|
|
if args.get('verbose'):
|
|
print(' '.join(shlex.quote(c) for c in cmd))
|
|
proc = sp.Popen(cmd,
|
|
stdout=sp.PIPE,
|
|
universal_newlines=True,
|
|
errors='replace',
|
|
close_fds=False)
|
|
ctx = json.load(proc.stdout)
|
|
proc.wait()
|
|
if proc.returncode != 0:
|
|
raise sp.CalledProcessError(proc.returncode, proc.args)
|
|
|
|
return ctx
|
|
|
|
|
|
def main(paths, *,
|
|
namespace_depth=2,
|
|
labels=[],
|
|
chars=[],
|
|
colors=[],
|
|
color=False,
|
|
dots=False,
|
|
braille=False,
|
|
width=None,
|
|
height=None,
|
|
no_header=False,
|
|
to_scale=None,
|
|
aspect_ratio=(1,1),
|
|
tiny=False,
|
|
title=None,
|
|
padding=0,
|
|
label=False,
|
|
**args):
|
|
# figure out what color should be
|
|
if color == 'auto':
|
|
color = sys.stdout.isatty()
|
|
elif color == 'always':
|
|
color = True
|
|
else:
|
|
color = False
|
|
|
|
# tiny mode?
|
|
if tiny:
|
|
if to_scale is None:
|
|
to_scale = 1
|
|
no_header = True
|
|
|
|
# what chars/colors/labels to use?
|
|
chars_ = []
|
|
for char in chars:
|
|
if isinstance(char, tuple):
|
|
chars_.extend((char[0], c) for c in psplit(char[1]))
|
|
else:
|
|
chars_.extend(psplit(char))
|
|
chars_ = Attr(chars_)
|
|
|
|
colors_ = Attr(colors, defaults=COLORS)
|
|
|
|
labels_ = Attr(labels)
|
|
|
|
# figure out width/height
|
|
if width is None:
|
|
width_ = min(80, shutil.get_terminal_size((80, 5))[0])
|
|
elif width:
|
|
width_ = width
|
|
else:
|
|
width_ = shutil.get_terminal_size((80, 5))[0]
|
|
|
|
if height is None:
|
|
height_ = 2 if not no_header else 1
|
|
elif height:
|
|
height_ = height
|
|
else:
|
|
height_ = shutil.get_terminal_size((80, 5))[1] - 1
|
|
|
|
# try to parse files as CSV/JSON
|
|
results = []
|
|
try:
|
|
# if any file starts with elf magic (\x7fELF), assume input is
|
|
# elf/callgraph files
|
|
fs = []
|
|
for path in paths:
|
|
f = openio(path)
|
|
if f.buffer.peek(4)[:4] == b'\x7fELF':
|
|
for f_ in fs:
|
|
f_.close()
|
|
raise StopIteration()
|
|
fs.append(f)
|
|
|
|
for f in fs:
|
|
with f:
|
|
# csv or json? assume json starts with [
|
|
is_json = (f.buffer.peek(1)[:1] == b'[')
|
|
|
|
# read csv?
|
|
if not is_json:
|
|
results.extend(csv.DictReader(f, restval=''))
|
|
|
|
# read json?
|
|
else:
|
|
results.extend(json.load(f))
|
|
|
|
# fall back to extracting code/stack/ctx info from elf/callgraph files
|
|
except StopIteration:
|
|
# figure out paths
|
|
obj_paths = []
|
|
ci_paths = []
|
|
for path in paths:
|
|
if iself(path):
|
|
obj_paths.append(path)
|
|
else:
|
|
ci_paths.append(path)
|
|
|
|
# find code/stack/ctx sizes
|
|
if obj_paths:
|
|
results.extend(collect_code(obj_paths, **args))
|
|
if ci_paths:
|
|
results.extend(collect_stack(ci_paths, **args))
|
|
if obj_paths:
|
|
results.extend(collect_ctx(obj_paths, **args))
|
|
|
|
# don't render code/stack/ctx results if we don't have any
|
|
nil_code = not any('code_size' in r for r in results)
|
|
nil_frames = not any('stack_frame' in r for r in results)
|
|
nil_ctx = not any('ctx_size' in r for r in results)
|
|
|
|
# merge code/stack/ctx results
|
|
functions = co.OrderedDict()
|
|
for r in results:
|
|
if r['function'] not in functions:
|
|
functions[r['function']] = {'name': r['function']}
|
|
# code things
|
|
if 'code_size' in r:
|
|
functions[r['function']]['code'] = dat(r['code_size'])
|
|
# stack things, including callgraph
|
|
if 'stack_frame' in r:
|
|
functions[r['function']]['frame'] = dat(r['stack_frame'])
|
|
if 'stack_limit' in r:
|
|
functions[r['function']]['stack'] = dat(r['stack_limit'], mt.inf)
|
|
if 'children' in r:
|
|
if 'children' not in functions[r['function']]:
|
|
functions[r['function']]['children'] = []
|
|
functions[r['function']]['children'].extend(
|
|
r_['function']
|
|
for r_ in r['children']
|
|
if r_.get('stack_frame', '') != '')
|
|
# ctx things, including any arguments
|
|
if 'ctx_size' in r:
|
|
functions[r['function']]['ctx'] = dat(r['ctx_size'])
|
|
if 'children' in r:
|
|
if 'args' not in functions[r['function']]:
|
|
functions[r['function']]['args'] = []
|
|
functions[r['function']]['args'].extend(
|
|
{'name': r_['function'],
|
|
'ctx': dat(r_['ctx_size']),
|
|
'attrs': r_}
|
|
for r_ in r['children']
|
|
if r_.get('ctx_size', '') != '')
|
|
# keep track of other attrs for punescaping
|
|
if 'attrs' not in functions[r['function']]:
|
|
functions[r['function']]['attrs'] = {}
|
|
functions[r['function']]['attrs'].update(r)
|
|
|
|
# stack.py returns infinity for recursive functions, so we need to
|
|
# recompute a bounded stack limit to show something useful
|
|
def limitof(k, f, seen=set()):
|
|
# found a cycle? stop here
|
|
if k in seen:
|
|
return 0
|
|
|
|
limit = 0
|
|
for child in f.get('children', []):
|
|
if child not in functions:
|
|
continue
|
|
limit = max(limit, limitof(child, functions[child], seen | {k}))
|
|
|
|
return f['frame'] + limit
|
|
|
|
for k, f in functions.items():
|
|
if 'stack' in f:
|
|
if mt.isinf(f['stack']):
|
|
f['limit'] = limitof(k, f)
|
|
else:
|
|
f['limit'] = f['stack']
|
|
|
|
# organize into subsystems
|
|
namespace_pattern = re.compile('_*[^_]+(?:_*$)?')
|
|
namespace_slice = slice(namespace_depth if namespace_depth else None)
|
|
subsystems = {}
|
|
for k, f in functions.items():
|
|
# ignore leading/trailing underscores
|
|
f['subsystem'] = ''.join(
|
|
namespace_pattern.findall(k)[
|
|
namespace_slice])
|
|
|
|
if f['subsystem'] not in subsystems:
|
|
subsystems[f['subsystem']] = {'name': f['subsystem']}
|
|
|
|
# include ctx in subsystems to give them different colors
|
|
for _, f in functions.items():
|
|
for a in f.get('args', []):
|
|
a['subsystem'] = a['name']
|
|
|
|
if a['subsystem'] not in subsystems:
|
|
subsystems[a['subsystem']] = {'name': a['subsystem']}
|
|
|
|
# sort to try to keep things reproducible
|
|
functions = co.OrderedDict(sorted(functions.items()))
|
|
subsystems = co.OrderedDict(sorted(subsystems.items()))
|
|
|
|
# sum code/stack/ctx/attrs for punescaping
|
|
for k, s in subsystems.items():
|
|
s['code'] = sum(
|
|
f.get('code', 0) for f in functions.values()
|
|
if f['subsystem'] == k)
|
|
s['stack'] = max(
|
|
(f.get('stack', 0) for f in functions.values()
|
|
if f['subsystem'] == k),
|
|
default=0)
|
|
s['ctx'] = max(
|
|
(f.get('ctx', 0) for f in functions.values()
|
|
if f['subsystem'] == k),
|
|
default=0)
|
|
s['attrs'] = {k_: v_
|
|
for f in functions.values()
|
|
if f['subsystem'] == k
|
|
for k_, v_ in f['attrs'].items()}
|
|
|
|
# also build totals
|
|
totals = {}
|
|
totals['code'] = sum(
|
|
f.get('code', 0) for f in functions.values())
|
|
totals['stack'] = max(
|
|
(f.get('stack', 0) for f in functions.values()),
|
|
default=0)
|
|
totals['ctx'] = max(
|
|
(f.get('ctx', 0) for f in functions.values()),
|
|
default=0)
|
|
totals['attrs'] = {k: v
|
|
for f in functions.values()
|
|
for k, v in f['attrs'].items()}
|
|
|
|
# assign colors to subsystems, note this is after sorting, but
|
|
# before tile generation, we want code and stack tiles to have the
|
|
# same color if they're in the same subsystem
|
|
for i, (k, s) in enumerate(subsystems.items()):
|
|
s['color'] = punescape(colors_[i, (k,)], s['attrs'] | s)
|
|
|
|
|
|
# build code heirarchy
|
|
code = Tile.merge(
|
|
Tile( (f['subsystem'], f['name']),
|
|
# fallback to stack/ctx
|
|
f.get('code', 0) if not nil_code
|
|
else f.get('frame', 0) if not nil_frames
|
|
else f.get('ctx', 0),
|
|
attrs=f)
|
|
for f in functions.values())
|
|
|
|
# assign colors/chars/labels to code tiles
|
|
for i, t in enumerate(code.leaves()):
|
|
t.color = subsystems[t.attrs['subsystem']]['color']
|
|
if (i, (t.attrs['name'],)) in chars_:
|
|
t.char = punescape(
|
|
chars_[i, (t.attrs['name'],)],
|
|
t.attrs['attrs'] | t.attrs)[0] # limit to 1 char
|
|
elif len(t.attrs['subsystem']) < len(t.attrs['name']):
|
|
t.char = (t.attrs['name'][len(t.attrs['subsystem']):].lstrip('_')
|
|
or '')[0]
|
|
else:
|
|
t.char = (t.attrs['subsystem'].rstrip('_').rsplit('_', 1)[-1]
|
|
or '')[0]
|
|
if (i, (t.attrs['name'],)) in labels_:
|
|
t.label = punescape(
|
|
labels_[i, (t.attrs['name'],)],
|
|
t.attrs['attrs'] | t.attrs)
|
|
else:
|
|
t.label = t.attrs['name']
|
|
|
|
# scale width/height if requested now that we have our data
|
|
if (to_scale is not None
|
|
and (width is None or height is None)):
|
|
total_value = (totals.get('code', 0) if not nil_code
|
|
else totals.get('frame', 0) if not nil_frames
|
|
else totals.get('ctx', 0))
|
|
if total_value:
|
|
# scale if needed
|
|
if braille:
|
|
xscale, yscale = 2, 4
|
|
elif dots:
|
|
xscale, yscale = 1, 2
|
|
else:
|
|
xscale, yscale = 1, 1
|
|
|
|
# scale width only
|
|
if height is not None:
|
|
width_ = mt.ceil(
|
|
((total_value * to_scale) / (height_*yscale))
|
|
/ xscale)
|
|
# scale height only
|
|
elif width is not None:
|
|
height_ = mt.ceil(
|
|
((total_value * to_scale) / (width_*xscale))
|
|
/ yscale)
|
|
# scale based on aspect-ratio
|
|
else:
|
|
width_ = mt.ceil(
|
|
(mt.sqrt(total_value * to_scale)
|
|
* (aspect_ratio[0] / aspect_ratio[1]))
|
|
/ xscale)
|
|
height_ = mt.ceil(
|
|
((total_value * to_scale) / (width_*xscale))
|
|
/ yscale)
|
|
|
|
# our general purpose partition function
|
|
def partition(tile, scheme):
|
|
if tile.depth == 0:
|
|
# apply top padding
|
|
tile.x += padding
|
|
tile.y += padding
|
|
tile.width -= min(padding, tile.width)
|
|
tile.height -= min(padding, tile.height)
|
|
# apply bottom padding
|
|
if not tile.children:
|
|
tile.width -= min(padding, tile.width)
|
|
tile.height -= min(padding, tile.height)
|
|
|
|
x__ = tile.x
|
|
y__ = tile.y
|
|
width__ = tile.width
|
|
height__ = tile.height
|
|
|
|
else:
|
|
# apply bottom padding
|
|
if not tile.children:
|
|
tile.width -= min(padding, tile.width)
|
|
tile.height -= min(padding, tile.height)
|
|
|
|
x__ = tile.x
|
|
y__ = tile.y
|
|
width__ = tile.width
|
|
height__ = tile.height
|
|
|
|
# partition via requested scheme
|
|
if tile.children:
|
|
if scheme == 'binary':
|
|
partition_binary(tile.children, tile.value,
|
|
x__, y__, width__, height__)
|
|
elif (scheme == 'slice'
|
|
or (scheme == 'slice_and_dice' and (tile.depth & 1) == 0)
|
|
or (scheme == 'dice_and_slice' and (tile.depth & 1) == 1)):
|
|
partition_slice(tile.children, tile.value,
|
|
x__, y__, width__, height__)
|
|
elif (scheme == 'dice'
|
|
or (scheme == 'slice_and_dice' and (tile.depth & 1) == 1)
|
|
or (scheme == 'dice_and_slice' and (tile.depth & 1) == 0)):
|
|
partition_dice(tile.children, tile.value,
|
|
x__, y__, width__, height__)
|
|
elif scheme == 'squarify':
|
|
partition_squarify(tile.children, tile.value,
|
|
x__, y__, width__, height__)
|
|
elif scheme == 'rectify':
|
|
partition_squarify(tile.children, tile.value,
|
|
x__, y__, width__, height__,
|
|
aspect_ratio=(width_, height_))
|
|
else:
|
|
# default to binary partitioning
|
|
partition_binary(tile.children, tile.value,
|
|
x__, y__, width__, height__)
|
|
|
|
# recursively partition
|
|
for t in tile.children:
|
|
partition(t, scheme)
|
|
|
|
# create a canvas
|
|
canvas = Canvas(
|
|
width_,
|
|
height_ - (1 if not no_header else 0),
|
|
color=color,
|
|
dots=dots,
|
|
braille=braille)
|
|
|
|
# sort and partition code
|
|
code.sort()
|
|
code.x = 0
|
|
code.y = 0
|
|
code.width = canvas.width
|
|
code.height = canvas.height
|
|
partition(code, 'binary')
|
|
# align to pixel boundaries
|
|
code.align()
|
|
|
|
|
|
# render to canvas
|
|
labels__ = []
|
|
for t in code.leaves():
|
|
x__ = t.x
|
|
y__ = t.y
|
|
width__ = t.width
|
|
height__ = t.height
|
|
# skip anything with zero weight/height after aligning things
|
|
if width__ == 0 or height__ == 0:
|
|
continue
|
|
|
|
# flip y
|
|
y__ = canvas.height - (y__+height__)
|
|
|
|
canvas.rect(x__, y__, width__, height__,
|
|
# default to first letter of the last part of the key
|
|
char=(True if braille or dots
|
|
else t.char if getattr(t, 'char', None)
|
|
else t.key[len(by)-1][0] if t.key and t.key[len(by)-1]
|
|
else chars_[0]),
|
|
color=t.color if t.color is not None else colors_[0])
|
|
|
|
if label:
|
|
if t.label is not None:
|
|
label__ = t.label
|
|
else:
|
|
label__ = ','.join(t.key)
|
|
|
|
# render these later so they get priority
|
|
labels__.append((x__, y__+height__-1, label__,
|
|
width__, height__))
|
|
|
|
for label__ in labels__:
|
|
canvas.label(*label__)
|
|
|
|
# print some summary info
|
|
if not no_header:
|
|
if title:
|
|
print(punescape(title, totals['attrs'] | totals))
|
|
else:
|
|
print('code %d stack %s ctx %d' % (
|
|
totals.get('code', 0),
|
|
(lambda s: '∞' if mt.isinf(s) else s)(
|
|
totals.get('stack', 0)),
|
|
totals.get('ctx', 0)))
|
|
|
|
# draw canvas
|
|
for row in range(canvas.height//canvas.yscale):
|
|
line = canvas.draw(row)
|
|
print(line)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
import sys
|
|
parser = argparse.ArgumentParser(
|
|
description="Render code info as a treemap.",
|
|
allow_abbrev=False)
|
|
class AppendPath(argparse.Action):
|
|
def __call__(self, parser, namespace, value, option):
|
|
if getattr(namespace, 'paths', None) is None:
|
|
namespace.paths = []
|
|
if value is None:
|
|
pass
|
|
elif isinstance(value, str):
|
|
namespace.paths.append(value)
|
|
else:
|
|
namespace.paths.extend(value)
|
|
parser.add_argument(
|
|
'obj_paths',
|
|
nargs='*',
|
|
action=AppendPath,
|
|
help="Input *.o files.")
|
|
parser.add_argument(
|
|
'ci_paths',
|
|
nargs='*',
|
|
action=AppendPath,
|
|
help="Input *.ci files.")
|
|
parser.add_argument(
|
|
'csv_paths',
|
|
nargs='*',
|
|
action=AppendPath,
|
|
help="Input *.csv files.")
|
|
parser.add_argument(
|
|
'json_paths',
|
|
nargs='*',
|
|
action=AppendPath,
|
|
help="Input *.json files.")
|
|
parser.add_argument(
|
|
'-n', '--namespace-depth',
|
|
nargs='?',
|
|
type=lambda x: int(x, 0),
|
|
const=0,
|
|
help="Number of underscore-separated namespaces to partition by. "
|
|
"0 treats every function as its own subsystem, while -1 uses "
|
|
"the longest matching prefix. Defaults to 2, which is "
|
|
"probably a good level of detail for most standalone "
|
|
"libraries.")
|
|
parser.add_argument(
|
|
'-v', '--verbose',
|
|
action='store_true',
|
|
help="Output commands that run behind the scenes.")
|
|
parser.add_argument(
|
|
'-L', '--add-label',
|
|
dest='labels',
|
|
action='append',
|
|
type=lambda x: (
|
|
lambda ks, v: (
|
|
tuple(k.strip() for k in ks.split(',')),
|
|
v.strip())
|
|
)(*x.split('=', 1))
|
|
if '=' in x else x.strip(),
|
|
help="Add a label to use. Can be assigned to a specific "
|
|
"function/subsystem. Accepts %% modifiers.")
|
|
parser.add_argument(
|
|
'-*', '--add-char', '--chars',
|
|
dest='chars',
|
|
action='append',
|
|
type=lambda x: (
|
|
lambda ks, v: (
|
|
tuple(k.strip() for k in ks.split(',')),
|
|
v.strip())
|
|
)(*x.split('=', 1))
|
|
if '=' in x else x.strip(),
|
|
help="Add characters to use. Can be assigned to a specific "
|
|
"function/subsystem. Accepts %% modifiers.")
|
|
parser.add_argument(
|
|
'-C', '--add-color',
|
|
dest='colors',
|
|
action='append',
|
|
type=lambda x: (
|
|
lambda ks, v: (
|
|
tuple(k.strip() for k in ks.split(',')),
|
|
v.strip())
|
|
)(*x.split('=', 1))
|
|
if '=' in x else x.strip(),
|
|
help="Add a color to use. Can be assigned to a specific "
|
|
"function/subsystem. Accepts %% modifiers.")
|
|
parser.add_argument(
|
|
'--color',
|
|
choices=['never', 'always', 'auto'],
|
|
default='auto',
|
|
help="When to use terminal colors. Defaults to 'auto'.")
|
|
parser.add_argument(
|
|
'-:', '--dots',
|
|
action='store_true',
|
|
help="Use 1x2 ascii dot characters.")
|
|
parser.add_argument(
|
|
'-⣿', '--braille',
|
|
action='store_true',
|
|
help="Use 2x4 unicode braille characters. Note that braille "
|
|
"characters sometimes suffer from inconsistent widths.")
|
|
parser.add_argument(
|
|
'-W', '--width',
|
|
nargs='?',
|
|
type=lambda x: int(x, 0),
|
|
const=0,
|
|
help="Width in columns. 0 uses the terminal width. Defaults to "
|
|
"min(terminal, 80).")
|
|
parser.add_argument(
|
|
'-H', '--height',
|
|
nargs='?',
|
|
type=lambda x: int(x, 0),
|
|
const=0,
|
|
help="Height in rows. 0 uses the terminal height. Defaults to 1.")
|
|
parser.add_argument(
|
|
'-N', '--no-header',
|
|
action='store_true',
|
|
help="Don't show the header.")
|
|
parser.add_argument(
|
|
'--binary',
|
|
action='store_true',
|
|
help="Use the binary partitioning scheme. This attempts to "
|
|
"recursively subdivide the tiles into a roughly "
|
|
"weight-balanced binary tree. This is the default.")
|
|
parser.add_argument(
|
|
'--slice',
|
|
action='store_true',
|
|
help="Use the slice partitioning scheme. This simply slices "
|
|
"tiles vertically.")
|
|
parser.add_argument(
|
|
'--dice',
|
|
action='store_true',
|
|
help="Use the dice partitioning scheme. This simply slices "
|
|
"tiles horizontally.")
|
|
parser.add_argument(
|
|
'--slice-and-dice',
|
|
action='store_true',
|
|
help="Use the slice-and-dice partitioning scheme. This "
|
|
"alternates between slicing and dicing each layer.")
|
|
parser.add_argument(
|
|
'--dice-and-slice',
|
|
action='store_true',
|
|
help="Use the dice-and-slice partitioning scheme. This is like "
|
|
"slice-and-dice, but flipped.")
|
|
parser.add_argument(
|
|
'--squarify',
|
|
action='store_true',
|
|
help="Use the squarify partitioning scheme. This is a greedy "
|
|
"algorithm created by Mark Bruls et al that tries to "
|
|
"minimize tile aspect ratios.")
|
|
parser.add_argument(
|
|
'--rectify',
|
|
action='store_true',
|
|
help="Use the rectify partitioning scheme. This is like "
|
|
"squarify, but tries to match the aspect ratio of the "
|
|
"window.")
|
|
parser.add_argument(
|
|
'--to-scale',
|
|
nargs='?',
|
|
type=lambda x: (
|
|
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
|
|
if ':' in x else float(x)),
|
|
const=1,
|
|
help="Scale the resulting treemap such that 1 pixel ~= 1/scale "
|
|
"units. Defaults to scale=1. ")
|
|
parser.add_argument(
|
|
'-R', '--aspect-ratio',
|
|
type=lambda x: (
|
|
tuple(float(v) for v in x.split(':', 1))
|
|
if ':' in x else (float(x), 1)),
|
|
help="Aspect ratio to use with --to-scale. Defaults to 1:1.")
|
|
parser.add_argument(
|
|
'-t', '--tiny',
|
|
action='store_true',
|
|
help="Tiny mode, alias for --to-scale=1 and --no-header.")
|
|
parser.add_argument(
|
|
'--title',
|
|
help="Add a title. Accepts %% modifiers.")
|
|
parser.add_argument(
|
|
'--padding',
|
|
type=float,
|
|
help="Padding to add to each level of the treemap. Defaults to 0.")
|
|
parser.add_argument(
|
|
'-l', '--label',
|
|
action='store_true',
|
|
help="Render labels.")
|
|
parser.add_argument(
|
|
'--code-path',
|
|
type=lambda x: x.split(),
|
|
default=CODE_PATH,
|
|
help="Path to the code.py script, may include flags. "
|
|
"Defaults to %r." % CODE_PATH)
|
|
parser.add_argument(
|
|
'--stack-path',
|
|
type=lambda x: x.split(),
|
|
default=STACK_PATH,
|
|
help="Path to the stack.py script, may include flags. "
|
|
"Defaults to %r." % STACK_PATH)
|
|
parser.add_argument(
|
|
'--ctx-path',
|
|
type=lambda x: x.split(),
|
|
default=CTX_PATH,
|
|
help="Path to the ctx.py script, may include flags. "
|
|
"Defaults to %r." % CTX_PATH)
|
|
sys.exit(main(**{k: v
|
|
for k, v in vars(parser.parse_intermixed_args()).items()
|
|
if v is not None}))
|