mirror of
https://github.com/littlefs-project/littlefs.git
synced 2025-12-09 17:12:40 +00:00
Like codemapd3.py, but with an ascii renderer. This is basically just codemapd3.py and treemap.py smooshed together. It's not the cleanest, but it gets the job done. codemap.py is not the most critical of scripts. Unfortunately callgraph and stack/ctx info are difficult (impossible?) to render usefully in ascii, but we can at least do the script calling, parsing, namespacing, etc, necessary to create the code cost tilemap.
1198 lines
37 KiB
Python
Executable File
1198 lines
37 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
#
|
||
# Inspired by d3:
|
||
# https://d3js.org
|
||
#
|
||
|
||
# prevent local imports
|
||
if __name__ == "__main__":
|
||
__import__('sys').path.pop(0)
|
||
|
||
import bisect
|
||
import collections as co
|
||
import csv
|
||
import fnmatch
|
||
import itertools as it
|
||
import math as mt
|
||
import re
|
||
import shutil
|
||
|
||
|
||
# we don't actually need that many chars/colors thanks to the
|
||
# 4-colorability of all 2d maps
|
||
CHARS = ['.']
|
||
COLORS = ['34', '31', '32', '35', '33', '36']
|
||
|
||
CHARS_DOTS = " .':"
|
||
CHARS_BRAILLE = (
|
||
'⠀⢀⡀⣀⠠⢠⡠⣠⠄⢄⡄⣄⠤⢤⡤⣤' '⠐⢐⡐⣐⠰⢰⡰⣰⠔⢔⡔⣔⠴⢴⡴⣴'
|
||
'⠂⢂⡂⣂⠢⢢⡢⣢⠆⢆⡆⣆⠦⢦⡦⣦' '⠒⢒⡒⣒⠲⢲⡲⣲⠖⢖⡖⣖⠶⢶⡶⣶'
|
||
'⠈⢈⡈⣈⠨⢨⡨⣨⠌⢌⡌⣌⠬⢬⡬⣬' '⠘⢘⡘⣘⠸⢸⡸⣸⠜⢜⡜⣜⠼⢼⡼⣼'
|
||
'⠊⢊⡊⣊⠪⢪⡪⣪⠎⢎⡎⣎⠮⢮⡮⣮' '⠚⢚⡚⣚⠺⢺⡺⣺⠞⢞⡞⣞⠾⢾⡾⣾'
|
||
'⠁⢁⡁⣁⠡⢡⡡⣡⠅⢅⡅⣅⠥⢥⡥⣥' '⠑⢑⡑⣑⠱⢱⡱⣱⠕⢕⡕⣕⠵⢵⡵⣵'
|
||
'⠃⢃⡃⣃⠣⢣⡣⣣⠇⢇⡇⣇⠧⢧⡧⣧' '⠓⢓⡓⣓⠳⢳⡳⣳⠗⢗⡗⣗⠷⢷⡷⣷'
|
||
'⠉⢉⡉⣉⠩⢩⡩⣩⠍⢍⡍⣍⠭⢭⡭⣭' '⠙⢙⡙⣙⠹⢹⡹⣹⠝⢝⡝⣝⠽⢽⡽⣽'
|
||
'⠋⢋⡋⣋⠫⢫⡫⣫⠏⢏⡏⣏⠯⢯⡯⣯' '⠛⢛⡛⣛⠻⢻⡻⣻⠟⢟⡟⣟⠿⢿⡿⣿')
|
||
|
||
|
||
def openio(path, mode='r', buffering=-1):
|
||
# allow '-' for stdin/stdout
|
||
if path == '-':
|
||
if 'r' in mode:
|
||
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
|
||
else:
|
||
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
|
||
else:
|
||
return open(path, mode, buffering)
|
||
|
||
# parse different data representations
|
||
def dat(x, *args):
|
||
try:
|
||
# allow the first part of an a/b fraction
|
||
if '/' in x:
|
||
x, _ = x.split('/', 1)
|
||
|
||
# first try as int
|
||
try:
|
||
return int(x, 0)
|
||
except ValueError:
|
||
pass
|
||
|
||
# then try as float
|
||
try:
|
||
return float(x)
|
||
except ValueError:
|
||
pass
|
||
|
||
# else give up
|
||
raise ValueError("invalid dat %r" % x)
|
||
|
||
# default on error?
|
||
except ValueError as e:
|
||
if args:
|
||
return args[0]
|
||
else:
|
||
raise
|
||
|
||
def collect(csv_paths, defines=[]):
|
||
# collect results from CSV files
|
||
fields = []
|
||
results = []
|
||
for path in csv_paths:
|
||
try:
|
||
with openio(path) as f:
|
||
reader = csv.DictReader(f, restval='')
|
||
fields.extend(
|
||
k for k in reader.fieldnames
|
||
if k not in fields)
|
||
for r in reader:
|
||
# filter by matching defines
|
||
if not all(k in r and r[k] in vs for k, vs in defines):
|
||
continue
|
||
|
||
results.append(r)
|
||
except FileNotFoundError:
|
||
pass
|
||
|
||
return fields, results
|
||
|
||
def fold(results, by=None, fields=None, defines=[]):
|
||
# filter by matching defines
|
||
if defines:
|
||
results_ = []
|
||
for r in results:
|
||
if all(k in r and r[k] in vs for k, vs in defines):
|
||
results_.append(r)
|
||
results = results_
|
||
|
||
if by:
|
||
# find all 'by' values
|
||
keys = set()
|
||
for r in results:
|
||
keys.add(tuple(r.get(k, '') for k in by))
|
||
keys = sorted(keys)
|
||
|
||
# collect datasets
|
||
datasets = co.OrderedDict()
|
||
dataattrs = co.OrderedDict()
|
||
for key in (keys if by else [()]):
|
||
for field in fields:
|
||
# organize by 'by' and field
|
||
dataset = []
|
||
dataattr = {}
|
||
for r in results:
|
||
# filter by 'by'
|
||
if by and not all(
|
||
k in r and r[k] == v
|
||
for k, v in zip(by, key)):
|
||
continue
|
||
|
||
# find field
|
||
if field is not None:
|
||
if field not in r:
|
||
continue
|
||
try:
|
||
v = dat(r[field])
|
||
except ValueError:
|
||
continue
|
||
else:
|
||
v = None
|
||
|
||
# do _not_ sum v here, it's tempting but risks
|
||
# incorrect and misleading results
|
||
dataset.append(v)
|
||
|
||
# include all fields in dataattrs in case we use
|
||
# them for % modifiers
|
||
dataattr.update(r)
|
||
|
||
# hide 'field' if there is only one field
|
||
key_ = key
|
||
if len(fields or []) > 1 or not key_:
|
||
key_ += (field,)
|
||
datasets[key_] = dataset
|
||
dataattrs[key_] = dataattr
|
||
|
||
return datasets, dataattrs
|
||
|
||
# a representation of optionally key-mapped attrs
|
||
class Attr:
|
||
def __init__(self, attrs, *,
|
||
defaults=None):
|
||
# include defaults?
|
||
if (defaults is not None
|
||
and not any(
|
||
not isinstance(attr, tuple)
|
||
or attr[0] in {None, (), ('*',)}
|
||
for attr in (attrs or []))):
|
||
attrs = defaults + (attrs or [])
|
||
|
||
# normalize
|
||
self.attrs = []
|
||
self.keyed = co.OrderedDict()
|
||
for attr in (attrs or []):
|
||
if not isinstance(attr, tuple):
|
||
attr = ((), attr)
|
||
elif attr[0] in {None, (), ('*',)}:
|
||
attr = ((), attr[1])
|
||
|
||
self.attrs.append(attr)
|
||
if attr[0] not in self.keyed:
|
||
self.keyed[attr[0]] = []
|
||
self.keyed[attr[0]].append(attr[1])
|
||
|
||
def __repr__(self):
|
||
return 'Attr(%r)' % [
|
||
(','.join(attr[0]), attr[1])
|
||
for attr in self.attrs]
|
||
|
||
def __iter__(self):
|
||
return it.cycle(self.keyed[()])
|
||
|
||
def __bool__(self):
|
||
return bool(self.attrs)
|
||
|
||
def __getitem__(self, key):
|
||
if isinstance(key, tuple):
|
||
if len(key) > 0 and not isinstance(key[0], str):
|
||
i, key = key
|
||
else:
|
||
i, key = 0, key
|
||
else:
|
||
i, key = key, ()
|
||
|
||
# try to lookup by key
|
||
best = None
|
||
for ks, vs in self.keyed.items():
|
||
prefix = []
|
||
for j, k in enumerate(ks):
|
||
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
|
||
prefix.append(k)
|
||
else:
|
||
prefix = None
|
||
break
|
||
|
||
if prefix is not None and (
|
||
best is None or len(prefix) >= len(best[0])):
|
||
best = (prefix, vs)
|
||
|
||
if best is not None:
|
||
# cycle based on index
|
||
return best[1][i % len(best[1])]
|
||
|
||
return None
|
||
|
||
def __contains__(self, key):
|
||
return self.__getitem__(key) is not None
|
||
|
||
# a key function for sorting by key order
|
||
def key(self, key):
|
||
# allow key to be a tuple to make sorting dicts easier
|
||
if (isinstance(key, tuple)
|
||
and len(key) >= 1
|
||
and isinstance(key[0], tuple)):
|
||
key = key[0]
|
||
|
||
best = None
|
||
for i, ks in enumerate(self.keyed.keys()):
|
||
prefix = []
|
||
for j, k in enumerate(ks):
|
||
if j < len(key) and (not k or key[j] == k):
|
||
prefix.append(k)
|
||
else:
|
||
prefix = None
|
||
break
|
||
|
||
if prefix is not None and (
|
||
best is None or len(prefix) >= len(best[0])):
|
||
best = (prefix, i)
|
||
|
||
if best is not None:
|
||
return best[1]
|
||
|
||
return len(self.keyed)
|
||
|
||
# parse %-escaped strings
|
||
def punescape(s, attrs=None):
|
||
if attrs is None:
|
||
attrs = {}
|
||
if isinstance(attrs, dict):
|
||
attrs_ = attrs
|
||
attrs = lambda k: attrs_[k]
|
||
|
||
pattern = re.compile(
|
||
'%[%n]'
|
||
'|' '%x..'
|
||
'|' '%u....'
|
||
'|' '%U........'
|
||
'|' '%\((?P<field>[^)]*)\)'
|
||
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
|
||
def unescape(m):
|
||
if m.group()[1] == '%': return '%'
|
||
elif m.group()[1] == 'n': return '\n'
|
||
elif m.group()[1] == 'x': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == 'u': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == 'U': return chr(int(m.group()[2:], 16))
|
||
elif m.group()[1] == '(':
|
||
try:
|
||
v = attrs(m.group('field'))
|
||
except KeyError:
|
||
return m.group()
|
||
f = m.group('format')
|
||
if f[-1] in 'dboxX':
|
||
if isinstance(v, str):
|
||
v = dat(v, 0)
|
||
v = int(v)
|
||
elif f[-1] in 'fFeEgG':
|
||
if isinstance(v, str):
|
||
v = dat(v, 0)
|
||
v = float(v)
|
||
else:
|
||
f = ('<' if '-' in f else '>') + f.replace('-', '')
|
||
v = str(v)
|
||
# note we need Python's new format syntax for binary
|
||
return ('{:%s}' % f).format(v)
|
||
else: assert False
|
||
return re.sub(pattern, unescape, s)
|
||
|
||
# split %-escaped strings into chars
|
||
def psplit(s):
|
||
pattern = re.compile(
|
||
'%[%n]'
|
||
'|' '%x..'
|
||
'|' '%u....'
|
||
'|' '%U........'
|
||
'|' '%\((?P<field>[^)]*)\)'
|
||
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
|
||
return [m.group() for m in re.finditer(pattern.pattern + '|.', s)]
|
||
|
||
|
||
# a little ascii renderer
|
||
class Canvas:
|
||
def __init__(self, width, height, *,
|
||
color=False,
|
||
dots=False,
|
||
braille=False):
|
||
# scale if we're printing with dots or braille
|
||
if braille:
|
||
xscale, yscale = 2, 4
|
||
elif dots:
|
||
xscale, yscale = 1, 2
|
||
else:
|
||
xscale, yscale = 1, 1
|
||
|
||
self.width = xscale*width
|
||
self.height = yscale*height
|
||
self.xscale = xscale
|
||
self.yscale = yscale
|
||
self.color_ = color
|
||
self.dots = dots
|
||
self.braille = braille
|
||
|
||
# create initial canvas
|
||
self.grid = [False] * (self.width*self.height)
|
||
self.colors = [''] * (self.width*self.height)
|
||
|
||
def __getitem__(self, xy):
|
||
x, y = xy
|
||
# ignore out of bounds
|
||
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
||
return
|
||
|
||
return self.grid[x + y*self.width]
|
||
|
||
def __setitem__(self, xy, char):
|
||
x, y = xy
|
||
# ignore out of bounds
|
||
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
||
return
|
||
|
||
self.grid[x + y*self.width] = char
|
||
|
||
def color(self, x, y, color=None):
|
||
# ignore out of bounds
|
||
if x < 0 or y < 0 or x >= self.width or y >= self.height:
|
||
return
|
||
|
||
if color is not None:
|
||
self.colors[x + y*self.width] = color
|
||
else:
|
||
return self.colors[x + y*self.width]
|
||
|
||
def point(self, x, y, *,
|
||
char=True,
|
||
color=''):
|
||
# make sure non-bool chars map attrs to all points under char
|
||
if not isinstance(char, bool):
|
||
xscale, yscale = self.xscale, self.yscale
|
||
else:
|
||
xscale, yscale = 1, 1
|
||
|
||
for i in range(xscale*yscale):
|
||
x_ = x-(x%xscale) + (xscale-1-(i%xscale))
|
||
y_ = y-(y%yscale) + (i//xscale)
|
||
|
||
self[x_, y_] = char
|
||
self.color(x_, y_, color)
|
||
|
||
def line(self, x1, y1, x2, y2, *,
|
||
char=True,
|
||
color=''):
|
||
# incremental error line algorithm
|
||
ex = abs(x2 - x1)
|
||
ey = -abs(y2 - y1)
|
||
dx = +1 if x1 < x2 else -1
|
||
dy = +1 if y1 < y2 else -1
|
||
e = ex + ey
|
||
|
||
while True:
|
||
self.point(x1, y1, color=color, char=char)
|
||
e2 = 2*e
|
||
|
||
if x1 == x2 and y1 == y2:
|
||
break
|
||
|
||
if e2 > ey:
|
||
e += ey
|
||
x1 += dx
|
||
|
||
if x1 == x2 and y1 == y2:
|
||
break
|
||
|
||
if e2 < ex:
|
||
e += ex
|
||
y1 += dy
|
||
|
||
self.point(x2, y2, color=color, char=char)
|
||
|
||
def rect(self, x, y, w, h, *,
|
||
char=True,
|
||
color=''):
|
||
for j in range(h):
|
||
for i in range(w):
|
||
self.point(x+i, y+j, char=char, color=color)
|
||
|
||
def label(self, x, y, label, width=None, height=None, *,
|
||
color=''):
|
||
x_ = x
|
||
y_ = y
|
||
for char in label:
|
||
if char == '\n':
|
||
x_ = x
|
||
y_ -= self.yscale
|
||
else:
|
||
if ((width is None or x_ < x+width)
|
||
and (height is None or y_ > y-height)):
|
||
self.point(x_, y_, char=char, color=color)
|
||
x_ += self.xscale
|
||
|
||
def draw(self, row):
|
||
# scale if needed
|
||
xscale, yscale = self.xscale, self.yscale
|
||
|
||
y = self.height//yscale-1 - row
|
||
row_ = []
|
||
for x in range(self.width//xscale):
|
||
color = ''
|
||
char = False
|
||
byte = 0
|
||
for i in range(xscale*yscale):
|
||
x_ = x*xscale + (xscale-1-(i%xscale))
|
||
y_ = y*yscale + (i//xscale)
|
||
|
||
# calculate char
|
||
char_ = self[x_, y_]
|
||
if char_:
|
||
byte |= 1 << i
|
||
if char_ is not True and char_ is not False:
|
||
char = char_
|
||
|
||
# keep track of best color
|
||
color_ = self.color(x_, y_)
|
||
if color_:
|
||
color = color_
|
||
|
||
# figure out winning char
|
||
if byte:
|
||
if char is not True and char is not False:
|
||
pass
|
||
elif self.braille:
|
||
char = CHARS_BRAILLE[byte]
|
||
else:
|
||
char = CHARS_DOTS[byte]
|
||
else:
|
||
char = ' '
|
||
|
||
# color?
|
||
if byte and self.color_ and color:
|
||
char = '\x1b[%sm%s\x1b[m' % (color, char)
|
||
|
||
row_.append(char)
|
||
|
||
return ''.join(row_)
|
||
|
||
|
||
# a type to represent tiles
|
||
class Tile:
|
||
def __init__(self, key, children,
|
||
x=None, y=None, width=None, height=None, *,
|
||
depth=None,
|
||
attrs=None,
|
||
label=None,
|
||
color=None):
|
||
self.key = key
|
||
if isinstance(children, list):
|
||
self.children = children
|
||
self.value = sum(c.value for c in children)
|
||
else:
|
||
self.children = []
|
||
self.value = children
|
||
|
||
self.x = x
|
||
self.y = y
|
||
self.width = width
|
||
self.height = height
|
||
self.depth = depth
|
||
self.attrs = attrs
|
||
self.label = label
|
||
self.color = color
|
||
|
||
def __repr__(self):
|
||
return 'Tile(%r, %r, %r, %r, %r, %r)' % (
|
||
','.join(self.key), self.value,
|
||
self.x, self.y, self.width, self.height)
|
||
|
||
# recursively build heirarchy
|
||
@staticmethod
|
||
def merge(tiles, prefix=()):
|
||
# organize by 'by' field
|
||
tiles_ = co.OrderedDict()
|
||
for t in tiles:
|
||
if len(prefix)+1 >= len(t.key):
|
||
tiles_[t.key] = t
|
||
else:
|
||
key = prefix + (t.key[len(prefix)],)
|
||
if key not in tiles_:
|
||
tiles_[key] = []
|
||
tiles_[key].append(t)
|
||
|
||
tiles__ = []
|
||
for key, t in tiles_.items():
|
||
if isinstance(t, Tile):
|
||
tiles__.append(t)
|
||
else:
|
||
tiles__.append(Tile.merge(t, key))
|
||
tiles_ = tiles__
|
||
|
||
return Tile(prefix, tiles_, depth=len(prefix))
|
||
|
||
def __lt__(self, other):
|
||
return self.value < other.value
|
||
|
||
# recursive traversals
|
||
def tiles(self):
|
||
yield self
|
||
for child in self.children:
|
||
yield from child.tiles()
|
||
|
||
def leaves(self):
|
||
for t in self.tiles():
|
||
if not t.children:
|
||
yield t
|
||
|
||
# sort recursively
|
||
def sort(self):
|
||
self.children.sort(reverse=True)
|
||
for t in self.children:
|
||
t.sort()
|
||
|
||
# recursive align to int boundaries
|
||
def align(self):
|
||
# this extra +0.1 and using points instead of width/height is
|
||
# to help minimize rounding errors
|
||
x0 = int(self.x+0.1)
|
||
y0 = int(self.y+0.1)
|
||
x1 = int(self.x+self.width+0.1)
|
||
y1 = int(self.y+self.height+0.1)
|
||
self.x = x0
|
||
self.y = y0
|
||
self.width = x1 - x0
|
||
self.height = y1 - y0
|
||
|
||
# recurse
|
||
for t in self.children:
|
||
t.align()
|
||
|
||
# return some interesting info about these tiles
|
||
def stat(self):
|
||
leaves = list(self.leaves())
|
||
mean = self.value / max(len(leaves), 1)
|
||
stddev = mt.sqrt(sum((t.value - mean)**2 for t in leaves)
|
||
/ max(len(leaves), 1))
|
||
min_ = min((t.value for t in leaves), default=0)
|
||
max_ = max((t.value for t in leaves), default=0)
|
||
return {
|
||
'total': self.value,
|
||
'mean': mean,
|
||
'stddev': stddev,
|
||
'min': min_,
|
||
'max': max_,
|
||
}
|
||
|
||
|
||
# bounded division, limits result to dividend, useful for avoiding
|
||
# divide-by-zero issues
|
||
def bdiv(a, b):
|
||
return a / max(b, 1)
|
||
|
||
# our partitioning schemes
|
||
|
||
def partition_binary(children, total, x, y, width, height):
|
||
sums = [0]
|
||
for t in children:
|
||
sums.append(sums[-1] + t.value)
|
||
|
||
# recursively partition into a roughly weight-balanced binary tree
|
||
def partition_(i, j, value, x, y, width, height):
|
||
# no child? guess we're done
|
||
if i == j:
|
||
return
|
||
# single child? assign the partition
|
||
elif i == j-1:
|
||
children[i].x = x
|
||
children[i].y = y
|
||
children[i].width = width
|
||
children[i].height = height
|
||
return
|
||
|
||
# binary search to find best split index
|
||
target = sums[i] + (value / 2)
|
||
k = bisect.bisect(sums, target, i+1, j-1)
|
||
|
||
# nudge split index if it results in less error
|
||
if k > i+1 and (sums[k] - target) > (target - sums[k-1]):
|
||
k -= 1
|
||
|
||
l = sums[k] - sums[i]
|
||
r = value - l
|
||
|
||
# split horizontally?
|
||
if width > height:
|
||
dx = bdiv(sums[k] - sums[i], value) * width
|
||
partition_(i, k, l, x, y, dx, height)
|
||
partition_(k, j, r, x+dx, y, width-dx, height)
|
||
|
||
# split vertically?
|
||
else:
|
||
dy = bdiv(sums[k] - sums[i], value) * height
|
||
partition_(i, k, l, x, y, width, dy)
|
||
partition_(k, j, r, x, y+dy, width, height-dy)
|
||
|
||
partition_(0, len(children), total, x, y, width, height)
|
||
|
||
def partition_slice(children, total, x, y, width, height):
|
||
# give each child a slice
|
||
x_ = x
|
||
for t in children:
|
||
t.x = x_
|
||
t.y = y
|
||
t.width = bdiv(t.value, total) * width
|
||
t.height = height
|
||
|
||
x_ += t.width
|
||
|
||
def partition_dice(children, total, x, y, width, height):
|
||
# give each child a slice
|
||
y_ = y
|
||
for t in children:
|
||
t.x = x
|
||
t.y = y_
|
||
t.width = width
|
||
t.height = bdiv(t.value, total) * height
|
||
|
||
y_ += t.height
|
||
|
||
def partition_squarify(children, total, x, y, width, height, *,
|
||
aspect_ratio=(1,1)):
|
||
# this algorithm is described here:
|
||
# https://www.win.tue.nl/~vanwijk/stm.pdf
|
||
i = 0
|
||
x_ = x
|
||
y_ = y
|
||
total_ = total
|
||
width_ = width
|
||
height_ = height
|
||
# note we don't really care about width vs height until
|
||
# actually slicing
|
||
ratio = max(bdiv(aspect_ratio[0], aspect_ratio[1]),
|
||
bdiv(aspect_ratio[1], aspect_ratio[0]))
|
||
|
||
while i < len(children):
|
||
# calculate initial aspect ratio
|
||
sum_ = children[i].value
|
||
min_ = children[i].value
|
||
max_ = children[i].value
|
||
w = total_ * bdiv(ratio,
|
||
max(bdiv(width_, height_), bdiv(height_, width_)))
|
||
ratio_ = max(bdiv(max_*w, sum_**2), bdiv(sum_**2, min_*w))
|
||
|
||
# keep adding children to this row/col until it starts to hurt
|
||
# our aspect ratio
|
||
j = i + 1
|
||
while j < len(children):
|
||
sum__ = sum_ + children[j].value
|
||
min__ = min(min_, children[j].value)
|
||
max__ = max(max_, children[j].value)
|
||
ratio__ = max(bdiv(max__*w, sum__**2), bdiv(sum__**2, min__*w))
|
||
if ratio__ > ratio_:
|
||
break
|
||
|
||
sum_ = sum__
|
||
min_ = min__
|
||
max_ = max__
|
||
ratio_ = ratio__
|
||
j += 1
|
||
|
||
# vertical col? dice horizontally?
|
||
if width_ > height_:
|
||
dx = bdiv(sum_, total_) * width_
|
||
partition_dice(children[i:j], sum_, x_, y_, dx, height_)
|
||
x_ += dx
|
||
width_ -= dx
|
||
|
||
# horizontal row? slice vertically?
|
||
else:
|
||
dy = bdiv(sum_, total_) * height_
|
||
partition_slice(children[i:j], sum_, x_, y_, width_, dy)
|
||
y_ += dy
|
||
height_ -= dy
|
||
|
||
# start partitioning the other direction
|
||
total_ -= sum_
|
||
i = j
|
||
|
||
|
||
def main(csv_paths, *,
|
||
by=None,
|
||
fields=None,
|
||
defines=[],
|
||
labels=[],
|
||
chars=[],
|
||
colors=[],
|
||
color=False,
|
||
dots=False,
|
||
braille=False,
|
||
width=None,
|
||
height=None,
|
||
no_header=False,
|
||
no_stats=False,
|
||
to_scale=None,
|
||
aspect_ratio=(1,1),
|
||
tiny=False,
|
||
title=None,
|
||
padding=0,
|
||
label=False,
|
||
**args):
|
||
# figure out what color should be
|
||
if color == 'auto':
|
||
color = sys.stdout.isatty()
|
||
elif color == 'always':
|
||
color = True
|
||
else:
|
||
color = False
|
||
|
||
# tiny mode?
|
||
if tiny:
|
||
if to_scale is None:
|
||
to_scale = 1
|
||
no_header = True
|
||
|
||
# what chars/colors/labels to use?
|
||
chars_ = []
|
||
for char in chars:
|
||
if isinstance(char, tuple):
|
||
chars_.extend((char[0], c) for c in psplit(char[1]))
|
||
else:
|
||
chars_.extend(psplit(char))
|
||
chars_ = Attr(chars_, defaults=CHARS)
|
||
|
||
colors_ = Attr(colors, defaults=COLORS)
|
||
|
||
labels_ = Attr(labels)
|
||
|
||
# figure out width/height
|
||
if width is None:
|
||
width_ = min(80, shutil.get_terminal_size((80, 5))[0])
|
||
elif width:
|
||
width_ = width
|
||
else:
|
||
width_ = shutil.get_terminal_size((80, 5))[0]
|
||
|
||
if height is None:
|
||
height_ = (2
|
||
if not no_header
|
||
and (title is not None or not no_stats)
|
||
else 1)
|
||
elif height:
|
||
height_ = height
|
||
else:
|
||
height_ = shutil.get_terminal_size((80, 5))[1] - 1
|
||
|
||
# first collect results from CSV files
|
||
fields_, results = collect(csv_paths, defines)
|
||
|
||
if not by and not fields:
|
||
print("error: needs --by or --fields to figure out fields",
|
||
file=sys.stderr)
|
||
sys.exit(-1)
|
||
|
||
# if by not specified, guess it's anything not in fields/labels/defines
|
||
if not by:
|
||
by = [k for k in fields_
|
||
if k not in (fields or [])
|
||
and k not in (labels or [])
|
||
and not any(k == k_ for k_, _ in defines)]
|
||
|
||
# if fields not specified, guess it's anything not in by/labels/defines
|
||
if not fields:
|
||
fields = [k for k in fields_
|
||
if k not in (by or [])
|
||
and k not in (labels or [])
|
||
and not any(k == k_ for k_, _ in defines)]
|
||
|
||
# then extract the requested dataset
|
||
datasets, dataattrs = fold(results, by, fields, defines)
|
||
|
||
# build tile heirarchy
|
||
children = []
|
||
for key, dataset in datasets.items():
|
||
for i, v in enumerate(dataset):
|
||
children.append(Tile(
|
||
key + ((str(i),) if len(dataset) > 1 else ()),
|
||
v,
|
||
attrs=dataattrs[key]))
|
||
|
||
tile = Tile.merge(children)
|
||
|
||
# merge attrs
|
||
for t in tile.tiles():
|
||
if t.children:
|
||
t.attrs = {k: v
|
||
for t_ in t.leaves()
|
||
for k, v in t_.attrs.items()}
|
||
# also sum fields here in case they're used by % modifiers,
|
||
# note other fields are _not_ summed
|
||
for k in fields:
|
||
t.attrs[k] = sum(t_.value
|
||
for t_ in t.leaves()
|
||
if len(fields) == 1 or t_.key[len(by)] == k)
|
||
|
||
# assign colors/labels before sorting to keep things reproducible
|
||
|
||
# use colors for top of tree
|
||
for i, t in enumerate(tile.children):
|
||
for t_ in t.tiles():
|
||
t_.color = punescape(colors_[i, t.key], t_.attrs)
|
||
|
||
# and chars/labels for bottom of tree
|
||
for i, t in enumerate(tile.leaves()):
|
||
t.char = punescape(chars_[i, t.key], t.attrs)[0] # limit to 1 char
|
||
if (i, t.key) in labels_:
|
||
t.label = punescape(labels_[i, t.key], t.attrs)
|
||
|
||
# scale width/height if requested now that we have our data
|
||
if (to_scale
|
||
and (width is None or height is None)
|
||
and tile.value != 0):
|
||
# scale if needed
|
||
if braille:
|
||
xscale, yscale = 2, 4
|
||
elif dots:
|
||
xscale, yscale = 1, 2
|
||
else:
|
||
xscale, yscale = 1, 1
|
||
|
||
# scale width only
|
||
if height is not None:
|
||
width_ = mt.ceil(
|
||
((tile.value * to_scale) / (height_*yscale))
|
||
/ xscale)
|
||
# scale height only
|
||
elif width is not None:
|
||
height_ = mt.ceil(
|
||
((tile.value * to_scale) / (width_*xscale))
|
||
/ yscale)
|
||
# scale based on aspect-ratio
|
||
else:
|
||
width_ = mt.ceil(
|
||
(mt.sqrt(tile.value * to_scale)
|
||
* (aspect_ratio[0] / aspect_ratio[1]))
|
||
/ xscale)
|
||
height_ = mt.ceil(
|
||
((tile.value * to_scale) / (width_*xscale))
|
||
/ yscale)
|
||
|
||
# create a canvas
|
||
canvas = Canvas(
|
||
width_,
|
||
height_ - (1
|
||
if not no_header
|
||
and (title is not None or not no_stats)
|
||
else 0),
|
||
color=color,
|
||
dots=dots,
|
||
braille=braille)
|
||
|
||
# sort
|
||
tile.sort()
|
||
|
||
# recursively partition tiles
|
||
tile.x = 0
|
||
tile.y = 0
|
||
tile.width = canvas.width
|
||
tile.height = canvas.height
|
||
def partition(tile):
|
||
if tile.depth == 0:
|
||
# apply top padding
|
||
tile.x += padding
|
||
tile.y += padding
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
# apply bottom padding
|
||
if not tile.children:
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
|
||
x__ = tile.x
|
||
y__ = tile.y
|
||
width__ = tile.width
|
||
height__ = tile.height
|
||
|
||
else:
|
||
# apply bottom padding
|
||
if not tile.children:
|
||
tile.width -= min(padding, tile.width)
|
||
tile.height -= min(padding, tile.height)
|
||
|
||
x__ = tile.x
|
||
y__ = tile.y
|
||
width__ = tile.width
|
||
height__ = tile.height
|
||
|
||
# partition via requested scheme
|
||
if tile.children:
|
||
if args.get('binary'):
|
||
partition_binary(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif (args.get('slice')
|
||
or (args.get('slice_and_dice') and (tile.depth & 1) == 0)
|
||
or (args.get('dice_and_slice') and (tile.depth & 1) == 1)):
|
||
partition_slice(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif (args.get('dice')
|
||
or (args.get('slice_and_dice') and (tile.depth & 1) == 1)
|
||
or (args.get('dice_and_slice') and (tile.depth & 1) == 0)):
|
||
partition_dice(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif args.get('squarify'):
|
||
partition_squarify(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
elif args.get('rectify'):
|
||
partition_squarify(tile.children, tile.value,
|
||
x__, y__, width__, height__,
|
||
aspect_ratio=(width_, height_))
|
||
else:
|
||
# default to binary partitioning
|
||
partition_binary(tile.children, tile.value,
|
||
x__, y__, width__, height__)
|
||
|
||
# recursively partition
|
||
for t in tile.children:
|
||
partition(t)
|
||
|
||
partition(tile)
|
||
|
||
# align to pixel boundaries
|
||
tile.align()
|
||
|
||
# render to canvas
|
||
labels__ = []
|
||
for t in tile.leaves():
|
||
x__ = t.x
|
||
y__ = t.y
|
||
width__ = t.width
|
||
height__ = t.height
|
||
# skip anything with zero weight/height after aligning things
|
||
if width__ == 0 or height__ == 0:
|
||
continue
|
||
|
||
# flip y
|
||
y__ = canvas.height - (y__+height__)
|
||
|
||
canvas.rect(x__, y__, width__, height__,
|
||
# default to first letter in each label/key
|
||
char=(True if braille or dots
|
||
else t.label[0]
|
||
if chars is None
|
||
and t.label is not None
|
||
else t.key[-1][0]
|
||
if chars is None
|
||
and t.key
|
||
and t.key[-1]
|
||
else t.char if t.char is not None else chars_[0]),
|
||
color=t.color if t.color is not None else colors_[0])
|
||
|
||
if label:
|
||
if t.label is not None:
|
||
label__ = t.label
|
||
else:
|
||
label__ = ','.join(t.key)
|
||
|
||
# render these later so they get priority
|
||
labels__.append((x__, y__+height__-1, label__,
|
||
width__, height__))
|
||
|
||
for label__ in labels__:
|
||
canvas.label(*label__)
|
||
|
||
# print some summary info
|
||
if not no_header:
|
||
if title:
|
||
title_ = punescape(title, tile.attrs)
|
||
if not no_stats:
|
||
stat = tile.stat()
|
||
stat_ = 'total %d, avg %d +-%dσ, min %d, max %d' % (
|
||
stat['total'],
|
||
stat['mean'], stat['stddev'],
|
||
stat['min'], stat['max'])
|
||
if title and not no_stats:
|
||
print('%s%*s%s' % (
|
||
title_,
|
||
max(width_-len(stat_)-len(title_), 0), ' ',
|
||
stat_))
|
||
elif title:
|
||
print(title_)
|
||
elif not no_stats:
|
||
print(stat_)
|
||
|
||
# draw canvas
|
||
for row in range(canvas.height//canvas.yscale):
|
||
line = canvas.draw(row)
|
||
print(line)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import argparse
|
||
import sys
|
||
parser = argparse.ArgumentParser(
|
||
description="Render CSV files as a treemap.",
|
||
allow_abbrev=False)
|
||
parser.add_argument(
|
||
'csv_paths',
|
||
nargs='*',
|
||
help="Input *.csv files.")
|
||
parser.add_argument(
|
||
'-b', '--by',
|
||
action='append',
|
||
help="Group by this field.")
|
||
parser.add_argument(
|
||
'-f', '--field',
|
||
dest='fields',
|
||
action='append',
|
||
help="Field to use for tile sizes.")
|
||
parser.add_argument(
|
||
'-D', '--define',
|
||
dest='defines',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda k, vs: (
|
||
k.strip(),
|
||
{v.strip() for v in vs.split(',')})
|
||
)(*x.split('=', 1)),
|
||
help="Only include results where this field is this value.")
|
||
parser.add_argument(
|
||
'-L', '--add-label',
|
||
dest='labels',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda ks, v: (
|
||
tuple(k.strip() for k in ks.split(',')),
|
||
v.strip())
|
||
)(*x.split('=', 1))
|
||
if '=' in x else x.strip(),
|
||
help="Add a label to use. Can be assigned to a specific group "
|
||
"where a group is the comma-separated 'by' fields. Accepts %% "
|
||
"modifiers.")
|
||
parser.add_argument(
|
||
'-*', '--add-char', '--chars',
|
||
dest='chars',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda ks, v: (
|
||
tuple(k.strip() for k in ks.split(',')),
|
||
v.strip())
|
||
)(*x.split('=', 1))
|
||
if '=' in x else x.strip(),
|
||
help="Add characters to use. Can be assigned to a specific group "
|
||
"where a group is the comma-separated 'by' fields. Accepts %% "
|
||
"modifiers.")
|
||
parser.add_argument(
|
||
'-C', '--add-color',
|
||
dest='colors',
|
||
action='append',
|
||
type=lambda x: (
|
||
lambda ks, v: (
|
||
tuple(k.strip() for k in ks.split(',')),
|
||
v.strip())
|
||
)(*x.split('=', 1))
|
||
if '=' in x else x.strip(),
|
||
help="Add a color to use. Can be assigned to a specific group "
|
||
"where a group is the comma-separated 'by' fields. Accepts %% "
|
||
"modifiers.")
|
||
parser.add_argument(
|
||
'--color',
|
||
choices=['never', 'always', 'auto'],
|
||
default='auto',
|
||
help="When to use terminal colors. Defaults to 'auto'.")
|
||
parser.add_argument(
|
||
'-:', '--dots',
|
||
action='store_true',
|
||
help="Use 1x2 ascii dot characters.")
|
||
parser.add_argument(
|
||
'-⣿', '--braille',
|
||
action='store_true',
|
||
help="Use 2x4 unicode braille characters. Note that braille "
|
||
"characters sometimes suffer from inconsistent widths.")
|
||
parser.add_argument(
|
||
'-W', '--width',
|
||
nargs='?',
|
||
type=lambda x: int(x, 0),
|
||
const=0,
|
||
help="Width in columns. 0 uses the terminal width. Defaults to "
|
||
"min(terminal, 80).")
|
||
parser.add_argument(
|
||
'-H', '--height',
|
||
nargs='?',
|
||
type=lambda x: int(x, 0),
|
||
const=0,
|
||
help="Height in rows. 0 uses the terminal height. Defaults to 1.")
|
||
parser.add_argument(
|
||
'-N', '--no-header',
|
||
action='store_true',
|
||
help="Don't show the header.")
|
||
parser.add_argument(
|
||
'--no-stats',
|
||
action='store_true',
|
||
help="Don't show data stats in the header.")
|
||
parser.add_argument(
|
||
'--binary',
|
||
action='store_true',
|
||
help="Use the binary partitioning scheme. This attempts to "
|
||
"recursively subdivide the tiles into a roughly "
|
||
"weight-balanced binary tree. This is the default.")
|
||
parser.add_argument(
|
||
'--slice',
|
||
action='store_true',
|
||
help="Use the slice partitioning scheme. This simply slices "
|
||
"tiles vertically.")
|
||
parser.add_argument(
|
||
'--dice',
|
||
action='store_true',
|
||
help="Use the dice partitioning scheme. This simply slices "
|
||
"tiles horizontally.")
|
||
parser.add_argument(
|
||
'--slice-and-dice',
|
||
action='store_true',
|
||
help="Use the slice-and-dice partitioning scheme. This "
|
||
"alternates between slicing and dicing each layer.")
|
||
parser.add_argument(
|
||
'--dice-and-slice',
|
||
action='store_true',
|
||
help="Use the dice-and-slice partitioning scheme. This is like "
|
||
"slice-and-dice, but flipped.")
|
||
parser.add_argument(
|
||
'--squarify',
|
||
action='store_true',
|
||
help="Use the squarify partitioning scheme. This is a greedy "
|
||
"algorithm created by Mark Bruls et al that tries to "
|
||
"minimize tile aspect ratios.")
|
||
parser.add_argument(
|
||
'--rectify',
|
||
action='store_true',
|
||
help="Use the rectify partitioning scheme. This is like "
|
||
"squarify, but tries to match the aspect ratio of the "
|
||
"window.")
|
||
parser.add_argument(
|
||
'--to-scale',
|
||
nargs='?',
|
||
type=lambda x: (
|
||
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
|
||
if ':' in x else float(x)),
|
||
const=1,
|
||
help="Scale the resulting treemap such that 1 pixel ~= 1/scale "
|
||
"units. Defaults to scale=1. ")
|
||
parser.add_argument(
|
||
'-R', '--aspect-ratio',
|
||
type=lambda x: (
|
||
tuple(float(v) for v in x.split(':', 1))
|
||
if ':' in x else (float(x), 1)),
|
||
help="Aspect ratio to use with --to-scale. Defaults to 1:1.")
|
||
parser.add_argument(
|
||
'-t', '--tiny',
|
||
action='store_true',
|
||
help="Tiny mode, alias for --to-scale=1 and --no-header.")
|
||
parser.add_argument(
|
||
'--title',
|
||
help="Add a title. Accepts %% modifiers.")
|
||
parser.add_argument(
|
||
'--padding',
|
||
type=float,
|
||
help="Padding to add to each level of the treemap. Defaults to 0.")
|
||
parser.add_argument(
|
||
'-l', '--label',
|
||
action='store_true',
|
||
help="Render labels.")
|
||
sys.exit(main(**{k: v
|
||
for k, v in vars(parser.parse_intermixed_args()).items()
|
||
if v is not None}))
|