Files
littlefs/scripts/csv.py
Christopher Haster 1d8d0785fc scripts: More flags to control table renderer, -Q/--small-table, etc
Instead of trying to be too clever, this just adds a bunch of small
flags to control parts of table rendering:

- --no-header - Don't show the header.
- --small-header - Don't show by field names.
- --no-total - Don't show the total.
- -Q/--small-table - Equivalent to --small-header + --no-total.

Note that -Q/--small-table replaces the previous -Y/--summary +
-c/--compare hack, while also allowing a similar table style for
non-compare results.
2024-12-18 14:03:35 -06:00

2053 lines
62 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Script to manipulate CSV files.
#
# Example:
# ./scripts/csv.py lfs.code.csv lfs.stack.csv \
# -bfunction -fcode -fstack='max(stack)'
#
# Copyright (c) 2022, The littlefs authors.
# SPDX-License-Identifier: BSD-3-Clause
#
# prevent local imports
__import__('sys').path.pop(0)
import collections as co
import csv
import functools as ft
import itertools as it
import math as mt
import os
import re
import sys
# various field types
# integer fields
class RInt(co.namedtuple('RInt', 'x')):
__slots__ = ()
def __new__(cls, x=0):
if isinstance(x, RInt):
return x
if isinstance(x, str):
try:
x = int(x, 0)
except ValueError:
# also accept +-∞ and +-inf
if re.match('^\s*\+?\s*(?:∞|inf)\s*$', x):
x = mt.inf
elif re.match('^\s*-\s*(?:∞|inf)\s*$', x):
x = -mt.inf
else:
raise
if not (isinstance(x, int) or mt.isinf(x)):
x = int(x)
return super().__new__(cls, x)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.x)
def __str__(self):
if self.x == mt.inf:
return ''
elif self.x == -mt.inf:
return '-∞'
else:
return str(self.x)
def __bool__(self):
return bool(self.x)
def __int__(self):
assert not mt.isinf(self.x)
return self.x
def __float__(self):
return float(self.x)
none = '%7s' % '-'
def table(self):
return '%7s' % (self,)
def diff(self, other):
new = self.x if self else 0
old = other.x if other else 0
diff = new - old
if diff == +mt.inf:
return '%7s' % '+∞'
elif diff == -mt.inf:
return '%7s' % '-∞'
else:
return '%+7d' % diff
def ratio(self, other):
new = self.x if self else 0
old = other.x if other else 0
if mt.isinf(new) and mt.isinf(old):
return 0.0
elif mt.isinf(new):
return +mt.inf
elif mt.isinf(old):
return -mt.inf
elif not old and not new:
return 0.0
elif not old:
return +mt.inf
else:
return (new-old) / old
def __pos__(self):
return self.__class__(+self.x)
def __neg__(self):
return self.__class__(-self.x)
def __abs__(self):
return self.__class__(abs(self.x))
def __add__(self, other):
return self.__class__(self.x + other.x)
def __sub__(self, other):
return self.__class__(self.x - other.x)
def __mul__(self, other):
return self.__class__(self.x * other.x)
def __truediv__(self, other):
if not other:
if self >= self.__class__(0):
return self.__class__(+mt.inf)
else:
return self.__class__(-mt.inf)
return self.__class__(self.x // other.x)
def __mod__(self, other):
return self.__class__(self.x % other.x)
# float fields
class RFloat(co.namedtuple('RFloat', 'x')):
__slots__ = ()
def __new__(cls, x=0.0):
if isinstance(x, RFloat):
return x
if isinstance(x, str):
try:
x = float(x)
except ValueError:
# also accept +-∞ and +-inf
if re.match('^\s*\+?\s*(?:∞|inf)\s*$', x):
x = mt.inf
elif re.match('^\s*-\s*(?:∞|inf)\s*$', x):
x = -mt.inf
else:
raise
if not isinstance(x, float):
x = float(x)
return super().__new__(cls, x)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.x)
def __str__(self):
if self.x == mt.inf:
return ''
elif self.x == -mt.inf:
return '-∞'
else:
return '%.1f' % self.x
def __bool__(self):
return bool(self.x)
def __int__(self):
return int(self.x)
def __float__(self):
return float(self.x)
none = '%7s' % '-'
def table(self):
return '%7s' % (self,)
def diff(self, other):
new = self.x if self else 0
old = other.x if other else 0
diff = new - old
if diff == +mt.inf:
return '%7s' % '+∞'
elif diff == -mt.inf:
return '%7s' % '-∞'
else:
return '%+7.1f' % diff
def ratio(self, other):
new = self.x if self else 0
old = other.x if other else 0
if mt.isinf(new) and mt.isinf(old):
return 0.0
elif mt.isinf(new):
return +mt.inf
elif mt.isinf(old):
return -mt.inf
elif not old and not new:
return 0.0
elif not old:
return +mt.inf
else:
return (new-old) / old
def __pos__(self):
return self.__class__(+self.x)
def __neg__(self):
return self.__class__(-self.x)
def __abs__(self):
return self.__class__(abs(self.x))
def __add__(self, other):
return self.__class__(self.x + other.x)
def __sub__(self, other):
return self.__class__(self.x - other.x)
def __mul__(self, other):
return self.__class__(self.x * other.x)
def __truediv__(self, other):
if not other:
if self >= self.__class__(0):
return self.__class__(+mt.inf)
else:
return self.__class__(-mt.inf)
return self.__class__(self.x / other.x)
def __mod__(self, other):
return self.__class__(self.x % other.x)
# fractional fields, a/b
class RFrac(co.namedtuple('RFrac', 'a,b')):
__slots__ = ()
def __new__(cls, a=0, b=None):
if isinstance(a, RFrac) and b is None:
return a
if isinstance(a, str) and b is None:
a, b = a.split('/', 1)
if b is None:
b = a
return super().__new__(cls, RInt(a), RInt(b))
def __repr__(self):
return '%s(%r, %r)' % (self.__class__.__name__, self.a.x, self.b.x)
def __str__(self):
return '%s/%s' % (self.a, self.b)
def __bool__(self):
return bool(self.a)
def __int__(self):
return int(self.a)
def __float__(self):
return float(self.a)
none = '%11s' % '-'
def table(self):
return '%11s' % (self,)
def notes(self):
t = self.a.x/self.b.x if self.b.x else 1.0
return ['%' if t == +mt.inf
else '-∞%' if t == -mt.inf
else '%.1f%%' % (100*t)]
def diff(self, other):
new_a, new_b = self if self else (RInt(0), RInt(0))
old_a, old_b = other if other else (RInt(0), RInt(0))
return '%11s' % ('%s/%s' % (
new_a.diff(old_a).strip(),
new_b.diff(old_b).strip()))
def ratio(self, other):
new_a, new_b = self if self else (RInt(0), RInt(0))
old_a, old_b = other if other else (RInt(0), RInt(0))
new = new_a.x/new_b.x if new_b.x else 1.0
old = old_a.x/old_b.x if old_b.x else 1.0
return new - old
def __pos__(self):
return self.__class__(+self.a, +self.b)
def __neg__(self):
return self.__class__(-self.a, -self.b)
def __abs__(self):
return self.__class__(abs(self.a), abs(self.b))
def __add__(self, other):
return self.__class__(self.a + other.a, self.b + other.b)
def __sub__(self, other):
return self.__class__(self.a - other.a, self.b - other.b)
def __mul__(self, other):
return self.__class__(self.a * other.a, self.b * other.b)
def __truediv__(self, other):
return self.__class__(self.a / other.a, self.b / other.b)
def __mod__(self, other):
return self.__class__(self.a % other.a, self.b % other.b)
def __eq__(self, other):
self_a, self_b = self if self.b.x else (RInt(1), RInt(1))
other_a, other_b = other if other.b.x else (RInt(1), RInt(1))
return self_a * other_b == other_a * self_b
def __ne__(self, other):
return not self.__eq__(other)
def __lt__(self, other):
self_a, self_b = self if self.b.x else (RInt(1), RInt(1))
other_a, other_b = other if other.b.x else (RInt(1), RInt(1))
return self_a * other_b < other_a * self_b
def __gt__(self, other):
return self.__class__.__lt__(other, self)
def __le__(self, other):
return not self.__gt__(other)
def __ge__(self, other):
return not self.__lt__(other)
# various fold operations
class RSum:
def __call__(self, xs):
return sum(xs[1:], start=xs[0])
class RProd:
def __call__(self, xs):
return mt.prod(xs[1:], start=xs[0])
class RMin:
def __call__(self, xs):
return min(xs)
class RMax:
def __call__(self, xs):
return max(xs)
class RAvg:
def __call__(self, xs):
return RFloat(sum(float(x) for x in xs) / len(xs))
class RStddev:
def __call__(self, xs):
avg = sum(float(x) for x in xs) / len(xs)
return RFloat(mt.sqrt(sum((float(x) - avg)**2 for x in xs) / len(xs)))
class RGMean:
def __call__(self, xs):
return RFloat(mt.prod(float(x) for x in xs)**(1/len(xs)))
class RGStddev:
def __call__(self, xs):
gmean = mt.prod(float(x) for x in xs)**(1/len(xs))
return RFloat(
mt.exp(mt.sqrt(
sum(mt.log(float(x)/gmean)**2 for x in xs) / len(xs)))
if gmean else mt.inf)
# a simple general-purpose parser class
#
# basically just because memoryview doesn't support strs
class Parser:
def __init__(self, data, ws='\s*', ws_flags=0):
self.data = data
self.i = 0
self.m = None
# also consume whitespace
self.ws = re.compile(ws, ws_flags)
self.i = self.ws.match(self.data, self.i).end()
def __repr__(self):
if len(self.data) - self.i <= 32:
return repr(self.data[self.i:])
else:
return "%s..." % repr(self.data[self.i:self.i+32])[:32]
def __str__(self):
return self.data[self.i:]
def __len__(self):
return len(self.data) - self.i
def __bool__(self):
return self.i != len(self.data)
def match(self, pattern, flags=0):
# compile so we can use the pos arg, this is still cached
self.m = re.compile(pattern, flags).match(self.data, self.i)
return self.m
def group(self, *groups):
return self.m.group(*groups)
def chomp(self, *groups):
g = self.group(*groups)
self.i = self.m.end()
# also consume whitespace
self.i = self.ws.match(self.data, self.i).end()
return g
class Error(Exception):
pass
def chompmatch(self, pattern, flags=0, *groups):
if not self.match(pattern, flags):
raise Parser.Error("expected %r, found %r" % (pattern, self))
return self.chomp(*groups)
def unexpected(self):
raise Parser.Error("unexpected %r" % self)
def lookahead(self):
# push state on the stack
if not hasattr(self, 'stack'):
self.stack = []
self.stack.append((self.i, self.m))
return self
def consume(self):
# pop and use new state
self.stack.pop()
def discard(self):
# pop and discard new state
self.i, self.m = self.stack.pop()
def __enter__(self):
return self
def __exit__(self, et, ev, tb):
# keep new state if no exception occured
if et is None:
self.consume()
else:
self.discard()
# a lazily-evaluated field expression
class RExpr:
# expr parsing/typechecking/etc errors
class Error(Exception):
pass
# expr node base class
class Expr:
def __init__(self, *args):
for k, v in zip('abcdefghijklmnopqrstuvwxyz', args):
setattr(self, k, v)
def __iter__(self):
return (getattr(self, k)
for k in it.takewhile(
lambda k: hasattr(self, k),
'abcdefghijklmnopqrstuvwxyz'))
def __len__(self):
return sum(1 for _ in self)
def __repr__(self):
return '%s(%s)' % (
self.__class__.__name__,
','.join(repr(v) for v in self))
def fields(self):
return set(it.chain.from_iterable(v.fields() for v in self))
def type(self, types={}):
t = self.a.type(types)
if not all(t == v.type(types) for v in it.islice(self, 1, None)):
raise RExpr.Error("mismatched types? %r" % self)
return t
def fold(self, types={}):
return self.a.fold(types)
def eval(self, fields={}):
return self.a.eval(fields)
# expr nodes
# literal exprs
class StrLit(Expr):
def fields(self):
return set()
def eval(self, fields={}):
return self.a
class IntLit(Expr):
def fields(self):
return set()
def type(self, types={}):
return RInt
def fold(self, types={}):
return RSum, RInt
def eval(self, fields={}):
return self.a
class FloatLit(Expr):
def fields(self):
return set()
def type(self, types={}):
return RFloat
def fold(self, types={}):
return RSum, RFloat
def eval(self, fields={}):
return self.a
# field expr
class Field(Expr):
def fields(self):
return {self.a}
def type(self, types={}):
if self.a not in types:
raise RExpr.Error("untyped field? %s" % self.a)
return types[self.a]
def fold(self, types={}):
if self.a not in types:
raise RExpr.Error("unfoldable field? %s" % self.a)
return RSum, types[self.a]
def eval(self, fields={}):
if self.a not in fields:
raise RExpr.Error("unknown field? %s" % self.a)
return fields[self.a]
# func expr helper
def func(name, args="a"):
def func(f):
f._func = name
f._fargs = args
return f
return func
class Funcs:
@ft.cache
def __get__(self, _, cls):
return {x._func: x
for x in cls.__dict__.values()
if hasattr(x, '_func')}
funcs = Funcs()
# type exprs
@func('int', 'a')
class Int(Expr):
"""Convert to an integer"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
return RInt(self.a.eval(fields))
@func('float', 'a')
class Float(Expr):
"""Convert to a float"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
return RFloat(self.a.eval(fields))
@func('frac', 'a[, b]')
class Frac(Expr):
"""Convert to a fraction"""
def type(self, types={}):
return RFrac
def eval(self, fields={}):
if len(self) == 1:
return RFrac(self.a.eval(fields))
else:
return RFrac(self.a.eval(fields), self.b.eval(fields))
# fold exprs
@func('sum', 'a[, ...]')
class Sum(Expr):
"""Find the sum of this column or fields"""
def fold(self, types={}):
if len(self) == 1:
return RSum, self.a.type(types)
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RSum()([v.eval(fields) for v in self])
@func('prod', 'a[, ...]')
class Prod(Expr):
"""Find the product of this column or fields"""
def fold(self, types={}):
if len(self) == 1:
return Prod, self.a.type(types)
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return Prod()([v.eval(fields) for v in self])
@func('min', 'a[, ...]')
class Min(Expr):
"""Find the minimum of this column or fields"""
def fold(self, types={}):
if len(self) == 1:
return RMin, self.a.type(types)
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RMin()([v.eval(fields) for v in self])
@func('max', 'a[, ...]')
class Max(Expr):
"""Find the maximum of this column or fields"""
def fold(self, types={}):
if len(self) == 1:
return RMax, self.a.type(types)
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RMax()([v.eval(fields) for v in self])
@func('avg', 'a[, ...]')
class Avg(Expr):
"""Find the average of this column or fields"""
def type(self, types={}):
if len(self) == 1:
return self.a.type(types)
else:
return RFloat
def fold(self, types={}):
if len(self) == 1:
return RAvg, RFloat
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RAvg()([v.eval(fields) for v in self])
@func('stddev', 'a[, ...]')
class Stddev(Expr):
"""Find the standard deviation of this column or fields"""
def type(self, types={}):
if len(self) == 1:
return self.a.type(types)
else:
return RFloat
def fold(self, types={}):
if len(self) == 1:
return RStddev, RFloat
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RStddev()([v.eval(fields) for v in self])
@func('gmean', 'a[, ...]')
class GMean(Expr):
"""Find the geometric mean of this column or fields"""
def type(self, types={}):
if len(self) == 1:
return self.a.type(types)
else:
return RFloat
def fold(self, types={}):
if len(self) == 1:
return RGMean, RFloat
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RGMean()([v.eval(fields) for v in self])
@func('gstddev', 'a[, ...]')
class GStddev(Expr):
"""Find the geometric stddev of this column or fields"""
def type(self, types={}):
if len(self) == 1:
return self.a.type(types)
else:
return RFloat
def fold(self, types={}):
if len(self) == 1:
return RGStddev, RFloat
else:
return self.a.fold(types)
def eval(self, fields={}):
if len(self) == 1:
return self.a.eval(fields)
else:
return RGStddev()([v.eval(fields) for v in self])
# functions
@func('ratio', 'a')
class Ratio(Expr):
"""Ratio of a fraction as a float"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
v = RFrac(self.a.eval(fields))
if not float(v.b):
return RFloat(1)
else:
return RFloat(float(v.a) / float(v.b))
@func('total', 'a')
class Total(Expr):
"""Total part of a fraction"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
return RFrac(self.a.eval(fields)).b
@func('abs', 'a')
class Abs(Expr):
"""Absolute value"""
def eval(self, fields={}):
return abs(self.a.eval(fields))
@func('ceil', 'a')
class Ceil(Expr):
"""Round up to nearest integer"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
return RFloat(mt.ceil(float(self.a.eval(fields))))
@func('floor', 'a')
class Floor(Expr):
"""Round down to nearest integer"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
return RFloat(mt.floor(float(self.a.eval(fields))))
@func('log', 'a[, b]')
class Log(Expr):
"""Log of a with base e, or log of a with base b"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
if len(self) == 1:
return RFloat(mt.log(
float(self.a.eval(fields))))
else:
return RFloat(mt.log(
float(self.a.eval(fields)),
float(self.b.eval(fields))))
@func('pow', 'a[, b]')
class Pow(Expr):
"""e to the power of a, or a to the power of b"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
if len(self) == 1:
return RFloat(mt.exp(
float(self.a.eval(fields))))
else:
return RFloat(mt.pow(
float(self.a.eval(fields)),
float(self.b.eval(fields))))
@func('sqrt', 'a')
class Sqrt(Expr):
"""Square root"""
def type(self, types={}):
return RFloat
def eval(self, fields={}):
return RFloat(mt.sqrt(float(self.a.eval(fields))))
@func('isint', 'a')
class IsInt(Expr):
"""1 if a is an integer, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if isinstance(self.a.eval(fields), RInt):
return RInt(1)
else:
return RInt(0)
@func('isfloat', 'a')
class IsFloat(Expr):
"""1 if a is a float, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if isinstance(self.a.eval(fields), RFloat):
return RInt(1)
else:
return RInt(0)
@func('isfrac', 'a')
class IsFrac(Expr):
"""1 if a is a fraction, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if isinstance(self.a.eval(fields), RFrac):
return RInt(1)
else:
return RInt(0)
@func('isinf', 'a')
class IsInf(Expr):
"""1 if a is infinite, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if mt.isinf(self.a.eval(fields)):
return RInt(1)
else:
return RInt(0)
@func('isnan')
class IsNan(Expr):
"""1 if a is a NAN, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if mt.isnan(self.a.eval(fields)):
return RInt(1)
else:
return RInt(0)
# unary expr helper
def uop(op):
def uop(f):
f._uop = op
return f
return uop
class UOps:
@ft.cache
def __get__(self, _, cls):
return {x._uop: x
for x in cls.__dict__.values()
if hasattr(x, '_uop')}
uops = UOps()
# unary ops
@uop('+')
class Pos(Expr):
"""Non-negation"""
def eval(self, fields={}):
return +self.a.eval(fields)
@uop('-')
class Neg(Expr):
"""Negation"""
def eval(self, fields={}):
return -self.a.eval(fields)
@uop('!')
class NotNot(Expr):
"""1 if a is zero, otherwise 0"""
def type(self, types={}):
return RInt
def eval(self, fields={}):
if self.a.eval(fields):
return RInt(0)
else:
return RInt(1)
# binary expr help
def bop(op, prec):
def bop(f):
f._bop = op
f._bprec = prec
return f
return bop
class BOps:
@ft.cache
def __get__(self, _, cls):
return {x._bop: x
for x in cls.__dict__.values()
if hasattr(x, '_bop')}
bops = BOps()
class BPrecs:
@ft.cache
def __get__(self, _, cls):
return {x._bop: x._bprec
for x in cls.__dict__.values()
if hasattr(x, '_bop')}
bprecs = BPrecs()
# binary ops
@bop('*', 10)
class Mul(Expr):
"""Multiplication"""
def eval(self, fields={}):
return self.a.eval(fields) * self.b.eval(fields)
@bop('/', 10)
class Div(Expr):
"""Division"""
def eval(self, fields={}):
return self.a.eval(fields) / self.b.eval(fields)
@bop('%', 10)
class Mod(Expr):
"""Modulo"""
def eval(self, fields={}):
return self.a.eval(fields) % self.b.eval(fields)
@bop('+', 9)
class Add(Expr):
"""Addition"""
def eval(self, fields={}):
a = self.a.eval(fields)
b = self.b.eval(fields)
if isinstance(a, str) or isinstance(b, str):
return str(a) + str(b)
else:
return a + b
@bop('-', 9)
class Sub(Expr):
"""Subtraction"""
def eval(self, fields={}):
return self.a.eval(fields) - self.b.eval(fields)
@bop('==', 4)
class Eq(Expr):
"""1 if a equals b, otherwise 0"""
def eval(self, fields={}):
if self.a.eval(fields) == self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('!=', 4)
class Ne(Expr):
"""1 if a does not equal b, otherwise 0"""
def eval(self, fields={}):
if self.a.eval(fields) != self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('<', 4)
class Lt(Expr):
"""1 if a is less than b"""
def eval(self, fields={}):
if self.a.eval(fields) < self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('<=', 4)
class Le(Expr):
"""1 if a is less than or equal to b"""
def eval(self, fields={}):
if self.a.eval(fields) <= self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('>', 4)
class Gt(Expr):
"""1 if a is greater than b"""
def eval(self, fields={}):
if self.a.eval(fields) > self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('>=', 4)
class Ge(Expr):
"""1 if a is greater than or equal to b"""
def eval(self, fields={}):
if self.a.eval(fields) >= self.b.eval(fields):
return RInt(1)
else:
return RInt(0)
@bop('&&', 3)
class AndAnd(Expr):
"""b if a is non-zero, otherwise a"""
def eval(self, fields={}):
a = self.a.eval(fields)
if a:
return self.b.eval(fields)
else:
return a
@bop('||', 2)
class OrOr(Expr):
"""a if a is non-zero, otherwise b"""
def eval(self, fields={}):
a = self.a.eval(fields)
if a:
return a
else:
return self.b.eval(fields)
# ternary expr help
def top(op_a, op_b, prec):
def top(f):
f._top = (op_a, op_b)
f._tprec = prec
return f
return top
class TOps:
@ft.cache
def __get__(self, _, cls):
return {x._top: x
for x in cls.__dict__.values()
if hasattr(x, '_top')}
tops = TOps()
class TPrecs:
@ft.cache
def __get__(self, _, cls):
return {x._top: x._tprec
for x in cls.__dict__.values()
if hasattr(x, '_top')}
tprecs = TPrecs()
# ternary ops
@top('?', ':', 1)
class IfElse(Expr):
"""b if a is non-zero, otherwise c"""
def type(self, types={}):
t = self.b.type(types)
u = self.c.type(types)
if t != u:
raise RExpr.Error("mismatched types? %r" % self)
return t
def fold(self, types={}):
return self.b.fold(types)
def eval(self, fields={}):
a = self.a.eval(fields)
if a:
return self.b.eval(fields)
else:
return self.c.eval(fields)
# show expr help text
@classmethod
def help(cls):
print('uops:')
for op in cls.uops.keys():
print(' %-21s %s' % ('%sa' % op, RExpr.uops[op].__doc__))
print('bops:')
for op in cls.bops.keys():
print(' %-21s %s' % ('a %s b' % op, RExpr.bops[op].__doc__))
print('tops:')
for op in cls.tops.keys():
print(' %-21s %s' % ('a %s b %s c' % op, RExpr.tops[op].__doc__))
print('funcs:')
for func in cls.funcs.keys():
print(' %-21s %s' % (
'%s(%s)' % (func, RExpr.funcs[func]._fargs),
RExpr.funcs[func].__doc__))
# parse an expr
def __init__(self, expr):
self.expr = expr.strip()
# parse the expression into a tree
def p_expr(p, prec=0):
# parens
if p.match('\('):
p.chomp()
a = p_expr(p)
if not p.match('\)'):
raise RExpr.Error("mismatched parens? %s" % p)
p.chomp()
# strings
elif p.match('(?:"(?:\\.|[^"])*"|\'(?:\\.|[^\'])\')'):
a = RExpr.StrLit(p.chomp()[1:-1])
# floats
elif p.match('[+-]?(?:[_0-9]*\.[_0-9eE]|nan)'):
a = RExpr.FloatLit(RFloat(p.chomp()))
# ints
elif p.match('[+-]?(?:[0-9][bBoOxX]?[_0-9a-fA-F]*|∞|inf)'):
a = RExpr.IntLit(RInt(p.chomp()))
# fields/functions
elif p.match('[_a-zA-Z][_a-zA-Z0-9]*'):
a = p.chomp()
if p.match('\('):
p.chomp()
if a not in RExpr.funcs:
raise RExpr.Error("unknown function? %s" % a)
args = []
while True:
b = p_expr(p)
args.append(b)
if p.match(','):
p.chomp()
continue
else:
if not p.match('\)'):
raise RExpr.Error("mismatched parens? %s" % p)
p.chomp()
a = RExpr.funcs[a](*args)
break
else:
a = RExpr.Field(a)
# unary ops
elif any(p.match(re.escape(op)) for op in RExpr.uops.keys()):
# sort by len to avoid ambiguities
for op in sorted(RExpr.uops.keys(), reverse=True):
if p.match(re.escape(op)):
p.chomp()
a = p_expr(p, mt.inf)
a = RExpr.uops[op](a)
break
else:
assert False
# unknown expr?
else:
raise RExpr.Error("unknown expr? %s" % p)
# parse tail
while True:
# binary ops
if any(p.match(re.escape(op))
and prec < RExpr.bprecs[op]
for op in RExpr.bops.keys()):
# sort by len to avoid ambiguities
for op in sorted(RExpr.bops.keys(), reverse=True):
if (p.match(re.escape(op))
and prec < RExpr.bprecs[op]):
p.chomp()
b = p_expr(p, RExpr.bprecs[op])
a = RExpr.bops[op](a, b)
break
else:
assert False
# ternary ops, these are intentionally right associative
elif any(p.match(re.escape(op[0]))
and prec <= RExpr.tprecs[op]
for op in RExpr.tops.keys()):
# sort by len to avoid ambiguities
for op in sorted(RExpr.tops.keys(), reverse=True):
if (p.match(re.escape(op[0]))
and prec <= RExpr.tprecs[op]):
p.chomp()
b = p_expr(p, RExpr.tprecs[op])
if not p.match(re.escape(op[1])):
raise RExpr.Error(
'mismatched ternary op? %s %s' % op)
p.chomp()
c = p_expr(p, RExpr.tprecs[op])
a = RExpr.tops[op](a, b, c)
break
else:
assert False
# no tail
else:
return a
try:
p = Parser(self.expr)
self.tree = p_expr(p)
if p:
raise RExpr.Error("trailing expr? %s" % p)
except (RExpr.Error, ValueError) as e:
print('error: in expr: %s' % self.expr,
file=sys.stderr)
print('error: %s' % e,
file=sys.stderr)
sys.exit(3)
# recursively find all fields
def fields(self):
try:
return self.tree.fields()
except RExpr.Error as e:
print('error: in expr: %s' % self.expr,
file=sys.stderr)
print('error: %s' % e,
file=sys.stderr)
sys.exit(3)
# recursively find the type
def type(self, types={}):
try:
return self.tree.type(types)
except RExpr.Error as e:
print('error: in expr: %s' % self.expr,
file=sys.stderr)
print('error: %s' % e,
file=sys.stderr)
sys.exit(3)
# recursively find the fold operation
def fold(self, types={}):
try:
return self.tree.fold(types)
except RExpr.Error as e:
print('error: in expr: %s' % self.expr,
file=sys.stderr)
print('error: %s' % e,
file=sys.stderr)
sys.exit(3)
# recursive evaluate the expr
def eval(self, fields={}):
try:
return self.tree.eval(fields)
except RExpr.Error as e:
print('error: in expr: %s' % self.expr,
file=sys.stderr)
print('error: %s' % e,
file=sys.stderr)
sys.exit(3)
def openio(path, mode='r', buffering=-1):
# allow '-' for stdin/stdout
if path == '-':
if 'r' in mode:
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
else:
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
else:
return open(path, mode, buffering)
def collect(csv_paths, defines=[]):
# collect results from CSV files
fields = []
results = []
for path in csv_paths:
try:
with openio(path) as f:
reader = csv.DictReader(f, restval='')
fields.extend(
k for k in reader.fieldnames
if k not in fields)
for r in reader:
# filter by matching defines
if not all(k in r and r[k] in vs for k, vs in defines):
continue
results.append(r)
except FileNotFoundError:
pass
return fields, results
def infer(fields_, results,
by=None,
fields=None,
exprs=[],
defines=[],
sort=None):
# we only really care about the last expr for each field
exprs = {k: expr for k, expr in exprs}
# find all fields our exprs depend on
fields__ = set(it.chain.from_iterable(
expr.fields() for _, expr in exprs.items()))
# if by not specified, guess it's anything not in fields/exprs/defines
if by is None:
by = [k for k in fields_
if k not in (fields or [])
and k not in fields__
and not any(k == k_ for k_, _ in defines)]
# if fields not specified, guess it's anything not in by/exprs/defines
if fields is None:
fields = [k for k in fields_
if k not in (by or [])
and k not in fields__
and not any(k == k_ for k_, _ in defines)]
# deduplicate by/fields
by = list(co.OrderedDict.fromkeys(by).keys())
fields = list(co.OrderedDict.fromkeys(fields).keys())
# make sure sort fields are included
if sort is not None:
by.extend(k for k, reverse in sort
if k and k not in by and k not in fields)
# find best type for all fields used by field exprs
fields__ = set(it.chain.from_iterable(
exprs[k].fields() if k in exprs else {k}
for k in fields))
types = {}
for k in fields__:
if k not in fields_:
print("error: no field %r?" % k,
file=sys.stderr)
sys.exit(2)
for t in [RInt, RFloat, RFrac]:
for r in results:
if k in r and r[k].strip():
try:
t(r[k])
except ValueError:
break
else:
types[k] = t
break
else:
print("error: no type matches field %r?" % k,
file=sys.stderr)
sys.exit(2)
# typecheck field exprs, note these may reference input fields
# with the same name
types__ = types.copy()
for k, expr in exprs.items():
if k in fields:
types__[k] = expr.type(types)
# foldcheck field exprs
folds = {k: (RSum, t) for k, v in types.items()}
for k, expr in exprs.items():
if k in fields:
folds[k] = expr.fold(types)
folds = {k: (f(), t) for k, (f, t) in folds.items()}
# create result class
def __new__(cls, **r):
# evaluate types
r_ = r.copy()
for k, t in types.items():
r_[k] = t(r[k]) if k in r else t()
# evaluate exprs
r__ = r_.copy()
for k, expr in exprs.items():
r__[k] = expr.eval(r_)
# return result
return cls.__mro__[1].__new__(cls,
**{k: r__.get(k, '') for k in by},
**{k: ([r__[k]], 1) if k in r__ else ([], 0)
for k in fields})
def __add__(self, other):
# reuse lists if possible
def extend(a, b):
if len(a[0]) == a[1]:
a[0].extend(b[0][:b[1]])
return (a[0], a[1] + b[1])
else:
return (a[0][:a[1]] + b[0][:b[1]], a[1] + b[1])
# lazily fold results
return self.__class__.__mro__[1].__new__(self.__class__,
**{k: getattr(self, k) for k in by},
**{k: extend(
object.__getattribute__(self, k),
object.__getattribute__(other, k))
for k in fields})
def __getattribute__(self, k):
# lazily fold results on demand, this avoids issues with fold
# operations that depend on the number of results
if k in fields:
v = object.__getattribute__(self, k)
if v[1]:
return folds[k][0](v[0][:v[1]])
else:
return None
return object.__getattribute__(self, k)
return type('Result', (co.namedtuple('Result', by + fields),), {
'__slots__': (),
'__new__': __new__,
'__add__': __add__,
'__getattribute__': __getattribute__,
'_by': by,
'_fields': fields,
'_sort': fields,
'_types': {k: t for k, (_, t) in folds.items()},
})
def fold(Result, results, by=None, defines=[]):
if by is None:
by = Result._by
for k in it.chain(by or [], (k for k, _ in defines)):
if k not in Result._by and k not in Result._fields:
print("error: could not find field %r?" % k,
file=sys.stderr)
sys.exit(-1)
# filter by matching defines
if defines:
results_ = []
for r in results:
if all(getattr(r, k) in vs for k, vs in defines):
results_.append(r)
results = results_
# organize results into conflicts
folding = co.OrderedDict()
for r in results:
name = tuple(getattr(r, k) for k in by)
if name not in folding:
folding[name] = []
folding[name].append(r)
# merge conflicts
folded = []
for name, rs in folding.items():
folded.append(sum(rs[1:], start=rs[0]))
return folded
def table(Result, results, diff_results=None, *,
by=None,
fields=None,
sort=None,
diff=None,
percent=None,
all=False,
compare=None,
no_header=False,
small_header=False,
no_total=False,
small_table=False,
summary=False,
depth=1,
hot=None,
**_):
all_, all = all, __builtins__.all
if by is None:
by = Result._by
if fields is None:
fields = Result._fields
types = Result._types
# fold again
results = fold(Result, results, by=by)
if diff_results is not None:
diff_results = fold(Result, diff_results, by=by)
# reduce children to hot paths? only used by some scripts
if hot:
# subclass to reintroduce __dict__
Result_ = Result
class HotResult(Result_):
_i = '_hot_i'
_children = '_hot_children'
def __new__(cls, r, i=None, children=None, notes=None):
self = HotResult._make(r)
self._hot_i = i
self._hot_children = children if children is not None else []
return self
def __add__(self, other):
return HotResult(
Result_.__add__(self, other),
self._hot_i if other._hot_i is None
else other._hot_i if self._hot_i is None
else min(self._hot_i, other._hot_i),
self._hot_children + other._hot_children)
results_ = []
for r in results:
hot_ = []
def recurse(results_, depth_):
nonlocal hot_
if not results_:
return
# find the hottest result
r = max(results_,
key=lambda r: tuple(
tuple((getattr(r, k),)
if getattr(r, k, None) is not None
else ()
for k in (
[k] if k else [
k for k in Result._sort
if k in fields])
if k in fields)
for k in it.chain(hot, [None])))
hot_.append(HotResult(r, i=len(hot_)))
# recurse?
if depth_ > 1:
recurse(getattr(r, Result._children),
depth_-1)
recurse(getattr(r, Result._children), depth-1)
results_.append(HotResult(r, children=hot_))
Result = HotResult
results = results_
# organize by name
table = {
','.join(str(getattr(r, k) or '') for k in by): r
for r in results}
diff_table = {
','.join(str(getattr(r, k) or '') for k in by): r
for r in diff_results or []}
names = [name
for name in table.keys() | diff_table.keys()
if diff_results is None
or all_
or any(
types[k].ratio(
getattr(table.get(name), k, None),
getattr(diff_table.get(name), k, None))
for k in fields)]
# find compare entry if there is one
if compare:
compare_result = table.get(','.join(str(k) for k in compare))
# sort again, now with diff info, note that python's sort is stable
names.sort()
if compare:
names.sort(
key=lambda n: (
# move compare entry to the top, note this can be
# overridden by explicitly sorting by fields
table.get(n) == compare_result,
# sort by ratio if comparing
tuple(
types[k].ratio(
getattr(table.get(n), k, None),
getattr(compare_result, k, None))
for k in fields)),
reverse=True)
if diff or percent:
names.sort(
# sort by ratio if diffing
key=lambda n: tuple(
types[k].ratio(
getattr(table.get(n), k, None),
getattr(diff_table.get(n), k, None))
for k in fields),
reverse=True)
if sort:
for k, reverse in reversed(sort):
names.sort(
key=lambda n: tuple(
(getattr(table[n], k),)
if getattr(table.get(n), k, None) is not None
else ()
for k in (
[k] if k else [
k for k in Result._sort
if k in fields])),
reverse=reverse ^ (not k or k in Result._fields))
# build up our lines
lines = []
# header
if not no_header:
header = ['%s%s' % (
','.join(by),
' (%d added, %d removed)' % (
sum(1 for n in table if n not in diff_table),
sum(1 for n in diff_table if n not in table))
if diff else '')
if not small_header and not small_table and not summary
else '']
if not diff:
for k in fields:
header.append(k)
else:
for k in fields:
header.append('o'+k)
for k in fields:
header.append('n'+k)
for k in fields:
header.append('d'+k)
lines.append(header)
# entry helper
def table_entry(name, r, diff_r=None):
entry = [name]
# normal entry?
if ((compare is None or r == compare_result)
and not percent
and not diff):
for k in fields:
entry.append(
(getattr(r, k).table(),
getattr(getattr(r, k), 'notes', lambda: [])())
if getattr(r, k, None) is not None
else types[k].none)
# compare entry?
elif not percent and not diff:
for k in fields:
entry.append(
(getattr(r, k).table()
if getattr(r, k, None) is not None
else types[k].none,
(lambda t: ['+∞%'] if t == +mt.inf
else ['-∞%'] if t == -mt.inf
else ['%+.1f%%' % (100*t)])(
types[k].ratio(
getattr(r, k, None),
getattr(compare_result, k, None)))))
# percent entry?
elif not diff:
for k in fields:
entry.append(
(getattr(r, k).table()
if getattr(r, k, None) is not None
else types[k].none,
(lambda t: ['+∞%'] if t == +mt.inf
else ['-∞%'] if t == -mt.inf
else ['%+.1f%%' % (100*t)])(
types[k].ratio(
getattr(r, k, None),
getattr(diff_r, k, None)))))
# diff entry?
else:
for k in fields:
entry.append(getattr(diff_r, k).table()
if getattr(diff_r, k, None) is not None
else types[k].none)
for k in fields:
entry.append(getattr(r, k).table()
if getattr(r, k, None) is not None
else types[k].none)
for k in fields:
entry.append(
(types[k].diff(
getattr(r, k, None),
getattr(diff_r, k, None)),
(lambda t: ['+∞%'] if t == +mt.inf
else ['-∞%'] if t == -mt.inf
else ['%+.1f%%' % (100*t)] if t
else [])(
types[k].ratio(
getattr(r, k, None),
getattr(diff_r, k, None)))))
# append any notes
if hasattr(Result, '_notes') and r is not None:
notes = sorted(getattr(r, Result._notes))
if isinstance(entry[-1], tuple):
entry[-1] = (entry[-1][0], entry[-1][1] + notes)
else:
entry[-1] = (entry[-1], notes)
return entry
# recursive entry helper, only used by some scripts
def recurse(results_, depth_,
prefixes=('', '', '', '')):
# build the children table at each layer
results_ = fold(Result, results_, by=by)
table_ = {
','.join(str(getattr(r, k) or '') for k in by): r
for r in results_}
names_ = list(table_.keys())
# sort the children layer
names_.sort()
if hasattr(Result, '_i'):
names_.sort(key=lambda n: getattr(table_[n], Result._i))
if sort:
for k, reverse in reversed(sort):
names_.sort(
key=lambda n: tuple(
(getattr(table_[n], k),)
if getattr(table_.get(n), k, None)
is not None
else ()
for k in (
[k] if k else [
k for k in Result._sort
if k in fields])),
reverse=reverse ^ (not k or k in Result._fields))
for i, name in enumerate(names_):
r = table_[name]
is_last = (i == len(names_)-1)
line = table_entry(name, r)
line = [x if isinstance(x, tuple) else (x, []) for x in line]
# add prefixes
line[0] = (prefixes[0+is_last] + line[0][0], line[0][1])
lines.append(line)
# recurse?
if depth_ > 1:
recurse(getattr(r, Result._children),
depth_-1,
(prefixes[2+is_last] + "|-> ",
prefixes[2+is_last] + "'-> ",
prefixes[2+is_last] + "| ",
prefixes[2+is_last] + " "))
# entries
if not summary:
for name in names:
r = table.get(name)
if diff_results is None:
diff_r = None
else:
diff_r = diff_table.get(name)
lines.append(table_entry(name, r, diff_r))
# recursive entries
if name in table and depth > 1:
recurse(getattr(table[name], Result._children),
depth-1,
("|-> ",
"'-> ",
"| ",
" "))
# total
if not no_total and not (small_table and not summary):
r = next(iter(fold(Result, results, by=[])), None)
if diff_results is None:
diff_r = None
else:
diff_r = next(iter(fold(Result, diff_results, by=[])), None)
lines.append(table_entry('TOTAL', r, diff_r))
# homogenize
lines = [
[x if isinstance(x, tuple) else (x, []) for x in line]
for line in lines]
# find the best widths, note that column 0 contains the names and is
# handled a bit differently
widths = co.defaultdict(lambda: 7, {0: 7})
nwidths = co.defaultdict(lambda: 0)
for line in lines:
for i, x in enumerate(line):
widths[i] = max(widths[i], ((len(x[0])+1+4-1)//4)*4-1)
if i != len(line)-1:
nwidths[i] = max(nwidths[i], 1+sum(2+len(n) for n in x[1]))
# print our table
for line in lines:
print('%-*s %s' % (
widths[0], line[0][0],
' '.join('%*s%-*s' % (
widths[i], x[0],
nwidths[i], ' (%s)' % ', '.join(x[1]) if x[1] else '')
for i, x in enumerate(line[1:], 1))))
def main(csv_paths, *,
by=None,
fields=None,
defines=[],
sort=None,
**args):
# show expr help text?
if args.get('help_exprs'):
return RExpr.help()
# separate out exprs
exprs = [(k, v)
for k, v in it.chain(
by or [],
fields or [],
((k, v) for (k, v), reverse in sort or []))
if v is not None]
if by is not None:
by = [k for k, _ in by]
if fields is not None:
fields = [k for k, _ in fields]
if sort is not None:
sort = [(k, reverse) for (k, v), reverse in sort]
if by is None and fields is None:
print("error: needs --by or --fields to figure out fields",
file=sys.stderr)
sys.exit(-1)
# use is just an alias
if args.get('use'):
csv_paths = csv_paths + [args['use']]
# not enough info?
if not csv_paths:
print("error: no *.csv files?",
file=sys.stderr)
sys.exit(1)
# collect info
fields_, results = collect(csv_paths, defines)
# homogenize
Result = infer(fields_, results,
by=by,
fields=fields,
exprs=exprs,
defines=defines,
sort=sort)
results_ = []
for r in results:
results_.append(Result(**{
k: v for k, v in r.items() if v.strip()}))
results = results_
# fold
results = fold(Result, results, by=by)
# sort, note that python's sort is stable
results.sort()
if sort:
for k, reverse in reversed(sort):
results.sort(
key=lambda r: tuple(
(getattr(r, k),) if getattr(r, k) is not None else ()
for k in ([k] if k else Result._sort)),
reverse=reverse ^ (not k or k in Result._fields))
# write results to CSV
if args.get('output'):
with openio(args['output'], 'w') as f:
writer = csv.DictWriter(f, Result._by + Result._fields)
writer.writeheader()
for r in results:
# note we need to go through getattr to resolve lazy fields
writer.writerow({
k: getattr(r, k)
for k in Result._by + Result._fields})
# find previous results?
diff_results = None
if args.get('diff') or args.get('percent'):
_, diff_results = collect(
[args.get('diff') or args.get('percent')],
defines)
diff_results_ = []
for r in diff_results:
if not any(k in r and r[k].strip()
for k in Result._fields):
continue
try:
diff_results_.append(Result(**{
k: r[k] for k in Result._by + Result._fields
if k in r and r[k].strip()}))
except TypeError:
pass
diff_results = diff_results_
# fold
diff_results = fold(Result, diff_results, by=by)
# print table
if not args.get('quiet'):
table(Result, results, diff_results,
by=by,
fields=fields,
sort=sort,
**args)
if __name__ == "__main__":
import argparse
import sys
parser = argparse.ArgumentParser(
description="Script to manipulate CSV files.",
allow_abbrev=False)
parser.add_argument(
'csv_paths',
nargs='*',
help="Input *.csv files.")
parser.add_argument(
'--help-exprs',
action='store_true',
help="Show what field exprs are available.")
parser.add_argument(
'-q', '--quiet',
action='store_true',
help="Don't show anything, useful with -o.")
parser.add_argument(
'-o', '--output',
help="Specify CSV file to store results.")
parser.add_argument(
'-u', '--use',
help="Don't parse anything, use this CSV file.")
parser.add_argument(
'-d', '--diff',
help="Specify CSV file to diff against.")
parser.add_argument(
'-p', '--percent',
help="Specify CSV file to diff against, but only show precentage "
"change, not a full diff.")
parser.add_argument(
'-a', '--all',
action='store_true',
help="Show all, not just the ones that changed.")
parser.add_argument(
'-c', '--compare',
type=lambda x: tuple(v.strip() for v in x.split(',')),
help="Compare results to the row matching this by pattern.")
parser.add_argument(
'-b', '--by',
action='append',
type=lambda x: (
lambda k, v=None: (
k.strip(),
RExpr(v) if v is not None else None)
)(*x.split('=', 1)),
help="Group by this field. Can include an expression of the form "
"field=expr.")
parser.add_argument(
'-f', '--field',
dest='fields',
action='append',
type=lambda x: (
lambda k, v=None: (
k.strip(),
RExpr(v) if v is not None else None)
)(*x.split('=', 1)),
help="Show this field. Can include an expression of the form "
"field=expr.")
parser.add_argument(
'-D', '--define',
dest='defines',
action='append',
type=lambda x: (
lambda k, vs: (
k.strip(),
{v.strip() for v in vs.split(',')})
)(*x.split('=', 1)),
help="Only include results where this field is this value. May "
"include comma-separated options.")
class AppendSort(argparse.Action):
def __call__(self, parser, namespace, value, option):
if namespace.sort is None:
namespace.sort = []
namespace.sort.append((value, True if option == '-S' else False))
parser.add_argument(
'-s', '--sort',
nargs='?',
action=AppendSort,
type=lambda x: (
lambda k, v=None: (
k.strip(),
RExpr(v) if v is not None else None)
)(*x.split('=', 1)),
const=(None, None),
help="Sort by this field. Can include an expression of the form "
"field=expr.")
parser.add_argument(
'-S', '--reverse-sort',
nargs='?',
action=AppendSort,
type=lambda x: (
lambda k, v=None: (
k.strip(),
RExpr(v) if v is not None else None)
)(*x.split('=', 1)),
const=(None, None),
help="Sort by this field, but backwards. Can include an expression "
"of the form field=expr.")
parser.add_argument(
'--no-header',
action='store_true',
help="Don't show the header.")
parser.add_argument(
'--small-header',
action='store_true',
help="Don't show by field names.")
parser.add_argument(
'--no-total',
action='store_true',
help="Don't show the total.")
parser.add_argument(
'-Q', '--small-table',
action='store_true',
help="Equivalent to --small-header + --no-total.")
parser.add_argument(
'-Y', '--summary',
action='store_true',
help="Only show the total.")
sys.exit(main(**{k: v
for k, v in vars(parser.parse_intermixed_args()).items()
if v is not None}))