Files
littlefs/scripts/treemap.py
Christopher Haster 0dbd1561ae scripts: Fixed some issues with -k/--keep-open
- Fixed a NameError in watch.py caused by an outdated variable name
  (renamed paths -> keep_open_paths). Yay for dynamic typing.

- Fixed fieldnames is None issue when csv file is empty.
2025-04-16 15:21:27 -05:00

1204 lines
37 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
#
# Inspired by d3:
# https://d3js.org
#
# prevent local imports
if __name__ == "__main__":
__import__('sys').path.pop(0)
import bisect
import collections as co
import csv
import fnmatch
import itertools as it
import math as mt
import re
import shutil
# we don't actually need that many chars/colors thanks to the
# 4-colorability of all 2d maps
COLORS = ['34', '31', '32', '35', '33', '36']
CHARS_DOTS = " .':"
CHARS_BRAILLE = (
'⠀⢀⡀⣀⠠⢠⡠⣠⠄⢄⡄⣄⠤⢤⡤⣤' '⠐⢐⡐⣐⠰⢰⡰⣰⠔⢔⡔⣔⠴⢴⡴⣴'
'⠂⢂⡂⣂⠢⢢⡢⣢⠆⢆⡆⣆⠦⢦⡦⣦' '⠒⢒⡒⣒⠲⢲⡲⣲⠖⢖⡖⣖⠶⢶⡶⣶'
'⠈⢈⡈⣈⠨⢨⡨⣨⠌⢌⡌⣌⠬⢬⡬⣬' '⠘⢘⡘⣘⠸⢸⡸⣸⠜⢜⡜⣜⠼⢼⡼⣼'
'⠊⢊⡊⣊⠪⢪⡪⣪⠎⢎⡎⣎⠮⢮⡮⣮' '⠚⢚⡚⣚⠺⢺⡺⣺⠞⢞⡞⣞⠾⢾⡾⣾'
'⠁⢁⡁⣁⠡⢡⡡⣡⠅⢅⡅⣅⠥⢥⡥⣥' '⠑⢑⡑⣑⠱⢱⡱⣱⠕⢕⡕⣕⠵⢵⡵⣵'
'⠃⢃⡃⣃⠣⢣⡣⣣⠇⢇⡇⣇⠧⢧⡧⣧' '⠓⢓⡓⣓⠳⢳⡳⣳⠗⢗⡗⣗⠷⢷⡷⣷'
'⠉⢉⡉⣉⠩⢩⡩⣩⠍⢍⡍⣍⠭⢭⡭⣭' '⠙⢙⡙⣙⠹⢹⡹⣹⠝⢝⡝⣝⠽⢽⡽⣽'
'⠋⢋⡋⣋⠫⢫⡫⣫⠏⢏⡏⣏⠯⢯⡯⣯' '⠛⢛⡛⣛⠻⢻⡻⣻⠟⢟⡟⣟⠿⢿⡿⣿')
def openio(path, mode='r', buffering=-1):
# allow '-' for stdin/stdout
import os
if path == '-':
if 'r' in mode:
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
else:
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
else:
return open(path, mode, buffering)
# parse different data representations
def dat(x, *args):
try:
# allow the first part of an a/b fraction
if '/' in x:
x, _ = x.split('/', 1)
# first try as int
try:
return int(x, 0)
except ValueError:
pass
# then try as float
try:
return float(x)
except ValueError:
pass
# else give up
raise ValueError("invalid dat %r" % x)
# default on error?
except ValueError as e:
if args:
return args[0]
else:
raise
def collect(csv_paths, defines=[]):
# collect results from CSV files
fields = []
results = []
for path in csv_paths:
try:
with openio(path) as f:
reader = csv.DictReader(f, restval='')
fields.extend(
k for k in reader.fieldnames or []
if k not in fields)
for r in reader:
# filter by matching defines
if not all(k in r and r[k] in vs for k, vs in defines):
continue
results.append(r)
except FileNotFoundError:
pass
return fields, results
def fold(results, by=None, fields=None, defines=[]):
# filter by matching defines
if defines:
results_ = []
for r in results:
if all(k in r and r[k] in vs for k, vs in defines):
results_.append(r)
results = results_
if by:
# find all 'by' values
keys = set()
for r in results:
keys.add(tuple(r.get(k, '') for k in by))
keys = sorted(keys)
# collect datasets
datasets = co.OrderedDict()
dataattrs = co.OrderedDict()
for key in (keys if by else [()]):
for field in fields:
# organize by 'by' and field
dataset = []
dataattr = {}
for r in results:
# filter by 'by'
if by and not all(
k in r and r[k] == v
for k, v in zip(by, key)):
continue
# find field
if field is not None:
if field not in r:
continue
try:
v = dat(r[field])
except ValueError:
continue
else:
v = None
# do _not_ sum v here, it's tempting but risks
# incorrect and misleading results
dataset.append(v)
# include all fields in dataattrs in case we use
# them for % modifiers
dataattr.update(r)
# hide 'field' if there is only one field
key_ = key
if len(fields or []) > 1 or not key_:
key_ += (field,)
datasets[key_] = dataset
dataattrs[key_] = dataattr
return datasets, dataattrs
# a representation of optionally key-mapped attrs
class Attr:
def __init__(self, attrs, *,
defaults=None):
# include defaults?
if (defaults is not None
and not any(
not isinstance(attr, tuple)
or attr[0] in {None, (), ('*',)}
for attr in (attrs or []))):
attrs = list(defaults) + (attrs or [])
# normalize
self.attrs = []
self.keyed = co.OrderedDict()
for attr in (attrs or []):
if not isinstance(attr, tuple):
attr = ((), attr)
elif attr[0] in {None, (), ('*',)}:
attr = ((), attr[1])
self.attrs.append(attr)
if attr[0] not in self.keyed:
self.keyed[attr[0]] = []
self.keyed[attr[0]].append(attr[1])
def __repr__(self):
return 'Attr(%r)' % [
(','.join(attr[0]), attr[1])
for attr in self.attrs]
def __iter__(self):
return it.cycle(self.keyed[()])
def __bool__(self):
return bool(self.attrs)
def __getitem__(self, key):
if isinstance(key, tuple):
if len(key) > 0 and not isinstance(key[0], str):
i, key = key
else:
i, key = 0, key
else:
i, key = key, ()
# try to lookup by key
best = None
for ks, vs in self.keyed.items():
prefix = []
for j, k in enumerate(ks):
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
prefix.append(k)
else:
prefix = None
break
if prefix is not None and (
best is None or len(prefix) >= len(best[0])):
best = (prefix, vs)
if best is not None:
# cycle based on index
return best[1][i % len(best[1])]
return None
def __contains__(self, key):
return self.__getitem__(key) is not None
# a key function for sorting by key order
def key(self, key):
# allow key to be a tuple to make sorting dicts easier
if (isinstance(key, tuple)
and len(key) >= 1
and isinstance(key[0], tuple)):
key = key[0]
best = None
for i, ks in enumerate(self.keyed.keys()):
prefix = []
for j, k in enumerate(ks):
if j < len(key) and (not k or key[j] == k):
prefix.append(k)
else:
prefix = None
break
if prefix is not None and (
best is None or len(prefix) >= len(best[0])):
best = (prefix, i)
if best is not None:
return best[1]
return len(self.keyed)
# parse %-escaped strings
def punescape(s, attrs=None):
if attrs is None:
attrs = {}
if isinstance(attrs, dict):
attrs_ = attrs
attrs = lambda k: attrs_[k]
pattern = re.compile(
'%[%n]'
'|' '%x..'
'|' '%u....'
'|' '%U........'
'|' '%\((?P<field>[^)]*)\)'
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
def unescape(m):
if m.group()[1] == '%': return '%'
elif m.group()[1] == 'n': return '\n'
elif m.group()[1] == 'x': return chr(int(m.group()[2:], 16))
elif m.group()[1] == 'u': return chr(int(m.group()[2:], 16))
elif m.group()[1] == 'U': return chr(int(m.group()[2:], 16))
elif m.group()[1] == '(':
try:
v = attrs(m.group('field'))
except KeyError:
return m.group()
f = m.group('format')
if f[-1] in 'dboxX':
if isinstance(v, str):
v = dat(v, 0)
v = int(v)
elif f[-1] in 'fFeEgG':
if isinstance(v, str):
v = dat(v, 0)
v = float(v)
else:
f = ('<' if '-' in f else '>') + f.replace('-', '')
v = str(v)
# note we need Python's new format syntax for binary
return ('{:%s}' % f).format(v)
else: assert False
return re.sub(pattern, unescape, s)
# split %-escaped strings into chars
def psplit(s):
pattern = re.compile(
'%[%n]'
'|' '%x..'
'|' '%u....'
'|' '%U........'
'|' '%\((?P<field>[^)]*)\)'
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
return [m.group() for m in re.finditer(pattern.pattern + '|.', s)]
# a little ascii renderer
class Canvas:
def __init__(self, width, height, *,
color=False,
dots=False,
braille=False):
# scale if we're printing with dots or braille
if braille:
xscale, yscale = 2, 4
elif dots:
xscale, yscale = 1, 2
else:
xscale, yscale = 1, 1
self.width_ = width
self.height_ = height
self.width = xscale*width
self.height = yscale*height
self.xscale = xscale
self.yscale = yscale
self.color_ = color
self.dots = dots
self.braille = braille
# create initial canvas
self.chars = [0] * (width*height)
self.colors = [''] * (width*height)
def char(self, x, y, char=None):
# ignore out of bounds
if x < 0 or y < 0 or x >= self.width or y >= self.height:
return False
x_ = x // self.xscale
y_ = y // self.yscale
if char is not None:
c = self.chars[x_ + y_*self.width_]
# mask in sub-char pixel?
if isinstance(char, bool):
if not isinstance(c, int):
c = 0
self.chars[x_ + y_*self.width_] = (c
| (1
<< ((y%self.yscale)*self.xscale
+ (self.xscale-1)-(x%self.xscale))))
else:
self.chars[x_ + y_*self.width_] = char
else:
c = self.chars[x_ + y_*self.width_]
if isinstance(c, int):
return ((c
>> ((y%self.yscale)*self.xscale
+ (self.xscale-1)-(x%self.xscale)))
& 1) == 1
else:
return c
def color(self, x, y, color=None):
# ignore out of bounds
if x < 0 or y < 0 or x >= self.width or y >= self.height:
return ''
x_ = x // self.xscale
y_ = y // self.yscale
if color is not None:
self.colors[x_ + y_*self.width_] = color
else:
return self.colors[x_ + y_*self.width_]
def __getitem__(self, xy):
x, y = xy
return self.char(x, y)
def __setitem__(self, xy, char):
x, y = xy
self.char(x, y, char)
def point(self, x, y, *,
char=True,
color=''):
self.char(x, y, char)
self.color(x, y, color)
def line(self, x1, y1, x2, y2, *,
char=True,
color=''):
# incremental error line algorithm
ex = abs(x2 - x1)
ey = -abs(y2 - y1)
dx = +1 if x1 < x2 else -1
dy = +1 if y1 < y2 else -1
e = ex + ey
while True:
self.point(x1, y1, char=char, color=color)
e2 = 2*e
if x1 == x2 and y1 == y2:
break
if e2 > ey:
e += ey
x1 += dx
if x1 == x2 and y1 == y2:
break
if e2 < ex:
e += ex
y1 += dy
self.point(x2, y2, char=char, color=color)
def rect(self, x, y, w, h, *,
char=True,
color=''):
for j in range(h):
for i in range(w):
self.point(x+i, y+j, char=char, color=color)
def label(self, x, y, label, width=None, height=None, *,
color=''):
x_ = x
y_ = y
for char in label:
if char == '\n':
x_ = x
y_ -= self.yscale
else:
if ((width is None or x_ < x+width)
and (height is None or y_ > y-height)):
self.point(x_, y_, char=char, color=color)
x_ += self.xscale
def draw(self, row):
y_ = self.height_-1 - row
row_ = []
for x_ in range(self.width_):
# char?
c = self.chars[x_ + y_*self.width_]
if isinstance(c, int):
if self.braille:
assert c < 256
c = CHARS_BRAILLE[c]
elif self.dots:
assert c < 4
c = CHARS_DOTS[c]
else:
assert c < 2
c = '.' if c else ' '
# color?
if self.color_:
color = self.colors[x_ + y_*self.width_]
if color:
c = '\x1b[%sm%s\x1b[m' % (color, c)
row_.append(c)
return ''.join(row_)
# a type to represent tiles
class Tile:
def __init__(self, key, children,
x=None, y=None, width=None, height=None, *,
depth=None,
attrs=None,
label=None,
color=None):
self.key = key
if isinstance(children, list):
self.children = children
self.value = sum(c.value for c in children)
else:
self.children = []
self.value = children
self.x = x
self.y = y
self.width = width
self.height = height
self.depth = depth
self.attrs = attrs
self.label = label
self.color = color
def __repr__(self):
return 'Tile(%r, %r, %r, %r, %r, %r)' % (
','.join(self.key), self.value,
self.x, self.y, self.width, self.height)
# recursively build heirarchy
@staticmethod
def merge(tiles, prefix=()):
# organize by 'by' field
tiles_ = co.OrderedDict()
for t in tiles:
if len(prefix)+1 >= len(t.key):
tiles_[t.key] = t
else:
key = prefix + (t.key[len(prefix)],)
if key not in tiles_:
tiles_[key] = []
tiles_[key].append(t)
tiles__ = []
for key, t in tiles_.items():
if isinstance(t, Tile):
tiles__.append(t)
else:
tiles__.append(Tile.merge(t, key))
tiles_ = tiles__
return Tile(prefix, tiles_, depth=len(prefix))
def __lt__(self, other):
return self.value < other.value
# recursive traversals
def tiles(self):
yield self
for child in self.children:
yield from child.tiles()
def leaves(self):
for t in self.tiles():
if not t.children:
yield t
# sort recursively
def sort(self):
self.children.sort(reverse=True)
for t in self.children:
t.sort()
# recursive align to int boundaries
def align(self):
# this extra +0.1 and using points instead of width/height is
# to help minimize rounding errors
x0 = int(self.x+0.1)
y0 = int(self.y+0.1)
x1 = int(self.x+self.width+0.1)
y1 = int(self.y+self.height+0.1)
self.x = x0
self.y = y0
self.width = x1 - x0
self.height = y1 - y0
# recurse
for t in self.children:
t.align()
# return some interesting info about these tiles
def stat(self):
leaves = list(self.leaves())
mean = self.value / max(len(leaves), 1)
stddev = mt.sqrt(sum((t.value - mean)**2 for t in leaves)
/ max(len(leaves), 1))
min_ = min((t.value for t in leaves), default=0)
max_ = max((t.value for t in leaves), default=0)
return {
'total': self.value,
'mean': mean,
'stddev': stddev,
'min': min_,
'max': max_,
}
# bounded division, limits result to dividend, useful for avoiding
# divide-by-zero issues
def bdiv(a, b):
return a / max(b, 1)
# our partitioning schemes
def partition_binary(children, total, x, y, width, height):
sums = [0]
for t in children:
sums.append(sums[-1] + t.value)
# recursively partition into a roughly weight-balanced binary tree
def partition_(i, j, value, x, y, width, height):
# no child? guess we're done
if i == j:
return
# single child? assign the partition
elif i == j-1:
children[i].x = x
children[i].y = y
children[i].width = width
children[i].height = height
return
# binary search to find best split index
target = sums[i] + (value / 2)
k = bisect.bisect(sums, target, i+1, j-1)
# nudge split index if it results in less error
if k > i+1 and (sums[k] - target) > (target - sums[k-1]):
k -= 1
l = sums[k] - sums[i]
r = value - l
# split horizontally?
if width > height:
dx = bdiv(sums[k] - sums[i], value) * width
partition_(i, k, l, x, y, dx, height)
partition_(k, j, r, x+dx, y, width-dx, height)
# split vertically?
else:
dy = bdiv(sums[k] - sums[i], value) * height
partition_(i, k, l, x, y, width, dy)
partition_(k, j, r, x, y+dy, width, height-dy)
partition_(0, len(children), total, x, y, width, height)
def partition_slice(children, total, x, y, width, height):
# give each child a slice
x_ = x
for t in children:
t.x = x_
t.y = y
t.width = bdiv(t.value, total) * width
t.height = height
x_ += t.width
def partition_dice(children, total, x, y, width, height):
# give each child a slice
y_ = y
for t in children:
t.x = x
t.y = y_
t.width = width
t.height = bdiv(t.value, total) * height
y_ += t.height
def partition_squarify(children, total, x, y, width, height, *,
aspect_ratio=(1,1)):
# this algorithm is described here:
# https://www.win.tue.nl/~vanwijk/stm.pdf
i = 0
x_ = x
y_ = y
total_ = total
width_ = width
height_ = height
# note we don't really care about width vs height until
# actually slicing
ratio = max(aspect_ratio[0] / aspect_ratio[1],
aspect_ratio[1] / aspect_ratio[0])
while i < len(children):
# calculate initial aspect ratio
sum_ = children[i].value
min_ = children[i].value
max_ = children[i].value
w = total_ * bdiv(ratio,
max(bdiv(width_, height_), bdiv(height_, width_)))
ratio_ = max(bdiv(max_*w, sum_**2), bdiv(sum_**2, min_*w))
# keep adding children to this row/col until it starts to hurt
# our aspect ratio
j = i + 1
while j < len(children):
sum__ = sum_ + children[j].value
min__ = min(min_, children[j].value)
max__ = max(max_, children[j].value)
ratio__ = max(bdiv(max__*w, sum__**2), bdiv(sum__**2, min__*w))
if ratio__ > ratio_:
break
sum_ = sum__
min_ = min__
max_ = max__
ratio_ = ratio__
j += 1
# vertical col? dice horizontally?
if width_ > height_:
dx = bdiv(sum_, total_) * width_
partition_dice(children[i:j], sum_, x_, y_, dx, height_)
x_ += dx
width_ -= dx
# horizontal row? slice vertically?
else:
dy = bdiv(sum_, total_) * height_
partition_slice(children[i:j], sum_, x_, y_, width_, dy)
y_ += dy
height_ -= dy
# start partitioning the other direction
total_ -= sum_
i = j
def main(csv_paths, *,
by=None,
fields=None,
defines=[],
labels=[],
chars=[],
colors=[],
color=False,
dots=False,
braille=False,
width=None,
height=None,
no_header=False,
no_stats=False,
to_scale=None,
aspect_ratio=(1,1),
tiny=False,
title=None,
padding=0,
label=False,
no_label=False,
**args):
# figure out what color should be
if color == 'auto':
color = sys.stdout.isatty()
elif color == 'always':
color = True
else:
color = False
# tiny mode?
if tiny:
if to_scale is None:
to_scale = 1
no_header = True
# what chars/colors/labels to use?
chars_ = []
for char in chars:
if isinstance(char, tuple):
chars_.extend((char[0], c) for c in psplit(char[1]))
else:
chars_.extend(psplit(char))
chars_ = Attr(chars_)
colors_ = Attr(colors, defaults=COLORS)
labels_ = Attr(labels)
# figure out width/height
if width is None:
width_ = min(80, shutil.get_terminal_size((80, 5))[0])
elif width:
width_ = width
else:
width_ = shutil.get_terminal_size((80, 5))[0]
if height is None:
height_ = (2
if not no_header
and (title is not None or not no_stats)
else 1)
elif height:
height_ = height
else:
height_ = shutil.get_terminal_size((80, 5))[1] - 1
# first collect results from CSV files
fields_, results = collect(csv_paths, defines)
if not by and not fields:
print("error: needs --by or --fields to figure out fields",
file=sys.stderr)
sys.exit(-1)
# if by not specified, guess it's anything not in fields/defines
if not by:
by = [k for k in fields_
if k not in (fields or [])
and not any(k == k_ for k_, _ in defines)]
# if fields not specified, guess it's anything not in by/defines
if not fields:
fields = [k for k in fields_
if k not in (by or [])
and not any(k == k_ for k_, _ in defines)]
# then extract the requested dataset
datasets, dataattrs = fold(results, by, fields, defines)
# build tile heirarchy
children = []
for key, dataset in datasets.items():
for i, v in enumerate(dataset):
children.append(Tile(
key + ((str(i),) if len(dataset) > 1 else ()),
v,
attrs=dataattrs[key]))
tile = Tile.merge(children)
# merge attrs
for t in tile.tiles():
if t.children:
t.attrs = {k: v
for t_ in t.leaves()
for k, v in t_.attrs.items()}
# also sum fields here in case they're used by % modifiers,
# note other fields are _not_ summed
for k in fields:
t.attrs[k] = sum(t_.value
for t_ in t.leaves()
if len(fields) == 1 or t_.key[len(by)] == k)
# assign colors/labels before sorting to keep things reproducible
# use colors for top of tree
for i, t in enumerate(tile.children):
for t_ in t.tiles():
t_.color = punescape(colors_[i, t.key], t_.attrs)
# and chars/labels for bottom of tree
for i, t in enumerate(tile.leaves()):
if (i, t.key) in chars_:
t.char = punescape(chars_[i, t.key], t.attrs)[0] # limit to 1 char
if (i, t.key) in labels_:
t.label = punescape(labels_[i, t.key], t.attrs)
# scale width/height if requested now that we have our data
if (to_scale
and (width is None or height is None)
and tile.value != 0):
# scale if needed
if braille:
xscale, yscale = 2, 4
elif dots:
xscale, yscale = 1, 2
else:
xscale, yscale = 1, 1
# scale width only
if height is not None:
width_ = mt.ceil(
((tile.value * to_scale) / (height_*yscale))
/ xscale)
# scale height only
elif width is not None:
height_ = mt.ceil(
((tile.value * to_scale) / (width_*xscale))
/ yscale)
# scale based on aspect-ratio
else:
width_ = mt.ceil(
(mt.sqrt(tile.value * to_scale)
* (aspect_ratio[0] / aspect_ratio[1]))
/ xscale)
height_ = mt.ceil(
((tile.value * to_scale) / (width_*xscale))
/ yscale)
# create a canvas
canvas = Canvas(
width_,
height_ - (1
if not no_header
and (title is not None or not no_stats)
else 0),
color=color,
dots=dots,
braille=braille)
# sort
tile.sort()
# recursively partition tiles
tile.x = 0
tile.y = 0
tile.width = canvas.width
tile.height = canvas.height
def partition(tile):
if tile.depth == 0:
# apply top padding
tile.x += padding
tile.y += padding
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
# apply bottom padding
if not tile.children:
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
x__ = tile.x
y__ = tile.y
width__ = tile.width
height__ = tile.height
else:
# apply bottom padding
if not tile.children:
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
x__ = tile.x
y__ = tile.y
width__ = tile.width
height__ = tile.height
# partition via requested scheme
if tile.children:
if args.get('binary'):
partition_binary(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('slice')
or (args.get('slice_and_dice') and (tile.depth & 1) == 0)
or (args.get('dice_and_slice') and (tile.depth & 1) == 1)):
partition_slice(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('dice')
or (args.get('slice_and_dice') and (tile.depth & 1) == 1)
or (args.get('dice_and_slice') and (tile.depth & 1) == 0)):
partition_dice(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('squarify')
or args.get('squarify_ratio')
or args.get('rectify')):
partition_squarify(tile.children, tile.value,
x__, y__, width__, height__,
aspect_ratio=(args['squarify_ratio'], 1)
if args.get('squarify_ratio')
else (width_, height_)
if args.get('rectify')
else (1, 1))
else:
# default to binary partitioning
partition_binary(tile.children, tile.value,
x__, y__, width__, height__)
# recursively partition
for t in tile.children:
partition(t)
partition(tile)
# align to pixel boundaries
tile.align()
# render to canvas
labels__ = []
for t in tile.leaves():
x__ = t.x
y__ = t.y
width__ = t.width
height__ = t.height
# skip anything with zero weight/height after aligning things
if width__ == 0 or height__ == 0:
continue
# flip y
y__ = canvas.height - (y__+height__)
canvas.rect(x__, y__, width__, height__,
# default to first letter of the last part of the key
char=(True if braille or dots
else t.char if getattr(t, 'char', None)
else t.key[len(by)-1][0] if t.key and t.key[len(by)-1]
else chars_[0]),
color=t.color if t.color is not None else colors_[0])
if label or (labels and not no_label):
if t.label is not None:
label__ = t.label
else:
label__ = ','.join(t.key)
# render these later so they get priority
labels__.append((x__, y__+height__-1, label__,
width__, height__))
for label__ in labels__:
canvas.label(*label__)
# print some summary info
if not no_header:
if title:
title_ = punescape(title, tile.attrs)
if not no_stats:
stat = tile.stat()
stat_ = 'total %d, avg %d +-%dσ, min %d, max %d' % (
stat['total'],
stat['mean'], stat['stddev'],
stat['min'], stat['max'])
if title and not no_stats:
print('%s%*s%s' % (
title_,
max(width_-len(stat_)-len(title_), 0), ' ',
stat_))
elif title:
print(title_)
elif not no_stats:
print(stat_)
# draw canvas
for row in range(canvas.height//canvas.yscale):
line = canvas.draw(row)
print(line)
if __name__ == "__main__":
import argparse
import sys
parser = argparse.ArgumentParser(
description="Render CSV files as a treemap.",
allow_abbrev=False)
parser.add_argument(
'csv_paths',
nargs='*',
help="Input *.csv files.")
parser.add_argument(
'-b', '--by',
action='append',
help="Group by this field.")
parser.add_argument(
'-f', '--field',
dest='fields',
action='append',
help="Field to use for tile sizes.")
parser.add_argument(
'-D', '--define',
dest='defines',
action='append',
type=lambda x: (
lambda k, vs: (
k.strip(),
{v.strip() for v in vs.split(',')})
)(*x.split('=', 1)),
help="Only include results where this field is this value.")
parser.add_argument(
'-L', '--add-label',
dest='labels',
action='append',
type=lambda x: (
lambda ks, v: (
tuple(k.strip() for k in ks.split(',')),
v.strip())
)(*x.split('=', 1))
if '=' in x else x.strip(),
help="Add a label to use. Can be assigned to a specific group "
"where a group is the comma-separated 'by' fields. Accepts %% "
"modifiers.")
parser.add_argument(
'-.', '--add-char', '--chars',
dest='chars',
action='append',
type=lambda x: (
lambda ks, v: (
tuple(k.strip() for k in ks.split(',')),
v.strip())
)(*x.split('=', 1))
if '=' in x else x.strip(),
help="Add characters to use. Can be assigned to a specific group "
"where a group is the comma-separated 'by' fields. Accepts %% "
"modifiers.")
parser.add_argument(
'-C', '--add-color',
dest='colors',
action='append',
type=lambda x: (
lambda ks, v: (
tuple(k.strip() for k in ks.split(',')),
v.strip())
)(*x.split('=', 1))
if '=' in x else x.strip(),
help="Add a color to use. Can be assigned to a specific group "
"where a group is the comma-separated 'by' fields. Accepts %% "
"modifiers.")
parser.add_argument(
'--color',
choices=['never', 'always', 'auto'],
default='auto',
help="When to use terminal colors. Defaults to 'auto'.")
parser.add_argument(
'-:', '--dots',
action='store_true',
help="Use 1x2 ascii dot characters.")
parser.add_argument(
'-⣿', '--braille',
action='store_true',
help="Use 2x4 unicode braille characters. Note that braille "
"characters sometimes suffer from inconsistent widths.")
parser.add_argument(
'-W', '--width',
nargs='?',
type=lambda x: int(x, 0),
const=0,
help="Width in columns. 0 uses the terminal width. Defaults to "
"min(terminal, 80).")
parser.add_argument(
'-H', '--height',
nargs='?',
type=lambda x: int(x, 0),
const=0,
help="Height in rows. 0 uses the terminal height. Defaults to 1.")
parser.add_argument(
'-N', '--no-header',
action='store_true',
help="Don't show the header.")
parser.add_argument(
'--no-stats',
action='store_true',
help="Don't show data stats in the header.")
parser.add_argument(
'--binary',
action='store_true',
help="Use the binary partitioning scheme. This attempts to "
"recursively subdivide the tiles into a roughly "
"weight-balanced binary tree. This is the default.")
parser.add_argument(
'--slice',
action='store_true',
help="Use the slice partitioning scheme. This simply slices "
"tiles vertically.")
parser.add_argument(
'--dice',
action='store_true',
help="Use the dice partitioning scheme. This simply slices "
"tiles horizontally.")
parser.add_argument(
'--slice-and-dice',
action='store_true',
help="Use the slice-and-dice partitioning scheme. This "
"alternates between slicing and dicing each layer.")
parser.add_argument(
'--dice-and-slice',
action='store_true',
help="Use the dice-and-slice partitioning scheme. This is like "
"slice-and-dice, but flipped.")
parser.add_argument(
'--squarify',
action='store_true',
help="Use the squarify partitioning scheme. This is a greedy "
"algorithm created by Mark Bruls et al that tries to "
"minimize tile aspect ratios.")
parser.add_argument(
'--rectify',
action='store_true',
help="Use the rectify partitioning scheme. This is like "
"squarify, but tries to match the aspect ratio of the "
"window.")
parser.add_argument(
'--squarify-ratio',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
help="Specify an explicit ratio for the squarify algorithm. "
"Implies --squarify.")
parser.add_argument(
'--to-scale',
nargs='?',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
const=1,
help="Scale the resulting treemap such that 1 pixel ~= 1/scale "
"units. Defaults to scale=1. ")
parser.add_argument(
'-R', '--aspect-ratio',
type=lambda x: (
tuple(float(v) for v in x.split(':', 1))
if ':' in x else (float(x), 1)),
help="Aspect ratio to use with --to-scale. Defaults to 1:1.")
parser.add_argument(
'-t', '--tiny',
action='store_true',
help="Tiny mode, alias for --to-scale=1 and --no-header.")
parser.add_argument(
'--title',
help="Add a title. Accepts %% modifiers.")
parser.add_argument(
'--padding',
type=float,
help="Padding to add to each level of the treemap. Defaults to 0.")
parser.add_argument(
'-l', '--label',
action='store_true',
help="Render labels.")
parser.add_argument(
'--no-label',
action='store_true',
help="Don't render any labels.")
sys.exit(main(**{k: v
for k, v in vars(parser.parse_intermixed_args()).items()
if v is not None}))