Files
littlefs/scripts/codemapsvg.py
Christopher Haster a991c39f29 scripts: Dropped max-width from generated svgs
Not sure what the point of this was, I think it was copied from a d3
example svg at some point. But it forces the svg to always fit in the
window, even if this makes the svg unreadable.

These svgs tend to end up questionably large in order to fit in the most
info, so the unreadableness ends up a real problem for even modest
window sizes.
2025-05-25 12:56:16 -05:00

2388 lines
89 KiB
Python
Executable File

#!/usr/bin/env python3
#
# Inspired by d3 and brendangregg's flamegraph svg:
# - https://d3js.org
# - https://github.com/brendangregg/FlameGraph
#
# prevent local imports
if __name__ == "__main__":
__import__('sys').path.pop(0)
import bisect
import collections as co
import csv
import fnmatch
import itertools as it
import json
import math as mt
import re
import shlex
import shutil
import subprocess as sp
# some nicer colors borrowed from Seaborn
# note these include a non-opaque alpha
COLORS = [
'#7995c4', # was '#4c72b0bf', # blue
'#e6a37d', # was '#dd8452bf', # orange
'#80be8e', # was '#55a868bf', # green
'#d37a7d', # was '#c44e52bf', # red
'#a195c6', # was '#8172b3bf', # purple
'#ae9a88', # was '#937860bf', # brown
'#e3a8d2', # was '#da8bc3bf', # pink
'#a9a9a9', # was '#8c8c8cbf', # gray
'#d9cb97', # was '#ccb974bf', # yellow
'#8bc8da', # was '#64b5cdbf', # cyan
]
COLORS_DARK = [
'#7997b7', # was '#a1c9f4bf', # blue
'#bf8761', # was '#ffb482bf', # orange
'#6aac79', # was '#8de5a1bf', # green
'#bf7774', # was '#ff9f9bbf', # red
'#9c8cbf', # was '#d0bbffbf', # purple
'#a68c74', # was '#debb9bbf', # brown
'#bb84ab', # was '#fab0e4bf', # pink
'#9b9b9b', # was '#cfcfcfbf', # gray
'#bfbe7a', # was '#fffea3bf', # yellow
'#8bb5b4', # was '#b9f2f0bf', # cyan
]
WIDTH = 750
HEIGHT = 350
FONT = ['sans-serif']
FONT_SIZE = 10
CODE_PATH = ['./scripts/code.py']
STACK_PATH = ['./scripts/stack.py']
CTX_PATH = ['./scripts/ctx.py']
# open with '-' for stdin/stdout
def openio(path, mode='r', buffering=-1):
import os
if path == '-':
if 'r' in mode:
return os.fdopen(os.dup(sys.stdin.fileno()), mode, buffering)
else:
return os.fdopen(os.dup(sys.stdout.fileno()), mode, buffering)
else:
return open(path, mode, buffering)
def iself(path):
# check for an elf file's magic string (\x7fELF)
with open(path, 'rb') as f:
return f.read(4) == b'\x7fELF'
# parse different data representations
def dat(x, *args):
try:
# allow the first part of an a/b fraction
if '/' in x:
x, _ = x.split('/', 1)
# first try as int
try:
return int(x, 0)
except ValueError:
pass
# then try as float
try:
return float(x)
except ValueError:
pass
# else give up
raise ValueError("invalid dat %r" % x)
# default on error?
except ValueError as e:
if args:
return args[0]
else:
raise
# a representation of optionally key-mapped attrs
class CsvAttr:
def __init__(self, attrs, defaults=None):
if attrs is None:
attrs = []
if isinstance(attrs, dict):
attrs = attrs.items()
# normalize
self.attrs = []
self.keyed = co.OrderedDict()
for attr in attrs:
if not isinstance(attr, tuple):
attr = ((), attr)
if attr[0] in {None, (), (None,), ('*',)}:
attr = ((), attr[1])
if not isinstance(attr[0], tuple):
attr = ((attr[0],), attr[1])
self.attrs.append(attr)
if attr[0] not in self.keyed:
self.keyed[attr[0]] = []
self.keyed[attr[0]].append(attr[1])
# create attrs object for defaults
if isinstance(defaults, CsvAttr):
self.defaults = defaults
elif defaults is not None:
self.defaults = CsvAttr(defaults)
else:
self.defaults = None
def __repr__(self):
if self.defaults is None:
return 'CsvAttr(%r)' % (
[(','.join(attr[0]), attr[1])
for attr in self.attrs])
else:
return 'CsvAttr(%r, %r)' % (
[(','.join(attr[0]), attr[1])
for attr in self.attrs],
[(','.join(attr[0]), attr[1])
for attr in self.defaults.attrs])
def __iter__(self):
if () in self.keyed:
return it.cycle(self.keyed[()])
elif self.defaults is not None:
return iter(self.defaults)
else:
return iter(())
def __bool__(self):
return bool(self.attrs)
def __getitem__(self, key):
if isinstance(key, tuple):
if len(key) > 0 and not isinstance(key[0], str):
i, key = key
if not isinstance(key, tuple):
key = (key,)
else:
i, key = 0, key
elif isinstance(key, str):
i, key = 0, (key,)
else:
i, key = key, ()
# try to lookup by key
best = None
for ks, vs in self.keyed.items():
prefix = []
for j, k in enumerate(ks):
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
prefix.append(k)
else:
prefix = None
break
if prefix is not None and (
best is None or len(prefix) >= len(best[0])):
best = (prefix, vs)
if best is not None:
# cycle based on index
return best[1][i % len(best[1])]
# fallback to defaults?
if self.defaults is not None:
return self.defaults[i, key]
raise KeyError(i, key)
def get(self, key, default=None):
try:
return self.__getitem__(key)
except KeyError:
return default
def __contains__(self, key):
try:
self.__getitem__(key)
return True
except KeyError:
return False
# get all results for a given key
def getall(self, key, default=None):
if not isinstance(key, tuple):
key = (key,)
# try to lookup by key
best = None
for ks, vs in self.keyed.items():
prefix = []
for j, k in enumerate(ks):
if j < len(key) and fnmatch.fnmatchcase(key[j], k):
prefix.append(k)
else:
prefix = None
break
if prefix is not None and (
best is None or len(prefix) >= len(best[0])):
best = (prefix, vs)
if best is not None:
return best[1]
# fallback to defaults?
if self.defaults is not None:
return self.defaults.getall(key, default)
raise default
# a key function for sorting by key order
def key(self, key):
if not isinstance(key, tuple):
key = (key,)
best = None
for i, ks in enumerate(self.keyed.keys()):
prefix = []
for j, k in enumerate(ks):
if j < len(key) and (not k or key[j] == k):
prefix.append(k)
else:
prefix = None
break
if prefix is not None and (
best is None or len(prefix) >= len(best[0])):
best = (prefix, i)
if best is not None:
return best[1]
# fallback to defaults?
if self.defaults is not None:
return len(self.keyed) + self.defaults.key(key)
return len(self.keyed)
# parse %-escaped strings
#
# attrs can override __getitem__ for lazy attr generation
def punescape(s, attrs=None):
pattern = re.compile(
'%[%n]'
'|' '%x..'
'|' '%u....'
'|' '%U........'
'|' '%\((?P<field>[^)]*)\)'
'(?P<format>[+\- #0-9\.]*[sdboxXfFeEgG])')
def unescape(m):
if m.group()[1] == '%': return '%'
elif m.group()[1] == 'n': return '\n'
elif m.group()[1] == 'x': return chr(int(m.group()[2:], 16))
elif m.group()[1] == 'u': return chr(int(m.group()[2:], 16))
elif m.group()[1] == 'U': return chr(int(m.group()[2:], 16))
elif m.group()[1] == '(':
if attrs is not None:
try:
v = attrs[m.group('field')]
except KeyError:
return m.group()
else:
return m.group()
f = m.group('format')
if f[-1] in 'dboxX':
if isinstance(v, str):
v = dat(v, 0)
v = int(v)
elif f[-1] in 'fFeEgG':
if isinstance(v, str):
v = dat(v, 0)
v = float(v)
else:
f = ('<' if '-' in f else '>') + f.replace('-', '')
v = str(v)
# note we need Python's new format syntax for binary
return ('{:%s}' % f).format(v)
else: assert False
return re.sub(pattern, unescape, s)
# a type to represent tiles
class Tile:
def __init__(self, key, children, *,
x=None, y=None, width=None, height=None,
depth=None,
attrs=None,
label=None,
color=None):
self.key = key
if isinstance(children, list):
self.children = children
self.value = sum(c.value for c in children)
else:
self.children = []
self.value = children
self.x = x
self.y = y
self.width = width
self.height = height
self.depth = depth
self.attrs = attrs
self.label = label
self.color = color
def __repr__(self):
return 'Tile(%r, %r, x=%r, y=%r, width=%r, height=%r)' % (
','.join(self.key), self.value,
self.x, self.y, self.width, self.height)
# recursively build heirarchy
@staticmethod
def merge(tiles, prefix=()):
# organize by 'by' field
tiles_ = co.OrderedDict()
for t in tiles:
if len(prefix)+1 >= len(t.key):
tiles_[t.key] = t
else:
key = prefix + (t.key[len(prefix)],)
if key not in tiles_:
tiles_[key] = []
tiles_[key].append(t)
tiles__ = []
for key, t in tiles_.items():
if isinstance(t, Tile):
tiles__.append(t)
else:
tiles__.append(Tile.merge(t, key))
tiles_ = tiles__
return Tile(prefix, tiles_, depth=len(prefix))
def __lt__(self, other):
return self.value < other.value
def __le__(self, other):
return self.value <= other.value
def __gt__(self, other):
return self.value > other.value
def __ge__(self, other):
return self.value >= other.value
# recursive traversals
def tiles(self):
yield self
for child in self.children:
yield from child.tiles()
def leaves(self):
for t in self.tiles():
if not t.children:
yield t
# sort recursively
def sort(self):
self.children.sort(reverse=True)
for t in self.children:
t.sort()
# recursive align to pixel boundaries
def align(self):
# this extra +0.1 and using points instead of width/height is
# to help minimize rounding errors
x0 = int(self.x+0.1)
y0 = int(self.y+0.1)
x1 = int(self.x+self.width+0.1)
y1 = int(self.y+self.height+0.1)
self.x = x0
self.y = y0
self.width = x1 - x0
self.height = y1 - y0
# recurse
for t in self.children:
t.align()
# return some interesting info about these tiles
def stat(self):
leaves = list(self.leaves())
mean = self.value / max(len(leaves), 1)
stddev = mt.sqrt(sum((t.value - mean)**2 for t in leaves)
/ max(len(leaves), 1))
min_ = min((t.value for t in leaves), default=0)
max_ = max((t.value for t in leaves), default=0)
return {
'total': self.value,
'mean': mean,
'stddev': stddev,
'min': min_,
'max': max_,
}
# bounded division, limits result to dividend, useful for avoiding
# divide-by-zero issues
def bdiv(a, b):
return a / max(b, 1)
# our partitioning schemes
def partition_binary(children, total, x, y, width, height):
sums = [0]
for t in children:
sums.append(sums[-1] + t.value)
# recursively partition into a roughly weight-balanced binary tree
def partition_(i, j, value, x, y, width, height):
# no child? guess we're done
if i == j:
return
# single child? assign the partition
elif i == j-1:
children[i].x = x
children[i].y = y
children[i].width = width
children[i].height = height
return
# binary search to find best split index
target = sums[i] + (value / 2)
k = bisect.bisect(sums, target, i+1, j-1)
# nudge split index if it results in less error
if k > i+1 and (sums[k] - target) > (target - sums[k-1]):
k -= 1
l = sums[k] - sums[i]
r = value - l
# split horizontally?
if width > height:
dx = bdiv(sums[k] - sums[i], value) * width
partition_(i, k, l, x, y, dx, height)
partition_(k, j, r, x+dx, y, width-dx, height)
# split vertically?
else:
dy = bdiv(sums[k] - sums[i], value) * height
partition_(i, k, l, x, y, width, dy)
partition_(k, j, r, x, y+dy, width, height-dy)
partition_(0, len(children), total, x, y, width, height)
def partition_slice(children, total, x, y, width, height):
# give each child a slice
x_ = x
for t in children:
t.x = x_
t.y = y
t.width = bdiv(t.value, total) * width
t.height = height
x_ += t.width
def partition_dice(children, total, x, y, width, height):
# give each child a slice
y_ = y
for t in children:
t.x = x
t.y = y_
t.width = width
t.height = bdiv(t.value, total) * height
y_ += t.height
def partition_squarify(children, total, x, y, width, height, *,
aspect_ratio=1/1):
# this algorithm is described here:
# https://www.win.tue.nl/~vanwijk/stm.pdf
i = 0
x_ = x
y_ = y
total_ = total
width_ = width
height_ = height
# note we don't really care about width vs height until
# actually slicing
ratio = max(aspect_ratio, 1/aspect_ratio)
while i < len(children):
# calculate initial aspect ratio
sum_ = children[i].value
min_ = children[i].value
max_ = children[i].value
w = total_ * bdiv(ratio,
max(bdiv(width_, height_), bdiv(height_, width_)))
ratio_ = max(bdiv(max_*w, sum_**2), bdiv(sum_**2, min_*w))
# keep adding children to this row/col until it starts to hurt
# our aspect ratio
j = i + 1
while j < len(children):
sum__ = sum_ + children[j].value
min__ = min(min_, children[j].value)
max__ = max(max_, children[j].value)
ratio__ = max(bdiv(max__*w, sum__**2), bdiv(sum__**2, min__*w))
if ratio__ > ratio_:
break
sum_ = sum__
min_ = min__
max_ = max__
ratio_ = ratio__
j += 1
# vertical col? dice horizontally?
if width_ > height_:
dx = bdiv(sum_, total_) * width_
partition_dice(children[i:j], sum_, x_, y_, dx, height_)
x_ += dx
width_ -= dx
# horizontal row? slice vertically?
else:
dy = bdiv(sum_, total_) * height_
partition_slice(children[i:j], sum_, x_, y_, width_, dy)
y_ += dy
height_ -= dy
# start partitioning the other direction
total_ -= sum_
i = j
def collect_code(obj_paths, *,
code_path=CODE_PATH,
**args):
# note code-path may contain extra args
cmd = code_path + ['-O-'] + obj_paths
if args.get('verbose'):
print(' '.join(shlex.quote(c) for c in cmd))
proc = sp.Popen(cmd,
stdout=sp.PIPE,
universal_newlines=True,
errors='replace',
close_fds=False)
code = json.load(proc.stdout)
proc.wait()
if proc.returncode != 0:
raise sp.CalledProcessError(proc.returncode, proc.args)
return code
def collect_stack(ci_paths, *,
stack_path=STACK_PATH,
**args):
# note stack-path may contain extra args
cmd = stack_path + ['-O-', '--depth=2'] + ci_paths
if args.get('verbose'):
print(' '.join(shlex.quote(c) for c in cmd))
proc = sp.Popen(cmd,
stdout=sp.PIPE,
universal_newlines=True,
errors='replace',
close_fds=False)
stack = json.load(proc.stdout)
proc.wait()
if proc.returncode != 0:
raise sp.CalledProcessError(proc.returncode, proc.args)
return stack
def collect_ctx(obj_paths, *,
ctx_path=CTX_PATH,
**args):
# note stack-path may contain extra args
cmd = ctx_path + ['-O-', '--depth=2', '--internal'] + obj_paths
if args.get('verbose'):
print(' '.join(shlex.quote(c) for c in cmd))
proc = sp.Popen(cmd,
stdout=sp.PIPE,
universal_newlines=True,
errors='replace',
close_fds=False)
ctx = json.load(proc.stdout)
proc.wait()
if proc.returncode != 0:
raise sp.CalledProcessError(proc.returncode, proc.args)
return ctx
def main(paths, output, *,
namespace_depth=2,
quiet=False,
labels=[],
colors=[],
width=None,
height=None,
no_header=False,
no_mode=False,
no_stack=False,
stack_ratio=1/5,
no_ctx=False,
no_frames=False,
tile_code=False,
tile_stack=False,
tile_frames=False,
tile_ctx=False,
tile_1=False,
no_javascript=False,
mode_callgraph=False,
mode_deepest=False,
mode_callees=False,
mode_callers=False,
to_scale=None,
to_ratio=1/1,
title=None,
padding=1,
no_label=False,
tiny=False,
nested=False,
dark=False,
font=FONT,
font_size=FONT_SIZE,
background=None,
**args):
# tiny mode?
if tiny:
if to_scale is None:
to_scale = 1
no_header = True
no_label = True
no_stack = True
no_javascript = True
# default to tiling based on code
if (not tile_code
and not tile_stack
and not tile_frames
and not tile_ctx
and not tile_1):
tile_code = True
# default to all modes
if (not mode_callgraph
and not mode_deepest
and not mode_callees
and not mode_callers):
mode_callgraph = True
mode_deepest = True
mode_callees = True
mode_callers = True
# what colors/labels to use?
colors_ = CsvAttr(colors, defaults=COLORS_DARK if dark else COLORS)
labels_ = CsvAttr(labels)
if background is not None:
background_ = background
elif dark:
background_ = '#000000'
else:
background_ = '#ffffff'
# figure out width/height
if width is not None:
width_ = width
else:
width_ = WIDTH
if height is not None:
height_ = height
else:
height_ = HEIGHT
# try to parse files as CSV/JSON
results = []
try:
# if any file starts with elf magic (\x7fELF), assume input is
# elf/callgraph files
fs = []
for path in paths:
f = openio(path)
if f.buffer.peek(4)[:4] == b'\x7fELF':
for f_ in fs:
f_.close()
raise StopIteration()
fs.append(f)
for f in fs:
with f:
# csv or json? assume json starts with [
is_json = (f.buffer.peek(1)[:1] == b'[')
# read csv?
if not is_json:
results.extend(csv.DictReader(f, restval=''))
# read json?
else:
results.extend(json.load(f))
# fall back to extracting code/stack/ctx info from elf/callgraph files
except StopIteration:
# figure out paths
obj_paths = []
ci_paths = []
for path in paths:
if iself(path):
obj_paths.append(path)
else:
ci_paths.append(path)
# find code/stack/ctx sizes
if obj_paths:
results.extend(collect_code(obj_paths, **args))
if ci_paths:
results.extend(collect_stack(ci_paths, **args))
if obj_paths:
results.extend(collect_ctx(obj_paths, **args))
# don't render code/stack/ctx results if we don't have any
nil_code = not any('code_size' in r for r in results)
nil_stack = not any('stack_limit' in r for r in results)
nil_frames = not any('stack_frame' in r for r in results)
nil_ctx = not any('ctx_size' in r for r in results)
if nil_frames:
no_frames = True
if nil_ctx:
no_ctx = True
if no_frames and no_ctx:
no_stack = True
# merge code/stack/ctx results
functions = co.OrderedDict()
for r in results:
if 'function' not in r:
continue
if r['function'] not in functions:
functions[r['function']] = {'name': r['function']}
# code things
if 'code_size' in r:
functions[r['function']]['code'] = dat(r['code_size'])
# stack things, including callgraph
if 'stack_frame' in r:
functions[r['function']]['frame'] = dat(r['stack_frame'])
if 'stack_limit' in r:
functions[r['function']]['stack'] = dat(r['stack_limit'], mt.inf)
if 'children' in r:
if 'children' not in functions[r['function']]:
functions[r['function']]['children'] = []
functions[r['function']]['children'].extend(
r_['function']
for r_ in r['children']
if r_.get('stack_frame', '') != '')
# ctx things, including any arguments
if 'ctx_size' in r:
functions[r['function']]['ctx'] = dat(r['ctx_size'])
if 'children' in r:
if 'args' not in functions[r['function']]:
functions[r['function']]['args'] = []
functions[r['function']]['args'].extend(
{'name': r_['function'],
'ctx': dat(r_['ctx_size']),
'attrs': r_}
for r_ in r['children']
if r_.get('ctx_size', '') != '')
# keep track of other attrs for punescaping
if 'attrs' not in functions[r['function']]:
functions[r['function']]['attrs'] = {}
functions[r['function']]['attrs'].update(r)
# stack.py returns infinity for recursive functions, so we need to
# recompute a bounded stack limit to show something useful
def limitof(k, f, seen=set()):
# found a cycle? stop here
if k in seen:
return 0
limit = 0
for child in f.get('children', []):
if child not in functions:
continue
limit = max(limit, limitof(child, functions[child], seen | {k}))
return f['frame'] + limit
for k, f in functions.items():
if 'stack' in f:
if mt.isinf(f['stack']):
f['limit'] = limitof(k, f)
else:
f['limit'] = f['stack']
# organize into subsystems
namespace_pattern = re.compile('_*[^_]+(?:_*$)?')
namespace_slice = slice(namespace_depth if namespace_depth else None)
subsystems = {}
for k, f in functions.items():
# ignore leading/trailing underscores
f['subsystem'] = ''.join(
namespace_pattern.findall(k)[
namespace_slice])
if f['subsystem'] not in subsystems:
subsystems[f['subsystem']] = {'name': f['subsystem']}
# include ctx in subsystems to give them different colors
for _, f in functions.items():
for a in f.get('args', []):
a['subsystem'] = a['name']
if a['subsystem'] not in subsystems:
subsystems[a['subsystem']] = {'name': a['subsystem']}
# sort to try to keep things reproducible
functions = co.OrderedDict(sorted(functions.items()))
subsystems = co.OrderedDict(sorted(subsystems.items()))
# sum code/stack/ctx/attrs for punescaping
for k, s in subsystems.items():
s['code'] = sum(
f.get('code', 0) for f in functions.values()
if f['subsystem'] == k)
s['stack'] = max(
(f.get('stack', 0) for f in functions.values()
if f['subsystem'] == k),
default=0)
s['ctx'] = max(
(f.get('ctx', 0) for f in functions.values()
if f['subsystem'] == k),
default=0)
s['attrs'] = {k_: v_
for f in functions.values()
if f['subsystem'] == k
for k_, v_ in f['attrs'].items()}
# also build totals
totals = {}
totals['code'] = sum(
f.get('code', 0) for f in functions.values())
totals['stack'] = max(
(f.get('stack', 0) for f in functions.values()),
default=0)
totals['ctx'] = max(
(f.get('ctx', 0) for f in functions.values()),
default=0)
totals['count'] = len(functions)
totals['attrs'] = {k: v
for f in functions.values()
for k, v in f['attrs'].items()}
# assign colors to subsystems, note this is after sorting, but
# before tile generation, we want code and stack tiles to have the
# same color if they're in the same subsystem
for i, (k, s) in enumerate(subsystems.items()):
color__ = colors_[i, k]
# don't punescape unless we have to
if '%' in color__:
color__ = punescape(color__, s['attrs'] | s)
s['color'] = color__
# build code heirarchy
code = Tile.merge(
Tile( (f['subsystem'], f['name']),
f.get('code', 0) if tile_code and not nil_code
else f.get('stack', 0) if tile_stack and not nil_stack
else f.get('frame', 0) if tile_frames and not nil_frames
else f.get('ctx', 0) if tile_ctx and not nil_ctx
else 1,
attrs=f)
for f in functions.values())
# assign colors/labels to code tiles
for i, t in enumerate(code.leaves()):
# skip the top tile, yes this can happen if we have no code
if t.depth == 0:
continue
t.color = subsystems[t.attrs['subsystem']]['color']
if (i, t.attrs['name']) in labels_:
label__ = labels_[i, t.attrs['name']]
# don't punescape unless we have to
if '%' in label__:
label__ = punescape(label__, t.attrs['attrs'] | t.attrs)
t.label = label__
else:
t.label = '%s%s%s%s' % (
t.attrs['name'],
'\ncode %d' % t.attrs.get('code', 0)
if not nil_code else '',
'\nstack %s' % (lambda s: '' if mt.isinf(s) else s)(
t.attrs.get('stack', 0))
if not nil_frames else '',
'\nctx %d' % t.attrs.get('ctx', 0)
if not nil_ctx else '')
# build stack heirarchies
if not no_stack and not no_frames:
stacks = co.OrderedDict()
for k, f in functions.items():
stack = []
def rec(f, seen=set()):
if f['name'] in seen:
stack.append(f)
return
seen.add(f['name'])
stack.append(f)
if f.get('children'):
hot = max(f['children'], key=lambda k:
functions[k].get('limit', 0)
if k not in seen else -1)
rec(functions[hot], seen)
rec(f)
stacks[k] = Tile.merge(
Tile( (f['name'],),
f.get('frame', 0),
attrs=f)
for f in stack)
# assign colors/labels to stack tiles
for i, t in enumerate(stacks[k].leaves()):
t.color = subsystems[t.attrs['subsystem']]['color']
if (i, t.attrs['name']) in labels_:
label__ = labels_[i, t.attrs['name']]
# don't punescape unless we have to
if '%' in label__:
label__ = punescape(label__,
t.attrs['attrs'] | t.attrs)
t.label = label__
else:
t.label = '%s\nframe %d' % (
t.attrs['name'],
t.attrs.get('frame', 0))
# build ctx heirarchies
if not no_stack and not no_ctx:
ctxs = co.OrderedDict()
for k, f in functions.items():
if f.get('args'):
args_ = f['args']
else:
args_ = [{
'name': k,
'subsystem': f['subsystem'],
'ctx': f.get('ctx', 0),
'attrs': f}]
ctxs[k] = Tile.merge(
Tile( (a['name'],),
a.get('ctx', 0),
attrs=a)
for a in args_)
# assign colors/labels to ctx tiles
for i, t in enumerate(ctxs[k].leaves()):
t.color = subsystems[t.attrs['subsystem']]['color']
if (i, t.attrs['name']) in labels_:
label__ = labels_[i, t.attrs['name']]
# don't punescape unless we have to
if '%' in label__:
label__ = punescape(label__,
t.attrs['attrs'] | t.attrs)
t.label = label__
else:
t.label = '%s\nctx %d' % (
t.attrs['name'],
t.attrs.get('ctx', 0))
# scale width/height if requested now that we have our data
if (to_scale is not None
and (width is None or height is None)):
total_value = (totals.get('code', 0) if tile_code
else totals.get('stack', 0) if tile_stack
else totals.get('frame', 0) if tile_frames
else totals.get('ctx', 0) if tile_ctx
else totals.get('count', 0))
if total_value:
# don't include header/stack in scale
width__ = width_
height__ = height_
if not no_header:
height__ -= mt.ceil(FONT_SIZE * 1.3)
if not no_stack:
width__ *= (1 - stack_ratio)
# scale width only
if height is not None:
width__ = mt.ceil((total_value * to_scale) / max(height__, 1))
# scale height only
elif width is not None:
height__ = mt.ceil((total_value * to_scale) / max(width__, 1))
# scale based on aspect-ratio
else:
width__ = mt.ceil(mt.sqrt(total_value * to_scale * to_ratio))
height__ = mt.ceil((total_value * to_scale) / max(width__, 1))
if not no_stack:
width__ /= (1 - stack_ratio)
if not no_header:
height__ += mt.ceil(FONT_SIZE * 1.3)
width_ = width__
height_ = height__
# our general purpose partition function
def partition(tile, **args):
if tile.depth == 0:
# apply top padding
tile.x += padding
tile.y += padding
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
# apply bottom padding
if not tile.children:
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
x__ = tile.x
y__ = tile.y
width__ = tile.width
height__ = tile.height
else:
# apply bottom padding
if not tile.children:
tile.width -= min(padding, tile.width)
tile.height -= min(padding, tile.height)
x__ = tile.x
y__ = tile.y
width__ = tile.width
height__ = tile.height
# partition via requested scheme
if tile.children:
if args.get('binary'):
partition_binary(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('slice')
or (args.get('slice_and_dice') and (tile.depth & 1) == 0)
or (args.get('dice_and_slice') and (tile.depth & 1) == 1)):
partition_slice(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('dice')
or (args.get('slice_and_dice') and (tile.depth & 1) == 1)
or (args.get('dice_and_slice') and (tile.depth & 1) == 0)):
partition_dice(tile.children, tile.value,
x__, y__, width__, height__)
elif (args.get('squarify')
or args.get('squarify_ratio')
or args.get('rectify')):
partition_squarify(tile.children, tile.value,
x__, y__, width__, height__,
aspect_ratio=(
args['squarify_ratio']
if args.get('squarify_ratio')
else width_/height_
if args.get('rectify')
else 1/1))
else:
# default to binary partitioning
partition_binary(tile.children, tile.value,
x__, y__, width__, height__)
# recursively partition
for t in tile.children:
partition(t, **args)
# create space for header
x__ = 0
y__ = 0
width__ = width_
height__ = height_
if not no_header:
y__ += mt.ceil(FONT_SIZE * 1.3)
height__ -= min(mt.ceil(FONT_SIZE * 1.3), height__)
# split code/stack
if not no_stack:
code_split = width__ * (1 - stack_ratio)
else:
code_split = width__
# sort and partition code
code.sort()
code.x = x__
code.y = y__
code.width = code_split
code.height = height__
partition(code, **args)
# align to pixel boundaries
code.align()
# partition stacks/ctxs
if not no_stack:
deepest = max(functions.values(),
key=lambda f:
(f.get('limit', 0) if not no_frames else 0)
+ (f.get('ctx', 0) if not no_ctx else 0))
for k, f in functions.items():
# scale to deepest stack/ctx
height___ = height__ * bdiv(
(f.get('limit', 0) if not no_frames else 0)
+ (f.get('ctx', 0) if not no_ctx else 0),
(deepest.get('limit', 0) if not no_frames else 0)
+ (deepest.get('ctx', 0) if not no_ctx else 0))
# split stack/ctx
ctx_split = height___ * bdiv(
(f.get('ctx', 0) if not no_ctx else 0),
(f.get('limit', 0) if not no_frames else 0)
+ (f.get('ctx', 0) if not no_ctx else 0))
# partition ctx
if not no_ctx:
ctx = ctxs[k]
ctx.x = code.x + code.width + 1
ctx.y = y__
ctx.width = width__ - ctx.x
ctx.height = ctx_split
partition(ctx, slice=True)
# align to pixel boundaries
ctx.align()
# partition stack
if not no_frames:
stack = stacks[k]
stack.x = code.x + code.width + 1
stack.y = ctx.y + ctx.height + 1 if ctx_split > 0 else y__
stack.width = width__ - stack.x
stack.height = height___ - (stack.y - y__)
partition(stack, dice=True)
# align to pixel boundaries
stack.align()
# create svg file
with openio(output, 'w') as f:
def writeln(s=''):
f.write(s)
f.write('\n')
f.writeln = writeln
# yes this is svg
f.write('<svg '
'xmlns="http://www.w3.org/2000/svg" '
'viewBox="0,0,%(width)d,%(height)d" '
'width="%(width)d" '
'height="%(height)d" '
'style="font: %(font_size)dpx %(font)s; '
'background-color: %(background)s; '
'user-select: %(user_select)s;">' % dict(
width=width_,
height=height_,
font=','.join(font),
font_size=font_size,
background=background_,
user_select='none' if not no_javascript else 'auto'))
# create header
if not no_header:
f.write('<g '
'id="header" '
'%(js)s>' % dict(
js= 'cursor="pointer" '
'onclick="click_header(this,event)">'
if not no_javascript else ''))
# add an invisible rect to make things more clickable
f.write('<rect '
'x="%(x)d" '
'y="%(y)d" '
'width="%(width)d" '
'height="%(height)d" '
'opacity="0">' % dict(
x=0,
y=0,
width=width_,
height=y__))
f.write('</rect>')
f.write('<text fill="%(color)s">' % dict(
color='#ffffff' if dark else '#000000'))
f.write('<tspan x="3" y="1.1em">')
if title:
f.write(punescape(title, totals['attrs'] | totals))
else:
f.write('code %d stack %s ctx %d' % (
totals.get('code', 0),
(lambda s: '' if mt.isinf(s) else s)(
totals.get('stack', 0)),
totals.get('ctx', 0)))
f.write('</tspan>')
if not no_mode and not no_javascript:
f.write('<tspan id="mode" x="%(x)d" y="1.1em" '
'text-anchor="end">' % dict(
x=width_-3))
f.write('mode: %s' % (
'callgraph' if mode_callgraph
else 'deepest' if mode_deepest
else 'callees' if mode_callees
else 'callers'))
f.write('</tspan>')
f.write('</text>')
f.write('</g>')
# create code tiles
for i, t in enumerate(code.leaves()):
# skip the top tile, yes this can happen if we have no code
if t.depth == 0:
continue
# skip anything with zero weight/height after aligning things
if t.width == 0 or t.height == 0:
continue
f.write('<g '
'id="c-%(name)s" '
'class="tile code" '
'transform="translate(%(x)d,%(y)d)" '
'%(js)s>' % dict(
name=t.attrs['name'],
x=t.x,
y=t.y,
js= 'data-name="%(name)s" '
# precompute x/y for javascript, svg makes this
# weirdly difficult to figure out post-transform
'data-x="%(x)d" '
'data-y="%(y)d" '
'data-width="%(width)d" '
'data-height="%(height)d" '
'onmouseenter="enter_tile(this,event)" '
'onmouseleave="leave_tile(this,event)" '
'onclick="click_tile(this,event)">' % dict(
name=t.attrs['name'],
x=t.x,
y=t.y,
width=t.width,
height=t.height)
if not no_javascript else ''))
# add an invisible rect to make things more clickable
f.write('<rect '
'width="%(width)d" '
'height="%(height)d" '
'opacity="0">' % dict(
width=t.width + padding,
height=t.height + padding))
f.write('</rect>')
f.write('<title>')
f.write(t.label)
f.write('</title>')
f.write('<rect '
'id="c-tile-%(id)s" '
'fill="%(color)s" '
'width="%(width)d" '
'height="%(height)d">' % dict(
id=i,
color=t.color,
width=t.width,
height=t.height))
f.write('</rect>')
if not no_label:
f.write('<clipPath id="c-clip-%s">' % i)
f.write('<use href="#c-tile-%s">' % i)
f.write('</use>')
f.write('</clipPath>')
f.write('<text clip-path="url(#c-clip-%s)">' % i)
for j, l in enumerate(t.label.split('\n')):
if j == 0:
f.write('<tspan x="3" y="1.1em">')
f.write(l)
f.write('</tspan>')
else:
if t.children:
f.write('<tspan dx="3" y="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
else:
f.write('<tspan x="3" dy="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
f.write('</text>')
f.write('</g>')
# create stack/ctx tiles
if not no_stack and (not no_ctx or not no_frames):
for i, k in enumerate(functions.keys()):
# only include the deepest stack if no_javascript, no reason to
# include a bunch of tiles we will never render
if no_javascript and functions[k]['name'] != deepest['name']:
continue
# create stack group
#
# note we conveniently don't need unique ids for each ctx/frame
# tile, just for the entire stack group
f.write('<g '
'id="s-%(name)s" '
'class="stack" '
'%(js)s>' % dict(
name=k,
js= 'visibility="%(visibility)s">' % dict(
visibility="visible"
if functions[k]['name']
== deepest['name']
else "hidden")
if not no_javascript else ''))
# add a separator between code/stack
f.write('<rect '
'x="%(x)d" '
'y="%(y)d" '
'width="%(width)d" '
'height="%(height)d" '
'fill="%(color)s">' % dict(
x=code.x + code.width,
y=code.y,
width=1,
height=max(
stacks[k].y + stacks[k].height
if not no_frames else 0,
ctxs[k].y + ctxs[k].height
if not no_ctx else 0)
- code.y - padding,
color='#7f7f7f' if dark else '#555555'))
f.write('</rect>')
# create ctx tiles
if not no_ctx:
for j, t in enumerate(ctxs[k].leaves()):
# skip anything with zero weight/height after aligning things
if t.width == 0 or t.height == 0:
continue
f.write('<g '
'id="x-%(id)s" '
'class="tile ctx" '
'transform="translate(%(x)d,%(y)d)" '
'%(js)s>' % dict(
id='%s-%s' % (i, j),
x=t.x,
y=t.y,
js= 'data-name="%(name)s" '
'data-func="%(func)s" '
# precompute x/y for javascript, svg makes
# this weirdly difficult to figure out
# post-transform
'data-x="%(x)d" '
'data-y="%(y)d" '
'data-width="%(width)d" '
'data-height="%(height)d" '
'onmouseenter="enter_tile(this,event)" '
'onmouseleave="leave_tile(this,event)" '
'onclick="click_tile(this,event)">' % dict(
name=t.attrs['name'],
func=k,
x=t.x,
y=t.y,
width=t.width,
height=t.height)
if not no_javascript else ''))
# add an invisible rect to make things more clickable
f.write('<rect '
'width="%(width)d" '
'height="%(height)d" '
'opacity="0">' % dict(
width=t.width + padding,
height=t.height + padding))
f.write('</rect>')
f.write('<title>')
f.write(t.label)
f.write('</title>')
f.write('<rect '
'id="x-tile-%(id)s" '
'fill="%(color)s" '
'width="%(width)d" '
'height="%(height)d">' % dict(
id='%s-%s' % (i, j),
color=t.color,
width=t.width,
height=t.height))
f.write('</rect>')
if not no_label:
f.write('<clipPath id="x-clip-%s">' % ('%s-%s' % (i, j)))
f.write('<use href="#x-tile-%s">' % ('%s-%s' % (i, j)))
f.write('</use>')
f.write('</clipPath>')
f.write('<text clip-path="url(#x-clip-%s)">' % (
'%s-%s' % (i, j)))
for j, l in enumerate(t.label.split('\n')):
if j == 0:
f.write('<tspan x="3" y="1.1em">')
f.write(l)
f.write('</tspan>')
else:
if t.children:
f.write('<tspan dx="3" y="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
else:
f.write('<tspan x="3" dy="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
f.write('</text>')
f.write('</g>')
# add a separator between ctx/stack
if not no_ctx and not no_frames:
f.write('<rect '
'x="%(x)d" '
'y="%(y)d" '
'width="%(width)d" '
'height="%(height)d" '
'fill="%(color)s">' % dict(
x=ctxs[k].x,
y=ctxs[k].y + ctxs[k].height,
width=ctxs[k].width - padding,
height=1,
color='#7f7f7f' if dark else '#555555'))
f.write('</rect>')
# create stack tiles
if not no_frames:
for j, t in enumerate(stacks[k].leaves()):
# skip anything with zero weight/height after aligning things
if t.width == 0 or t.height == 0:
continue
f.write('<g '
'id="f-%(id)s" '
'class="tile frame" '
'transform="translate(%(x)d,%(y)d)" '
'%(js)s>' % dict(
id='%s-%s' % (i, j),
x=t.x,
y=t.y,
js= 'data-name="%(name)s" '
'data-func="%(func)s" '
# precompute x/y for javascript, svg makes
# this weirdly difficult to figure out
# post-transform
'data-x="%(x)d" '
'data-y="%(y)d" '
'data-width="%(width)d" '
'data-height="%(height)d" '
'onmouseenter="enter_tile(this,event)" '
'onmouseleave="leave_tile(this,event)" '
'onclick="click_tile(this,event)"' % dict(
name=t.attrs['name'],
func=k,
x=t.x,
y=t.y,
width=t.width,
height=t.height)
if not no_javascript else ''))
# add an invisible rect to make things more clickable
f.write('<rect '
'width="%(width)d" '
'height="%(height)d" '
'opacity="0">' % dict(
width=t.width + padding,
height=t.height + padding))
f.write('</rect>')
f.write('<title>')
f.write(t.label)
f.write('</title>')
f.write('<rect '
'id="f-tile-%(id)s" '
'fill="%(color)s" '
'width="%(width)d" '
'height="%(height)d">' % dict(
id='%s-%s' % (i, j),
color=t.color,
width=t.width,
height=t.height))
f.write('</rect>')
if not no_label:
f.write('<clipPath id="f-clip-%s">' % ('%s-%s' % (i, j)))
f.write('<use href="#f-tile-%s">' % ('%s-%s' % (i, j)))
f.write('</use>')
f.write('</clipPath>')
f.write('<text clip-path="url(#f-clip-%s)">' % (
'%s-%s' % (i, j)))
for j, l in enumerate(t.label.split('\n')):
if j == 0:
f.write('<tspan x="3" y="1.1em">')
f.write(l)
f.write('</tspan>')
else:
if t.children:
f.write('<tspan dx="3" y="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
else:
f.write('<tspan x="3" dy="1.1em" '
'fill-opacity="0.7">')
f.write(l)
f.write('</tspan>')
f.write('</text>')
f.write('</g>')
f.write('</g>')
if not no_javascript:
# arrowhead for arrows
f.write('<defs>')
f.write('<marker '
'id="arrowhead" '
'viewBox="0 0 10 10" '
'refX="10" '
'refY="5" '
'markerWidth="6" '
'markerHeight="6" '
'orient="auto-start-reverse" '
'fill="%(color)s">' % dict(
color='#000000' if dark else '#555555'))
f.write('<path d="M 0 0 L 10 5 L 0 10 z"/>')
f.write('</marker>')
f.write('</defs>')
# javascript for arrows
#
# why tf does svg support javascript?
f.write('<script><![CDATA[')
# embed our callgraph
f.write('const children = %s;' % json.dumps(
{f['name']: sorted(f.get('children', []),
key=lambda c: functions[c]['limit'],
reverse=True)
for f in functions.values()},
separators=(',', ':')))
# function for rect <-> line interesection
f.write('function rect_intersect(x, y, width, height, l_x, l_y) {')
f.write( 'let r_x = (x + width/2);')
f.write( 'let r_y = (y + height/2);')
f.write( 'let dx = l_x - r_x;')
f.write( 'let dy = l_y - r_y;')
f.write( 'let θ = Math.abs(dy / dx);')
f.write( 'let φ = height / width;')
f.write( 'if (θ > φ) {')
f.write( 'return [')
f.write( 'r_x + ((height/2)/θ)*Math.sign(dx),')
f.write( 'r_y + (height/2)*Math.sign(dy),')
f.write( '];')
f.write( '} else {')
f.write( 'return [')
f.write( 'r_x + (width/2)*Math.sign(dx),')
f.write( 'r_y + ((width/2)*θ)*Math.sign(dy),')
f.write( '];')
f.write( '}')
f.write('}')
# our main drawing functions
f.write('function draw_unfocus() {')
# lower opacity of unfocused tiles
f.write( 'for (let b of document.querySelectorAll(".tile")) {')
f.write( 'b.setAttribute("fill-opacity", 0.5);')
f.write( '}')
f.write('}')
f.write('function draw_focus(a) {')
# revert opacity and move to top
f.write( 'a.setAttribute("fill-opacity", 1);')
f.write( 'a.parentElement.appendChild(a);')
f.write('}')
# draw an arrow
f.write('function draw_arrow(a, b) {')
# no self-referential arrows
f.write( 'if (b == a) {')
f.write( 'return;')
f.write( '}')
# figure out rect intersections
f.write( 'let svg = document.documentElement;')
f.write( 'let ns = svg.getAttribute("xmlns");')
f.write( 'let a_x = parseInt(a.dataset.x);')
f.write( 'let a_y = parseInt(a.dataset.y);')
f.write( 'let a_width = parseInt(a.dataset.width);')
f.write( 'let a_height = parseInt(a.dataset.height);')
f.write( 'let b_x = parseInt(b.dataset.x);')
f.write( 'let b_y = parseInt(b.dataset.y);')
f.write( 'let b_width = parseInt(b.dataset.width);')
f.write( 'let b_height = parseInt(b.dataset.height);')
f.write( 'let [a_ix, a_iy] = rect_intersect(')
f.write( 'a_x, a_y, a_width, a_height,')
f.write( 'b_x + b_width/2, b_y + b_height/2);')
f.write( 'let [b_ix, b_iy] = rect_intersect(')
f.write( 'b_x, b_y, b_width, b_height,')
f.write( 'a_x + a_width/2, a_y + a_height/2);')
# create the actual arrow
f.write( 'let arrow = document.createElementNS(ns, "line");')
f.write( 'arrow.classList.add("arrow");')
f.write( 'arrow.setAttribute("x1", a_ix);')
f.write( 'arrow.setAttribute("y1", a_iy);')
f.write( 'arrow.setAttribute("x2", b_ix);')
f.write( 'arrow.setAttribute("y2", b_iy);')
f.write( 'arrow.setAttribute("stroke", "%(color)s");' % dict(
color='#000000' if dark else '#555555'))
f.write( 'arrow.setAttribute("marker-end", "url(#arrowhead)");')
f.write( 'arrow.setAttribute("pointer-events", "none");')
f.write( 'a.parentElement.appendChild(arrow);')
f.write('}')
# here are some drawing modes to choose from
# draw full callgraph
f.write('function draw_callgraph(a) {')
# track visited children to avoid cycles
f.write( 'let seen = {};')
# create new arrows
f.write( 'let recurse = function(a) {')
f.write( 'if (a.dataset.name in seen) {')
f.write( 'return;')
f.write( '}')
f.write( 'seen[a.dataset.name] = true;')
f.write( 'for (let child of ')
f.write( 'children[a.dataset.name] || []) {')
f.write( 'let b = document.getElementById("c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_arrow(a, b);')
f.write( 'recurse(b);')
f.write( '}')
f.write( '}')
f.write( '};')
f.write( 'recurse(a);')
# track visited children to avoid cycles
f.write( 'seen = {};')
# move in-focus tiles to the top
f.write( 'recurse = function(a) {')
f.write( 'if (a.dataset.name in seen) {')
f.write( 'return;')
f.write( '}')
f.write( 'seen[a.dataset.name] = true;')
f.write( 'for (let child of ')
f.write( 'children[a.dataset.name] || []) {')
f.write( 'let b = document.getElementById("c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_focus(b);')
f.write( 'recurse(b);')
f.write( '}')
f.write( '}')
f.write( '};')
f.write( 'recurse(a);')
# move our tile to the top
f.write( 'draw_focus(a);')
f.write('}')
# draw deepest set of calls
f.write('function draw_deepest(a) {')
# track visited children to avoid cycles
f.write( 'let seen = {};')
# create/ new arrows
f.write( 'let recurse = function(a) {')
f.write( 'if (a.dataset.name in seen) {')
f.write( 'return;')
f.write( '}')
f.write( 'seen[a.dataset.name] = true;')
f.write( 'if (children[a.dataset.name]) {')
# draw recursive arrows to show cycles
f.write( 'if (children[a.dataset.name][0] in seen) {')
f.write( 'let child = children[a.dataset.name][0];')
f.write( 'let b = document.getElementById('
'"c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_arrow(a, b);')
f.write( '}')
f.write( '}')
# but descend down the deepest non-recursive
# child to show useful stack info
f.write( 'let child = children[a.dataset.name]'
'.find((child) => !(child in seen));')
f.write( 'if (child) {')
f.write( 'let b = document.getElementById('
'"c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_arrow(a, b);')
f.write( 'recurse(b);')
f.write( '}')
f.write( '}')
f.write( '}')
f.write( '};')
f.write( 'recurse(a);')
# track visited children to avoid cycles
f.write( 'seen = {};')
# move in-focus tiles to the top
f.write( 'recurse = function(a) {')
f.write( 'if (a.dataset.name in seen) {')
f.write( 'return;')
f.write( '}')
f.write( 'seen[a.dataset.name] = true;')
f.write( 'if (children[a.dataset.name]) {')
f.write( 'let child = children[a.dataset.name]'
'.find((child) => !(child in seen));')
f.write( 'if (child) {')
f.write( 'let b = document.getElementById('
'"c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_focus(b);')
f.write( 'recurse(b);')
f.write( '}')
f.write( '}')
f.write( '}')
f.write( '};')
f.write( 'recurse(a);')
# move our tile to the top
f.write( 'draw_focus(a);')
f.write('}')
# draw one level of calls
f.write('function draw_callees(a) {')
# create new arrows
f.write( 'for (let child of children[a.dataset.name] || []) {')
f.write( 'let b = document.getElementById("c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_arrow(a, b);')
f.write( '}')
f.write( '}')
# move in-focus tiles to the top
f.write( 'for (let child of children[a.dataset.name] || []) {')
f.write( 'let b = document.getElementById("c-"+child);')
f.write( 'if (b) {')
f.write( 'draw_focus(b);')
f.write( '}')
f.write( '}')
# move our tile to the top
f.write( 'draw_focus(a);')
f.write('}')
# draw one level of callers
f.write('function draw_callers(a) {')
# create new arrows
f.write( 'for (let parent in children) {')
f.write( 'if ((children[parent] || []).includes(')
f.write( 'a.dataset.name)) {')
f.write( 'let b = document.getElementById('
'"c-"+parent);')
f.write( 'if (b) {')
f.write( 'draw_arrow(b, a);')
f.write( '}')
f.write( '}')
f.write( '}')
# move in-focus tiles to the top
f.write( 'for (let parent in children) {')
f.write( 'if ((children[parent] || []).includes(')
f.write( 'a.dataset.name)) {')
f.write( 'let b = document.getElementById('
'"c-"+parent);')
f.write( 'if (b) {')
f.write( 'draw_focus(b);')
f.write( '}')
f.write( '}')
f.write( '}')
# move our tile to the top
f.write( 'draw_focus(a);')
f.write('}')
# clear old arrows/tiles if we leave
f.write('function undraw() {')
# clear arrows
f.write( 'for (let arrow of document.querySelectorAll('
'".arrow")) {')
f.write( 'arrow.remove();')
f.write( '}')
# revert opacity
f.write( 'for (let b of document.querySelectorAll(".tile")) {')
f.write( 'b.setAttribute("fill-opacity", 1);')
f.write( '}')
f.write('}')
# render stack+ctx tiles
f.write('function switch_stack(name) {')
# update stack tiles
f.write( 'for (let b of document.querySelectorAll(".stack")) {')
f.write( 'b.setAttribute("visibility", "hidden");')
f.write( '}')
f.write( 'let s = document.getElementById("s-"+name);')
f.write( 'if (s) {')
# make visible
f.write( 's.setAttribute("visibility", "visible");')
# and refocus stack tiles in case they were
# unfocused
f.write( 'for (let b of s.querySelectorAll('
'".frame,.ctx")) {')
f.write( 'draw_focus(b);')
f.write( '}')
f.write( '}')
f.write('}')
# draw stack frame/ctx tile
f.write('function draw_stack(a) {')
# if a is null we just refocus the stack
f.write( 'if (!a) {')
f.write( 'let s = document.querySelector('
'".stack[visibility=\\"visible\\"]");')
f.write( 'for (let b of s.querySelectorAll('
'".frame,.ctx")) {')
f.write( 'draw_focus(b);')
f.write( '}')
f.write( 'return;')
f.write( '}')
# render the deepest call path of the relevant code
# tile
f.write( 'let c = document.getElementById("c-"+('
'a.classList.contains("ctx")'
'? a.dataset.func'
': a.dataset.name));')
f.write( 'if (c) {')
f.write( 'draw_deepest(c);')
f.write( '}')
# focus all tiles beneath this one, bit of a hack to
# avoid another recursive function, yes this includes
# all ctxs if any ctx is in focus
f.write( 'let y = parseInt(a.dataset.y);')
f.write( 'for (b of a.parentElement'
'.querySelectorAll(".frame,.ctx")) {')
f.write( 'if (parseInt(b.dataset.y) >= y) {')
f.write( 'draw_focus(b);')
f.write( '}')
f.write( '}')
# move our tile to the top
f.write( 'draw_focus(a);')
f.write('}')
# state machine for mouseover/clicks
f.write('const modes = [')
if mode_callgraph:
f.write('{name: "callgraph", draw: draw_callgraph},')
if mode_deepest:
f.write('{name: "deepest", draw: draw_deepest },')
if mode_callees:
f.write('{name: "callees", draw: draw_callees },')
if mode_callers:
f.write('{name: "callers", draw: draw_callers },')
f.write('];')
f.write('let state = 0;')
f.write('let hovered = null;')
f.write('let active_code = null;')
f.write('let active_stack = null;')
f.write('let paused = false;')
f.write('function enter_tile(a, event) {')
f.write( 'hovered = a;')
# do nothing if paused
f.write( 'if (paused) {')
f.write( 'return;')
f.write( '}')
# code tile or stack tile?
f.write( 'if (a.classList.contains("code")) {')
f.write( 'if (!active_code && !active_stack) {')
# reset
f.write( 'undraw();')
f.write( 'draw_unfocus();')
# draw selected mode
f.write( 'modes[state].draw(a);')
if not no_stack:
# render relevant stack tiles
f.write( 'switch_stack(a.dataset.name);')
f.write( '}')
f.write( '} else if (a.classList.contains("frame") '
'|| a.classList.contains("ctx")) {')
f.write( 'if (!active_stack) {')
# reset
f.write( 'undraw();')
f.write( 'draw_unfocus();')
if not no_stack:
# draw stack mode
f.write( 'draw_stack(a);')
f.write( '}')
f.write( '}')
f.write('}')
f.write('function leave_tile(a, event) {')
f.write( 'hovered = null;')
# do nothing if paused
f.write( 'if (paused) {')
f.write( 'return;')
f.write( '}')
# do nothing if ctrl is held
f.write( 'if (!active_stack) {')
# reset
f.write( 'undraw();')
f.write( 'if (!active_code) {')
if not no_stack:
# reset to deepest stack
f.write( 'switch_stack("%s");' % deepest['name'])
f.write( '} else {')
# reset to active code
f.write( 'draw_unfocus();')
f.write( 'modes[state].draw(active_code);')
if not no_stack:
f.write( 'draw_stack();')
f.write( '}')
f.write( '}')
f.write('}')
# update the mode string
f.write('function draw_mode() {')
f.write( 'let mode = document.getElementById("mode");')
f.write( 'if (mode) {')
f.write( 'mode.textContent = "mode: "'
'+ modes[state].name'
'+ ((paused) ? " (paused)"'
': (active_code || active_stack)'
'? " (frozen)"'
': "");')
f.write( '}')
f.write('}')
# redraw things
f.write('function redraw() {')
# reset
f.write( 'undraw();')
# redraw stack if active
f.write( 'if (active_stack) {')
f.write( 'draw_unfocus();')
if not no_stack:
f.write( 'draw_stack(active_stack);')
# redraw code if active
f.write( '} else if (active_code) {')
f.write( 'draw_unfocus();')
f.write( 'modes[state].draw(active_code);')
if not no_stack:
f.write( 'draw_stack();')
# otherwise try to enter hovered tile if there is one
f.write( '} else if (hovered) {')
f.write( 'enter_tile(hovered);')
f.write( '}')
f.write('}')
# clicking the mode element changes the mode
f.write('function click_header(a, event) {')
# do nothing if paused
f.write( 'if (paused) {')
f.write( 'return;')
f.write( '}')
# update state
f.write( 'state = (state + 1) % modes.length;')
# update the mode string
f.write( 'draw_mode();')
# redraw with new mode
f.write( 'redraw();')
f.write('}')
# click handler is kinda complicated, we handle both single
# and double clicks here
f.write('let prev_code = null;')
f.write('let prev_stack = null;')
f.write('function click_tile(a, event) {')
# do nothing if paused
f.write( 'if (paused) {')
f.write( 'return;')
f.write( '}')
# double clicking changes the mode
f.write( 'if (event && event.detail == 2 '
# limit this to double-clicking the active tile
'&& ((!prev_code && !prev_stack)'
'|| (a == prev_code && !prev_stack)'
'|| a == prev_stack)) {')
# undo single-click
f.write( 'active_code = prev_code;')
f.write( 'active_stack = prev_stack;')
# trigger a mode change if double-clicking code,
# note we could also change stack modes here if we
# had more than one
f.write( 'if (a.classList.contains("code")) {')
f.write( 'click_header();')
f.write( '}')
f.write( 'return;')
f.write( '}')
# save state in case we are trying to double click,
# double clicks always send a single click first
f.write( 'prev_code = active_code;')
f.write( 'prev_stack = active_stack;')
# clicking tiles toggles frozen mode
f.write( 'if (a.classList.contains("code")) {')
f.write( 'if (a == active_code && !active_stack) {')
f.write( 'active_code = null;')
f.write( '} else {')
f.write( 'active_code = null;')
f.write( 'active_stack = null;')
f.write( 'enter_tile(a);')
f.write( 'active_code = a;')
f.write( '}')
f.write( '} else if (a.classList.contains("frame")'
'|| a.classList.contains("ctx")) {')
f.write( 'if (a == active_stack) {')
f.write( 'active_stack = null;')
f.write( '} else {')
f.write( 'active_stack = null;')
f.write( 'enter_tile(a);')
f.write( 'active_stack = a;')
f.write( '}')
f.write( '}')
# update mode string
f.write( 'draw_mode();')
f.write('}')
# include some minor keybindings
f.write('function keydown(event) {')
# m => change mode
f.write( 'if (event.key == "m") {')
f.write( 'click_header();')
# escape/e => clear frozen/paused state
f.write( '} else if (event.key == "Escape"'
'|| event.key == "e") {')
# reset frozen state
f.write( 'active_code = null;')
f.write( 'active_stack = null;')
# reset paused state
f.write( 'if (paused) {')
f.write( 'keydown({key: "Pause"});')
f.write( '}')
# redraw things
f.write( 'draw_mode();')
f.write( 'redraw();')
# pause/p => pause all interactivity and allow
# copy-paste
f.write( '} else if (event.key == "Pause"'
'|| event.key == "p") {')
f.write( 'paused = !paused;')
# update mode string
f.write( 'draw_mode();')
f.write( 'if (paused) {')
# enabled copy-pasting when paused
f.write( 'for (let e of document.querySelectorAll('
'"[style*=\\"user-select\\"]")) {')
f.write( 'e.style["user-select"] = "auto";')
f.write( '}')
f.write( 'for (let e of document.querySelectorAll('
'"[cursor]")) {')
f.write( 'e.setAttribute("cursor", "auto");')
f.write( '}')
f.write( '} else {')
# reset copy-pasting
f.write( 'document.getSelection().empty();')
f.write( 'for (let e of document.querySelectorAll('
'"[style*=\\"user-select\\"]")) {')
f.write( 'e.style["user-select"] = "none";')
f.write( '}')
f.write( 'for (let e of document.querySelectorAll('
'"[cursor]")) {')
f.write( 'e.setAttribute("cursor", "pointer");')
f.write( '}')
f.write( '}')
f.write( '}')
f.write('}')
f.write('window.addEventListener("keydown", keydown);')
f.write(']]></script>')
f.write('</svg>')
# print some summary info
if not quiet:
stat = code.stat()
print('updated %s, code %d stack %s ctx %d' % (
output,
totals.get('code', 0),
(lambda s: '' if mt.isinf(s) else s)(
totals.get('stack', 0)),
totals.get('ctx', 0)))
if (args.get('error_on_recursion')
and mt.isinf(totals.get('stack', 0))):
sys.exit(2)
if __name__ == "__main__":
import argparse
import sys
parser = argparse.ArgumentParser(
description="Render code info as an interactive SVG treemap.",
allow_abbrev=False)
class AppendPath(argparse.Action):
def __call__(self, parser, namespace, value, option):
if getattr(namespace, 'paths', None) is None:
namespace.paths = []
if value is None:
pass
elif isinstance(value, str):
namespace.paths.append(value)
else:
namespace.paths.extend(value)
parser.add_argument(
'obj_paths',
nargs='*',
action=AppendPath,
help="Input *.o files.")
parser.add_argument(
'ci_paths',
nargs='*',
action=AppendPath,
help="Input *.ci files.")
parser.add_argument(
'csv_paths',
nargs='*',
action=AppendPath,
help="Input *.csv files.")
parser.add_argument(
'json_paths',
nargs='*',
action=AppendPath,
help="Input *.json files.")
parser.add_argument(
'-o', '--output',
required=True,
help="Output *.svg file.")
parser.add_argument(
'-_', '--namespace-depth',
nargs='?',
type=lambda x: int(x, 0),
const=0,
help="Number of underscore-separated namespaces to partition by. "
"0 treats every function as its own subsystem, while -1 uses "
"the longest matching prefix. Defaults to 2, which is "
"probably a good level of detail for most standalone "
"libraries.")
parser.add_argument(
'-v', '--verbose',
action='store_true',
help="Output commands that run behind the scenes.")
parser.add_argument(
'-q', '--quiet',
action='store_true',
help="Don't print info.")
parser.add_argument(
'-L', '--add-label',
dest='labels',
action='append',
type=lambda x: (
lambda ks, v: (
tuple(k.strip() for k in ks.split(',')),
v.strip())
)(*x.split('=', 1))
if '=' in x else x.strip(),
help="Add a label to use. Can be assigned to a specific "
"function/subsystem. Accepts %% modifiers.")
parser.add_argument(
'-C', '--add-color',
dest='colors',
action='append',
type=lambda x: (
lambda ks, v: (
tuple(k.strip() for k in ks.split(',')),
v.strip())
)(*x.split('=', 1))
if '=' in x else x.strip(),
help="Add a color to use. Can be assigned to a specific "
"function/subsystem. Accepts %% modifiers.")
parser.add_argument(
'-W', '--width',
type=lambda x: int(x, 0),
help="Width in pixels. Defaults to %r." % WIDTH)
parser.add_argument(
'-H', '--height',
type=lambda x: int(x, 0),
help="Height in pixels. Defaults to %r." % HEIGHT)
parser.add_argument(
'--no-header',
action='store_true',
help="Don't show the header.")
parser.add_argument(
'--no-mode',
action='store_true',
help="Don't show the mode state.")
parser.add_argument(
'-S', '--no-stack',
action='store_true',
help="Don't render any stack info.")
parser.add_argument(
'-s', '--stack-ratio',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
help="Ratio of width to use for stack info. Defaults to 1:5.")
parser.add_argument(
'--no-ctx',
action='store_true',
help="Don't render function context.")
parser.add_argument(
'--no-frames',
action='store_true',
help="Don't render function stack frame info.")
parser.add_argument(
'--tile-code',
action='store_true',
help="Tile based on code size. This is the default.")
parser.add_argument(
'--tile-stack',
action='store_true',
help="Tile based on stack limits.")
parser.add_argument(
'--tile-frames',
action='store_true',
help="Tile based on stack frames.")
parser.add_argument(
'--tile-ctx',
action='store_true',
help="Tile based on function context.")
parser.add_argument(
'--tile-1',
action='store_true',
help="Tile functions evenly.")
parser.add_argument(
'-J', '--no-javascript',
action='store_true',
help="Don't add javascript for interactability.")
parser.add_argument(
'--mode-callgraph',
action='store_true',
help="Include the callgraph rendering mode.")
parser.add_argument(
'--mode-deepest',
action='store_true',
help="Include the deepest rendering mode.")
parser.add_argument(
'--mode-callees',
action='store_true',
help="Include the callees rendering mode.")
parser.add_argument(
'--mode-callers',
action='store_true',
help="Include the callers rendering mode.")
parser.add_argument(
'--binary',
action='store_true',
help="Use the binary partitioning scheme. This attempts to "
"recursively subdivide the tiles into a roughly "
"weight-balanced binary tree. This is the default.")
parser.add_argument(
'--slice',
action='store_true',
help="Use the slice partitioning scheme. This simply slices "
"tiles vertically.")
parser.add_argument(
'--dice',
action='store_true',
help="Use the dice partitioning scheme. This simply slices "
"tiles horizontally.")
parser.add_argument(
'--slice-and-dice',
action='store_true',
help="Use the slice-and-dice partitioning scheme. This "
"alternates between slicing and dicing each layer.")
parser.add_argument(
'--dice-and-slice',
action='store_true',
help="Use the dice-and-slice partitioning scheme. This is like "
"slice-and-dice, but flipped.")
parser.add_argument(
'--squarify',
action='store_true',
help="Use the squarify partitioning scheme. This is a greedy "
"algorithm created by Mark Bruls et al that tries to "
"minimize tile aspect ratios.")
parser.add_argument(
'--rectify',
action='store_true',
help="Use the rectify partitioning scheme. This is like "
"squarify, but tries to match the aspect ratio of the "
"window.")
parser.add_argument(
'--squarify-ratio',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
help="Specify an explicit aspect ratio for the squarify "
"algorithm. Implies --squarify.")
parser.add_argument(
'--to-scale',
nargs='?',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
const=1,
help="Scale the resulting treemap such that 1 pixel ~= 1/scale "
"units. Defaults to scale=1. ")
parser.add_argument(
'--to-ratio',
type=lambda x: (
(lambda a, b: a / b)(*(float(v) for v in x.split(':', 1)))
if ':' in x else float(x)),
help="Aspect ratio to use with --to-scale. Defaults to 1:1.")
parser.add_argument(
'-t', '--tiny',
action='store_true',
help="Tiny mode, alias for --to-scale=1, --no-header, "
"--no-label, --no-stack, and --no-javascript.")
parser.add_argument(
'--title',
help="Add a title. Accepts %% modifiers.")
parser.add_argument(
'--padding',
type=float,
help="Padding to add to each level of the treemap. Defaults to 1.")
parser.add_argument(
'--no-label',
action='store_true',
help="Don't render any labels.")
parser.add_argument(
'--dark',
action='store_true',
help="Use the dark style.")
parser.add_argument(
'--font',
type=lambda x: [x.strip() for x in x.split(',')],
help="Font family to use.")
parser.add_argument(
'--font-size',
help="Font size to use. Defaults to %r." % FONT_SIZE)
parser.add_argument(
'--background',
help="Background color to use. Note #00000000 can make the "
"background transparent.")
parser.add_argument(
'-e', '--error-on-recursion',
action='store_true',
help="Error if any functions are recursive.")
parser.add_argument(
'--code-path',
type=lambda x: x.split(),
default=CODE_PATH,
help="Path to the code.py script, may include flags. "
"Defaults to %r." % CODE_PATH)
parser.add_argument(
'--stack-path',
type=lambda x: x.split(),
default=STACK_PATH,
help="Path to the stack.py script, may include flags. "
"Defaults to %r." % STACK_PATH)
parser.add_argument(
'--ctx-path',
type=lambda x: x.split(),
default=CTX_PATH,
help="Path to the ctx.py script, may include flags. "
"Defaults to %r." % CTX_PATH)
sys.exit(main(**{k: v
for k, v in vars(parser.parse_intermixed_args()).items()
if v is not None}))