mirror of
https://github.com/littlefs-project/littlefs.git
synced 2025-12-07 16:12:47 +00:00
Tweaked scripts that consume .csv files to filter defines early
With the quantity of data being output by bench.py now, filtering ASAP while parsing CSV files is a valuable optimization. And thanks to how CSV files are structured, we can even avoid ever loading the full contents into RAM. This does end up with use filtering for defines redundantly in a few places, but this is well worth the saved overhead from early filtering. Also tried to clean up the plot.py/plotmpl.py's data folding path, though that may have been wasted effort.
This commit is contained in:
130
scripts/plot.py
130
scripts/plot.py
@@ -443,7 +443,7 @@ class Plot:
|
||||
return ''.join(row_)
|
||||
|
||||
|
||||
def collect(csv_paths, renames=[]):
|
||||
def collect(csv_paths, renames=[], defines=[]):
|
||||
# collect results from CSV files
|
||||
results = []
|
||||
for path in csv_paths:
|
||||
@@ -451,64 +451,33 @@ def collect(csv_paths, renames=[]):
|
||||
with openio(path) as f:
|
||||
reader = csv.DictReader(f, restval='')
|
||||
for r in reader:
|
||||
# apply any renames
|
||||
if renames:
|
||||
# make a copy so renames can overlap
|
||||
r_ = {}
|
||||
for new_k, old_k in renames:
|
||||
if old_k in r:
|
||||
r_[new_k] = r[old_k]
|
||||
r.update(r_)
|
||||
|
||||
# filter by matching defines
|
||||
if not all(k in r and r[k] in vs for k, vs in defines):
|
||||
continue
|
||||
|
||||
results.append(r)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
if renames:
|
||||
for r in results:
|
||||
# make a copy so renames can overlap
|
||||
r_ = {}
|
||||
for new_k, old_k in renames:
|
||||
if old_k in r:
|
||||
r_[new_k] = r[old_k]
|
||||
r.update(r_)
|
||||
|
||||
return results
|
||||
|
||||
def dataset(results, x=None, y=None, define=[]):
|
||||
# organize by 'by', x, and y
|
||||
dataset = []
|
||||
i = 0
|
||||
for r in results:
|
||||
# filter results by matching defines
|
||||
if not all(k in r and r[k] in vs for k, vs in define):
|
||||
continue
|
||||
|
||||
# find xs
|
||||
if x is not None:
|
||||
if x not in r:
|
||||
continue
|
||||
try:
|
||||
x_ = dat(r[x])
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
x_ = i
|
||||
i += 1
|
||||
|
||||
# find ys
|
||||
if y is not None:
|
||||
if y not in r:
|
||||
continue
|
||||
try:
|
||||
y_ = dat(r[y])
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
y_ = None
|
||||
|
||||
dataset.append((x_, y_))
|
||||
|
||||
return dataset
|
||||
|
||||
def datasets(results, by=None, x=None, y=None, define=[]):
|
||||
# filter results by matching defines
|
||||
results_ = []
|
||||
for r in results:
|
||||
if all(k in r and r[k] in vs for k, vs in define):
|
||||
results_.append(r)
|
||||
results = results_
|
||||
def fold(results, by=None, x=None, y=None, defines=[]):
|
||||
# filter by matching defines
|
||||
if defines:
|
||||
results_ = []
|
||||
for r in results:
|
||||
if all(k in r and r[k] in vs for k, vs in defines):
|
||||
results_.append(r)
|
||||
results = results_
|
||||
|
||||
# if y not specified, try to guess from data
|
||||
if not y:
|
||||
@@ -535,16 +504,46 @@ def datasets(results, by=None, x=None, y=None, define=[]):
|
||||
for ks_ in (ks if by else [()]):
|
||||
for x_ in (x if x else [None]):
|
||||
for y_ in y:
|
||||
# organize by 'by', x, and y
|
||||
dataset = []
|
||||
i = 0
|
||||
for r in results:
|
||||
# filter by 'by'
|
||||
if by and not all(
|
||||
k in r and r[k] == v
|
||||
for k, v in zip(by, ks_)):
|
||||
continue
|
||||
|
||||
# find xs
|
||||
if x_ is not None:
|
||||
if x_ not in r:
|
||||
continue
|
||||
try:
|
||||
x__ = dat(r[x_])
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
# fallback to enumeration
|
||||
x__ = i
|
||||
i += 1
|
||||
|
||||
# find ys
|
||||
if y_ is not None:
|
||||
if y_ not in r:
|
||||
continue
|
||||
try:
|
||||
y__ = dat(r[y_])
|
||||
except ValueError:
|
||||
continue
|
||||
else:
|
||||
y__ = None
|
||||
|
||||
dataset.append((x__, y__))
|
||||
|
||||
# hide x/y if there is only one field
|
||||
k_x = x_ if len(x or []) > 1 else ''
|
||||
k_y = y_ if len(y or []) > 1 or (not ks_ and not k_x) else ''
|
||||
|
||||
datasets[ks_ + (k_x, k_y)] = dataset(
|
||||
results,
|
||||
x_,
|
||||
y_,
|
||||
[(by_, {k_}) for by_, k_ in zip(by, ks_)]
|
||||
if by else [])
|
||||
datasets[ks_ + (k_x, k_y)] = dataset
|
||||
|
||||
return datasets
|
||||
|
||||
@@ -898,6 +897,11 @@ def main(csv_paths, *,
|
||||
all_by = (by or []) + subplots_get('by', **subplot, subplots=subplots)
|
||||
all_x = (x or []) + subplots_get('x', **subplot, subplots=subplots)
|
||||
all_y = (y or []) + subplots_get('y', **subplot, subplots=subplots)
|
||||
all_defines = co.defaultdict(lambda: set())
|
||||
for k, vs in it.chain(define or [],
|
||||
subplots_get('define', **subplot, subplots=subplots)):
|
||||
all_defines[k] |= vs
|
||||
all_defines = sorted(all_defines.items())
|
||||
|
||||
# separate out renames
|
||||
renames = list(it.chain.from_iterable(
|
||||
@@ -990,10 +994,10 @@ def main(csv_paths, *,
|
||||
f.writeln = writeln
|
||||
|
||||
# first collect results from CSV files
|
||||
results = collect(csv_paths, renames)
|
||||
results = collect(csv_paths, renames, all_defines)
|
||||
|
||||
# then extract the requested datasets
|
||||
datasets_ = datasets(results, all_by, all_x, all_y, define)
|
||||
datasets_ = fold(results, all_by, all_x, all_y)
|
||||
|
||||
# figure out colors/chars here so that subplot defines
|
||||
# don't change them later, that'd be bad
|
||||
@@ -1139,7 +1143,7 @@ def main(csv_paths, *,
|
||||
|
||||
# data can be constrained by subplot-specific defines,
|
||||
# so re-extract for each plot
|
||||
subdatasets = datasets(results, all_by, all_x, all_y, define_)
|
||||
subdatasets = fold(results, all_by, all_x, all_y, define_)
|
||||
|
||||
# filter by subplot x/y
|
||||
subdatasets = co.OrderedDict([(name, dataset)
|
||||
|
||||
Reference in New Issue
Block a user