mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-11-16 12:34:43 +00:00
Convert solib_ops into an abstract base class (with abstract methods,
some of them with default implementations) and convert all the existing
solib_ops instances to solib_ops derived classes / implementations.
Prior to this patch, solib_ops is a structure holding function pointers,
of which there are only a handful of global instances (in the
`solib-*.c` files). When passing an `solib_ops *` around, it's a
pointer to one of these instances. After this patch, there are no more
global solib_ops instances. Instances are created as needed and stored
in struct program_space. These instances could eventually be made to
contain the program space-specific data, which is currently kept in
per-program space registries (I have some pending patches for that).
Prior to this patch, `gdbarch_so_ops` is a gdbarch method that returns a
pointer to the appropriate solib_ops implementation for the gdbarch.
This is replaced with the `gdbarch_make_solib_ops` method, which returns
a new instance of the appropriate solib_ops implementation for this
gdbarch. This requires introducing some factory functions for the
various solib_ops implementation, to be used as `gdbarch_make_solib_ops`
callbacks. For instance:
solib_ops_up
make_linux_ilp32_svr4_solib_ops ()
{
return std::make_unique<linux_ilp32_svr4_solib_ops> ();
}
The previous code is full of cases of tdep files copying some base
solib_ops implementation, and overriding one or more function pointer
(see ppc_linux_init_abi, for instance). I tried to convert all of this
is a class hierarchy. I like that it's now possible to get a good
static view of all the existing solib_ops variants. The hierarchy looks
like this:
solib_ops
├── aix_solib_ops
├── darwin_solib_ops
├── dsbt_solib_ops
├── frv_solib_ops
├── rocm_solib_ops
├── svr4_solib_ops
│ ├── ilp32_svr4_solib_ops
│ ├── lp64_svr4_solib_ops
│ ├── linux_ilp32_svr4_solib_ops
│ │ ├── mips_linux_ilp32_svr4_solib_ops
│ │ └── ppc_linux_ilp32_svr4_solib_ops
│ ├── linux_lp64_svr4_solib_ops
│ │ └── mips_linux_lp64_svr4_solib_ops
│ ├── mips_nbsd_ilp32_svr4_solib_ops
│ ├── mips_nbsd_lp64_svr4_solib_ops
│ ├── mips_fbsd_ilp32_svr4_solib_ops
│ └── mips_fbsd_lp64_svr4_solib_ops
└── target_solib_ops
└── windows_solib_ops
The solib-svr4 code has per-arch specialization to provide a
link_map_offsets, containing the offsets of the interesting fields in
`struct link_map` on that particular architecture. Prior to this patch,
arches would set a callback returning the appropriate link_map_offsets
by calling `set_solib_svr4_fetch_link_map_offsets`, which also happened
to set the gdbarch's so_ops to `&svr_so_ops`. I converted this to an
abstract virtual method of `struct svr4_solib_ops`, meaning that all
classes deriving from svr4_solib_ops must provide a method returning the
appropriate link_map_offsets for the architecture. I renamed
`set_solib_svr4_fetch_link_map_offsets` to `set_solib_svr4_ops`. This
function is still necessary because it also calls
set_gdbarch_iterate_over_objfiles_in_search_order, but if it was not for
that, we could get rid of it.
There is an instance of CRTP in mips-linux-tdep.c, because both
mips_linux_ilp32_svr4_solib_ops and mips_linux_lp64_svr4_solib_ops need
to derive from different SVR4 base classes (linux_ilp32_svr4_solib_ops
and linux_lp64_svr4_solib_ops), but they both want to override the
in_dynsym_resolve_code method with the same implementation.
The solib_ops::supports_namespaces method is new: the support for
namespaces was previously predicated by the presence or absence of a
find_solib_ns method. It now needs to be explicit.
There is a new progspace::release_solib_ops method, which is only needed
for rocm_solib_ops. For the moment, rocm_solib_ops replaces and wraps
the existing svr4_solib_ops instance, in order to combine the results of
the two. The plan is to have a subsequent patch to allow program spaces to have
multiple solib_ops, removing the need for release_solib_ops.
Speaking of rocm_solib_ops: it previously overrode only a few methods by
copying svr4_solib_ops and overwriting some function pointers. Now, it
needs to implement all the methods that svr4_solib_ops implements, in
order to forward the call. Otherwise, the default solib_ops method
would be called, hiding the svr4_solib_ops implementation. Again, this
can be removed once we have support for multiple solib_ops in a
program_space.
There is also a small change in how rocm_solib_ops is activated. Prior
to this patch, it's done at the end of rocm_update_solib_list. Since it
overrides the function pointer in the static svr4_solib_ops, and then
overwrites the host gdbarch, so_ops field, it's something that happens
only once. After the patch though, we need to set rocm_solib_ops in all
the program spaces that appear. We do this in
rocm_solib_target_inferior_created and in the new
rocm_solib_target_inferior_execd. After this, I will explore doing a
change where rocm_solib_ops is only set when we detect the ROCm runtime
is loaded.
Change-Id: I5896b5bcbf8bdb024d67980380feba1ffefaa4c9
Approved-By: Pedro Alves <pedro@palves.net>
124 lines
3.5 KiB
C
124 lines
3.5 KiB
C
/* Darwin support for GDB, the GNU debugger.
|
|
Copyright (C) 1997-2025 Free Software Foundation, Inc.
|
|
|
|
Contributed by Apple Computer, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "extract-store-integer.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "symtab.h"
|
|
#include "regcache.h"
|
|
#include "objfiles.h"
|
|
|
|
#include "i387-tdep.h"
|
|
#include "gdbsupport/x86-xstate.h"
|
|
#include "amd64-tdep.h"
|
|
#include "osabi.h"
|
|
#include "ui-out.h"
|
|
#include "amd64-darwin-tdep.h"
|
|
#include "i386-darwin-tdep.h"
|
|
#include "solib.h"
|
|
#include "solib-darwin.h"
|
|
#include "dwarf2/frame.h"
|
|
|
|
/* Offsets into the struct x86_thread_state64 where we'll find the saved regs.
|
|
From <mach/i386/thread_status.h> and amd64-tdep.h. */
|
|
int amd64_darwin_thread_state_reg_offset[] =
|
|
{
|
|
0 * 8, /* %rax */
|
|
1 * 8, /* %rbx */
|
|
2 * 8, /* %rcx */
|
|
3 * 8, /* %rdx */
|
|
5 * 8, /* %rsi */
|
|
4 * 8, /* %rdi */
|
|
6 * 8, /* %rbp */
|
|
7 * 8, /* %rsp */
|
|
8 * 8, /* %r8 ... */
|
|
9 * 8,
|
|
10 * 8,
|
|
11 * 8,
|
|
12 * 8,
|
|
13 * 8,
|
|
14 * 8,
|
|
15 * 8, /* ... %r15 */
|
|
16 * 8, /* %rip */
|
|
17 * 8, /* %rflags */
|
|
18 * 8, /* %cs */
|
|
-1, /* %ss */
|
|
-1, /* %ds */
|
|
-1, /* %es */
|
|
19 * 8, /* %fs */
|
|
20 * 8 /* %gs */
|
|
};
|
|
|
|
const int amd64_darwin_thread_state_num_regs =
|
|
ARRAY_SIZE (amd64_darwin_thread_state_reg_offset);
|
|
|
|
/* Assuming THIS_FRAME is a Darwin sigtramp routine, return the
|
|
address of the associated sigcontext structure. */
|
|
|
|
static CORE_ADDR
|
|
amd64_darwin_sigcontext_addr (const frame_info_ptr &this_frame)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR rbx;
|
|
gdb_byte buf[8];
|
|
|
|
/* A pointer to the ucontext is passed as the fourth argument
|
|
to the signal handler, which is saved in rbx. */
|
|
get_frame_register (this_frame, AMD64_RBX_REGNUM, buf);
|
|
rbx = extract_unsigned_integer (buf, 8, byte_order);
|
|
|
|
/* The pointer to mcontext is at offset 48. */
|
|
read_memory (rbx + 48, buf, 8);
|
|
|
|
/* First register (rax) is at offset 16. */
|
|
return extract_unsigned_integer (buf, 8, byte_order) + 16;
|
|
}
|
|
|
|
static void
|
|
x86_darwin_init_abi_64 (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
|
|
|
amd64_init_abi (info, gdbarch,
|
|
amd64_target_description (X86_XSTATE_SSE_MASK, true));
|
|
|
|
tdep->struct_return = reg_struct_return;
|
|
|
|
dwarf2_frame_set_signal_frame_p (gdbarch, darwin_dwarf_signal_frame_p);
|
|
|
|
tdep->sigtramp_p = i386_sigtramp_p;
|
|
tdep->sigcontext_addr = amd64_darwin_sigcontext_addr;
|
|
tdep->sc_reg_offset = amd64_darwin_thread_state_reg_offset;
|
|
tdep->sc_num_regs = amd64_darwin_thread_state_num_regs;
|
|
|
|
tdep->jb_pc_offset = 56;
|
|
|
|
set_gdbarch_make_solib_ops (gdbarch, make_darwin_solib_ops);
|
|
}
|
|
|
|
INIT_GDB_FILE (amd64_darwin_tdep)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64,
|
|
GDB_OSABI_DARWIN, x86_darwin_init_abi_64);
|
|
}
|