mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-12-06 07:33:08 +00:00
This is an area of significant difference from CTFv3. The API changes significantly, with quite a few additions to allow creation and querying of these new datasec entities: -typedef int ctf_variable_f (const char *name, ctf_id_t type, void *arg); +typedef int ctf_variable_f (ctf_dict_t *, const char *name, ctf_id_t type, + void *arg); +typedef int ctf_datasec_var_f (ctf_dict_t *fp, ctf_id_t type, size_t offset, + size_t datasec_size, void *arg); +/* Search a datasec for a variable covering a given offset. + + Errors with ECTF_NODATASEC if not found. */ + +ctf_id_t ctf_datasec_var_offset (ctf_dict_t *fp, ctf_id_t datasec, + uint32_t offset); + +/* Return the datasec that a given variable appears in, or ECTF_NODATASEC if + none. */ + +ctf_id_t ctf_variable_datasec (ctf_dict_t *fp, ctf_id_t var); +int ctf_datasec_var_iter (ctf_dict_t *, ctf_id_t, ctf_datasec_var_f *, + void *); +ctf_id_t ctf_datasec_var_next (ctf_dict_t *, ctf_id_t, ctf_next_t **, + size_t *size, size_t *offset); -int ctf_add_variable (ctf_dict_t *, const char *, ctf_id_t); +/* ctf_add_variable adds variables to no datasec at all; + ctf_add_section_variable adds them to the given datasec, or to no datasec at + all if the datasec is NULL. */ + +ctf_id_t ctf_add_variable (ctf_dict_t *, const char *, int linkage, ctf_id_t); +ctf_id_t ctf_add_section_variable (ctf_dict_t *, uint32_t, + const char *datasec, const char *name, + int linkage, ctf_id_t type, + size_t size, size_t offset); We tie datasecs quite closely to variables at addition (and, as should become clear later, dedup) time: you never create datasecs, you only create variables *in* datasecs, and the datasec springs into existence when you do so: datasecs are always found in the same dict as the variables they contain (the variables are never in the parent if the datasec is in a child or anything). We keep track of the variable->datasec mapping in ctf_var_datasecs (populating it at addition and open time), to allow ctf_variable_datasec to work at reasonable speed. (But, as yet, there are no tests of this function at all.) The datasecs are created unsorted (to avoid variable addition becoming O(n^2)) and sorted at serialization time, and when ctf_datasec_var_offset is invoked. We reuse the natural-alignment code from struct addition to get a plausible offset in datasecs if an alignment of -1 is specified: maybe this is unnecessary now (it was originally added when ctf_add_variable added variables to a "default datasec", while now it just leaves them out of all datasecs, like externs are). One constraint of this is that we currently prohibit the addition of nonrepresentable-typed variables, because we can't tell what their natural alignment is: if we dropped the whole "align" and just required everyone adding a variable to a datasec to specify an offset, we could drop that restriction. WDYT? One additional caveat: right now, ctf_lookup_variable() looks up the type of a variable (because when it was invented, variables were not entities in themselves that you could look up). This name is confusing as hell as a result. It might be less confusing to make it return the CTF_K_VAR, but that would be awful to adapt callers to, since both are represented with ctf_id_t's, so the compiler wouldn't warn about the needed change at all... I've vacillated on this three or four times now.
214 lines
5.4 KiB
C
214 lines
5.4 KiB
C
/* C declarator syntax glue.
|
|
Copyright (C) 2019-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* CTF Declaration Stack
|
|
|
|
In order to implement ctf_type_name(), we must convert a type graph back
|
|
into a C type declaration. Unfortunately, a type graph represents a storage
|
|
class ordering of the type whereas a type declaration must obey the C rules
|
|
for operator precedence, and the two orderings are frequently in conflict.
|
|
For example, consider these CTF type graphs and their C declarations:
|
|
|
|
CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER : int (*)()
|
|
CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER : int (*)[]
|
|
|
|
In each case, parentheses are used to raise operator * to higher lexical
|
|
precedence, so the string form of the C declaration cannot be constructed by
|
|
walking the type graph links and forming the string from left to right.
|
|
|
|
The functions in this file build a set of stacks from the type graph nodes
|
|
corresponding to the C operator precedence levels in the appropriate order.
|
|
The code in ctf_type_aname() can then iterate over the levels and nodes in
|
|
lexical precedence order and construct the final C declaration string. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
|
|
void
|
|
ctf_decl_init (ctf_decl_t *cd)
|
|
{
|
|
int i;
|
|
|
|
memset (cd, 0, sizeof (ctf_decl_t));
|
|
|
|
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
|
|
cd->cd_order[i] = CTF_PREC_BASE - 1;
|
|
|
|
cd->cd_qualp = CTF_PREC_BASE;
|
|
cd->cd_ordp = CTF_PREC_BASE;
|
|
}
|
|
|
|
void
|
|
ctf_decl_fini (ctf_decl_t *cd)
|
|
{
|
|
ctf_decl_node_t *cdp, *ndp;
|
|
int i;
|
|
|
|
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
|
|
{
|
|
for (cdp = ctf_list_next (&cd->cd_nodes[i]); cdp != NULL; cdp = ndp)
|
|
{
|
|
ndp = ctf_list_next (cdp);
|
|
free (cdp);
|
|
}
|
|
}
|
|
free (cd->cd_buf);
|
|
}
|
|
|
|
void
|
|
ctf_decl_push (ctf_decl_t *cd, ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_decl_node_t *cdp;
|
|
ctf_decl_prec_t prec;
|
|
uint32_t kind, n = 1;
|
|
int is_qual = 0;
|
|
|
|
const ctf_type_t *tp, *suffix;
|
|
ctf_arinfo_t ar;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type, &suffix)) == NULL)
|
|
{
|
|
if (ctf_errno (fp) != ECTF_NONREPRESENTABLE)
|
|
{
|
|
cd->cd_err = fp->ctf_errno;
|
|
return;
|
|
}
|
|
kind = CTF_K_UNKNOWN;
|
|
}
|
|
else
|
|
kind = ctf_type_kind (fp, type);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_ARRAY:
|
|
(void) ctf_array_info (fp, type, &ar);
|
|
ctf_decl_push (cd, fp, ar.ctr_contents);
|
|
n = ar.ctr_nelems;
|
|
prec = CTF_PREC_ARRAY;
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
if (ctf_strptr (fp, suffix->ctt_name)[0] == '\0')
|
|
{
|
|
ctf_decl_push (cd, fp, suffix->ctt_type);
|
|
return;
|
|
}
|
|
prec = CTF_PREC_BASE;
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
ctf_decl_push (cd, fp, suffix->ctt_type);
|
|
prec = CTF_PREC_FUNCTION;
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
ctf_decl_push (cd, fp, suffix->ctt_type);
|
|
prec = CTF_PREC_POINTER;
|
|
break;
|
|
|
|
case CTF_K_VAR:
|
|
ctf_decl_push (cd, fp, suffix->ctt_type);
|
|
prec = CTF_PREC_BASE; /* UPTODO probably wrong */
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
/* Slices themselves have no print representation and should not appear in
|
|
the decl stack. */
|
|
ctf_decl_push (cd, fp, ctf_type_reference (fp, type));
|
|
return;
|
|
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
ctf_decl_push (cd, fp, suffix->ctt_type);
|
|
prec = cd->cd_qualp;
|
|
is_qual++;
|
|
break;
|
|
|
|
default:
|
|
prec = CTF_PREC_BASE;
|
|
}
|
|
|
|
if ((cdp = malloc (sizeof (ctf_decl_node_t))) == NULL)
|
|
{
|
|
cd->cd_err = EAGAIN;
|
|
return;
|
|
}
|
|
|
|
cdp->cd_type = type;
|
|
cdp->cd_kind = kind;
|
|
cdp->cd_n = n;
|
|
|
|
if (ctf_list_next (&cd->cd_nodes[prec]) == NULL)
|
|
cd->cd_order[prec] = cd->cd_ordp++;
|
|
|
|
/* Reset cd_qualp to the highest precedence level that we've seen so
|
|
far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER). */
|
|
|
|
if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
|
|
cd->cd_qualp = prec;
|
|
|
|
/* By convention qualifiers of base types precede the type specifier (e.g.
|
|
const int vs. int const) even though the two forms are equivalent. */
|
|
|
|
if (is_qual && prec == CTF_PREC_BASE)
|
|
ctf_list_prepend (&cd->cd_nodes[prec], cdp);
|
|
else
|
|
ctf_list_append (&cd->cd_nodes[prec], cdp);
|
|
}
|
|
|
|
_libctf_printflike_ (2, 3)
|
|
void ctf_decl_sprintf (ctf_decl_t *cd, const char *format, ...)
|
|
{
|
|
va_list ap;
|
|
char *str;
|
|
int n;
|
|
|
|
if (cd->cd_enomem)
|
|
return;
|
|
|
|
va_start (ap, format);
|
|
n = vasprintf (&str, format, ap);
|
|
va_end (ap);
|
|
|
|
if (n > 0)
|
|
{
|
|
char *newbuf;
|
|
if ((newbuf = ctf_str_append (cd->cd_buf, str)) != NULL)
|
|
cd->cd_buf = newbuf;
|
|
}
|
|
|
|
/* Sticky error condition. */
|
|
if (n < 0 || cd->cd_buf == NULL)
|
|
{
|
|
free (cd->cd_buf);
|
|
cd->cd_buf = NULL;
|
|
cd->cd_enomem = 1;
|
|
}
|
|
|
|
free (str);
|
|
}
|
|
|
|
char *ctf_decl_buf (ctf_decl_t *cd)
|
|
{
|
|
char *buf = cd->cd_buf;
|
|
cd->cd_buf = NULL;
|
|
return buf;
|
|
}
|