mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-11-16 12:34:43 +00:00
I wrote this as a preparatory patch while attempting to make objfile::section_iterator use filtered_iterator. It turned out not so easy, so I have put it aside for now. But now I have this patch, so I thought I'd send it by itself. Since the `obj_section *` yielded by the iterator can't be nullptr, I think it makes sense for the iterator to yield references instead. Just like you would get if you iterated on an std::vector<obj_section>. Change-Id: I7bbee50ed52599e64c4f3b06bdbbde597feba9aa
3794 lines
118 KiB
C
3794 lines
118 KiB
C
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
|
||
|
||
Copyright (C) 1990-2025 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "elf/external.h"
|
||
#include "elf/common.h"
|
||
#include "elf/mips.h"
|
||
|
||
#include "exceptions.h"
|
||
#include "extract-store-integer.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "regcache.h"
|
||
#include "observable.h"
|
||
|
||
#include "solib.h"
|
||
#include "solib-svr4.h"
|
||
|
||
#include "bfd-target.h"
|
||
#include "elf-bfd.h"
|
||
#include "exec.h"
|
||
#include "auxv.h"
|
||
#include "gdb_bfd.h"
|
||
#include "probe.h"
|
||
|
||
#include <map>
|
||
|
||
static void svr4_relocate_main_executable (void);
|
||
static void probes_table_remove_objfile_probes (struct objfile *objfile);
|
||
|
||
/* On SVR4 systems, a list of symbols in the dynamic linker where
|
||
GDB can try to place a breakpoint to monitor shared library
|
||
events.
|
||
|
||
If none of these symbols are found, or other errors occur, then
|
||
SVR4 systems will fall back to using a symbol as the "startup
|
||
mapping complete" breakpoint address. */
|
||
|
||
static const char * const solib_break_names[] =
|
||
{
|
||
"r_debug_state",
|
||
"_r_debug_state",
|
||
"_dl_debug_state",
|
||
"rtld_db_dlactivity",
|
||
"__dl_rtld_db_dlactivity",
|
||
"_rtld_debug_state",
|
||
|
||
NULL
|
||
};
|
||
|
||
static const char * const bkpt_names[] =
|
||
{
|
||
"_start",
|
||
"__start",
|
||
"main",
|
||
NULL
|
||
};
|
||
|
||
static const char * const main_name_list[] =
|
||
{
|
||
"main_$main",
|
||
NULL
|
||
};
|
||
|
||
/* A probe's name and its associated action. */
|
||
|
||
struct probe_info
|
||
{
|
||
/* The name of the probe. */
|
||
const char *name;
|
||
|
||
/* What to do when a probe stop occurs. */
|
||
enum probe_action action;
|
||
};
|
||
|
||
/* A list of named probes and their associated actions. If all
|
||
probes are present in the dynamic linker then the probes-based
|
||
interface will be used. */
|
||
|
||
static const struct probe_info probe_info[] =
|
||
{
|
||
{ "init_start", DO_NOTHING },
|
||
{ "init_complete", FULL_RELOAD },
|
||
{ "map_start", DO_NOTHING },
|
||
{ "map_failed", DO_NOTHING },
|
||
{ "reloc_complete", UPDATE_OR_RELOAD },
|
||
{ "unmap_start", DO_NOTHING },
|
||
{ "unmap_complete", FULL_RELOAD },
|
||
};
|
||
|
||
#define NUM_PROBES ARRAY_SIZE (probe_info)
|
||
|
||
static lm_info_svr4 &
|
||
get_lm_info_svr4 (const solib &solib)
|
||
{
|
||
return gdb::checked_static_cast<lm_info_svr4 &> (*solib.lm_info);
|
||
}
|
||
|
||
/* Return true if GDB_SO_NAME and INFERIOR_SO_NAME represent the same shared
|
||
library. */
|
||
|
||
static bool
|
||
svr4_same_name (const char *gdb_so_name, const char *inferior_so_name)
|
||
{
|
||
if (strcmp (gdb_so_name, inferior_so_name) == 0)
|
||
return 1;
|
||
|
||
/* On Solaris, when starting inferior we think that dynamic linker is
|
||
/usr/lib/ld.so.1, but later on, the table of loaded shared libraries
|
||
contains /lib/ld.so.1. Sometimes one file is a link to another, but
|
||
sometimes they have identical content, but are not linked to each
|
||
other. We don't restrict this check for Solaris, but the chances
|
||
of running into this situation elsewhere are very low. */
|
||
if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
|
||
&& strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
|
||
return 1;
|
||
|
||
/* Similarly, we observed the same issue with amd64 and sparcv9, but with
|
||
different locations. */
|
||
if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
|
||
&& strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
|
||
return 1;
|
||
|
||
if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
|
||
&& strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
svr4_same (const char *gdb_name, const char *inferior_name,
|
||
const lm_info_svr4 &gdb_lm_info,
|
||
const lm_info_svr4 &inferior_lm_info)
|
||
{
|
||
/* There may be different instances of the same library, in different
|
||
namespaces. Each instance is typically loaded at a different address
|
||
so its relocation offset would be different. */
|
||
if (gdb_lm_info.l_addr_inferior != inferior_lm_info.l_addr_inferior)
|
||
return false;
|
||
|
||
/* There may be multiple entries for the same dynamic linker instance (at
|
||
the same address) visible in different namespaces. Those are considered
|
||
different instances. */
|
||
if (gdb_lm_info.debug_base != inferior_lm_info.debug_base)
|
||
return false;
|
||
|
||
return svr4_same_name (gdb_name, inferior_name);
|
||
}
|
||
|
||
bool
|
||
svr4_solib_ops::same (const solib &gdb, const solib &inferior) const
|
||
{
|
||
auto &lmg = get_lm_info_svr4 (gdb);
|
||
auto &lmi = get_lm_info_svr4 (inferior);
|
||
|
||
return svr4_same (gdb.original_name.c_str (),
|
||
inferior.original_name.c_str (), lmg, lmi);
|
||
}
|
||
|
||
lm_info_svr4_up
|
||
svr4_solib_ops::read_lm_info (CORE_ADDR lm_addr, CORE_ADDR debug_base) const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
lm_info_svr4_up lm_info;
|
||
|
||
gdb::byte_vector lm (lmo->link_map_size);
|
||
|
||
if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
|
||
warning (_("Error reading shared library list entry at %s"),
|
||
paddress (current_inferior ()->arch (), lm_addr));
|
||
else
|
||
{
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
|
||
lm_info = std::make_unique<lm_info_svr4> (debug_base);
|
||
lm_info->lm_addr = lm_addr;
|
||
|
||
lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
|
||
ptr_type);
|
||
lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
|
||
lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
|
||
ptr_type);
|
||
lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
|
||
ptr_type);
|
||
lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
|
||
ptr_type);
|
||
}
|
||
|
||
return lm_info;
|
||
}
|
||
|
||
int
|
||
svr4_solib_ops::has_lm_dynamic_from_link_map () const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
|
||
return lmo->l_ld_offset >= 0;
|
||
}
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::lm_addr_check (const solib &so, bfd *abfd) const
|
||
{
|
||
auto &li = get_lm_info_svr4 (so);
|
||
|
||
if (!li.l_addr_p)
|
||
{
|
||
struct bfd_section *dyninfo_sect;
|
||
CORE_ADDR l_addr, l_dynaddr, dynaddr;
|
||
|
||
l_addr = li.l_addr_inferior;
|
||
|
||
if (!abfd || !this->has_lm_dynamic_from_link_map ())
|
||
goto set_addr;
|
||
|
||
l_dynaddr = li.l_ld;
|
||
|
||
dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (dyninfo_sect == NULL)
|
||
goto set_addr;
|
||
|
||
dynaddr = bfd_section_vma (dyninfo_sect);
|
||
|
||
if (dynaddr + l_addr != l_dynaddr)
|
||
{
|
||
CORE_ADDR align = 0x1000;
|
||
CORE_ADDR minpagesize = align;
|
||
|
||
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
||
{
|
||
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
|
||
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
|
||
int i;
|
||
|
||
align = 1;
|
||
|
||
for (i = 0; i < ehdr->e_phnum; i++)
|
||
if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
|
||
align = phdr[i].p_align;
|
||
|
||
minpagesize = get_elf_backend_data (abfd)->minpagesize;
|
||
}
|
||
|
||
/* Turn it into a mask. */
|
||
align--;
|
||
|
||
/* If the changes match the alignment requirements, we
|
||
assume we're using a core file that was generated by the
|
||
same binary, just prelinked with a different base offset.
|
||
If it doesn't match, we may have a different binary, the
|
||
same binary with the dynamic table loaded at an unrelated
|
||
location, or anything, really. To avoid regressions,
|
||
don't adjust the base offset in the latter case, although
|
||
odds are that, if things really changed, debugging won't
|
||
quite work.
|
||
|
||
One could expect more the condition
|
||
((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
|
||
but the one below is relaxed for PPC. The PPC kernel supports
|
||
either 4k or 64k page sizes. To be prepared for 64k pages,
|
||
PPC ELF files are built using an alignment requirement of 64k.
|
||
However, when running on a kernel supporting 4k pages, the memory
|
||
mapping of the library may not actually happen on a 64k boundary!
|
||
|
||
(In the usual case where (l_addr & align) == 0, this check is
|
||
equivalent to the possibly expected check above.)
|
||
|
||
Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
|
||
|
||
l_addr = l_dynaddr - dynaddr;
|
||
|
||
if ((l_addr & (minpagesize - 1)) == 0
|
||
&& (l_addr & align) == ((l_dynaddr - dynaddr) & align))
|
||
{
|
||
if (info_verbose)
|
||
gdb_printf (_("Using PIC (Position Independent Code) "
|
||
"prelink displacement %s for \"%s\".\n"),
|
||
paddress (current_inferior ()->arch (), l_addr),
|
||
so.name.c_str ());
|
||
}
|
||
else
|
||
{
|
||
/* There is no way to verify the library file matches. prelink
|
||
can during prelinking of an unprelinked file (or unprelinking
|
||
of a prelinked file) shift the DYNAMIC segment by arbitrary
|
||
offset without any page size alignment. There is no way to
|
||
find out the ELF header and/or Program Headers for a limited
|
||
verification if it they match. One could do a verification
|
||
of the DYNAMIC segment. Still the found address is the best
|
||
one GDB could find. */
|
||
|
||
warning (_(".dynamic section for \"%s\" "
|
||
"is not at the expected address "
|
||
"(wrong library or version mismatch?)"),
|
||
so.name.c_str ());
|
||
}
|
||
}
|
||
|
||
set_addr:
|
||
li.l_addr = l_addr;
|
||
li.l_addr_p = 1;
|
||
}
|
||
|
||
return li.l_addr;
|
||
}
|
||
|
||
struct svr4_so
|
||
{
|
||
svr4_so (const char *name, lm_info_svr4_up lm_info)
|
||
: name (name), lm_info (std::move (lm_info))
|
||
{}
|
||
|
||
std::string name;
|
||
lm_info_svr4_up lm_info;
|
||
};
|
||
|
||
/* Per pspace SVR4 specific data. */
|
||
|
||
struct svr4_info
|
||
{
|
||
/* Base of dynamic linker structures in default namespace.
|
||
|
||
The value is fetched from the inferior every time we need it. This field
|
||
represents the last known value. */
|
||
CORE_ADDR default_debug_base = 0;
|
||
|
||
/* Validity flag for debug_loader_offset. */
|
||
int debug_loader_offset_p = 0;
|
||
|
||
/* Load address for the dynamic linker, inferred. */
|
||
CORE_ADDR debug_loader_offset = 0;
|
||
|
||
/* Name of the dynamic linker, valid if debug_loader_offset_p. */
|
||
std::string debug_loader_name;
|
||
|
||
/* Load map address for the main executable in default namespace. */
|
||
CORE_ADDR main_lm_addr = 0;
|
||
|
||
CORE_ADDR interp_text_sect_low = 0;
|
||
CORE_ADDR interp_text_sect_high = 0;
|
||
CORE_ADDR interp_plt_sect_low = 0;
|
||
CORE_ADDR interp_plt_sect_high = 0;
|
||
|
||
/* True if the list of objects was last obtained from the target
|
||
via qXfer:libraries-svr4:read. */
|
||
bool using_xfer = false;
|
||
|
||
/* Table of struct probe_and_action instances, used by the
|
||
probes-based interface to map breakpoint addresses to probes
|
||
and their associated actions. Lookup is performed using
|
||
probe_and_action->prob->address. */
|
||
htab_up probes_table;
|
||
|
||
/* List of objects loaded into the inferior per namespace, used by the
|
||
probes-based interface.
|
||
|
||
The namespace is represented by the address of its corresponding
|
||
r_debug[_ext] object. We get the namespace id as argument to the
|
||
'reloc_complete' probe but we don't get it when scanning the load map
|
||
on attach.
|
||
|
||
The r_debug[_ext] objects may move when ld.so itself moves. In that
|
||
case, we expect also the global _r_debug to move so we can detect
|
||
this and reload everything. The r_debug[_ext] objects are not
|
||
expected to move individually.
|
||
|
||
The special entry zero is reserved for a linear list to support
|
||
gdbstubs that do not support namespaces. */
|
||
std::map<CORE_ADDR, std::vector<svr4_so>> solib_lists;
|
||
|
||
/* Mapping between r_debug[_ext] addresses and a user-friendly
|
||
identifier for the namespace. A vector is used to make it
|
||
easy to assign new internal IDs to namespaces.
|
||
|
||
For gdbservers that don't support namespaces, the first (and only)
|
||
entry of the vector will be 0.
|
||
|
||
A note on consistency. We can't make the IDs be consistent before
|
||
and after the initial relocation of the inferior (when the global
|
||
_r_debug is relocated, as mentioned in the previous comment). It is
|
||
likely that this is a non-issue, since the inferior can't have called
|
||
dlmopen yet, but I think it is worth noting.
|
||
|
||
The only issue I am aware at this point is that, if when parsing an
|
||
XML file, we read an LMID that given by an XML file (and read in
|
||
library_list_start_library) is the identifier obtained with dlinfo
|
||
instead of the address of r_debug[_ext], and after attaching the
|
||
inferior adds another SO to that namespace, we might double-count it
|
||
since we won't have access to the LMID later on. However, this is
|
||
already a problem with the existing solib_lists code. */
|
||
std::vector<CORE_ADDR> namespace_id;
|
||
|
||
/* This identifies which namespaces are active. A namespace is considered
|
||
active when there is at least one shared object loaded into it. */
|
||
std::set<size_t> active_namespaces;
|
||
|
||
/* This flag indicates whether initializations related to the
|
||
GLIBC TLS module id tracking code have been performed. */
|
||
bool glibc_tls_slots_inited = false;
|
||
|
||
/* A vector of link map addresses for GLIBC TLS slots. See comment
|
||
for tls_maybe_fill_slot for more information. */
|
||
std::vector<CORE_ADDR> glibc_tls_slots;
|
||
};
|
||
|
||
/* Per-program-space data key. */
|
||
static const registry<program_space>::key<svr4_info> solib_svr4_pspace_data;
|
||
|
||
/* Check if the lmid address is already assigned an ID in the svr4_info,
|
||
and if not, assign it one and add it to the list of known namespaces. */
|
||
static void
|
||
svr4_maybe_add_namespace (svr4_info *info, CORE_ADDR lmid)
|
||
{
|
||
int i;
|
||
for (i = 0; i < info->namespace_id.size (); i++)
|
||
{
|
||
if (info->namespace_id[i] == lmid)
|
||
break;
|
||
}
|
||
if (i == info->namespace_id.size ())
|
||
info->namespace_id.push_back (lmid);
|
||
|
||
info->active_namespaces.insert (i);
|
||
}
|
||
|
||
/* Return whether DEBUG_BASE is the default namespace of INFO. */
|
||
|
||
static bool
|
||
svr4_is_default_namespace (const svr4_info *info, CORE_ADDR debug_base)
|
||
{
|
||
return debug_base == info->default_debug_base;
|
||
}
|
||
|
||
/* Free the probes table. */
|
||
|
||
void
|
||
svr4_solib_ops::free_probes_table (svr4_info *info) const
|
||
{
|
||
info->probes_table.reset (nullptr);
|
||
}
|
||
|
||
/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
|
||
This function always returns a valid object. */
|
||
|
||
static struct svr4_info *
|
||
get_svr4_info (program_space *pspace)
|
||
{
|
||
struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
|
||
|
||
if (info == NULL)
|
||
info = solib_svr4_pspace_data.emplace (pspace);
|
||
|
||
return info;
|
||
}
|
||
|
||
/* Local function prototypes */
|
||
|
||
static int match_main (const char *);
|
||
|
||
/* Read program header TYPE from inferior memory. The header is found
|
||
by scanning the OS auxiliary vector.
|
||
|
||
If TYPE == -1, return the program headers instead of the contents of
|
||
one program header.
|
||
|
||
Return vector of bytes holding the program header contents, or an empty
|
||
optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
|
||
architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
|
||
the base address of the section is returned in *BASE_ADDR. */
|
||
|
||
static std::optional<gdb::byte_vector>
|
||
read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
|
||
int arch_size, sect_size;
|
||
CORE_ADDR sect_addr;
|
||
int pt_phdr_p = 0;
|
||
|
||
/* Get required auxv elements from target. */
|
||
if (target_auxv_search (AT_PHDR, &at_phdr) <= 0)
|
||
return {};
|
||
if (target_auxv_search (AT_PHENT, &at_phent) <= 0)
|
||
return {};
|
||
if (target_auxv_search (AT_PHNUM, &at_phnum) <= 0)
|
||
return {};
|
||
if (!at_phdr || !at_phnum)
|
||
return {};
|
||
|
||
/* Determine ELF architecture type. */
|
||
if (at_phent == sizeof (Elf32_External_Phdr))
|
||
arch_size = 32;
|
||
else if (at_phent == sizeof (Elf64_External_Phdr))
|
||
arch_size = 64;
|
||
else
|
||
return {};
|
||
|
||
/* Find the requested segment. */
|
||
if (type == -1)
|
||
{
|
||
sect_addr = at_phdr;
|
||
sect_size = at_phent * at_phnum;
|
||
}
|
||
else if (arch_size == 32)
|
||
{
|
||
Elf32_External_Phdr phdr;
|
||
int i;
|
||
|
||
/* Search for requested PHDR. */
|
||
for (i = 0; i < at_phnum; i++)
|
||
{
|
||
int p_type;
|
||
|
||
if (target_read_memory (at_phdr + i * sizeof (phdr),
|
||
(gdb_byte *)&phdr, sizeof (phdr)))
|
||
return {};
|
||
|
||
p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
|
||
4, byte_order);
|
||
|
||
if (p_type == PT_PHDR)
|
||
{
|
||
pt_phdr_p = 1;
|
||
pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
|
||
4, byte_order);
|
||
}
|
||
|
||
if (p_type == type)
|
||
break;
|
||
}
|
||
|
||
if (i == at_phnum)
|
||
return {};
|
||
|
||
/* Retrieve address and size. */
|
||
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
|
||
4, byte_order);
|
||
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
|
||
4, byte_order);
|
||
}
|
||
else
|
||
{
|
||
Elf64_External_Phdr phdr;
|
||
int i;
|
||
|
||
/* Search for requested PHDR. */
|
||
for (i = 0; i < at_phnum; i++)
|
||
{
|
||
int p_type;
|
||
|
||
if (target_read_memory (at_phdr + i * sizeof (phdr),
|
||
(gdb_byte *)&phdr, sizeof (phdr)))
|
||
return {};
|
||
|
||
p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
|
||
4, byte_order);
|
||
|
||
if (p_type == PT_PHDR)
|
||
{
|
||
pt_phdr_p = 1;
|
||
pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
|
||
8, byte_order);
|
||
}
|
||
|
||
if (p_type == type)
|
||
break;
|
||
}
|
||
|
||
if (i == at_phnum)
|
||
return {};
|
||
|
||
/* Retrieve address and size. */
|
||
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
|
||
8, byte_order);
|
||
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
|
||
8, byte_order);
|
||
}
|
||
|
||
/* PT_PHDR is optional, but we really need it
|
||
for PIE to make this work in general. */
|
||
|
||
if (pt_phdr_p)
|
||
{
|
||
/* at_phdr is real address in memory. pt_phdr is what pheader says it is.
|
||
Relocation offset is the difference between the two. */
|
||
sect_addr = sect_addr + (at_phdr - pt_phdr);
|
||
}
|
||
|
||
/* Read in requested program header. */
|
||
gdb::byte_vector buf (sect_size);
|
||
if (target_read_memory (sect_addr, buf.data (), sect_size))
|
||
return {};
|
||
|
||
if (p_arch_size)
|
||
*p_arch_size = arch_size;
|
||
if (base_addr)
|
||
*base_addr = sect_addr;
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* See solib-svr4.h. */
|
||
|
||
std::optional<gdb::byte_vector>
|
||
svr4_find_program_interpreter ()
|
||
{
|
||
/* If we have a current exec_bfd, use its section table. */
|
||
if (current_program_space->exec_bfd ()
|
||
&& (bfd_get_flavour (current_program_space->exec_bfd ())
|
||
== bfd_target_elf_flavour))
|
||
{
|
||
struct bfd_section *interp_sect;
|
||
|
||
interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
|
||
".interp");
|
||
if (interp_sect != NULL)
|
||
{
|
||
int sect_size = bfd_section_size (interp_sect);
|
||
|
||
gdb::byte_vector buf (sect_size);
|
||
bool res
|
||
= bfd_get_section_contents (current_program_space->exec_bfd (),
|
||
interp_sect, buf.data (), 0, sect_size);
|
||
if (res)
|
||
return buf;
|
||
}
|
||
}
|
||
|
||
/* If we didn't find it, use the target auxiliary vector. */
|
||
return read_program_header (PT_INTERP, NULL, NULL);
|
||
}
|
||
|
||
|
||
/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
|
||
found by consulting the OS auxiliary vector. If DESIRED_DYNTAG is found, 1
|
||
is returned and the corresponding PTR is set. */
|
||
|
||
static int
|
||
scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
|
||
CORE_ADDR *ptr_addr)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
int arch_size, step;
|
||
long current_dyntag;
|
||
CORE_ADDR dyn_ptr;
|
||
CORE_ADDR base_addr;
|
||
|
||
/* Read in .dynamic section. */
|
||
std::optional<gdb::byte_vector> ph_data
|
||
= read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
|
||
if (!ph_data)
|
||
return 0;
|
||
|
||
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
|
||
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
|
||
: sizeof (Elf64_External_Dyn);
|
||
for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
|
||
buf < bufend; buf += step)
|
||
{
|
||
if (arch_size == 32)
|
||
{
|
||
Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
|
||
|
||
current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
|
||
4, byte_order);
|
||
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
|
||
4, byte_order);
|
||
}
|
||
else
|
||
{
|
||
Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
|
||
|
||
current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
|
||
8, byte_order);
|
||
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
|
||
8, byte_order);
|
||
}
|
||
if (current_dyntag == DT_NULL)
|
||
break;
|
||
|
||
if (current_dyntag == desired_dyntag)
|
||
{
|
||
if (ptr)
|
||
*ptr = dyn_ptr;
|
||
|
||
if (ptr_addr)
|
||
*ptr_addr = base_addr + buf - ph_data->data ();
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Locate the base address the dynamic linker structure for the default
|
||
namespace.
|
||
|
||
For SVR4 elf targets the address of the dynamic linker's runtime
|
||
structure is contained within the dynamic info section in the
|
||
executable file. The dynamic section is also mapped into the
|
||
inferior address space. Because the runtime loader fills in the
|
||
real address before starting the inferior, we have to read in the
|
||
dynamic info section from the inferior address space.
|
||
If there are any errors while trying to find the address, we
|
||
silently return 0, otherwise the found address is returned.
|
||
|
||
If we try to read the address before the dynamic linker had a change to
|
||
fill in the real address, this will also typically return 0. */
|
||
|
||
static CORE_ADDR
|
||
locate_default_debug_base ()
|
||
{
|
||
CORE_ADDR dyn_ptr, dyn_ptr_addr;
|
||
|
||
/* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
|
||
instead of DT_DEBUG, although they sometimes contain an unused
|
||
DT_DEBUG. */
|
||
if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP,
|
||
current_program_space->exec_bfd (),
|
||
&dyn_ptr, NULL)
|
||
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
|
||
{
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
gdb_byte *pbuf;
|
||
int pbuf_size = ptr_type->length ();
|
||
|
||
pbuf = (gdb_byte *) alloca (pbuf_size);
|
||
/* DT_MIPS_RLD_MAP contains a pointer to the address
|
||
of the dynamic link structure. */
|
||
if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
|
||
return 0;
|
||
return extract_typed_address (pbuf, ptr_type);
|
||
}
|
||
|
||
/* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
|
||
because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
|
||
in non-PIE. */
|
||
if (gdb_bfd_scan_elf_dyntag (DT_MIPS_RLD_MAP_REL,
|
||
current_program_space->exec_bfd (),
|
||
&dyn_ptr, &dyn_ptr_addr)
|
||
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
|
||
{
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
gdb_byte *pbuf;
|
||
int pbuf_size = ptr_type->length ();
|
||
|
||
pbuf = (gdb_byte *) alloca (pbuf_size);
|
||
/* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
|
||
DT slot to the address of the dynamic link structure. */
|
||
if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
|
||
return 0;
|
||
return extract_typed_address (pbuf, ptr_type);
|
||
}
|
||
|
||
/* Find DT_DEBUG. */
|
||
if (gdb_bfd_scan_elf_dyntag (DT_DEBUG, current_program_space->exec_bfd (),
|
||
&dyn_ptr, NULL)
|
||
|| scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
|
||
return dyn_ptr;
|
||
|
||
/* This may be a static executable. Look for the symbol
|
||
conventionally named _r_debug, as a last resort. */
|
||
bound_minimal_symbol msymbol
|
||
= lookup_minimal_symbol (current_program_space, "_r_debug",
|
||
current_program_space->symfile_object_file);
|
||
if (msymbol.minsym != NULL)
|
||
return msymbol.value_address ();
|
||
|
||
/* DT_DEBUG entry not found. */
|
||
return 0;
|
||
}
|
||
|
||
/* See solib-svr4.h. */
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::default_debug_base (svr4_info *info, bool *changed) const
|
||
{
|
||
CORE_ADDR default_debug_base = locate_default_debug_base ();
|
||
|
||
if (changed != nullptr)
|
||
*changed = default_debug_base != info->default_debug_base;
|
||
|
||
if (default_debug_base != info->default_debug_base)
|
||
{
|
||
/* Update the debug base value for existing solibs. The only known case
|
||
where this is required is when a struct solib was created for the
|
||
dynamic linker itself by svr4_solib_ops::default_sos, before the
|
||
default debug base was known. */
|
||
for (const auto &solib : m_pspace->solibs ())
|
||
{
|
||
if (&solib.ops () != this)
|
||
continue;
|
||
|
||
if (auto &li = get_lm_info_svr4 (solib);
|
||
li.debug_base == info->default_debug_base)
|
||
li.debug_base = default_debug_base;
|
||
}
|
||
|
||
info->default_debug_base = default_debug_base;
|
||
}
|
||
|
||
return info->default_debug_base;
|
||
}
|
||
|
||
/* Find the first element in the inferior's dynamic link map, and
|
||
return its address in the inferior. Return zero if the address
|
||
could not be determined.
|
||
|
||
FIXME: Perhaps we should validate the info somehow, perhaps by
|
||
checking r_version for a known version number, or r_state for
|
||
RT_CONSISTENT. */
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::read_r_map (CORE_ADDR debug_base) const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
CORE_ADDR addr = 0;
|
||
|
||
try
|
||
{
|
||
addr = read_memory_typed_address (debug_base + lmo->r_map_offset,
|
||
ptr_type);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
}
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* Find r_brk from the inferior's debug base. */
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::find_r_brk (svr4_info *info) const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
|
||
gdb_assert (info->default_debug_base != 0);
|
||
|
||
return read_memory_typed_address ((info->default_debug_base
|
||
+ lmo->r_brk_offset), ptr_type);
|
||
}
|
||
|
||
/* Find the link map for the dynamic linker (if it is not in the
|
||
normal list of loaded shared objects). */
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::find_r_ldsomap (svr4_info *info) const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
enum bfd_endian byte_order = type_byte_order (ptr_type);
|
||
ULONGEST version = 0;
|
||
|
||
gdb_assert (info->default_debug_base != 0);
|
||
|
||
try
|
||
{
|
||
/* Check version, and return zero if `struct r_debug' doesn't have
|
||
the r_ldsomap member. */
|
||
version
|
||
= read_memory_unsigned_integer ((info->default_debug_base
|
||
+ lmo->r_version_offset),
|
||
lmo->r_version_size, byte_order);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
}
|
||
|
||
if (version < 2 || lmo->r_ldsomap_offset == -1)
|
||
return 0;
|
||
|
||
return read_memory_typed_address ((info->default_debug_base
|
||
+ lmo->r_ldsomap_offset),
|
||
ptr_type);
|
||
}
|
||
|
||
/* Find the next namespace from the r_next field. */
|
||
|
||
CORE_ADDR
|
||
svr4_solib_ops::read_r_next (CORE_ADDR debug_base) const
|
||
{
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
bfd_endian byte_order = type_byte_order (ptr_type);
|
||
ULONGEST version = 0;
|
||
|
||
try
|
||
{
|
||
version
|
||
= read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
|
||
lmo->r_version_size, byte_order);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
}
|
||
|
||
/* The r_next field is added with r_version == 2. */
|
||
if (version < 2 || lmo->r_next_offset == -1)
|
||
return 0;
|
||
|
||
return read_memory_typed_address (debug_base + lmo->r_next_offset,
|
||
ptr_type);
|
||
}
|
||
|
||
/* On Solaris systems with some versions of the dynamic linker,
|
||
ld.so's l_name pointer points to the SONAME in the string table
|
||
rather than into writable memory. So that GDB can find shared
|
||
libraries when loading a core file generated by gcore, ensure that
|
||
memory areas containing the l_name string are saved in the core
|
||
file. */
|
||
|
||
bool
|
||
svr4_solib_ops::keep_data_in_core (CORE_ADDR vaddr, unsigned long size) const
|
||
{
|
||
struct svr4_info *info;
|
||
CORE_ADDR ldsomap;
|
||
CORE_ADDR name_lm;
|
||
|
||
info = get_svr4_info (current_program_space);
|
||
CORE_ADDR default_debug_base = this->default_debug_base (info);
|
||
|
||
if (default_debug_base == 0)
|
||
return false;
|
||
|
||
ldsomap = this->find_r_ldsomap (info);
|
||
if (!ldsomap)
|
||
return false;
|
||
|
||
std::unique_ptr<lm_info_svr4> li
|
||
= this->read_lm_info (ldsomap, info->default_debug_base);
|
||
name_lm = li != NULL ? li->l_name : 0;
|
||
|
||
return (name_lm >= vaddr && name_lm < vaddr + size);
|
||
}
|
||
|
||
/* See solib.h. */
|
||
|
||
bool
|
||
svr4_solib_ops::open_symbol_file_object (int from_tty) const
|
||
{
|
||
CORE_ADDR lm, l_name;
|
||
link_map_offsets *lmo = this->fetch_link_map_offsets ();
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
int l_name_size = ptr_type->length ();
|
||
gdb::byte_vector l_name_buf (l_name_size);
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
symfile_add_flags add_flags = 0;
|
||
|
||
if (from_tty)
|
||
add_flags |= SYMFILE_VERBOSE;
|
||
|
||
if (current_program_space->symfile_object_file)
|
||
if (!query (_("Attempt to reload symbols from process? ")))
|
||
return false;
|
||
|
||
CORE_ADDR default_debug_base = this->default_debug_base (info);
|
||
|
||
if (default_debug_base == 0)
|
||
return false; /* failed somehow... */
|
||
|
||
/* First link map member should be the executable. */
|
||
lm = this->read_r_map (default_debug_base);
|
||
if (lm == 0)
|
||
return false; /* failed somehow... */
|
||
|
||
/* Read address of name from target memory to GDB. */
|
||
read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
|
||
|
||
/* Convert the address to host format. */
|
||
l_name = extract_typed_address (l_name_buf.data (), ptr_type);
|
||
|
||
if (l_name == 0)
|
||
return false; /* No filename. */
|
||
|
||
/* Now fetch the filename from target memory. */
|
||
gdb::unique_xmalloc_ptr<char> filename
|
||
= target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
|
||
|
||
if (filename == nullptr)
|
||
{
|
||
warning (_("failed to read exec filename from attached file"));
|
||
return false;
|
||
}
|
||
|
||
/* Have a pathname: read the symbol file. */
|
||
symbol_file_add_main (filename.get (), add_flags);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Data exchange structure for the XML parser as returned by
|
||
svr4_current_sos_via_xfer_libraries. */
|
||
|
||
struct svr4_library_list
|
||
{
|
||
/* The so list for the current namespace. This is internal to XML
|
||
parsing. */
|
||
std::vector<svr4_so> *cur_list;
|
||
|
||
/* Inferior address of struct link_map used for the main executable. It is
|
||
NULL if not known. */
|
||
CORE_ADDR main_lm;
|
||
|
||
/* List of objects loaded into the inferior per namespace. This does
|
||
not include any default sos.
|
||
|
||
See comment on struct svr4_info.solib_lists. */
|
||
std::map<CORE_ADDR, std::vector<svr4_so>> solib_lists;
|
||
};
|
||
|
||
/* This module's 'free_objfile' observer. */
|
||
|
||
static void
|
||
svr4_free_objfile_observer (struct objfile *objfile)
|
||
{
|
||
probes_table_remove_objfile_probes (objfile);
|
||
}
|
||
|
||
/* Implement solib_ops.clear_so. */
|
||
|
||
void
|
||
svr4_solib_ops::clear_so (const solib &so) const
|
||
{
|
||
get_lm_info_svr4 (so).l_addr_p = 0;
|
||
}
|
||
|
||
/* Create the solib objects equivalent to the svr4_sos in SOS. */
|
||
|
||
owning_intrusive_list<solib>
|
||
svr4_solib_ops::solibs_from_svr4_sos (const std::vector<svr4_so> &sos) const
|
||
{
|
||
owning_intrusive_list<solib> dst;
|
||
|
||
for (const svr4_so &so : sos)
|
||
{
|
||
auto &newobj = dst.emplace_back (*this);
|
||
|
||
newobj.name = so.name;
|
||
newobj.original_name = so.name;
|
||
newobj.lm_info = std::make_unique<lm_info_svr4> (*so.lm_info);
|
||
}
|
||
|
||
return dst;
|
||
}
|
||
|
||
#ifdef HAVE_LIBEXPAT
|
||
|
||
#include "xml-support.h"
|
||
|
||
/* Handle the start of a <library> element. Note: new elements are added
|
||
at the tail of the list, keeping the list in order. */
|
||
|
||
static void
|
||
library_list_start_library (struct gdb_xml_parser *parser,
|
||
const struct gdb_xml_element *element,
|
||
void *user_data,
|
||
std::vector<gdb_xml_value> &attributes)
|
||
{
|
||
struct svr4_library_list *list = (struct svr4_library_list *) user_data;
|
||
const char *name
|
||
= (const char *) xml_find_attribute (attributes, "name")->value.get ();
|
||
ULONGEST *lmp
|
||
= (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
|
||
ULONGEST *l_addrp
|
||
= (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
|
||
ULONGEST *l_ldp
|
||
= (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
|
||
|
||
std::vector<svr4_so> *solist;
|
||
|
||
/* Older versions did not supply lmid. Put the element into the flat
|
||
list of the special namespace zero in that case. */
|
||
gdb_xml_value *at_lmid = xml_find_attribute (attributes, "lmid");
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
ULONGEST lmid;
|
||
|
||
if (at_lmid == nullptr)
|
||
{
|
||
solist = list->cur_list;
|
||
svr4_maybe_add_namespace (info, 0);
|
||
lmid = 0;
|
||
}
|
||
else
|
||
{
|
||
lmid = *(ULONGEST *) at_lmid->value.get ();
|
||
solist = &list->solib_lists[lmid];
|
||
svr4_maybe_add_namespace (info, lmid);
|
||
}
|
||
|
||
lm_info_svr4_up li = std::make_unique<lm_info_svr4> (lmid);
|
||
|
||
li->lm_addr = *lmp;
|
||
li->l_addr_inferior = *l_addrp;
|
||
li->l_ld = *l_ldp;
|
||
|
||
solist->emplace_back (name, std::move (li));
|
||
}
|
||
|
||
/* Handle the start of a <library-list-svr4> element. */
|
||
|
||
static void
|
||
svr4_library_list_start_list (struct gdb_xml_parser *parser,
|
||
const struct gdb_xml_element *element,
|
||
void *user_data,
|
||
std::vector<gdb_xml_value> &attributes)
|
||
{
|
||
struct svr4_library_list *list = (struct svr4_library_list *) user_data;
|
||
const char *version
|
||
= (const char *) xml_find_attribute (attributes, "version")->value.get ();
|
||
struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
|
||
|
||
if (strcmp (version, "1.0") != 0)
|
||
gdb_xml_error (parser,
|
||
_("SVR4 Library list has unsupported version \"%s\""),
|
||
version);
|
||
|
||
if (main_lm)
|
||
list->main_lm = *(ULONGEST *) main_lm->value.get ();
|
||
|
||
/* Older gdbserver do not support namespaces. We use the special
|
||
namespace zero for a linear list of libraries. */
|
||
list->cur_list = &list->solib_lists[0];
|
||
}
|
||
|
||
/* The allowed elements and attributes for an XML library list.
|
||
The root element is a <library-list>. */
|
||
|
||
static const struct gdb_xml_attribute svr4_library_attributes[] =
|
||
{
|
||
{ "name", GDB_XML_AF_NONE, NULL, NULL },
|
||
{ "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
|
||
{ "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
|
||
{ "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
|
||
{ "lmid", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
|
||
{ NULL, GDB_XML_AF_NONE, NULL, NULL }
|
||
};
|
||
|
||
static const struct gdb_xml_element svr4_library_list_children[] =
|
||
{
|
||
{
|
||
"library", svr4_library_attributes, NULL,
|
||
GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
|
||
library_list_start_library, NULL
|
||
},
|
||
{ NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
|
||
};
|
||
|
||
static const struct gdb_xml_attribute svr4_library_list_attributes[] =
|
||
{
|
||
{ "version", GDB_XML_AF_NONE, NULL, NULL },
|
||
{ "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
|
||
{ NULL, GDB_XML_AF_NONE, NULL, NULL }
|
||
};
|
||
|
||
static const struct gdb_xml_element svr4_library_list_elements[] =
|
||
{
|
||
{ "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
|
||
GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
|
||
{ NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
|
||
};
|
||
|
||
/* Parse qXfer:libraries:read packet into *LIST.
|
||
|
||
Return 0 if packet not supported, *LIST is not modified in such case.
|
||
Return 1 if *LIST contains the library list. */
|
||
|
||
static int
|
||
svr4_parse_libraries (const char *document, struct svr4_library_list *list)
|
||
{
|
||
auto cleanup = make_scope_exit ([list] ()
|
||
{ list->solib_lists.clear (); });
|
||
|
||
list->cur_list = nullptr;
|
||
list->main_lm = 0;
|
||
list->solib_lists.clear ();
|
||
if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
|
||
svr4_library_list_elements, document, list) == 0)
|
||
{
|
||
/* Parsed successfully, keep the result. */
|
||
cleanup.release ();
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Attempt to get the shared object list from target via
|
||
qXfer:libraries-svr4:read packet.
|
||
|
||
Return 0 if packet not supported, *LIST is not modified in such case.
|
||
Return 1 if *LIST contains the library list.
|
||
|
||
Note that ANNEX must be NULL if the remote does not explicitly allow
|
||
qXfer:libraries-svr4:read packets with non-empty annexes. Support for
|
||
this can be checked using target_augmented_libraries_svr4_read (). */
|
||
|
||
static int
|
||
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
|
||
const char *annex)
|
||
{
|
||
gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
|
||
|
||
/* Fetch the list of shared libraries. */
|
||
std::optional<gdb::char_vector> svr4_library_document
|
||
= target_read_stralloc (current_inferior ()->top_target (),
|
||
TARGET_OBJECT_LIBRARIES_SVR4,
|
||
annex);
|
||
if (!svr4_library_document)
|
||
return 0;
|
||
|
||
return svr4_parse_libraries (svr4_library_document->data (), list);
|
||
}
|
||
|
||
#else
|
||
|
||
static int
|
||
svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
|
||
const char *annex)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* If no shared library information is available from the dynamic
|
||
linker, build a fallback list from other sources. */
|
||
|
||
owning_intrusive_list<solib>
|
||
svr4_solib_ops::default_sos (svr4_info *info) const
|
||
{
|
||
if (!info->debug_loader_offset_p)
|
||
return {};
|
||
|
||
auto li = std::make_unique<lm_info_svr4> (0);
|
||
|
||
/* Nothing will ever check the other fields if we set l_addr_p. */
|
||
li->l_addr = li->l_addr_inferior = info->debug_loader_offset;
|
||
li->l_addr_p = 1;
|
||
|
||
owning_intrusive_list<solib> sos;
|
||
auto &newobj = sos.emplace_back (*this);
|
||
|
||
newobj.lm_info = std::move (li);
|
||
newobj.name = info->debug_loader_name;
|
||
newobj.original_name = newobj.name;
|
||
|
||
return sos;
|
||
}
|
||
|
||
/* Read the whole inferior libraries chain starting at address LM.
|
||
Expect the first entry in the chain's previous entry to be PREV_LM.
|
||
Add the entries to SOS. Ignore the first entry if IGNORE_FIRST and set
|
||
global MAIN_LM_ADDR according to it. Returns nonzero upon success. If zero
|
||
is returned the entries stored to LINK_PTR_PTR are still valid although they may
|
||
represent only part of the inferior library list. */
|
||
|
||
int
|
||
svr4_solib_ops::read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
|
||
CORE_ADDR debug_base, std::vector<svr4_so> &sos,
|
||
int ignore_first) const
|
||
{
|
||
CORE_ADDR first_l_name = 0;
|
||
CORE_ADDR next_lm;
|
||
|
||
for (; lm != 0; prev_lm = lm, lm = next_lm)
|
||
{
|
||
lm_info_svr4_up li = this->read_lm_info (lm, debug_base);
|
||
if (li == NULL)
|
||
return 0;
|
||
|
||
next_lm = li->l_next;
|
||
|
||
if (li->l_prev != prev_lm)
|
||
{
|
||
warning (_("Corrupted shared library list: %s != %s"),
|
||
paddress (current_inferior ()->arch (), prev_lm),
|
||
paddress (current_inferior ()->arch (), li->l_prev));
|
||
return 0;
|
||
}
|
||
|
||
/* For SVR4 versions, the first entry in the link map is for the
|
||
inferior executable, so we must ignore it. For some versions of
|
||
SVR4, it has no name. For others (Solaris 2.3 for example), it
|
||
does have a name, so we can no longer use a missing name to
|
||
decide when to ignore it. */
|
||
if (ignore_first && li->l_prev == 0)
|
||
{
|
||
first_l_name = li->l_name;
|
||
info->main_lm_addr = li->lm_addr;
|
||
continue;
|
||
}
|
||
|
||
/* Extract this shared object's name. */
|
||
gdb::unique_xmalloc_ptr<char> name
|
||
= target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
|
||
if (name == nullptr)
|
||
{
|
||
/* If this entry's l_name address matches that of the
|
||
inferior executable, then this is not a normal shared
|
||
object, but (most likely) a vDSO. In this case, silently
|
||
skip it; otherwise emit a warning. */
|
||
if (first_l_name == 0 || li->l_name != first_l_name)
|
||
warning (_("Can't read pathname for load map."));
|
||
continue;
|
||
}
|
||
|
||
/* If this entry has no name, or its name matches the name
|
||
for the main executable, don't include it in the list. */
|
||
if (*name == '\0' || match_main (name.get ()))
|
||
continue;
|
||
|
||
sos.emplace_back (name.get (), std::move (li));
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read the full list of currently loaded shared objects directly
|
||
from the inferior, without referring to any libraries read and
|
||
stored by the probes interface. Handle special cases relating
|
||
to the first elements of the list in default namespace. */
|
||
|
||
void
|
||
svr4_solib_ops::current_sos_direct (svr4_info *info) const
|
||
{
|
||
CORE_ADDR lm;
|
||
bool ignore_first;
|
||
struct svr4_library_list library_list;
|
||
|
||
/* Remove any old libraries. We're going to read them back in again. */
|
||
info->solib_lists.clear ();
|
||
|
||
info->active_namespaces.clear ();
|
||
|
||
/* Fall back to manual examination of the target if the packet is not
|
||
supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
|
||
tests a case where gdbserver cannot find the shared libraries list while
|
||
GDB itself is able to find it via SYMFILE_OBJFILE.
|
||
|
||
Unfortunately statically linked inferiors will also fall back through this
|
||
suboptimal code path. */
|
||
|
||
info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
|
||
NULL);
|
||
if (info->using_xfer)
|
||
{
|
||
if (library_list.main_lm)
|
||
info->main_lm_addr = library_list.main_lm;
|
||
|
||
/* Remove an empty special zero namespace so we know that when there
|
||
is one, it is actually used, and we have a flat list without
|
||
namespace information. */
|
||
auto it_0 = library_list.solib_lists.find (0);
|
||
if (it_0 != library_list.solib_lists.end ()
|
||
&& it_0->second.empty ())
|
||
library_list.solib_lists.erase (it_0);
|
||
|
||
/* Replace the (empty) solib_lists in INFO with the one generated
|
||
from the target. We don't want to copy it on assignment and then
|
||
delete the original afterwards, so let's just swap the
|
||
internals. */
|
||
std::swap (info->solib_lists, library_list.solib_lists);
|
||
return;
|
||
}
|
||
|
||
/* If we can't find the dynamic linker's base structure, this
|
||
must not be a dynamically linked executable. Hmm. */
|
||
CORE_ADDR default_debug_base = this->default_debug_base (info);
|
||
|
||
if (default_debug_base == 0)
|
||
return;
|
||
|
||
/* Assume that everything is a library if the dynamic loader was loaded
|
||
late by a static executable. */
|
||
if (current_program_space->exec_bfd ()
|
||
&& bfd_get_section_by_name (current_program_space->exec_bfd (),
|
||
".dynamic") == NULL)
|
||
ignore_first = false;
|
||
else
|
||
ignore_first = true;
|
||
|
||
auto cleanup = make_scope_exit ([info] ()
|
||
{
|
||
info->solib_lists.clear ();
|
||
info->active_namespaces.clear ();
|
||
});
|
||
|
||
/* Collect the sos in each namespace. */
|
||
CORE_ADDR debug_base = default_debug_base;
|
||
|
||
for (; debug_base != 0;
|
||
ignore_first = false, debug_base = this->read_r_next (debug_base))
|
||
{
|
||
/* Walk the inferior's link map list, and build our so_list list. */
|
||
lm = this->read_r_map (debug_base);
|
||
if (lm != 0)
|
||
{
|
||
svr4_maybe_add_namespace (info, debug_base);
|
||
this->read_so_list (info, lm, 0, debug_base,
|
||
info->solib_lists[debug_base], ignore_first);
|
||
}
|
||
}
|
||
|
||
/* On Solaris, the dynamic linker is not in the normal list of
|
||
shared objects, so make sure we pick it up too. Having
|
||
symbol information for the dynamic linker is quite crucial
|
||
for skipping dynamic linker resolver code.
|
||
|
||
Note that we interpret the ldsomap load map address as 'virtual'
|
||
r_debug object. If we added it to the default namespace (as it was),
|
||
we would probably run into inconsistencies with the load map's
|
||
prev/next links (I wonder if we did). */
|
||
debug_base = this->find_r_ldsomap (info);
|
||
if (debug_base != 0)
|
||
{
|
||
/* Add the dynamic linker's namespace unless we already did. */
|
||
if (info->solib_lists.find (debug_base) == info->solib_lists.end ())
|
||
{
|
||
svr4_maybe_add_namespace (info, debug_base);
|
||
this->read_so_list (info, debug_base, 0, debug_base,
|
||
info->solib_lists[debug_base], 0);
|
||
}
|
||
}
|
||
|
||
cleanup.release ();
|
||
}
|
||
|
||
/* Collect sos read and stored by the probes interface. */
|
||
|
||
owning_intrusive_list<solib>
|
||
svr4_solib_ops::collect_probes_sos (svr4_info *info) const
|
||
{
|
||
owning_intrusive_list<solib> res;
|
||
|
||
for (const auto &tuple : info->solib_lists)
|
||
{
|
||
const std::vector<svr4_so> &sos = tuple.second;
|
||
res.splice (this->solibs_from_svr4_sos (sos));
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Implement the main part of the "current_sos" solib_ops
|
||
method. */
|
||
|
||
owning_intrusive_list<solib>
|
||
svr4_solib_ops::current_sos_1 (svr4_info *info) const
|
||
{
|
||
owning_intrusive_list<solib> sos;
|
||
|
||
/* If we're using the probes interface, we can use the cache as it will
|
||
be maintained by probe update/reload actions. */
|
||
if (info->probes_table != nullptr)
|
||
sos = this->collect_probes_sos (info);
|
||
|
||
/* If we're not using the probes interface or if we didn't cache
|
||
anything, read the sos to fill the cache, then collect them from the
|
||
cache. */
|
||
if (sos.empty ())
|
||
{
|
||
this->current_sos_direct (info);
|
||
|
||
sos = this->collect_probes_sos (info);
|
||
if (sos.empty ())
|
||
sos = this->default_sos (info);
|
||
}
|
||
|
||
return sos;
|
||
}
|
||
|
||
/* Implement the "current_sos" solib_ops method. */
|
||
|
||
owning_intrusive_list<solib>
|
||
svr4_solib_ops::current_sos () const
|
||
{
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
owning_intrusive_list<solib> sos = this->current_sos_1 (info);
|
||
struct mem_range vsyscall_range;
|
||
|
||
/* Filter out the vDSO module, if present. Its symbol file would
|
||
not be found on disk. The vDSO/vsyscall's OBJFILE is instead
|
||
managed by symfile-mem.c:add_vsyscall_page. */
|
||
if (gdbarch_vsyscall_range (current_inferior ()->arch (), &vsyscall_range)
|
||
&& vsyscall_range.length != 0)
|
||
{
|
||
for (auto so = sos.begin (); so != sos.end (); )
|
||
{
|
||
/* We can't simply match the vDSO by starting address alone,
|
||
because lm_info->l_addr_inferior (and also l_addr) do not
|
||
necessarily represent the real starting address of the
|
||
ELF if the vDSO's ELF itself is "prelinked". The l_ld
|
||
field (the ".dynamic" section of the shared object)
|
||
always points at the absolute/resolved address though.
|
||
So check whether that address is inside the vDSO's
|
||
mapping instead.
|
||
|
||
E.g., on Linux 3.16 (x86_64) the vDSO is a regular
|
||
0-based ELF, and we see:
|
||
|
||
(gdb) info auxv
|
||
33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
|
||
(gdb) p/x *_r_debug.r_map.l_next
|
||
$1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
|
||
|
||
And on Linux 2.6.32 (x86_64) we see:
|
||
|
||
(gdb) info auxv
|
||
33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
|
||
(gdb) p/x *_r_debug.r_map.l_next
|
||
$5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
|
||
|
||
Dumping that vDSO shows:
|
||
|
||
(gdb) info proc mappings
|
||
0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
|
||
(gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
|
||
# readelf -Wa vdso.bin
|
||
[...]
|
||
Entry point address: 0xffffffffff700700
|
||
[...]
|
||
Section Headers:
|
||
[Nr] Name Type Address Off Size
|
||
[ 0] NULL 0000000000000000 000000 000000
|
||
[ 1] .hash HASH ffffffffff700120 000120 000038
|
||
[ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
|
||
[...]
|
||
[ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
|
||
*/
|
||
|
||
const auto &li = get_lm_info_svr4 (*so);
|
||
|
||
if (vsyscall_range.contains (li.l_ld))
|
||
{
|
||
so = sos.erase (so);
|
||
break;
|
||
}
|
||
|
||
++so;
|
||
}
|
||
}
|
||
|
||
return sos;
|
||
}
|
||
|
||
/* Get the address of the link_map for a given OBJFILE. */
|
||
|
||
CORE_ADDR
|
||
svr4_fetch_objfile_link_map (struct objfile *objfile)
|
||
{
|
||
struct svr4_info *info = get_svr4_info (objfile->pspace ());
|
||
|
||
/* Cause svr4_current_sos() to be run if it hasn't been already. */
|
||
if (info->main_lm_addr == 0)
|
||
solib_add (NULL, 0, auto_solib_add);
|
||
|
||
/* svr4_current_sos() will set main_lm_addr for the main executable. */
|
||
if (objfile == current_program_space->symfile_object_file)
|
||
return info->main_lm_addr;
|
||
|
||
/* The other link map addresses may be found by examining the list
|
||
of shared libraries. */
|
||
for (const solib &so : current_program_space->solibs ())
|
||
if (so.objfile == objfile)
|
||
return get_lm_info_svr4 (so).lm_addr;
|
||
|
||
/* Not found! */
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if bfd section BFD_SECT is a thread local section
|
||
(i.e. either named ".tdata" or ".tbss"), and false otherwise. */
|
||
|
||
static bool
|
||
is_thread_local_section (struct bfd_section *bfd_sect)
|
||
{
|
||
return ((strcmp (bfd_sect->name, ".tdata") == 0
|
||
|| strcmp (bfd_sect->name, ".tbss") == 0)
|
||
&& bfd_sect->size != 0);
|
||
}
|
||
|
||
/* Return true if objfile OBJF contains a thread local section, and
|
||
false otherwise. */
|
||
|
||
static bool
|
||
has_thread_local_section (const objfile *objf)
|
||
{
|
||
for (obj_section &objsec : objf->sections ())
|
||
if (is_thread_local_section (objsec.the_bfd_section))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if solib SO contains a thread local section, and false
|
||
otherwise. */
|
||
|
||
static bool
|
||
has_thread_local_section (const solib &so)
|
||
{
|
||
for (const target_section &p : so.sections)
|
||
if (is_thread_local_section (p.the_bfd_section))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* For the MUSL C library, given link map address LM_ADDR, return the
|
||
corresponding TLS module id, or 0 if not found.
|
||
|
||
Background: Unlike the mechanism used by glibc (see below), the
|
||
scheme used by the MUSL C library is pretty simple. If the
|
||
executable contains TLS variables it gets module id 1. Otherwise,
|
||
the first shared object loaded which contains TLS variables is
|
||
assigned to module id 1. TLS-containing shared objects are then
|
||
assigned consecutive module ids, based on the order that they are
|
||
loaded. When unloaded via dlclose, module ids are reassigned as if
|
||
that module had never been loaded. */
|
||
|
||
int
|
||
musl_link_map_to_tls_module_id (CORE_ADDR lm_addr)
|
||
{
|
||
/* When lm_addr is zero, the program is statically linked. Any TLS
|
||
variables will be in module id 1. */
|
||
if (lm_addr == 0)
|
||
return 1;
|
||
|
||
int mod_id = 0;
|
||
if (has_thread_local_section (current_program_space->symfile_object_file))
|
||
mod_id++;
|
||
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
|
||
/* Cause svr4_current_sos() to be run if it hasn't been already. */
|
||
if (info->main_lm_addr == 0)
|
||
solib_add (NULL, 0, auto_solib_add);
|
||
|
||
/* Handle case where lm_addr corresponds to the main program.
|
||
Return value is either 0, when there are no TLS variables, or 1,
|
||
when there are. */
|
||
if (lm_addr == info->main_lm_addr)
|
||
return mod_id;
|
||
|
||
/* Iterate through the shared objects, possibly incrementing the
|
||
module id, and returning mod_id should a match be found. */
|
||
for (const solib &so : current_program_space->solibs ())
|
||
{
|
||
if (has_thread_local_section (so))
|
||
mod_id++;
|
||
|
||
const auto &li = get_lm_info_svr4 (so);
|
||
|
||
if (li.lm_addr == lm_addr)
|
||
return mod_id;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* For GLIBC, given link map address LM_ADDR, return the corresponding TLS
|
||
module id, or 0 if not found. */
|
||
|
||
int
|
||
glibc_link_map_to_tls_module_id (CORE_ADDR lm_addr)
|
||
{
|
||
/* When lm_addr is zero, the program is statically linked. Any TLS
|
||
variables will be in module id 1. */
|
||
if (lm_addr == 0)
|
||
return 1;
|
||
|
||
/* Look up lm_addr in the TLS slot data structure. */
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
auto it = std::find (info->glibc_tls_slots.begin (),
|
||
info->glibc_tls_slots.end (),
|
||
lm_addr);
|
||
if (it == info->glibc_tls_slots.end ())
|
||
return 0;
|
||
else
|
||
return 1 + it - info->glibc_tls_slots.begin ();
|
||
}
|
||
|
||
/* Conditionally, based on whether the shared object, SO, contains TLS
|
||
variables, assign a link map address to a TLS module id slot. This
|
||
code is GLIBC-specific and may only work for specific GLIBC
|
||
versions. That said, it is known to work for (at least) GLIBC
|
||
versions 2.27 thru 2.40.
|
||
|
||
Background: In order to implement internal TLS address lookup
|
||
code, it is necessary to find the module id that has been
|
||
associated with a specific link map address. In GLIBC, the TLS
|
||
module id is stored in struct link_map, in the member
|
||
'l_tls_modid'. While the first several members of struct link_map
|
||
are part of the SVR4 ABI, the offset to l_tls_modid definitely is
|
||
not. Therefore, since we don't know the offset to l_tls_modid, we
|
||
cannot simply look it up - which is a shame, because things would
|
||
be so much more easy and obviously accurate, if we could access
|
||
l_tls_modid.
|
||
|
||
GLIBC has a concept of TLS module id slots. These slots are
|
||
allocated consecutively as shared objects containing TLS variables
|
||
are loaded. When unloaded (e.g. via dlclose()), the corresponding
|
||
slot is marked as unused, but may be used again when later loading
|
||
a shared object.
|
||
|
||
The functions tls_maybe_fill_slot and tls_maybe_erase_slot are
|
||
associated with the observers 'solib_loaded' and 'solib_unloaded'.
|
||
They (attempt to) track use of TLS module id slots in the same way
|
||
that GLIBC does, which will hopefully provide an accurate module id
|
||
when asked to provide it via glibc_link_map_to_tls_module_id(),
|
||
above. */
|
||
|
||
static void
|
||
tls_maybe_fill_slot (solib &so)
|
||
{
|
||
auto *li = dynamic_cast<lm_info_svr4 *> (so.lm_info.get ());
|
||
if (li == nullptr)
|
||
return;
|
||
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
if (!info->glibc_tls_slots_inited)
|
||
{
|
||
/* Cause svr4_current_sos() to be run if it hasn't been already. */
|
||
if (info->main_lm_addr == 0)
|
||
{
|
||
auto &ops
|
||
= gdb::checked_static_cast<const svr4_solib_ops &> (so.ops ());
|
||
ops.current_sos_direct (info);
|
||
}
|
||
|
||
/* Quit early when main_lm_addr is still 0. */
|
||
if (info->main_lm_addr == 0)
|
||
return;
|
||
|
||
/* Also quit early when symfile_object_file is not yet known. */
|
||
if (current_program_space->symfile_object_file == nullptr)
|
||
return;
|
||
|
||
if (has_thread_local_section (current_program_space->symfile_object_file))
|
||
info->glibc_tls_slots.push_back (info->main_lm_addr);
|
||
info->glibc_tls_slots_inited = true;
|
||
}
|
||
|
||
if (has_thread_local_section (so))
|
||
{
|
||
auto it = std::find (info->glibc_tls_slots.begin (),
|
||
info->glibc_tls_slots.end (),
|
||
0);
|
||
if (it == info->glibc_tls_slots.end ())
|
||
info->glibc_tls_slots.push_back (li->lm_addr);
|
||
else
|
||
*it = li->lm_addr;
|
||
}
|
||
}
|
||
|
||
/* Remove a link map address from the TLS module slot data structure.
|
||
As noted above, this code is GLIBC-specific. */
|
||
|
||
static void
|
||
tls_maybe_erase_slot (program_space *pspace, const solib &so,
|
||
bool still_in_use, bool silent)
|
||
{
|
||
if (still_in_use)
|
||
return;
|
||
|
||
auto *li = dynamic_cast<lm_info_svr4 *> (so.lm_info.get ());
|
||
if (li == nullptr)
|
||
return;
|
||
|
||
struct svr4_info *info = get_svr4_info (pspace);
|
||
auto it = std::find (info->glibc_tls_slots.begin (),
|
||
info->glibc_tls_slots.end (),
|
||
li->lm_addr);
|
||
if (it != info->glibc_tls_slots.end ())
|
||
*it = 0;
|
||
}
|
||
|
||
/* On some systems, the only way to recognize the link map entry for
|
||
the main executable file is by looking at its name. Return
|
||
non-zero iff SONAME matches one of the known main executable names. */
|
||
|
||
static int
|
||
match_main (const char *soname)
|
||
{
|
||
const char * const *mainp;
|
||
|
||
for (mainp = main_name_list; *mainp != NULL; mainp++)
|
||
{
|
||
if (strcmp (soname, *mainp) == 0)
|
||
return (1);
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
/* Return true if PC lies in the dynamic symbol resolution code of the
|
||
SVR4 run time loader. */
|
||
|
||
bool
|
||
svr4_solib_ops::in_dynsym_resolve_code (CORE_ADDR pc) const
|
||
{
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
|
||
return ((pc >= info->interp_text_sect_low
|
||
&& pc < info->interp_text_sect_high)
|
||
|| (pc >= info->interp_plt_sect_low
|
||
&& pc < info->interp_plt_sect_high)
|
||
|| in_plt_section (pc)
|
||
|| in_gnu_ifunc_stub (pc));
|
||
}
|
||
|
||
/* Given an executable's ABFD and target, compute the entry-point
|
||
address. */
|
||
|
||
static CORE_ADDR
|
||
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
/* KevinB wrote ... for most targets, the address returned by
|
||
bfd_get_start_address() is the entry point for the start
|
||
function. But, for some targets, bfd_get_start_address() returns
|
||
the address of a function descriptor from which the entry point
|
||
address may be extracted. This address is extracted by
|
||
gdbarch_convert_from_func_ptr_addr(). The method
|
||
gdbarch_convert_from_func_ptr_addr() is the merely the identify
|
||
function for targets which don't use function descriptors. */
|
||
addr = gdbarch_convert_from_func_ptr_addr (current_inferior ()->arch (),
|
||
bfd_get_start_address (abfd),
|
||
targ);
|
||
return gdbarch_addr_bits_remove (current_inferior ()->arch (), addr);
|
||
}
|
||
|
||
/* A probe and its associated action. */
|
||
|
||
struct probe_and_action
|
||
{
|
||
/* The probe. */
|
||
probe *prob;
|
||
|
||
/* The relocated address of the probe. */
|
||
CORE_ADDR address;
|
||
|
||
/* The action. */
|
||
enum probe_action action;
|
||
|
||
/* The objfile where this probe was found. */
|
||
struct objfile *objfile;
|
||
};
|
||
|
||
/* Returns a hash code for the probe_and_action referenced by p. */
|
||
|
||
static hashval_t
|
||
hash_probe_and_action (const void *p)
|
||
{
|
||
const struct probe_and_action *pa = (const struct probe_and_action *) p;
|
||
|
||
return (hashval_t) pa->address;
|
||
}
|
||
|
||
/* Returns non-zero if the probe_and_actions referenced by p1 and p2
|
||
are equal. */
|
||
|
||
static int
|
||
equal_probe_and_action (const void *p1, const void *p2)
|
||
{
|
||
const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
|
||
const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
|
||
|
||
return pa1->address == pa2->address;
|
||
}
|
||
|
||
/* Traversal function for probes_table_remove_objfile_probes. */
|
||
|
||
static int
|
||
probes_table_htab_remove_objfile_probes (void **slot, void *info)
|
||
{
|
||
probe_and_action *pa = (probe_and_action *) *slot;
|
||
struct objfile *objfile = (struct objfile *) info;
|
||
|
||
if (pa->objfile == objfile)
|
||
htab_clear_slot (get_svr4_info (objfile->pspace ())->probes_table.get (),
|
||
slot);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Remove all probes that belong to OBJFILE from the probes table. */
|
||
|
||
static void
|
||
probes_table_remove_objfile_probes (struct objfile *objfile)
|
||
{
|
||
svr4_info *info = solib_svr4_pspace_data.get (objfile->pspace ());
|
||
if (info == nullptr || info->probes_table == nullptr)
|
||
return;
|
||
|
||
htab_traverse_noresize (info->probes_table.get (),
|
||
probes_table_htab_remove_objfile_probes, objfile);
|
||
}
|
||
|
||
/* Register a solib event probe and its associated action in the
|
||
probes table. */
|
||
|
||
static void
|
||
register_solib_event_probe (svr4_info *info, struct objfile *objfile,
|
||
probe *prob, CORE_ADDR address,
|
||
enum probe_action action)
|
||
{
|
||
struct probe_and_action lookup, *pa;
|
||
void **slot;
|
||
|
||
/* Create the probes table, if necessary. */
|
||
if (info->probes_table == NULL)
|
||
info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
|
||
equal_probe_and_action,
|
||
xfree, xcalloc, xfree));
|
||
|
||
lookup.address = address;
|
||
slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
|
||
gdb_assert (*slot == HTAB_EMPTY_ENTRY);
|
||
|
||
pa = XCNEW (struct probe_and_action);
|
||
pa->prob = prob;
|
||
pa->address = address;
|
||
pa->action = action;
|
||
pa->objfile = objfile;
|
||
|
||
*slot = pa;
|
||
}
|
||
|
||
/* Get the solib event probe at the specified location, and the
|
||
action associated with it. Returns NULL if no solib event probe
|
||
was found. */
|
||
|
||
static struct probe_and_action *
|
||
solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
|
||
{
|
||
struct probe_and_action lookup;
|
||
void **slot;
|
||
|
||
lookup.address = address;
|
||
slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
|
||
|
||
if (slot == NULL)
|
||
return NULL;
|
||
|
||
return (struct probe_and_action *) *slot;
|
||
}
|
||
|
||
/* Decide what action to take when the specified solib event probe is
|
||
hit. */
|
||
|
||
static enum probe_action
|
||
solib_event_probe_action (struct probe_and_action *pa)
|
||
{
|
||
enum probe_action action;
|
||
unsigned probe_argc = 0;
|
||
frame_info_ptr frame = get_current_frame ();
|
||
|
||
action = pa->action;
|
||
if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
|
||
return action;
|
||
|
||
gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
|
||
|
||
/* Check that an appropriate number of arguments has been supplied.
|
||
We expect:
|
||
arg0: Lmid_t lmid (mandatory)
|
||
arg1: struct r_debug *debug_base (mandatory)
|
||
arg2: struct link_map *new (optional, for incremental updates) */
|
||
try
|
||
{
|
||
probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
probe_argc = 0;
|
||
}
|
||
|
||
/* If get_argument_count throws an exception, probe_argc will be set
|
||
to zero. However, if pa->prob does not have arguments, then
|
||
get_argument_count will succeed but probe_argc will also be zero.
|
||
Both cases happen because of different things, but they are
|
||
treated equally here: action will be set to
|
||
PROBES_INTERFACE_FAILED. */
|
||
if (probe_argc == 2)
|
||
action = FULL_RELOAD;
|
||
else if (probe_argc < 2)
|
||
action = PROBES_INTERFACE_FAILED;
|
||
|
||
return action;
|
||
}
|
||
|
||
/* Populate the shared object list by reading the entire list of
|
||
shared objects from the inferior. Handle special cases relating
|
||
to the first elements of the list. Returns nonzero on success. */
|
||
|
||
void
|
||
svr4_solib_ops::update_full (svr4_info *info) const
|
||
{
|
||
this->current_sos_direct (info);
|
||
}
|
||
|
||
/* Update the shared object list starting from the link-map entry
|
||
passed by the linker in the probe's third argument. Returns
|
||
nonzero if the list was successfully updated, or zero to indicate
|
||
failure. */
|
||
|
||
int
|
||
svr4_solib_ops::update_incremental (svr4_info *info, CORE_ADDR debug_base,
|
||
CORE_ADDR lm) const
|
||
{
|
||
/* Fall back to a full update if we are using a remote target
|
||
that does not support incremental transfers. */
|
||
if (info->using_xfer && !target_augmented_libraries_svr4_read ())
|
||
return 0;
|
||
|
||
/* Fall back to a full update if we used the special namespace zero. We
|
||
wouldn't be able to find the last item in the DEBUG_BASE namespace
|
||
and hence get the prev link wrong. */
|
||
if (info->solib_lists.find (0) != info->solib_lists.end ())
|
||
return 0;
|
||
|
||
std::vector<svr4_so> &solist = info->solib_lists[debug_base];
|
||
CORE_ADDR prev_lm;
|
||
|
||
if (solist.empty ())
|
||
{
|
||
/* svr4_current_sos_direct contains logic to handle a number of
|
||
special cases relating to the first elements of the list in
|
||
default namespace. To avoid duplicating this logic we defer to
|
||
solist_update_full in this case. */
|
||
if (svr4_is_default_namespace (info, debug_base))
|
||
return 0;
|
||
|
||
prev_lm = 0;
|
||
|
||
/* If the list is empty, we are seeing a new namespace for the
|
||
first time, so assign it an internal ID. */
|
||
svr4_maybe_add_namespace (info, debug_base);
|
||
}
|
||
else
|
||
prev_lm = solist.back ().lm_info->lm_addr;
|
||
|
||
/* Read the new objects. */
|
||
if (info->using_xfer)
|
||
{
|
||
struct svr4_library_list library_list;
|
||
char annex[64];
|
||
|
||
/* Unknown key=value pairs are ignored by the gdbstub. */
|
||
xsnprintf (annex, sizeof (annex), "lmid=%s;start=%s;prev=%s",
|
||
phex_nz (debug_base),
|
||
phex_nz (lm),
|
||
phex_nz (prev_lm));
|
||
if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
|
||
return 0;
|
||
|
||
/* Get the so list from the target. We replace the list in the
|
||
target response so we can easily check that the response only
|
||
covers one namespace.
|
||
|
||
We expect gdbserver to provide updates for the namespace that
|
||
contains LM, which would be this namespace... */
|
||
std::vector<svr4_so> sos;
|
||
auto it_debug_base = library_list.solib_lists.find (debug_base);
|
||
if (it_debug_base != library_list.solib_lists.end ())
|
||
std::swap (sos, it_debug_base->second);
|
||
else
|
||
{
|
||
/* ...or for the special zero namespace for earlier versions... */
|
||
auto it_0 = library_list.solib_lists.find (0);
|
||
if (it_0 != library_list.solib_lists.end ())
|
||
std::swap (sos, it_0->second);
|
||
}
|
||
|
||
/* ...but nothing else. */
|
||
for (const auto &tuple : library_list.solib_lists)
|
||
gdb_assert (tuple.second.empty ());
|
||
|
||
std::move (sos.begin (), sos.end (), std::back_inserter (solist));
|
||
}
|
||
else
|
||
{
|
||
/* IGNORE_FIRST may safely be set to zero here because the
|
||
above check and deferral to solist_update_full ensures
|
||
that this call to svr4_read_so_list will never see the
|
||
first element. */
|
||
if (!this->read_so_list (info, lm, prev_lm, debug_base, solist, 0))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Disable the probes-based linker interface and revert to the
|
||
original interface. We don't reset the breakpoints as the
|
||
ones set up for the probes-based interface are adequate. */
|
||
|
||
void
|
||
svr4_solib_ops::disable_probes_interface (svr4_info *info) const
|
||
{
|
||
warning (_("Probes-based dynamic linker interface failed.\n"
|
||
"Reverting to original interface."));
|
||
|
||
free_probes_table (info);
|
||
info->solib_lists.clear ();
|
||
info->namespace_id.clear ();
|
||
info->active_namespaces.clear ();
|
||
}
|
||
|
||
/* Update the solib list as appropriate when using the
|
||
probes-based linker interface. Do nothing if using the
|
||
standard interface. */
|
||
|
||
void
|
||
svr4_solib_ops::handle_event () const
|
||
{
|
||
struct svr4_info *info = get_svr4_info (current_program_space);
|
||
struct probe_and_action *pa;
|
||
enum probe_action action;
|
||
struct value *val = NULL;
|
||
CORE_ADDR pc, debug_base, lm = 0;
|
||
frame_info_ptr frame = get_current_frame ();
|
||
|
||
/* Do nothing if not using the probes interface. */
|
||
if (info->probes_table == NULL)
|
||
return;
|
||
|
||
pc = regcache_read_pc (get_thread_regcache (inferior_thread ()));
|
||
pa = solib_event_probe_at (info, pc);
|
||
if (pa == nullptr)
|
||
{
|
||
/* When some solib ops sits above us, it can respond to a solib event
|
||
by calling in here. This is done assuming that if the current event
|
||
is not an SVR4 solib event, calling here should be a no-op. */
|
||
return;
|
||
}
|
||
|
||
/* If anything goes wrong we revert to the original linker
|
||
interface. */
|
||
auto cleanup = make_scope_exit ([this, info] ()
|
||
{
|
||
this->disable_probes_interface (info);
|
||
});
|
||
|
||
action = solib_event_probe_action (pa);
|
||
if (action == PROBES_INTERFACE_FAILED)
|
||
return;
|
||
|
||
if (action == DO_NOTHING)
|
||
{
|
||
cleanup.release ();
|
||
return;
|
||
}
|
||
|
||
/* evaluate_argument looks up symbols in the dynamic linker
|
||
using find_pc_section. find_pc_section is accelerated by a cache
|
||
called the section map. The section map is invalidated every
|
||
time a shared library is loaded or unloaded, and if the inferior
|
||
is generating a lot of shared library events then the section map
|
||
will be updated every time svr4_handle_solib_event is called.
|
||
We called find_pc_section in svr4_create_solib_event_breakpoints,
|
||
so we can guarantee that the dynamic linker's sections are in the
|
||
section map. We can therefore inhibit section map updates across
|
||
these calls to evaluate_argument and save a lot of time. */
|
||
{
|
||
scoped_restore inhibit_updates
|
||
= inhibit_section_map_updates (current_program_space);
|
||
|
||
try
|
||
{
|
||
val = pa->prob->evaluate_argument (1, frame);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
val = NULL;
|
||
}
|
||
|
||
if (val == NULL)
|
||
return;
|
||
|
||
debug_base = value_as_address (val);
|
||
if (debug_base == 0)
|
||
return;
|
||
|
||
bool default_debug_base_changed;
|
||
CORE_ADDR default_debug_base
|
||
= this->default_debug_base (info, &default_debug_base_changed);
|
||
|
||
if (default_debug_base_changed)
|
||
action = FULL_RELOAD;
|
||
|
||
if (default_debug_base == 0)
|
||
{
|
||
/* It's possible for the reloc_complete probe to be triggered before
|
||
the linker has set the DT_DEBUG pointer (for example, when the
|
||
linker has finished relocating an LD_AUDIT library or its
|
||
dependencies). Since we can't yet handle libraries from other link
|
||
namespaces, we don't lose anything by ignoring them here. */
|
||
struct value *link_map_id_val;
|
||
try
|
||
{
|
||
link_map_id_val = pa->prob->evaluate_argument (0, frame);
|
||
}
|
||
catch (const gdb_exception_error &)
|
||
{
|
||
link_map_id_val = NULL;
|
||
}
|
||
/* glibc and illumos' libc both define LM_ID_BASE as zero. */
|
||
if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
|
||
action = DO_NOTHING;
|
||
else
|
||
return;
|
||
}
|
||
|
||
if (action == UPDATE_OR_RELOAD)
|
||
{
|
||
try
|
||
{
|
||
val = pa->prob->evaluate_argument (2, frame);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
return;
|
||
}
|
||
|
||
if (val != NULL)
|
||
lm = value_as_address (val);
|
||
|
||
if (lm == 0)
|
||
action = FULL_RELOAD;
|
||
}
|
||
|
||
/* Resume section map updates. Closing the scope is
|
||
sufficient. */
|
||
}
|
||
|
||
if (action == UPDATE_OR_RELOAD)
|
||
{
|
||
if (!this->update_incremental (info, debug_base, lm))
|
||
action = FULL_RELOAD;
|
||
}
|
||
|
||
if (action == FULL_RELOAD)
|
||
this->update_full (info);
|
||
|
||
cleanup.release ();
|
||
}
|
||
|
||
/* Helper function for svr4_update_solib_event_breakpoints. */
|
||
|
||
static bool
|
||
svr4_update_solib_event_breakpoint (struct breakpoint *b)
|
||
{
|
||
if (b->type != bp_shlib_event)
|
||
{
|
||
/* Continue iterating. */
|
||
return false;
|
||
}
|
||
|
||
for (bp_location &loc : b->locations ())
|
||
{
|
||
struct svr4_info *info;
|
||
struct probe_and_action *pa;
|
||
|
||
info = solib_svr4_pspace_data.get (loc.pspace);
|
||
if (info == NULL || info->probes_table == NULL)
|
||
continue;
|
||
|
||
pa = solib_event_probe_at (info, loc.address);
|
||
if (pa == NULL)
|
||
continue;
|
||
|
||
if (pa->action == DO_NOTHING)
|
||
{
|
||
if (b->enable_state == bp_disabled && stop_on_solib_events)
|
||
enable_breakpoint (b);
|
||
else if (b->enable_state == bp_enabled && !stop_on_solib_events)
|
||
disable_breakpoint (b);
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* Continue iterating. */
|
||
return false;
|
||
}
|
||
|
||
/* Enable or disable optional solib event breakpoints as appropriate.
|
||
Called whenever stop_on_solib_events is changed. */
|
||
|
||
void
|
||
svr4_solib_ops::update_breakpoints () const
|
||
{
|
||
for (breakpoint &bp : all_breakpoints_safe ())
|
||
svr4_update_solib_event_breakpoint (&bp);
|
||
}
|
||
|
||
/* Create and register solib event breakpoints. PROBES is an array
|
||
of NUM_PROBES elements, each of which is vector of probes. A
|
||
solib event breakpoint will be created and registered for each
|
||
probe. */
|
||
|
||
void
|
||
svr4_solib_ops::create_probe_breakpoints (svr4_info *info, gdbarch *gdbarch,
|
||
const std::vector<probe *> *probes,
|
||
objfile *objfile) const
|
||
{
|
||
for (int i = 0; i < NUM_PROBES; i++)
|
||
{
|
||
enum probe_action action = probe_info[i].action;
|
||
|
||
for (probe *p : probes[i])
|
||
{
|
||
CORE_ADDR address = p->get_relocated_address (objfile);
|
||
|
||
solib_debug_printf ("name=%s, addr=%s", probe_info[i].name,
|
||
paddress (gdbarch, address));
|
||
|
||
create_solib_event_breakpoint (gdbarch, address);
|
||
register_solib_event_probe (info, objfile, p, address, action);
|
||
}
|
||
}
|
||
|
||
this->update_breakpoints ();
|
||
}
|
||
|
||
/* Find all the glibc named probes. Only if all of the probes are found, then
|
||
create them and return true. Otherwise return false. If WITH_PREFIX is set
|
||
then add "rtld" to the front of the probe names. */
|
||
bool
|
||
svr4_solib_ops::find_and_create_probe_breakpoints (svr4_info *info,
|
||
gdbarch *gdbarch,
|
||
obj_section *os,
|
||
bool with_prefix) const
|
||
{
|
||
SOLIB_SCOPED_DEBUG_START_END ("objfile=%s, with_prefix=%d",
|
||
os->objfile->original_name, with_prefix);
|
||
|
||
std::vector<probe *> probes[NUM_PROBES];
|
||
|
||
for (int i = 0; i < NUM_PROBES; i++)
|
||
{
|
||
const char *name = probe_info[i].name;
|
||
char buf[32];
|
||
|
||
/* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
|
||
version of the probes code in which the probes' names were prefixed
|
||
with "rtld_" and the "map_failed" probe did not exist. The locations
|
||
of the probes are otherwise the same, so we check for probes with
|
||
prefixed names if probes with unprefixed names are not present. */
|
||
if (with_prefix)
|
||
{
|
||
xsnprintf (buf, sizeof (buf), "rtld_%s", name);
|
||
name = buf;
|
||
}
|
||
|
||
probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
|
||
solib_debug_printf ("probe=%s, num found=%zu", name, probes[i].size ());
|
||
|
||
/* Ensure at least one probe for the current name was found. */
|
||
if (probes[i].empty ())
|
||
{
|
||
/* The "map_failed" probe did not exist in early versions of the
|
||
probes code in which the probes' names were prefixed with
|
||
"rtld_".
|
||
|
||
Additionally, the "map_failed" probe was accidentally removed
|
||
from glibc 2.35 and 2.36, when changes in glibc meant the
|
||
probe could no longer be reached, and the compiler optimized
|
||
the probe away. In this case the probe name doesn't have the
|
||
"rtld_" prefix.
|
||
|
||
To handle this, and give GDB as much flexibility as possible,
|
||
we make the rule that, if a probe isn't required for the
|
||
correct operation of GDB (i.e. its action is DO_NOTHING), then
|
||
we will still use the probes interface, even if that probe is
|
||
missing.
|
||
|
||
The only (possible) downside of this is that, if the user has
|
||
'set stop-on-solib-events on' in effect, then they might get
|
||
fewer events using the probes interface than with the classic
|
||
non-probes interface. */
|
||
if (probe_info[i].action == DO_NOTHING)
|
||
continue;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Ensure probe arguments can be evaluated. */
|
||
for (probe *p : probes[i])
|
||
{
|
||
if (!p->can_evaluate_arguments ())
|
||
return false;
|
||
/* This will fail if the probe is invalid. This has been seen on Arm
|
||
due to references to symbols that have been resolved away. */
|
||
try
|
||
{
|
||
p->get_argument_count (gdbarch);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
exception_print (gdb_stderr, ex);
|
||
warning (_("Initializing probes-based dynamic linker interface "
|
||
"failed.\nReverting to original interface."));
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* All probes found. Now create them. */
|
||
solib_debug_printf ("using probes interface");
|
||
this->create_probe_breakpoints (info, gdbarch, probes, os->objfile);
|
||
return true;
|
||
}
|
||
|
||
/* Both the SunOS and the SVR4 dynamic linkers call a marker function
|
||
before and after mapping and unmapping shared libraries. The sole
|
||
purpose of this method is to allow debuggers to set a breakpoint so
|
||
they can track these changes.
|
||
|
||
Some versions of the glibc dynamic linker contain named probes
|
||
to allow more fine grained stopping. Given the address of the
|
||
original marker function, this function attempts to find these
|
||
probes, and if found, sets breakpoints on those instead. If the
|
||
probes aren't found, a single breakpoint is set on the original
|
||
marker function. */
|
||
|
||
void
|
||
svr4_solib_ops::create_event_breakpoints (svr4_info *info, gdbarch *gdbarch,
|
||
CORE_ADDR address) const
|
||
{
|
||
struct obj_section *os = find_pc_section (address);
|
||
|
||
if (os == nullptr
|
||
|| (!this->find_and_create_probe_breakpoints (info, gdbarch, os, false)
|
||
&& !this->find_and_create_probe_breakpoints (info, gdbarch, os,
|
||
true)))
|
||
{
|
||
solib_debug_printf ("falling back to r_brk breakpoint: addr=%s",
|
||
paddress (gdbarch, address));
|
||
create_solib_event_breakpoint (gdbarch, address);
|
||
}
|
||
}
|
||
|
||
/* Arrange for dynamic linker to hit breakpoint.
|
||
|
||
Both the SunOS and the SVR4 dynamic linkers have, as part of their
|
||
debugger interface, support for arranging for the inferior to hit
|
||
a breakpoint after mapping in the shared libraries. This function
|
||
enables that breakpoint.
|
||
|
||
For SunOS, there is a special flag location (in_debugger) which we
|
||
set to 1. When the dynamic linker sees this flag set, it will set
|
||
a breakpoint at a location known only to itself, after saving the
|
||
original contents of that place and the breakpoint address itself,
|
||
in its own internal structures. When we resume the inferior, it
|
||
will eventually take a SIGTRAP when it runs into the breakpoint.
|
||
We handle this (in a different place) by restoring the contents of
|
||
the breakpointed location (which is only known after it stops),
|
||
chasing around to locate the shared libraries that have been
|
||
loaded, then resuming.
|
||
|
||
For SVR4, the debugger interface structure contains a member (r_brk)
|
||
which is statically initialized at the time the shared library is
|
||
built, to the offset of a function (_r_debug_state) which is guaran-
|
||
teed to be called once before mapping in a library, and again when
|
||
the mapping is complete. At the time we are examining this member,
|
||
it contains only the unrelocated offset of the function, so we have
|
||
to do our own relocation. Later, when the dynamic linker actually
|
||
runs, it relocates r_brk to be the actual address of _r_debug_state().
|
||
|
||
The debugger interface structure also contains an enumeration which
|
||
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
|
||
depending upon whether or not the library is being mapped or unmapped,
|
||
and then set to RT_CONSISTENT after the library is mapped/unmapped. */
|
||
|
||
int
|
||
svr4_solib_ops::enable_break (svr4_info *info, int from_tty) const
|
||
{
|
||
const char * const *bkpt_namep;
|
||
asection *interp_sect;
|
||
|
||
info->interp_text_sect_low = info->interp_text_sect_high = 0;
|
||
info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
|
||
|
||
/* If we already have a shared library list in the target, and
|
||
r_debug contains r_brk, set the breakpoint there - this should
|
||
mean r_brk has already been relocated. Assume the dynamic linker
|
||
is the object containing r_brk. */
|
||
|
||
solib_add (NULL, from_tty, auto_solib_add);
|
||
|
||
CORE_ADDR sym_addr = 0;
|
||
CORE_ADDR default_debug_base = this->default_debug_base (info);
|
||
|
||
if (default_debug_base != 0 && this->read_r_map (default_debug_base) != 0)
|
||
sym_addr = this->find_r_brk (info);
|
||
|
||
if (sym_addr != 0)
|
||
{
|
||
struct obj_section *os;
|
||
|
||
sym_addr = gdbarch_addr_bits_remove
|
||
(current_inferior ()->arch (),
|
||
gdbarch_convert_from_func_ptr_addr
|
||
(current_inferior ()->arch (), sym_addr,
|
||
current_inferior ()->top_target ()));
|
||
|
||
/* On at least some versions of Solaris there's a dynamic relocation
|
||
on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
|
||
we get control before the dynamic linker has self-relocated.
|
||
Check if SYM_ADDR is in a known section, if it is assume we can
|
||
trust its value. This is just a heuristic though, it could go away
|
||
or be replaced if it's getting in the way.
|
||
|
||
On ARM we need to know whether the ISA of rtld_db_dlactivity (or
|
||
however it's spelled in your particular system) is ARM or Thumb.
|
||
That knowledge is encoded in the address, if it's Thumb the low bit
|
||
is 1. However, we've stripped that info above and it's not clear
|
||
what all the consequences are of passing a non-addr_bits_remove'd
|
||
address to svr4_create_solib_event_breakpoints. The call to
|
||
find_pc_section verifies we know about the address and have some
|
||
hope of computing the right kind of breakpoint to use (via
|
||
symbol info). It does mean that GDB needs to be pointed at a
|
||
non-stripped version of the dynamic linker in order to obtain
|
||
information it already knows about. Sigh. */
|
||
|
||
os = find_pc_section (sym_addr);
|
||
if (os != NULL)
|
||
{
|
||
/* Record the relocated start and end address of the dynamic linker
|
||
text and plt section for svr4_in_dynsym_resolve_code. */
|
||
bfd *tmp_bfd;
|
||
CORE_ADDR load_addr;
|
||
|
||
tmp_bfd = os->objfile->obfd.get ();
|
||
load_addr = os->objfile->text_section_offset ();
|
||
|
||
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
||
if (interp_sect)
|
||
{
|
||
info->interp_text_sect_low
|
||
= bfd_section_vma (interp_sect) + load_addr;
|
||
info->interp_text_sect_high
|
||
= info->interp_text_sect_low + bfd_section_size (interp_sect);
|
||
}
|
||
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
||
if (interp_sect)
|
||
{
|
||
info->interp_plt_sect_low
|
||
= bfd_section_vma (interp_sect) + load_addr;
|
||
info->interp_plt_sect_high
|
||
= info->interp_plt_sect_low + bfd_section_size (interp_sect);
|
||
}
|
||
|
||
this->create_event_breakpoints (info, current_inferior ()->arch (),
|
||
sym_addr);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Find the program interpreter; if not found, warn the user and drop
|
||
into the old breakpoint at symbol code. */
|
||
std::optional<gdb::byte_vector> interp_name_holder
|
||
= svr4_find_program_interpreter ();
|
||
if (interp_name_holder)
|
||
{
|
||
const char *interp_name = (const char *) interp_name_holder->data ();
|
||
CORE_ADDR load_addr = 0;
|
||
int load_addr_found = 0;
|
||
int loader_found_in_list = 0;
|
||
target_ops_up tmp_bfd_target;
|
||
|
||
sym_addr = 0;
|
||
|
||
/* Now we need to figure out where the dynamic linker was
|
||
loaded so that we can load its symbols and place a breakpoint
|
||
in the dynamic linker itself.
|
||
|
||
This address is stored on the stack. However, I've been unable
|
||
to find any magic formula to find it for Solaris (appears to
|
||
be trivial on GNU/Linux). Therefore, we have to try an alternate
|
||
mechanism to find the dynamic linker's base address. */
|
||
|
||
gdb_bfd_ref_ptr tmp_bfd;
|
||
try
|
||
{
|
||
tmp_bfd = solib_bfd_open (interp_name);
|
||
}
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
}
|
||
|
||
if (tmp_bfd == NULL)
|
||
goto bkpt_at_symbol;
|
||
|
||
/* Now convert the TMP_BFD into a target. That way target, as
|
||
well as BFD operations can be used. */
|
||
tmp_bfd_target = target_bfd_reopen (tmp_bfd);
|
||
|
||
/* On a running target, we can get the dynamic linker's base
|
||
address from the shared library table. */
|
||
for (const solib &so : current_program_space->solibs ())
|
||
{
|
||
if (svr4_same_name (interp_name, so.original_name.c_str ()))
|
||
{
|
||
load_addr_found = 1;
|
||
loader_found_in_list = 1;
|
||
load_addr = this->lm_addr_check (so, tmp_bfd.get ());
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we were not able to find the base address of the loader
|
||
from our so_list, then try using the AT_BASE auxiliary entry. */
|
||
if (!load_addr_found)
|
||
if (target_auxv_search (AT_BASE, &load_addr) > 0)
|
||
{
|
||
int addr_bit = gdbarch_addr_bit (current_inferior ()->arch ());
|
||
|
||
/* Ensure LOAD_ADDR has proper sign in its possible upper bits so
|
||
that `+ load_addr' will overflow CORE_ADDR width not creating
|
||
invalid addresses like 0x101234567 for 32bit inferiors on 64bit
|
||
GDB. */
|
||
|
||
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
||
{
|
||
CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
|
||
CORE_ADDR tmp_entry_point
|
||
= exec_entry_point (tmp_bfd.get (), tmp_bfd_target.get ());
|
||
|
||
gdb_assert (load_addr < space_size);
|
||
|
||
/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
|
||
64bit ld.so with 32bit executable, it should not happen. */
|
||
|
||
if (tmp_entry_point < space_size
|
||
&& tmp_entry_point + load_addr >= space_size)
|
||
load_addr -= space_size;
|
||
}
|
||
|
||
load_addr_found = 1;
|
||
}
|
||
|
||
/* Otherwise we find the dynamic linker's base address by examining
|
||
the current pc (which should point at the entry point for the
|
||
dynamic linker) and subtracting the offset of the entry point.
|
||
|
||
This is more fragile than the previous approaches, but is a good
|
||
fallback method because it has actually been working well in
|
||
most cases. */
|
||
if (!load_addr_found)
|
||
{
|
||
regcache *regcache
|
||
= get_thread_arch_regcache (current_inferior (), inferior_ptid,
|
||
current_inferior ()->arch ());
|
||
|
||
load_addr = (regcache_read_pc (regcache)
|
||
- exec_entry_point (tmp_bfd.get (),
|
||
tmp_bfd_target.get ()));
|
||
}
|
||
|
||
if (!loader_found_in_list)
|
||
{
|
||
info->debug_loader_name = interp_name;
|
||
info->debug_loader_offset_p = 1;
|
||
info->debug_loader_offset = load_addr;
|
||
solib_add (NULL, from_tty, auto_solib_add);
|
||
}
|
||
|
||
/* Record the relocated start and end address of the dynamic linker
|
||
text and plt section for svr4_in_dynsym_resolve_code. */
|
||
interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
|
||
if (interp_sect)
|
||
{
|
||
info->interp_text_sect_low
|
||
= bfd_section_vma (interp_sect) + load_addr;
|
||
info->interp_text_sect_high
|
||
= info->interp_text_sect_low + bfd_section_size (interp_sect);
|
||
}
|
||
interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
|
||
if (interp_sect)
|
||
{
|
||
info->interp_plt_sect_low
|
||
= bfd_section_vma (interp_sect) + load_addr;
|
||
info->interp_plt_sect_high
|
||
= info->interp_plt_sect_low + bfd_section_size (interp_sect);
|
||
}
|
||
|
||
/* Now try to set a breakpoint in the dynamic linker. */
|
||
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
||
{
|
||
sym_addr
|
||
= (gdb_bfd_lookup_symbol
|
||
(tmp_bfd.get (),
|
||
[=] (const asymbol *sym)
|
||
{
|
||
return (strcmp (sym->name, *bkpt_namep) == 0
|
||
&& ((sym->section->flags & (SEC_CODE | SEC_DATA))
|
||
!= 0));
|
||
}));
|
||
if (sym_addr != 0)
|
||
break;
|
||
}
|
||
|
||
if (sym_addr != 0)
|
||
/* Convert 'sym_addr' from a function pointer to an address.
|
||
Because we pass tmp_bfd_target instead of the current
|
||
target, this will always produce an unrelocated value. */
|
||
sym_addr = gdbarch_convert_from_func_ptr_addr
|
||
(current_inferior ()->arch (), sym_addr,
|
||
tmp_bfd_target.get ());
|
||
|
||
if (sym_addr != 0)
|
||
{
|
||
this->create_event_breakpoints (info, current_inferior ()->arch (),
|
||
load_addr + sym_addr);
|
||
return 1;
|
||
}
|
||
|
||
/* For whatever reason we couldn't set a breakpoint in the dynamic
|
||
linker. Warn and drop into the old code. */
|
||
bkpt_at_symbol:
|
||
warning (_("Unable to find dynamic linker breakpoint function.\n"
|
||
"GDB will be unable to debug shared library initializers\n"
|
||
"and track explicitly loaded dynamic code."));
|
||
}
|
||
|
||
/* Scan through the lists of symbols, trying to look up the symbol and
|
||
set a breakpoint there. Terminate loop when we/if we succeed. */
|
||
|
||
objfile *objf = current_program_space->symfile_object_file;
|
||
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
||
{
|
||
bound_minimal_symbol msymbol
|
||
= lookup_minimal_symbol (current_program_space, *bkpt_namep, objf);
|
||
if ((msymbol.minsym != NULL)
|
||
&& (msymbol.value_address () != 0))
|
||
{
|
||
sym_addr = msymbol.value_address ();
|
||
sym_addr = gdbarch_convert_from_func_ptr_addr
|
||
(current_inferior ()->arch (), sym_addr,
|
||
current_inferior ()->top_target ());
|
||
this->create_event_breakpoints (info, current_inferior ()->arch (),
|
||
sym_addr);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
if (interp_name_holder && !current_inferior ()->attach_flag)
|
||
{
|
||
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
|
||
{
|
||
bound_minimal_symbol msymbol
|
||
= lookup_minimal_symbol (current_program_space, *bkpt_namep, objf);
|
||
if ((msymbol.minsym != NULL)
|
||
&& (msymbol.value_address () != 0))
|
||
{
|
||
sym_addr = msymbol.value_address ();
|
||
sym_addr = gdbarch_convert_from_func_ptr_addr
|
||
(current_inferior ()->arch (), sym_addr,
|
||
current_inferior ()->top_target ());
|
||
this->create_event_breakpoints (info,
|
||
current_inferior ()->arch (),
|
||
sym_addr);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Read the ELF program headers from ABFD. */
|
||
|
||
static std::optional<gdb::byte_vector>
|
||
read_program_headers_from_bfd (bfd *abfd)
|
||
{
|
||
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
|
||
int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
|
||
if (phdrs_size == 0)
|
||
return {};
|
||
|
||
gdb::byte_vector buf (phdrs_size);
|
||
if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
|
||
|| bfd_read (buf.data (), phdrs_size, abfd) != phdrs_size)
|
||
return {};
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
|
||
exec_bfd. Otherwise return 0.
|
||
|
||
We relocate all of the sections by the same amount. This
|
||
behavior is mandated by recent editions of the System V ABI.
|
||
According to the System V Application Binary Interface,
|
||
Edition 4.1, page 5-5:
|
||
|
||
... Though the system chooses virtual addresses for
|
||
individual processes, it maintains the segments' relative
|
||
positions. Because position-independent code uses relative
|
||
addressing between segments, the difference between
|
||
virtual addresses in memory must match the difference
|
||
between virtual addresses in the file. The difference
|
||
between the virtual address of any segment in memory and
|
||
the corresponding virtual address in the file is thus a
|
||
single constant value for any one executable or shared
|
||
object in a given process. This difference is the base
|
||
address. One use of the base address is to relocate the
|
||
memory image of the program during dynamic linking.
|
||
|
||
The same language also appears in Edition 4.0 of the System V
|
||
ABI and is left unspecified in some of the earlier editions.
|
||
|
||
Decide if the objfile needs to be relocated. As indicated above, we will
|
||
only be here when execution is stopped. But during attachment PC can be at
|
||
arbitrary address therefore regcache_read_pc can be misleading (contrary to
|
||
the auxv AT_ENTRY value). Moreover for executable with interpreter section
|
||
regcache_read_pc would point to the interpreter and not the main executable.
|
||
|
||
So, to summarize, relocations are necessary when the start address obtained
|
||
from the executable is different from the address in auxv AT_ENTRY entry.
|
||
|
||
[ The astute reader will note that we also test to make sure that
|
||
the executable in question has the DYNAMIC flag set. It is my
|
||
opinion that this test is unnecessary (undesirable even). It
|
||
was added to avoid inadvertent relocation of an executable
|
||
whose e_type member in the ELF header is not ET_DYN. There may
|
||
be a time in the future when it is desirable to do relocations
|
||
on other types of files as well in which case this condition
|
||
should either be removed or modified to accommodate the new file
|
||
type. - Kevin, Nov 2000. ] */
|
||
|
||
static int
|
||
svr4_exec_displacement (CORE_ADDR *displacementp)
|
||
{
|
||
/* ENTRY_POINT is a possible function descriptor - before
|
||
a call to gdbarch_convert_from_func_ptr_addr. */
|
||
CORE_ADDR entry_point, exec_displacement;
|
||
|
||
if (current_program_space->exec_bfd () == NULL)
|
||
return 0;
|
||
|
||
/* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
|
||
being executed themselves and PIE (Position Independent Executable)
|
||
executables are ET_DYN. */
|
||
|
||
if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
|
||
return 0;
|
||
|
||
if (target_auxv_search (AT_ENTRY, &entry_point) <= 0)
|
||
return 0;
|
||
|
||
exec_displacement
|
||
= entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
|
||
|
||
/* Verify the EXEC_DISPLACEMENT candidate complies with the required page
|
||
alignment. It is cheaper than the program headers comparison below. */
|
||
|
||
if (bfd_get_flavour (current_program_space->exec_bfd ())
|
||
== bfd_target_elf_flavour)
|
||
{
|
||
const struct elf_backend_data *elf
|
||
= get_elf_backend_data (current_program_space->exec_bfd ());
|
||
|
||
/* p_align of PT_LOAD segments does not specify any alignment but
|
||
only congruency of addresses:
|
||
p_offset % p_align == p_vaddr % p_align
|
||
Kernel is free to load the executable with lower alignment. */
|
||
|
||
if ((exec_displacement & (elf->minpagesize - 1)) != 0)
|
||
return 0;
|
||
}
|
||
|
||
/* Verify that the auxiliary vector describes the same file as exec_bfd, by
|
||
comparing their program headers. If the program headers in the auxiliary
|
||
vector do not match the program headers in the executable, then we are
|
||
looking at a different file than the one used by the kernel - for
|
||
instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
|
||
|
||
if (bfd_get_flavour (current_program_space->exec_bfd ())
|
||
== bfd_target_elf_flavour)
|
||
{
|
||
/* Be optimistic and return 0 only if GDB was able to verify the headers
|
||
really do not match. */
|
||
int arch_size;
|
||
|
||
std::optional<gdb::byte_vector> phdrs_target
|
||
= read_program_header (-1, &arch_size, NULL);
|
||
std::optional<gdb::byte_vector> phdrs_binary
|
||
= read_program_headers_from_bfd (current_program_space->exec_bfd ());
|
||
if (phdrs_target && phdrs_binary)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
|
||
/* We are dealing with three different addresses. EXEC_BFD
|
||
represents current address in on-disk file. target memory content
|
||
may be different from EXEC_BFD as the file may have been prelinked
|
||
to a different address after the executable has been loaded.
|
||
Moreover the address of placement in target memory can be
|
||
different from what the program headers in target memory say -
|
||
this is the goal of PIE.
|
||
|
||
Detected DISPLACEMENT covers both the offsets of PIE placement and
|
||
possible new prelink performed after start of the program. Here
|
||
relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
|
||
content offset for the verification purpose. */
|
||
|
||
if (phdrs_target->size () != phdrs_binary->size ()
|
||
|| bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
|
||
return 0;
|
||
else if (arch_size == 32
|
||
&& phdrs_target->size () >= sizeof (Elf32_External_Phdr)
|
||
&& phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
|
||
{
|
||
Elf_Internal_Ehdr *ehdr2
|
||
= elf_tdata (current_program_space->exec_bfd ())->elf_header;
|
||
Elf_Internal_Phdr *phdr2
|
||
= elf_tdata (current_program_space->exec_bfd ())->phdr;
|
||
CORE_ADDR displacement = 0;
|
||
int i;
|
||
|
||
/* DISPLACEMENT could be found more easily by the difference of
|
||
ehdr2->e_entry. But we haven't read the ehdr yet, and we
|
||
already have enough information to compute that displacement
|
||
with what we've read. */
|
||
|
||
for (i = 0; i < ehdr2->e_phnum; i++)
|
||
if (phdr2[i].p_type == PT_LOAD)
|
||
{
|
||
Elf32_External_Phdr *phdrp;
|
||
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
||
CORE_ADDR vaddr, paddr;
|
||
CORE_ADDR displacement_vaddr = 0;
|
||
CORE_ADDR displacement_paddr = 0;
|
||
|
||
phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
|
||
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
||
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
||
|
||
vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
|
||
byte_order);
|
||
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
|
||
|
||
paddr = extract_unsigned_integer (buf_paddr_p, 4,
|
||
byte_order);
|
||
displacement_paddr = paddr - phdr2[i].p_paddr;
|
||
|
||
if (displacement_vaddr == displacement_paddr)
|
||
displacement = displacement_vaddr;
|
||
|
||
break;
|
||
}
|
||
|
||
/* Now compare program headers from the target and the binary
|
||
with optional DISPLACEMENT. */
|
||
|
||
for (i = 0;
|
||
i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
|
||
i++)
|
||
{
|
||
Elf32_External_Phdr *phdrp;
|
||
Elf32_External_Phdr *phdr2p;
|
||
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
||
CORE_ADDR vaddr, paddr;
|
||
asection *plt2_asect;
|
||
|
||
phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
|
||
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
||
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
||
phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
|
||
|
||
/* PT_GNU_STACK is an exception by being never relocated by
|
||
prelink as its addresses are always zero. */
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
|
||
/* Check also other adjustment combinations - PR 11786. */
|
||
|
||
vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
|
||
byte_order);
|
||
vaddr -= displacement;
|
||
store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
|
||
|
||
paddr = extract_unsigned_integer (buf_paddr_p, 4,
|
||
byte_order);
|
||
paddr -= displacement;
|
||
store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
|
||
/* Strip modifies the flags and alignment of PT_GNU_RELRO.
|
||
CentOS-5 has problems with filesz, memsz as well.
|
||
Strip also modifies memsz of PT_TLS.
|
||
See PR 11786. */
|
||
if (phdr2[i].p_type == PT_GNU_RELRO
|
||
|| phdr2[i].p_type == PT_TLS)
|
||
{
|
||
Elf32_External_Phdr tmp_phdr = *phdrp;
|
||
Elf32_External_Phdr tmp_phdr2 = *phdr2p;
|
||
|
||
memset (tmp_phdr.p_filesz, 0, 4);
|
||
memset (tmp_phdr.p_memsz, 0, 4);
|
||
memset (tmp_phdr.p_flags, 0, 4);
|
||
memset (tmp_phdr.p_align, 0, 4);
|
||
memset (tmp_phdr2.p_filesz, 0, 4);
|
||
memset (tmp_phdr2.p_memsz, 0, 4);
|
||
memset (tmp_phdr2.p_flags, 0, 4);
|
||
memset (tmp_phdr2.p_align, 0, 4);
|
||
|
||
if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
|
||
== 0)
|
||
continue;
|
||
}
|
||
|
||
/* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
|
||
bfd *exec_bfd = current_program_space->exec_bfd ();
|
||
plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
|
||
if (plt2_asect)
|
||
{
|
||
int content2;
|
||
gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
|
||
CORE_ADDR filesz;
|
||
|
||
content2 = (bfd_section_flags (plt2_asect)
|
||
& SEC_HAS_CONTENTS) != 0;
|
||
|
||
filesz = extract_unsigned_integer (buf_filesz_p, 4,
|
||
byte_order);
|
||
|
||
/* PLT2_ASECT is from on-disk file (exec_bfd) while
|
||
FILESZ is from the in-memory image. */
|
||
if (content2)
|
||
filesz += bfd_section_size (plt2_asect);
|
||
else
|
||
filesz -= bfd_section_size (plt2_asect);
|
||
|
||
store_unsigned_integer (buf_filesz_p, 4, byte_order,
|
||
filesz);
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
}
|
||
else if (arch_size == 64
|
||
&& phdrs_target->size () >= sizeof (Elf64_External_Phdr)
|
||
&& phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
|
||
{
|
||
Elf_Internal_Ehdr *ehdr2
|
||
= elf_tdata (current_program_space->exec_bfd ())->elf_header;
|
||
Elf_Internal_Phdr *phdr2
|
||
= elf_tdata (current_program_space->exec_bfd ())->phdr;
|
||
CORE_ADDR displacement = 0;
|
||
int i;
|
||
|
||
/* DISPLACEMENT could be found more easily by the difference of
|
||
ehdr2->e_entry. But we haven't read the ehdr yet, and we
|
||
already have enough information to compute that displacement
|
||
with what we've read. */
|
||
|
||
for (i = 0; i < ehdr2->e_phnum; i++)
|
||
if (phdr2[i].p_type == PT_LOAD)
|
||
{
|
||
Elf64_External_Phdr *phdrp;
|
||
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
||
CORE_ADDR vaddr, paddr;
|
||
CORE_ADDR displacement_vaddr = 0;
|
||
CORE_ADDR displacement_paddr = 0;
|
||
|
||
phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
|
||
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
||
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
||
|
||
vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
|
||
byte_order);
|
||
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
|
||
|
||
paddr = extract_unsigned_integer (buf_paddr_p, 8,
|
||
byte_order);
|
||
displacement_paddr = paddr - phdr2[i].p_paddr;
|
||
|
||
if (displacement_vaddr == displacement_paddr)
|
||
displacement = displacement_vaddr;
|
||
|
||
break;
|
||
}
|
||
|
||
/* Now compare BUF and BUF2 with optional DISPLACEMENT. */
|
||
|
||
for (i = 0;
|
||
i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
|
||
i++)
|
||
{
|
||
Elf64_External_Phdr *phdrp;
|
||
Elf64_External_Phdr *phdr2p;
|
||
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
||
CORE_ADDR vaddr, paddr;
|
||
asection *plt2_asect;
|
||
|
||
phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
|
||
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
||
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
||
phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
|
||
|
||
/* PT_GNU_STACK is an exception by being never relocated by
|
||
prelink as its addresses are always zero. */
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
|
||
/* Check also other adjustment combinations - PR 11786. */
|
||
|
||
vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
|
||
byte_order);
|
||
vaddr -= displacement;
|
||
store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
|
||
|
||
paddr = extract_unsigned_integer (buf_paddr_p, 8,
|
||
byte_order);
|
||
paddr -= displacement;
|
||
store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
|
||
/* Strip modifies the flags and alignment of PT_GNU_RELRO.
|
||
CentOS-5 has problems with filesz, memsz as well.
|
||
Strip also modifies memsz of PT_TLS.
|
||
See PR 11786. */
|
||
if (phdr2[i].p_type == PT_GNU_RELRO
|
||
|| phdr2[i].p_type == PT_TLS)
|
||
{
|
||
Elf64_External_Phdr tmp_phdr = *phdrp;
|
||
Elf64_External_Phdr tmp_phdr2 = *phdr2p;
|
||
|
||
memset (tmp_phdr.p_filesz, 0, 8);
|
||
memset (tmp_phdr.p_memsz, 0, 8);
|
||
memset (tmp_phdr.p_flags, 0, 4);
|
||
memset (tmp_phdr.p_align, 0, 8);
|
||
memset (tmp_phdr2.p_filesz, 0, 8);
|
||
memset (tmp_phdr2.p_memsz, 0, 8);
|
||
memset (tmp_phdr2.p_flags, 0, 4);
|
||
memset (tmp_phdr2.p_align, 0, 8);
|
||
|
||
if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
|
||
== 0)
|
||
continue;
|
||
}
|
||
|
||
/* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
|
||
plt2_asect
|
||
= bfd_get_section_by_name (current_program_space->exec_bfd (),
|
||
".plt");
|
||
if (plt2_asect)
|
||
{
|
||
int content2;
|
||
gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
|
||
CORE_ADDR filesz;
|
||
|
||
content2 = (bfd_section_flags (plt2_asect)
|
||
& SEC_HAS_CONTENTS) != 0;
|
||
|
||
filesz = extract_unsigned_integer (buf_filesz_p, 8,
|
||
byte_order);
|
||
|
||
/* PLT2_ASECT is from on-disk file (current
|
||
exec_bfd) while FILESZ is from the in-memory
|
||
image. */
|
||
if (content2)
|
||
filesz += bfd_section_size (plt2_asect);
|
||
else
|
||
filesz -= bfd_section_size (plt2_asect);
|
||
|
||
store_unsigned_integer (buf_filesz_p, 8, byte_order,
|
||
filesz);
|
||
|
||
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
||
continue;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (info_verbose)
|
||
{
|
||
/* It can be printed repeatedly as there is no easy way to check
|
||
the executable symbols/file has been already relocated to
|
||
displacement. */
|
||
|
||
gdb_printf (_("Using PIE (Position Independent Executable) "
|
||
"displacement %s for \"%s\".\n"),
|
||
paddress (current_inferior ()->arch (), exec_displacement),
|
||
bfd_get_filename (current_program_space->exec_bfd ()));
|
||
}
|
||
|
||
*displacementp = exec_displacement;
|
||
return 1;
|
||
}
|
||
|
||
/* Relocate the main executable. This function should be called upon
|
||
stopping the inferior process at the entry point to the program.
|
||
The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
|
||
different, the main executable is relocated by the proper amount. */
|
||
|
||
static void
|
||
svr4_relocate_main_executable (void)
|
||
{
|
||
CORE_ADDR displacement;
|
||
|
||
/* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
|
||
probably contains the offsets computed using the PIE displacement
|
||
from the previous run, which of course are irrelevant for this run.
|
||
So we need to determine the new PIE displacement and recompute the
|
||
section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
|
||
already contains pre-computed offsets.
|
||
|
||
If we cannot compute the PIE displacement, either:
|
||
|
||
- The executable is not PIE.
|
||
|
||
- SYMFILE_OBJFILE does not match the executable started in the target.
|
||
This can happen for main executable symbols loaded at the host while
|
||
`ld.so --ld-args main-executable' is loaded in the target.
|
||
|
||
Then we leave the section offsets untouched and use them as is for
|
||
this run. Either:
|
||
|
||
- These section offsets were properly reset earlier, and thus
|
||
already contain the correct values. This can happen for instance
|
||
when reconnecting via the remote protocol to a target that supports
|
||
the `qOffsets' packet.
|
||
|
||
- The section offsets were not reset earlier, and the best we can
|
||
hope is that the old offsets are still applicable to the new run. */
|
||
|
||
if (! svr4_exec_displacement (&displacement))
|
||
return;
|
||
|
||
/* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
|
||
addresses. */
|
||
|
||
objfile *objf = current_program_space->symfile_object_file;
|
||
if (objf)
|
||
{
|
||
section_offsets new_offsets (objf->section_offsets.size (),
|
||
displacement);
|
||
objfile_relocate (objf, new_offsets);
|
||
}
|
||
else if (current_program_space->exec_bfd ())
|
||
{
|
||
asection *asect;
|
||
|
||
bfd *exec_bfd = current_program_space->exec_bfd ();
|
||
for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
|
||
exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
|
||
bfd_section_vma (asect) + displacement);
|
||
}
|
||
}
|
||
|
||
/* Implement the "create_inferior_hook" target_solib_ops method.
|
||
|
||
For SVR4 executables, this first instruction is either the first
|
||
instruction in the dynamic linker (for dynamically linked
|
||
executables) or the instruction at "start" for statically linked
|
||
executables. For dynamically linked executables, the system
|
||
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
||
and starts it running. The dynamic linker maps in any needed
|
||
shared libraries, maps in the actual user executable, and then
|
||
jumps to "start" in the user executable.
|
||
|
||
We can arrange to cooperate with the dynamic linker to discover the
|
||
names of shared libraries that are dynamically linked, and the base
|
||
addresses to which they are linked.
|
||
|
||
This function is responsible for discovering those names and
|
||
addresses, and saving sufficient information about them to allow
|
||
their symbols to be read at a later time. */
|
||
|
||
void
|
||
svr4_solib_ops::create_inferior_hook (int from_tty) const
|
||
{
|
||
struct svr4_info *info;
|
||
|
||
info = get_svr4_info (current_program_space);
|
||
|
||
/* Clear the probes-based interface's state. */
|
||
this->free_probes_table (info);
|
||
info->solib_lists.clear ();
|
||
info->namespace_id.clear ();
|
||
info->active_namespaces.clear ();
|
||
|
||
/* Relocate the main executable if necessary. */
|
||
svr4_relocate_main_executable ();
|
||
|
||
/* No point setting a breakpoint in the dynamic linker if we can't
|
||
hit it (e.g., a core file, or a trace file). */
|
||
if (!target_has_execution ())
|
||
return;
|
||
|
||
if (!this->enable_break (info, from_tty))
|
||
return;
|
||
}
|
||
|
||
void
|
||
svr4_solib_ops::clear_solib (program_space *pspace) const
|
||
{
|
||
svr4_info *info = get_svr4_info (pspace);
|
||
info->default_debug_base = 0;
|
||
info->debug_loader_offset_p = 0;
|
||
info->debug_loader_offset = 0;
|
||
info->debug_loader_name.clear ();
|
||
}
|
||
|
||
/* Clear any bits of ADDR that wouldn't fit in a target-format
|
||
data pointer. "Data pointer" here refers to whatever sort of
|
||
address the dynamic linker uses to manage its sections. At the
|
||
moment, we don't support shared libraries on any processors where
|
||
code and data pointers are different sizes.
|
||
|
||
This isn't really the right solution. What we really need here is
|
||
a way to do arithmetic on CORE_ADDR values that respects the
|
||
natural pointer/address correspondence. (For example, on the MIPS,
|
||
converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
|
||
sign-extend the value. There, simply truncating the bits above
|
||
gdbarch_ptr_bit, as we do below, is no good.) This should probably
|
||
be a new gdbarch method or something. */
|
||
static CORE_ADDR
|
||
svr4_truncate_ptr (CORE_ADDR addr)
|
||
{
|
||
if (gdbarch_ptr_bit (current_inferior ()->arch ()) == sizeof (CORE_ADDR) * 8)
|
||
/* We don't need to truncate anything, and the bit twiddling below
|
||
will fail due to overflow problems. */
|
||
return addr;
|
||
else
|
||
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_inferior ()->arch ())) - 1);
|
||
}
|
||
|
||
/* Find the LOAD-able program header in ABFD that contains ASECT. Return
|
||
NULL if no such header can be found. */
|
||
|
||
static Elf_Internal_Phdr *
|
||
find_loadable_elf_internal_phdr (bfd *abfd, bfd_section *asect)
|
||
{
|
||
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
|
||
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
|
||
|
||
for (int i = 0; i < ehdr->e_phnum; i++)
|
||
{
|
||
if (phdr[i].p_type == PT_LOAD)
|
||
{
|
||
/* A section without the SEC_LOAD flag is a no-bits section
|
||
(e.g. .bss) and has zero size within ABFD. */
|
||
ULONGEST section_file_size
|
||
= (((bfd_section_flags (asect) & SEC_LOAD) != 0)
|
||
? bfd_section_size (asect)
|
||
: 0);
|
||
|
||
if (asect->filepos >= phdr[i].p_offset
|
||
&& ((asect->filepos + section_file_size)
|
||
<= (phdr[i].p_offset + phdr[i].p_filesz)))
|
||
return &phdr[i];
|
||
}
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
void
|
||
svr4_solib_ops::relocate_section_addresses (solib &so,
|
||
target_section *sec) const
|
||
{
|
||
bfd *abfd = sec->the_bfd_section->owner;
|
||
|
||
sec->addr = svr4_truncate_ptr (sec->addr + this->lm_addr_check (so, abfd));
|
||
sec->endaddr
|
||
= svr4_truncate_ptr (sec->endaddr + this->lm_addr_check (so, abfd));
|
||
|
||
struct bfd_section *asect = sec->the_bfd_section;
|
||
gdb_assert (asect != nullptr);
|
||
|
||
/* Update the address range of SO based on ASECT. */
|
||
if ((bfd_section_flags (asect) & SEC_ALLOC) != 0
|
||
&& bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
||
{
|
||
/* First, SO must cover the contents of ASECT. */
|
||
if (so.addr_low == 0 || sec->addr < so.addr_low)
|
||
so.addr_low = sec->addr;
|
||
|
||
if (so.addr_high == 0 || sec->endaddr > so.addr_high)
|
||
so.addr_high = sec->endaddr;
|
||
|
||
gdb_assert (so.addr_low <= so.addr_high);
|
||
|
||
/* But we can do better. Find the program header which contains
|
||
ASECT, and figure out its extents. This gives an larger possible
|
||
region for SO. */
|
||
Elf_Internal_Phdr *phdr = find_loadable_elf_internal_phdr (abfd, asect);
|
||
|
||
if (phdr != nullptr)
|
||
{
|
||
/* Figure out the alignment required by this segment. */
|
||
ULONGEST minpagesize = get_elf_backend_data (abfd)->minpagesize;
|
||
ULONGEST segment_alignment
|
||
= std::max (minpagesize, static_cast<ULONGEST> (phdr->p_align));
|
||
ULONGEST at_pagesz;
|
||
if (target_auxv_search (AT_PAGESZ, &at_pagesz) > 0)
|
||
segment_alignment = std::max (segment_alignment, at_pagesz);
|
||
|
||
/* The offset of this section within the segment. */
|
||
ULONGEST section_offset = asect->vma - phdr->p_vaddr;
|
||
|
||
/* The start address for the segment, without alignment. */
|
||
CORE_ADDR unaligned_start = sec->addr - section_offset;
|
||
|
||
/* And the start address with downward alignment. */
|
||
CORE_ADDR aligned_start
|
||
= align_down (unaligned_start, segment_alignment);
|
||
|
||
/* The end address of the segment depends on its size. Start
|
||
with the size as described in the ELF. This check of the
|
||
memory size and file size is what BFD does, so assume it
|
||
knows best and copy this logic. */
|
||
ULONGEST seg_size = std::max (phdr->p_memsz, phdr->p_filesz);
|
||
|
||
/* But by aligning the start address down we need to also include
|
||
that difference in the segment size. */
|
||
seg_size += (unaligned_start - aligned_start);
|
||
|
||
/* And align the segment size upward. */
|
||
seg_size = align_up (seg_size, segment_alignment);
|
||
|
||
/* Finally, we can compute the end address. */
|
||
CORE_ADDR end = aligned_start + seg_size;
|
||
|
||
/* And now we can update the extend of SO. */
|
||
if (so.addr_low == 0 || aligned_start < so.addr_low)
|
||
so.addr_low = aligned_start;
|
||
|
||
if (so.addr_high == 0 || end > so.addr_high)
|
||
so.addr_high = end;
|
||
|
||
gdb_assert (so.addr_low <= so.addr_high);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See solib-svr4.h. */
|
||
|
||
void
|
||
set_solib_svr4_ops (gdbarch *gdbarch, gdbarch_make_solib_ops_ftype make_solib_ops)
|
||
{
|
||
set_gdbarch_make_solib_ops (gdbarch, make_solib_ops);
|
||
}
|
||
|
||
/* See solib-svr4.h. */
|
||
|
||
solib_ops_up
|
||
make_svr4_ilp32_solib_ops (program_space *pspace)
|
||
{
|
||
return std::make_unique<ilp32_svr4_solib_ops> (pspace);
|
||
}
|
||
|
||
/* Most OS'es that have SVR4-style ELF dynamic libraries define a
|
||
`struct r_debug' and a `struct link_map' that are binary compatible
|
||
with the original SVR4 implementation. */
|
||
|
||
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
||
for an ILP32 SVR4 system. */
|
||
|
||
link_map_offsets *
|
||
ilp32_svr4_solib_ops::fetch_link_map_offsets () const
|
||
{
|
||
static struct link_map_offsets lmo;
|
||
static struct link_map_offsets *lmp = NULL;
|
||
|
||
if (lmp == NULL)
|
||
{
|
||
lmp = &lmo;
|
||
|
||
lmo.r_version_offset = 0;
|
||
lmo.r_version_size = 4;
|
||
lmo.r_map_offset = 4;
|
||
lmo.r_brk_offset = 8;
|
||
lmo.r_ldsomap_offset = 20;
|
||
lmo.r_next_offset = -1;
|
||
|
||
/* Everything we need is in the first 20 bytes. */
|
||
lmo.link_map_size = 20;
|
||
lmo.l_addr_offset = 0;
|
||
lmo.l_name_offset = 4;
|
||
lmo.l_ld_offset = 8;
|
||
lmo.l_next_offset = 12;
|
||
lmo.l_prev_offset = 16;
|
||
}
|
||
|
||
return lmp;
|
||
}
|
||
|
||
/* solib_ops for LP64 SVR4 systems. */
|
||
|
||
struct lp64_svr4_solib_ops : public svr4_solib_ops
|
||
{
|
||
using svr4_solib_ops::svr4_solib_ops;
|
||
|
||
link_map_offsets *fetch_link_map_offsets () const override;
|
||
};
|
||
|
||
/* See solib-svr4.h. */
|
||
|
||
solib_ops_up
|
||
make_svr4_lp64_solib_ops (program_space *pspace)
|
||
{
|
||
return std::make_unique<lp64_svr4_solib_ops> (pspace);
|
||
}
|
||
|
||
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
||
for an LP64 SVR4 system. */
|
||
|
||
link_map_offsets *
|
||
lp64_svr4_solib_ops::fetch_link_map_offsets () const
|
||
{
|
||
static struct link_map_offsets lmo;
|
||
static struct link_map_offsets *lmp = NULL;
|
||
|
||
if (lmp == NULL)
|
||
{
|
||
lmp = &lmo;
|
||
|
||
lmo.r_version_offset = 0;
|
||
lmo.r_version_size = 4;
|
||
lmo.r_map_offset = 8;
|
||
lmo.r_brk_offset = 16;
|
||
lmo.r_ldsomap_offset = 40;
|
||
lmo.r_next_offset = -1;
|
||
|
||
/* Everything we need is in the first 40 bytes. */
|
||
lmo.link_map_size = 40;
|
||
lmo.l_addr_offset = 0;
|
||
lmo.l_name_offset = 8;
|
||
lmo.l_ld_offset = 16;
|
||
lmo.l_next_offset = 24;
|
||
lmo.l_prev_offset = 32;
|
||
}
|
||
|
||
return lmp;
|
||
}
|
||
|
||
|
||
/* Return the DSO matching OBJFILE or nullptr if none can be found. */
|
||
|
||
static const solib *
|
||
find_solib_for_objfile (struct objfile *objfile)
|
||
{
|
||
if (objfile == nullptr)
|
||
return nullptr;
|
||
|
||
/* If OBJFILE is a separate debug object file, look for the original
|
||
object file. */
|
||
if (objfile->separate_debug_objfile_backlink != nullptr)
|
||
objfile = objfile->separate_debug_objfile_backlink;
|
||
|
||
for (const solib &so : current_program_space->solibs ())
|
||
if (so.objfile == objfile)
|
||
return &so;
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
/* Return the address of the r_debug object for the namespace containing
|
||
SOLIB or zero if it cannot be found. This may happen when symbol files
|
||
are added manually, for example, or with the main executable.
|
||
|
||
Current callers treat zero as initial namespace so they are doing the
|
||
right thing for the main executable. */
|
||
|
||
static CORE_ADDR
|
||
find_debug_base_for_solib (const solib *solib)
|
||
{
|
||
if (solib == nullptr)
|
||
return 0;
|
||
|
||
/* This is always called for solibs with an associated objfile. */
|
||
gdb_assert (solib->objfile != nullptr);
|
||
|
||
svr4_info *info = get_svr4_info (solib->objfile->pspace ());
|
||
gdb_assert (info != nullptr);
|
||
|
||
auto &lm_info = get_lm_info_svr4 (*solib);
|
||
|
||
return lm_info.debug_base;
|
||
}
|
||
|
||
/* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
|
||
different rule for symbol lookup. The lookup begins here in the DSO,
|
||
not in the main executable. When starting from CURRENT_OBJFILE, we
|
||
stay in the same namespace as that file. Otherwise, we only consider
|
||
the initial namespace. */
|
||
|
||
void
|
||
svr4_solib_ops::iterate_over_objfiles_in_search_order
|
||
(iterate_over_objfiles_in_search_order_cb_ftype cb,
|
||
objfile *current_objfile) const
|
||
{
|
||
bool checked_current_objfile = false;
|
||
if (current_objfile != nullptr)
|
||
{
|
||
bfd *abfd;
|
||
|
||
if (current_objfile->separate_debug_objfile_backlink != nullptr)
|
||
current_objfile = current_objfile->separate_debug_objfile_backlink;
|
||
|
||
if (current_objfile == m_pspace->symfile_object_file)
|
||
abfd = m_pspace->exec_bfd ();
|
||
else
|
||
abfd = current_objfile->obfd.get ();
|
||
|
||
/* gdb_bfd_scan_elf_dyntag relies on the current program space. */
|
||
gdb_assert (m_pspace == current_program_space);
|
||
|
||
if (abfd != nullptr
|
||
&& gdb_bfd_scan_elf_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
|
||
{
|
||
checked_current_objfile = true;
|
||
if (cb (current_objfile))
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* elf_locate_base relies on the current program space. */
|
||
gdb_assert (m_pspace == current_program_space);
|
||
|
||
/* The linker namespace to iterate identified by the address of its
|
||
r_debug object, defaulting to the initial namespace. */
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
CORE_ADDR default_debug_base = this->default_debug_base (info);
|
||
const solib *curr_solib = find_solib_for_objfile (current_objfile);
|
||
CORE_ADDR debug_base = find_debug_base_for_solib (curr_solib);
|
||
if (debug_base == 0)
|
||
debug_base = default_debug_base;
|
||
|
||
for (objfile *objfile : m_pspace->objfiles ())
|
||
{
|
||
if (checked_current_objfile && objfile == current_objfile)
|
||
continue;
|
||
|
||
/* Try to determine the namespace into which objfile was loaded.
|
||
|
||
If we fail, e.g. for manually added symbol files or for the main
|
||
executable, we assume that they were added to the initial
|
||
namespace. */
|
||
const solib *solib = find_solib_for_objfile (objfile);
|
||
CORE_ADDR solib_base = find_debug_base_for_solib (solib);
|
||
if (solib_base == 0)
|
||
solib_base = default_debug_base;
|
||
|
||
/* Ignore objfiles that were added to a different namespace. */
|
||
if (solib_base != debug_base)
|
||
continue;
|
||
|
||
if (cb (objfile))
|
||
return;
|
||
}
|
||
}
|
||
|
||
std::optional<CORE_ADDR>
|
||
svr4_solib_ops::find_solib_addr (solib &so) const
|
||
{
|
||
return get_lm_info_svr4 (so).l_addr_inferior;
|
||
}
|
||
|
||
int
|
||
svr4_solib_ops::find_solib_ns (const solib &so) const
|
||
{
|
||
CORE_ADDR debug_base = find_debug_base_for_solib (&so);
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
for (int i = 0; i < info->namespace_id.size (); i++)
|
||
{
|
||
if (info->namespace_id[i] == debug_base)
|
||
{
|
||
gdb_assert (info->active_namespaces.count (i) == 1);
|
||
return i;
|
||
}
|
||
}
|
||
error (_("No namespace found"));
|
||
}
|
||
|
||
int
|
||
svr4_solib_ops::num_active_namespaces () const
|
||
{
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
return info->active_namespaces.size ();
|
||
}
|
||
|
||
std::vector<const solib *>
|
||
svr4_solib_ops::get_solibs_in_ns (int nsid) const
|
||
{
|
||
std::vector<const solib*> ns_solibs;
|
||
svr4_info *info = get_svr4_info (current_program_space);
|
||
|
||
/* If the namespace ID is inactive, there will be no active
|
||
libraries, so we can have an early exit, as a treat. */
|
||
if (info->active_namespaces.count (nsid) != 1)
|
||
return ns_solibs;
|
||
|
||
/* Since we only have the names of solibs in a given namespace,
|
||
we'll need to walk through the solib list of the inferior and
|
||
find which solib objects correspond to which svr4_so. We create
|
||
an unordered map with the names and lm_info to check things
|
||
faster, and to be able to remove SOs from the map, to avoid
|
||
returning the dynamic linker multiple times. */
|
||
CORE_ADDR debug_base = info->namespace_id[nsid];
|
||
std::unordered_map<std::string, const lm_info_svr4 *> namespace_solibs;
|
||
for (svr4_so &so : info->solib_lists[debug_base])
|
||
namespace_solibs[so.name] = so.lm_info.get ();
|
||
|
||
for (const solib &so: current_program_space->solibs ())
|
||
{
|
||
auto &lm_inferior = get_lm_info_svr4 (so);
|
||
|
||
/* This is inspired by the svr4_same, by finding the svr4_so object
|
||
in the map, and then double checking if the lm_info is considered
|
||
the same. */
|
||
if (namespace_solibs.count (so.original_name) > 0
|
||
&& (namespace_solibs[so.original_name]->l_addr_inferior
|
||
== lm_inferior.l_addr_inferior))
|
||
{
|
||
ns_solibs.push_back (&so);
|
||
/* Remove the SO from the map, so that we don't end up
|
||
printing the dynamic linker multiple times. */
|
||
namespace_solibs.erase (so.original_name);
|
||
}
|
||
}
|
||
|
||
return ns_solibs;
|
||
}
|
||
|
||
INIT_GDB_FILE (svr4_solib)
|
||
{
|
||
gdb::observers::free_objfile.attach (svr4_free_objfile_observer,
|
||
"solib-svr4");
|
||
|
||
/* Set up observers for tracking GLIBC TLS module id slots. */
|
||
gdb::observers::solib_loaded.attach (tls_maybe_fill_slot, "solib-svr4");
|
||
gdb::observers::solib_unloaded.attach (tls_maybe_erase_slot, "solib-svr4");
|
||
}
|