Files
binutils-gdb/gdb/findvar.c
Kevin Buettner 8b87fe90e8 Don't attempt to find TLS address when target has no registers
This commit fixes two bugs, one of which is Bug 25807, which occurs
when target_translate_tls_address() is called from
language_defn::read_var_value in findvar.c.  I found it while testing on
aarch64; it turned a KFAIL for gdb.threads/tls.exp: print a_thread_local
into a FAIL due to a GDB internal error.  Now, with this commit in place,
the KFAIL/FAIL turns into a PASS.

In addition to the existing test just noted, I've also added a test to
the new test case gdb.base/tls-nothreads.exp.  It'll be tested, using
different scenarios, up to 8 times:

PASS: gdb.base/tls-nothreads.exp: default: force_internal_tls=false: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: default: force_internal_tls=true: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: static: force_internal_tls=false: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: static: force_internal_tls=true: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads: force_internal_tls=false: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads: force_internal_tls=true: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads-static: force_internal_tls=false: after exit: print tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads-static: force_internal_tls=true: after exit: print tls_tbss_1

There is a related problem that occurs when target_translate_tls_address
is called from find_minsym_type_and_address() in minsyms.c.  It can be
observed when debugging a program without debugging symbols when the
program is not executing.  I've written a new test for this, but it's
(also) included in the new test case gdb.base/tls-nothreads.exp, found
later in this series.  Depending on the target, it can run up to 8
times using different scenarios.  E.g., on aarch64, I'm seeing these
PASSes, all of which test this change:

PASS: gdb.base/tls-nothreads.exp: default: force_internal_tls=false: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: default: force_internal_tls=true: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: static: force_internal_tls=false: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: static: force_internal_tls=true: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads: force_internal_tls=false: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads: force_internal_tls=true: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads-static: force_internal_tls=false: stripped: after exit: print (int) tls_tbss_1
PASS: gdb.base/tls-nothreads.exp: pthreads-static: force_internal_tls=true: stripped: after exit: print (int) tls_tbss_1

In an earlier version of this commit (v4), I was checking whether the
target has registers in language_defn::read_var_value in findvar.c and
in find_minsym_type_and_address in minsyms.c, printing suitable error
messages in each case.  In his review of this commit for the v4
series, Tom Tromey asked whether it would be better to do this check
in target_translate_tls_address.  I had considered doing that for the
v4 (and earlier) series, but I wanted to print slightly different
messages at each check.  Also, read_var_value in findvar.c was already
printing a message in some cases and I had arranged for the later
check in that function to match the original message.

However, while I had added a target-has-registers check at two of the
call sites for target_translate_tls_address, I hadn't added it at the
third call site which is in dwarf_expr_context::execute_stack_op() in
dwarf2/expr.c.  I believe that in most cases, this is handled by the
early check in language_defn::read_var_value...

  else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
    error (_("Cannot read `%s' without registers"), var->print_name ());

...but it's entirely possible that dwarf_expr_context::execute_stack_op()
might get called in some other context.  So it makes sense to do the
target-has-registers check for that case too.  And rather than add yet
another check at that call site, I decided that moving the check and
error message to target_translate_tls_address makes sense.

I had to make the error messages that it prints somewhat more generic.
In particular, when called from language_defn::read_var_value, the
message printed by target_translate_tls_address no longer matches the
earlier message that could be printed (as shown above).  That meant
that the test cases which check for this message, gdb.threads/tls.exp,
and gdb.base/tls-nothreads.exp had to be adjusted to account for the
new message.  Also, I think it's valuable to the user to know (if
possible) the name of the variable that caused the error, so I've
added an optional parameter to target_translate_tls_address, providing
the name of the variable, if it's known.  Therefore, the message
that's printed when the target-has-registers test fails is one of the
following:

When the TLS variable isn't known (due to being called from
dwarf_expr_context::execute_stack_op):

    "Cannot translate TLS address without registers"

When the TLS variable is known (from either of the other two call sites
for target_translate_tls_address):

    "Cannot find address of TLS symbol `%s' without registers"

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=25807
Tested-By: Luis Machado <luis.machado@arm.com>
Approved-By: Luis Machado <luis.machado@arm.com>
2025-04-24 09:54:42 -07:00

678 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Find a variable's value in memory, for GDB, the GNU debugger.
Copyright (C) 1986-2025 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "event-top.h"
#include "extract-store-integer.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"
#include "symfile.h"
#include "regcache.h"
#include "user-regs.h"
#include "block.h"
#include "objfiles.h"
#include "language.h"
/* Basic byte-swapping routines. All 'extract' functions return a
host-format integer from a target-format integer at ADDR which is
LEN bytes long. */
#if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
/* 8 bit characters are a pretty safe assumption these days, so we
assume it throughout all these swapping routines. If we had to deal with
9 bit characters, we would need to make len be in bits and would have
to re-write these routines... */
you lose
#endif
/* See value.h. */
value *
value_of_register (int regnum, const frame_info_ptr &next_frame)
{
gdbarch *gdbarch = frame_unwind_arch (next_frame);
/* User registers lie completely outside of the range of normal
registers. Catch them early so that the target never sees them. */
if (regnum >= gdbarch_num_cooked_regs (gdbarch))
return value_of_user_reg (regnum, get_prev_frame_always (next_frame));
value *reg_val = value_of_register_lazy (next_frame, regnum);
reg_val->fetch_lazy ();
return reg_val;
}
/* See value.h. */
value *
value_of_register_lazy (const frame_info_ptr &next_frame, int regnum)
{
gdbarch *gdbarch = frame_unwind_arch (next_frame);
gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
gdb_assert (next_frame != nullptr);
return value::allocate_register_lazy (next_frame, regnum);
}
/* Given a pointer of type TYPE in target form in BUF, return the
address it represents. */
CORE_ADDR
unsigned_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
enum bfd_endian byte_order = type_byte_order (type);
return extract_unsigned_integer (buf, type->length (), byte_order);
}
CORE_ADDR
signed_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
enum bfd_endian byte_order = type_byte_order (type);
return extract_signed_integer (buf, type->length (), byte_order);
}
/* Given an address, store it as a pointer of type TYPE in target
format in BUF. */
void
unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
gdb_byte *buf, CORE_ADDR addr)
{
enum bfd_endian byte_order = type_byte_order (type);
store_unsigned_integer (buf, type->length (), byte_order, addr);
}
void
address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
gdb_byte *buf, CORE_ADDR addr)
{
enum bfd_endian byte_order = type_byte_order (type);
store_signed_integer (buf, type->length (), byte_order, addr);
}
/* See value.h. */
enum symbol_needs_kind
symbol_read_needs (struct symbol *sym)
{
if (const symbol_computed_ops *computed_ops = sym->computed_ops ();
computed_ops != nullptr)
return computed_ops->get_symbol_read_needs (sym);
switch (sym->aclass ())
{
/* All cases listed explicitly so that gcc -Wall will detect it if
we failed to consider one. */
case LOC_COMPUTED:
gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
case LOC_REGISTER:
case LOC_ARG:
case LOC_REF_ARG:
case LOC_REGPARM_ADDR:
case LOC_LOCAL:
return SYMBOL_NEEDS_FRAME;
case LOC_UNDEF:
case LOC_CONST:
case LOC_STATIC:
case LOC_TYPEDEF:
case LOC_LABEL:
/* Getting the address of a label can be done independently of the block,
even if some *uses* of that address wouldn't work so well without
the right frame. */
case LOC_BLOCK:
case LOC_CONST_BYTES:
case LOC_UNRESOLVED:
case LOC_OPTIMIZED_OUT:
return SYMBOL_NEEDS_NONE;
}
return SYMBOL_NEEDS_FRAME;
}
/* See value.h. */
int
symbol_read_needs_frame (struct symbol *sym)
{
return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
}
/* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
rules, look for the frame that is actually hosting VAR and return it. If,
for some reason, we found no such frame, return NULL.
This kind of computation is necessary to correctly handle lexically nested
functions.
Note that in some cases, we know what scope VAR comes from but we cannot
reach the specific frame that hosts the instance of VAR we are looking for.
For backward compatibility purposes (with old compilers), we then look for
the first frame that can host it. */
static frame_info_ptr
get_hosting_frame (struct symbol *var, const struct block *var_block,
const frame_info_ptr &initial_frame)
{
const struct block *frame_block = NULL;
if (!symbol_read_needs_frame (var))
return NULL;
/* Some symbols for local variables have no block: this happens when they are
not produced by a debug information reader, for instance when GDB creates
synthetic symbols. Without block information, we must assume they are
local to FRAME. In this case, there is nothing to do. */
else if (var_block == NULL)
return initial_frame;
/* We currently assume that all symbols with a location list need a frame.
This is true in practice because selecting the location description
requires to compute the CFA, hence requires a frame. However we have
tests that embed global/static symbols with null location lists.
We want to get <optimized out> instead of <frame required> when evaluating
them so return a frame instead of raising an error. */
else if (var_block->is_global_block () || var_block->is_static_block ())
return initial_frame;
/* We have to handle the "my_func::my_local_var" notation. This requires us
to look for upper frames when we find no block for the current frame: here
and below, handle when frame_block == NULL. */
if (initial_frame != nullptr)
frame_block = get_frame_block (initial_frame, NULL);
/* Climb up the call stack until reaching the frame we are looking for. */
frame_info_ptr frame = initial_frame;
while (frame != NULL && frame_block != var_block)
{
/* Stacks can be quite deep: give the user a chance to stop this. */
QUIT;
if (frame_block == NULL)
{
frame = get_prev_frame (frame);
if (frame == NULL)
break;
frame_block = get_frame_block (frame, NULL);
}
/* If we failed to find the proper frame, fallback to the heuristic
method below. */
else if (frame_block->is_global_block ())
{
frame = NULL;
break;
}
/* Assuming we have a block for this frame: if we are at the function
level, the immediate upper lexical block is in an outer function:
follow the static link. */
else if (frame_block->function () != nullptr)
{
frame = frame_follow_static_link (frame);
if (frame != nullptr)
{
frame_block = get_frame_block (frame, nullptr);
if (frame_block == nullptr)
frame = nullptr;
}
}
else
/* We must be in some function nested lexical block. Just get the
outer block: both must share the same frame. */
frame_block = frame_block->superblock ();
}
/* Old compilers may not provide a static link, or they may provide an
invalid one. For such cases, fallback on the old way to evaluate
non-local references: just climb up the call stack and pick the first
frame that contains the variable we are looking for. */
if (frame == NULL)
{
frame = block_innermost_frame (var_block);
if (frame == NULL)
{
if (var_block->function ()
&& !var_block->inlined_p ()
&& var_block->function ()->print_name ())
error (_("No frame is currently executing in block %s."),
var_block->function ()->print_name ());
else
error (_("No frame is currently executing in specified"
" block"));
}
}
return frame;
}
/* See language.h. */
struct value *
language_defn::read_var_value (struct symbol *var,
const struct block *var_block,
const frame_info_ptr &frame_param) const
{
struct value *v;
struct type *type = var->type ();
CORE_ADDR addr;
enum symbol_needs_kind sym_need;
frame_info_ptr frame = frame_param;
/* Call check_typedef on our type to make sure that, if TYPE is
a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
instead of zero. However, we do not replace the typedef type by the
target type, because we want to keep the typedef in order to be able to
set the returned value type description correctly. */
check_typedef (type);
sym_need = symbol_read_needs (var);
if (sym_need == SYMBOL_NEEDS_FRAME)
gdb_assert (frame != NULL);
else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
error (_("Cannot read `%s' without registers"), var->print_name ());
if (frame != NULL)
frame = get_hosting_frame (var, var_block, frame);
if (const symbol_computed_ops *computed_ops = var->computed_ops ())
return computed_ops->read_variable (var, frame);
switch (var->aclass ())
{
case LOC_CONST:
if (is_dynamic_type (type))
{
gdb_byte bytes[sizeof (LONGEST)];
size_t len = std::min (sizeof (LONGEST), (size_t) type->length ());
store_unsigned_integer (bytes, len,
type_byte_order (type),
var->value_longest ());
gdb::array_view<const gdb_byte> view (bytes, len);
/* Value is a constant byte-sequence. */
type = resolve_dynamic_type (type, view, /* Unused address. */ 0);
}
/* Put the constant back in target format. */
v = value::allocate (type);
store_signed_integer (v->contents_raw ().data (), type->length (),
type_byte_order (type), var->value_longest ());
v->set_lval (not_lval);
return v;
case LOC_LABEL:
{
/* Put the constant back in target format. */
if (overlay_debugging)
{
struct objfile *var_objfile = var->objfile ();
addr = symbol_overlayed_address (var->value_address (),
var->obj_section (var_objfile));
}
else
addr = var->value_address ();
/* First convert the CORE_ADDR to a function pointer type, this
ensures the gdbarch knows what type of pointer we are
manipulating when value_from_pointer is called. */
type = builtin_type (var->arch ())->builtin_func_ptr;
v = value_from_pointer (type, addr);
/* But we want to present the value as 'void *', so cast it to the
required type now, this will not change the values bit
representation. */
struct type *void_ptr_type
= builtin_type (var->arch ())->builtin_data_ptr;
v = value_cast_pointers (void_ptr_type, v, 0);
v->set_lval (not_lval);
return v;
}
case LOC_CONST_BYTES:
if (is_dynamic_type (type))
{
gdb::array_view<const gdb_byte> view (var->value_bytes (),
type->length ());
/* Value is a constant byte-sequence. */
type = resolve_dynamic_type (type, view, /* Unused address. */ 0);
}
v = value::allocate (type);
memcpy (v->contents_raw ().data (), var->value_bytes (),
type->length ());
v->set_lval (not_lval);
return v;
case LOC_STATIC:
if (overlay_debugging)
addr
= symbol_overlayed_address (var->value_address (),
var->obj_section (var->objfile ()));
else
addr = var->value_address ();
break;
case LOC_ARG:
addr = get_frame_args_address (frame);
if (!addr)
error (_("Unknown argument list address for `%s'."),
var->print_name ());
addr += var->value_longest ();
break;
case LOC_REF_ARG:
{
struct value *ref;
CORE_ADDR argref;
argref = get_frame_args_address (frame);
if (!argref)
error (_("Unknown argument list address for `%s'."),
var->print_name ());
argref += var->value_longest ();
ref = value_at (lookup_pointer_type (type), argref);
addr = value_as_address (ref);
break;
}
case LOC_LOCAL:
addr = get_frame_locals_address (frame);
addr += var->value_longest ();
break;
case LOC_TYPEDEF:
error (_("Cannot look up value of a typedef `%s'."),
var->print_name ());
break;
case LOC_BLOCK:
if (overlay_debugging)
addr = symbol_overlayed_address
(var->value_block ()->entry_pc (),
var->obj_section (var->objfile ()));
else
addr = var->value_block ()->entry_pc ();
break;
case LOC_REGISTER:
case LOC_REGPARM_ADDR:
{
const symbol_register_ops *reg_ops = var->register_ops ();
int regno = reg_ops->register_number (var, get_frame_arch (frame));
if (var->aclass () == LOC_REGPARM_ADDR)
addr = value_as_address
(value_from_register (lookup_pointer_type (type), regno, frame));
else
return value_from_register (type, regno, frame);
}
break;
case LOC_COMPUTED:
gdb_assert_not_reached ("LOC_COMPUTED variable missing a method");
case LOC_UNRESOLVED:
{
struct obj_section *obj_section;
bound_minimal_symbol bmsym;
gdbarch_iterate_over_objfiles_in_search_order
(var->arch (),
[var, &bmsym] (objfile *objfile)
{
bmsym = lookup_minimal_symbol (current_program_space,
var->linkage_name (), objfile);
/* Stop if a match is found. */
return bmsym.minsym != nullptr;
},
var->objfile ());
/* If we can't find the minsym there's a problem in the symbol info.
The symbol exists in the debug info, but it's missing in the minsym
table. */
if (bmsym.minsym == nullptr)
{
const char *flavour_name
= objfile_flavour_name (var->objfile ());
/* We can't get here unless we've opened the file, so flavour_name
can't be NULL. */
gdb_assert (flavour_name != NULL);
error (_("Missing %s symbol \"%s\"."),
flavour_name, var->linkage_name ());
}
obj_section = bmsym.minsym->obj_section (bmsym.objfile);
/* Relocate address, unless there is no section or the variable is
a TLS variable. */
if (obj_section == NULL
|| (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
addr = CORE_ADDR (bmsym.minsym->unrelocated_address ());
else
addr = bmsym.value_address ();
if (overlay_debugging)
addr = symbol_overlayed_address (addr, obj_section);
/* Determine address of TLS variable. */
if (obj_section
&& (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
addr = target_translate_tls_address (obj_section->objfile, addr,
var->print_name ());
}
break;
case LOC_OPTIMIZED_OUT:
if (is_dynamic_type (type))
type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
return value::allocate_optimized_out (type);
default:
error (_("Cannot look up value of a botched symbol `%s'."),
var->print_name ());
break;
}
v = value_at_lazy (type, addr);
return v;
}
/* Calls VAR's language read_var_value hook with the given arguments. */
struct value *
read_var_value (struct symbol *var, const struct block *var_block,
const frame_info_ptr &frame)
{
const struct language_defn *lang = language_def (var->language ());
gdb_assert (lang != NULL);
return lang->read_var_value (var, var_block, frame);
}
/* Install default attributes for register values. */
value *
default_value_from_register (gdbarch *gdbarch, type *type, int regnum,
const frame_info_ptr &this_frame)
{
value *value
= value::allocate_register (get_next_frame_sentinel_okay (this_frame),
regnum, type);
/* Any structure stored in more than one register will always be
an integral number of registers. Otherwise, you need to do
some fiddling with the last register copied here for little
endian machines. */
if (type_byte_order (type) == BFD_ENDIAN_BIG
&& type->length () < register_size (gdbarch, regnum))
/* Big-endian, and we want less than full size. */
value->set_offset (register_size (gdbarch, regnum) - type->length ());
else
value->set_offset (0);
return value;
}
/* Default implementation of gdbarch_dwarf2_reg_piece_offset. Implements
DW_OP_bits_piece for DW_OP_piece. */
ULONGEST
default_dwarf2_reg_piece_offset (gdbarch *gdbarch, int gdb_regnum, ULONGEST size)
{
ULONGEST reg_size = register_size (gdbarch, gdb_regnum);
gdb_assert (size <= reg_size);
if (reg_size == size)
return 0;
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
return reg_size - size;
return 0;
}
/* VALUE must be an lval_register value. If regnum is the value's
associated register number, and len the length of the value's type,
read one or more registers in VALUE's frame, starting with register REGNUM,
until we've read LEN bytes.
If any of the registers we try to read are optimized out, then mark the
complete resulting value as optimized out. */
static void
read_frame_register_value (value *value)
{
gdb_assert (value->lval () == lval_register);
frame_info_ptr next_frame = frame_find_by_id (value->next_frame_id ());
gdb_assert (next_frame != nullptr);
gdbarch *gdbarch = frame_unwind_arch (next_frame);
LONGEST offset = 0;
LONGEST reg_offset = value->offset ();
int regnum = value->regnum ();
int len = type_length_units (check_typedef (value->type ()));
/* Skip registers wholly inside of REG_OFFSET. */
while (reg_offset >= register_size (gdbarch, regnum))
{
reg_offset -= register_size (gdbarch, regnum);
regnum++;
}
/* Copy the data. */
while (len > 0)
{
struct value *regval = frame_unwind_register_value (next_frame, regnum);
int reg_len = type_length_units (regval->type ()) - reg_offset;
/* If the register length is larger than the number of bytes
remaining to copy, then only copy the appropriate bytes. */
if (reg_len > len)
reg_len = len;
regval->contents_copy (value, offset, reg_offset, reg_len);
offset += reg_len;
len -= reg_len;
reg_offset = 0;
regnum++;
}
}
/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
struct value *
value_from_register (struct type *type, int regnum, const frame_info_ptr &frame)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct type *type1 = check_typedef (type);
struct value *v;
if (gdbarch_convert_register_p (gdbarch, regnum, type1))
{
int optim, unavail, ok;
/* The ISA/ABI need to something weird when obtaining the
specified value from this register. It might need to
re-order non-adjacent, starting with REGNUM (see MIPS and
i386). It might need to convert the [float] register into
the corresponding [integer] type (see Alpha). The assumption
is that gdbarch_register_to_value populates the entire value
including the location. */
v = value::allocate_register (get_next_frame_sentinel_okay (frame),
regnum, type);
ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
v->contents_raw ().data (), &optim,
&unavail);
if (!ok)
{
if (optim)
v->mark_bytes_optimized_out (0, type->length ());
if (unavail)
v->mark_bytes_unavailable (0, type->length ());
}
}
else
{
/* Construct the value. */
v = gdbarch_value_from_register (gdbarch, type, regnum, frame);
/* Get the data. */
read_frame_register_value (v);
}
return v;
}
/* Return contents of register REGNUM in frame FRAME as address.
Will abort if register value is not available. */
CORE_ADDR
address_from_register (int regnum, const frame_info_ptr &frame)
{
type *type = builtin_type (get_frame_arch (frame))->builtin_data_ptr;
value_ref_ptr v = release_value (value_from_register (type, regnum, frame));
if (v->optimized_out ())
{
/* This function is used while computing a location expression.
Complain about the value being optimized out, rather than
letting value_as_address complain about some random register
the expression depends on not being saved. */
error_value_optimized_out ();
}
return value_as_address (v.get ());
}