mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-12-06 15:43:09 +00:00
Functions change in CTFv4 by growing argument names as well as argument
types; the representation changes into a two-element array of (type, string
offset) rather than a simple array of arg types. Functions also gain an
explicit linkage in a different type kind (CTF_K_FUNC_LINKAGE, which
corresponds to BTF_KIND_FUNC).
New API:
typedef struct ctf_funcinfo {
/* ... */
- uint32_t ctc_argc; /* Number of typed arguments to function. */
+ size_t ctc_argc; /* Number of typed arguments to function. */
};
int ctf_func_arg_names (ctf_dict_t *, unsigned long, uint32_t, const char **);
int ctf_func_type_arg_names (ctf_dict_t *, ctf_id_t, uint32_t,
const char **names);
+extern int ctf_type_linkage (ctf_dict_t *, ctf_id_t);
-extern ctf_id_t ctf_add_function (ctf_dict_t *, uint32_t,
- const ctf_funcinfo_t *, const ctf_id_t *);
+extern ctf_id_t ctf_add_function (ctf_dict_t *, uint32_t,
+ const ctf_funcinfo_t *, const ctf_id_t *,
+ const char **arg_names);
+extern ctf_id_t ctf_add_function_linkage (ctf_dict_t *, uint32_t,
+ ctf_id_t, const char *, int linkage);
Adding this is fairly straightforward; the only annoying part is the way the
callers need to allocate space for the arg name and type arrays. Maybe we
should rethink these into something like ctf_type_aname(), allocating
space for the caller so the caller doesn't need to? It would certainly
make all the callers in libctf much less complex...
While we're at it, adjust ctf_type_reference, ctf_type_align, and
ctf_type_size for the new internal API changes (they also all have
special-case code for functions).
2707 lines
79 KiB
C
2707 lines
79 KiB
C
/* CTF dict creation.
|
|
Copyright (C) 2019-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#ifndef EOVERFLOW
|
|
#define EOVERFLOW ERANGE
|
|
#endif
|
|
|
|
#ifndef roundup
|
|
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
|
|
#endif
|
|
|
|
/* The initial size of a dynamic type's vlen in members. Arbitrary: the bigger
|
|
this is, the less allocation needs to be done for small structure
|
|
initialization, and the more memory is wasted for small structures during CTF
|
|
construction. No effect on generated CTF or ctf_open()ed CTF. */
|
|
#define INITIAL_VLEN 16
|
|
|
|
/* Make sure the ptrtab has enough space for at least one more type.
|
|
|
|
We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
|
|
at a time. */
|
|
|
|
static int
|
|
ctf_grow_ptrtab (ctf_dict_t *fp)
|
|
{
|
|
size_t new_ptrtab_len = fp->ctf_ptrtab_len;
|
|
|
|
/* We allocate one more ptrtab entry than we need, for the initial zero,
|
|
plus one because the caller will probably allocate a new type.
|
|
|
|
Equally, if the ptrtab is small -- perhaps due to ctf_open of a small
|
|
dict -- boost it by quite a lot at first, so we don't need to keep
|
|
realloc()ing. */
|
|
|
|
if (fp->ctf_ptrtab == NULL || fp->ctf_ptrtab_len < 1024)
|
|
new_ptrtab_len = 1024;
|
|
else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
|
|
new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;
|
|
|
|
if (new_ptrtab_len != fp->ctf_ptrtab_len)
|
|
{
|
|
uint32_t *new_ptrtab;
|
|
|
|
if ((new_ptrtab = realloc (fp->ctf_ptrtab,
|
|
new_ptrtab_len * sizeof (uint32_t))) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
fp->ctf_ptrtab = new_ptrtab;
|
|
memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
|
|
(new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
|
|
fp->ctf_ptrtab_len = new_ptrtab_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure a vlen has enough space: expand it otherwise. Either grow it to
|
|
roughly enough space for VBYTES, or add precisely VBYTES on to the space
|
|
reserved for the vlen. (In one mode, VBYTES is a minimum: in the other,
|
|
it's an addend. */
|
|
|
|
static int
|
|
ctf_add_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vbytes, int additive)
|
|
{
|
|
unsigned char *old = (unsigned char *) dtd->dtd_buf;
|
|
|
|
size_t size = dtd->dtd_buf_size;
|
|
size_t old_size = size;
|
|
size_t vlen_size = dtd->dtd_vlen_size;
|
|
size_t prefix_size = size - vlen_size;
|
|
size_t old_data_index = dtd->dtd_data - dtd->dtd_buf;
|
|
size_t old_vlen_offset = dtd->dtd_vlen - old;
|
|
|
|
if (!additive)
|
|
{
|
|
if ((size - vlen_size) > vbytes)
|
|
return 0;
|
|
|
|
while (vlen_size < vbytes)
|
|
{
|
|
size *= 2;
|
|
vlen_size = size - prefix_size;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vlen_size += vbytes;
|
|
size += vbytes;
|
|
}
|
|
|
|
if ((dtd->dtd_buf = realloc (dtd->dtd_buf, size)) == NULL)
|
|
{
|
|
dtd->dtd_buf = (ctf_type_t *) old;
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
|
|
memset (((unsigned char *) dtd->dtd_buf) + old_size, 0, size - old_size);
|
|
dtd->dtd_data = dtd->dtd_buf + old_data_index;
|
|
dtd->dtd_vlen = ((unsigned char *) dtd->dtd_buf) + old_vlen_offset;
|
|
dtd->dtd_buf_size = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure a vlen has enough space: expand it otherwise. Grow it in fairly
|
|
big jumps, for amortized-constant-time growth. */
|
|
|
|
static int
|
|
ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vbytes)
|
|
{
|
|
return ctf_add_vlen (fp, dtd, vbytes, 0);
|
|
}
|
|
|
|
/* Add a prefix to a given DTD, at the end of the prefix chain, and return it.
|
|
Make sure the vlen has enough room for at least VBYTES bytes, too. */
|
|
static ctf_type_t *
|
|
ctf_add_prefix (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vbytes)
|
|
{
|
|
ctf_type_t *new_prefix;
|
|
size_t old_buf_size = dtd->dtd_buf_size;
|
|
|
|
/* Grow the type, then tweak the vlen forwards and move things around to leave
|
|
a gap. If we run off the end of the headers without finding a non-prefix,
|
|
something is wrong. */
|
|
|
|
if (vbytes == 0)
|
|
{
|
|
if (ctf_add_vlen (fp, dtd, sizeof (ctf_type_t), 1) < 0)
|
|
return NULL; /* errno is set for us. */
|
|
}
|
|
else
|
|
{
|
|
if (ctf_grow_vlen (fp, dtd, vbytes + sizeof (ctf_type_t)) < 0)
|
|
return NULL; /* errno is set for us. */
|
|
}
|
|
|
|
new_prefix = dtd->dtd_data;
|
|
memmove (dtd->dtd_data + 1, dtd->dtd_data, old_buf_size
|
|
- ((unsigned char *) dtd->dtd_data - (unsigned char *) dtd->dtd_buf));
|
|
dtd->dtd_vlen += sizeof (ctf_type_t);
|
|
dtd->dtd_data++;
|
|
memset (new_prefix, 0, sizeof (ctf_type_t));
|
|
|
|
return new_prefix;
|
|
}
|
|
|
|
/* To create an empty CTF dict, we just declare a zeroed header and call
|
|
ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and
|
|
initialize the dynamic members. We start assigning type IDs at 1 because
|
|
type ID 0 is used as a sentinel and a not-found indicator. */
|
|
|
|
ctf_dict_t *
|
|
ctf_create (int *errp)
|
|
{
|
|
static ctf_header_t hdr =
|
|
{
|
|
.btf.bth_preamble = { CTF_BTF_MAGIC, CTF_BTF_VERSION, 0 },
|
|
.btf.bth_hdr_len = sizeof (ctf_btf_header_t),
|
|
};
|
|
|
|
ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
|
|
ctf_dynhash_t *datasecs = NULL, *tags = NULL;
|
|
ctf_sect_t cts;
|
|
ctf_dict_t *fp;
|
|
|
|
libctf_init_debug();
|
|
|
|
hdr.cth_preamble.ctp_magic_version = (CTFv4_MAGIC << 16) | CTF_VERSION;
|
|
|
|
structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
datasecs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, NULL);
|
|
tags = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
NULL, (ctf_hash_free_fun) ctf_dynset_destroy);
|
|
if (!structs || !unions || !enums || !names || !datasecs || !tags)
|
|
{
|
|
ctf_set_open_errno (errp, EAGAIN);
|
|
goto err;
|
|
}
|
|
|
|
cts.cts_name = _CTF_SECTION;
|
|
cts.cts_data = &hdr;
|
|
cts.cts_size = sizeof (hdr);
|
|
cts.cts_entsize = 1;
|
|
|
|
if ((fp = ctf_bufopen (&cts, NULL, NULL, errp)) == NULL)
|
|
goto err;
|
|
|
|
/* These hashes will have been initialized with a starting size of zero,
|
|
which is surely wrong. Use ones with slightly larger sizes. */
|
|
ctf_dynhash_destroy (fp->ctf_structs);
|
|
ctf_dynhash_destroy (fp->ctf_unions);
|
|
ctf_dynhash_destroy (fp->ctf_enums);
|
|
ctf_dynhash_destroy (fp->ctf_names);
|
|
ctf_dynhash_destroy (fp->ctf_datasecs);
|
|
ctf_dynhash_destroy (fp->ctf_tags);
|
|
fp->ctf_structs = structs;
|
|
fp->ctf_unions = unions;
|
|
fp->ctf_enums = enums;
|
|
fp->ctf_names = names;
|
|
fp->ctf_datasecs = datasecs;
|
|
fp->ctf_tags = tags;
|
|
fp->ctf_dtoldid = 0;
|
|
fp->ctf_snapshot_lu = 0;
|
|
|
|
/* Make sure the ptrtab starts out at a reasonable size. */
|
|
|
|
ctf_set_ctl_hashes (fp);
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
{
|
|
ctf_set_open_errno (errp, ctf_errno (fp));
|
|
ctf_dict_close (fp);
|
|
return NULL;
|
|
}
|
|
|
|
return fp;
|
|
|
|
err:
|
|
ctf_dynhash_destroy (structs);
|
|
ctf_dynhash_destroy (unions);
|
|
ctf_dynhash_destroy (enums);
|
|
ctf_dynhash_destroy (names);
|
|
ctf_dynhash_destroy (datasecs);
|
|
ctf_dynhash_destroy (tags);
|
|
return NULL;
|
|
}
|
|
|
|
/* Compatibility: just update the threshold for ctf_discard. */
|
|
int
|
|
ctf_update (ctf_dict_t *fp)
|
|
{
|
|
fp->ctf_dtoldid = fp->ctf_typemax;
|
|
return 0;
|
|
}
|
|
|
|
ctf_dynhash_t *
|
|
ctf_name_table (ctf_dict_t *fp, int kind)
|
|
{
|
|
switch (kind)
|
|
{
|
|
case CTF_K_STRUCT:
|
|
return fp->ctf_structs;
|
|
case CTF_K_UNION:
|
|
return fp->ctf_unions;
|
|
case CTF_K_ENUM:
|
|
case CTF_K_ENUM64:
|
|
return fp->ctf_enums;
|
|
case CTF_K_DATASEC:
|
|
return fp->ctf_datasecs;
|
|
default:
|
|
return fp->ctf_names;
|
|
}
|
|
}
|
|
|
|
int
|
|
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
|
|
{
|
|
const char *name;
|
|
if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
|
|
dtd) < 0)
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
|
|
if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
|
|
{
|
|
if (ctf_dynhash_insert (ctf_name_table (fp, kind),
|
|
(char *) name, (void *) (uintptr_t)
|
|
dtd->dtd_type) < 0)
|
|
{
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
|
|
dtd->dtd_type);
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
}
|
|
}
|
|
ctf_list_append (&fp->ctf_dtdefs, dtd);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
|
|
{
|
|
const char *name = ctf_type_name_raw (fp, dtd->dtd_type);
|
|
int name_kind = ctf_type_kind_forwarded (fp, dtd->dtd_type);
|
|
|
|
/* Repeated calls should do nothing. */
|
|
if (name_kind < 0 && ctf_errno (fp) == ECTF_BADID)
|
|
return;
|
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
|
|
|
if (name != NULL && name[0] != '\0'
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_buf->ctt_info))
|
|
ctf_dynhash_remove (ctf_name_table (fp, name_kind), name);
|
|
|
|
free (dtd->dtd_buf);
|
|
ctf_list_delete (&fp->ctf_dtdefs, dtd);
|
|
free (dtd);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
fp = ctf_get_dict (fp, type);
|
|
|
|
return (ctf_dtdef_t *)
|
|
ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
|
|
}
|
|
|
|
ctf_dtdef_t *
|
|
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_id_t idx;
|
|
|
|
fp = ctf_get_dict (fp, type);
|
|
|
|
idx = ctf_type_to_index (fp, type);
|
|
|
|
if ((unsigned long) idx > fp->ctf_stypes)
|
|
return ctf_dtd_lookup (fp, type);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
ctf_static_type (const ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_id_t idx;
|
|
|
|
fp = ctf_get_dict (fp, type);
|
|
|
|
idx = ctf_type_to_index (fp, type);
|
|
|
|
return ((unsigned long) idx <= fp->ctf_stypes);
|
|
}
|
|
|
|
/* Discard all of the dynamic type definitions that have been added to the dict
|
|
since the last call to ctf_update(). We locate such types by scanning the
|
|
dtd list and deleting elements that have indexes greater than ctf_dtoldid,
|
|
which is set by ctf_update(), above. */
|
|
int
|
|
ctf_discard (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t last_update =
|
|
{ fp->ctf_dtoldid,
|
|
fp->ctf_snapshot_lu + 1 };
|
|
|
|
return (ctf_rollback (fp, last_update));
|
|
}
|
|
|
|
ctf_snapshot_id_t
|
|
ctf_snapshot (ctf_dict_t *fp)
|
|
{
|
|
ctf_snapshot_id_t snapid;
|
|
snapid.dtd_id = fp->ctf_typemax;
|
|
snapid.snapshot_id = fp->ctf_snapshots++;
|
|
return snapid;
|
|
}
|
|
|
|
/* Like ctf_discard(), only discards everything after a particular ID. */
|
|
int
|
|
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
|
|
{
|
|
ctf_dtdef_t *dtd, *ntd;
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (id.snapshot_id < fp->ctf_stypes)
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (fp->ctf_snapshot_lu >= id.snapshot_id)
|
|
return (ctf_set_errno (fp, ECTF_OVERROLLBACK));
|
|
|
|
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
|
|
{
|
|
ntd = ctf_list_next (dtd);
|
|
|
|
if (ctf_type_to_index (fp, dtd->dtd_type) <= id.dtd_id)
|
|
continue;
|
|
ctf_dtd_delete (fp, dtd);
|
|
}
|
|
|
|
fp->ctf_typemax = id.dtd_id;
|
|
fp->ctf_snapshots = id.snapshot_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Assign an ID to a newly-created type.
|
|
|
|
The type ID assignment scheme in libctf divides types into three
|
|
classes.
|
|
|
|
- static types are types read in from an already-existing dict. They are
|
|
stored only in the ctf_buf and have type indexes ranging from 1 up to
|
|
fp->ctf_typemax (usually the same as fp->ctf_stypes, but may be differnt
|
|
for newly-created children just imported to parents with already-present
|
|
dynamic types). Their IDs are derived from their index in the ctf_buf and
|
|
are not explicitly assigned, though serialization tracks them in order to
|
|
update type IDs that reference them.
|
|
|
|
Type IDs in a child dict start from fp->ctf_header->ctf_parent_typemax
|
|
(fp->ctf_stypes in the parent). There is no gap as in CTFv3 and below:
|
|
the IDs run continuously.
|
|
|
|
- dynamic types are added by ctf_add_*() (ultimately, ctf_add_generic) and
|
|
have DTDs: their type IDs are stored in dtd->dtd_type, and the DTD hashtab
|
|
is indexed by type ID.
|
|
|
|
The simplest form of these types, nonprovisionally-numbered dynamic types,
|
|
have type IDs stretching from fp->ctf_stypes up to fp->ctf_idmax, and
|
|
corresponding indexes. Such types only exist for child dicts and for
|
|
parent dicts which had types added before any children were imported.
|
|
|
|
- As soon as a child is imported, the parent starts allocating provisionally-
|
|
numbered dynamic types from the top of the type space down, updating
|
|
ctf_provtypemax and ctf_nprovtypes as it goes, and bumping ctf_typemax:
|
|
ctf_idmax is no longer bumped. The child continues to allocate in lower
|
|
type space starting from the parent's ctf_idmax + 1. Obviously all
|
|
references to provisional types can't stick around: so at serialization
|
|
time we note down the position of every reference to a provisional type ID
|
|
and all child type IDs, then lay out the type table by going over the
|
|
nonprovisional types and then the provisional ones and dropping them in
|
|
place in their serialized buffers, work out what the final type IDs will
|
|
be, and update all the refs accordingly, changing every type ID that refers
|
|
to the old type to refer to the new one instead. (See ctf_serialize.)
|
|
|
|
The indexes of provisional types run identically to the indexes of
|
|
non-provisional types, i.e. straight upwards without breaks or
|
|
discontinuities, even though this probably overlaps type IDs in the child.
|
|
Indexes and type IDs are not the same!
|
|
|
|
At serialization time, we track references to type IDs in the same dict via
|
|
the refs system while the type table et al are being built (during
|
|
preserialization), and update them with the real type IDs at final
|
|
serialization time; the final type IDs are recorded in the dtd_final_type,
|
|
and we assert if a future serialization would assign a different ID (which
|
|
should be impossible). When child dicts are serialized, references to parent
|
|
types are updated with the dtd_final_type of that type whenever one is set.
|
|
It is considered an error to try to serialize a child while its parent has
|
|
provisional types that have not yet had IDs assigned.
|
|
|
|
(The refs system is not employed to track references from child dicts to
|
|
parents, since forward references are not possible between dicts: the parent
|
|
dict must have been completely serialized when serializing a child. We can't
|
|
be halfway through, which is the case the refs system is there to handle:
|
|
refs from structure members to types not yet known, etc.)
|
|
|
|
Only parents have provisional type IDs! Child IDs are always simply assigned
|
|
straight in the child. This means that the provisional ID space is not
|
|
sparse, and we don't need to worry about child and parent IDs being
|
|
interspersed in it. (Not yet, anyway: if we get multilevel parents this will
|
|
become a concern).
|
|
|
|
Note that you can add types to a parent at any time, even after children have
|
|
been serialized. This works fine, except that you cannot use the
|
|
newly-written dict as a parent for the same children, since they were written
|
|
out assuming a smaller number of types in the parent. */
|
|
|
|
static ctf_id_t
|
|
ctf_assign_id (ctf_dict_t *fp)
|
|
{
|
|
uint32_t idx;
|
|
|
|
/* All type additions increase the max index. */
|
|
|
|
idx = ++fp->ctf_typemax;
|
|
|
|
/* Is this a parent with an attached child? Provisional type. */
|
|
|
|
if (!(fp->ctf_flags & LCTF_CHILD) && (fp->ctf_max_children > 0))
|
|
{
|
|
fp->ctf_provtypemax--;
|
|
fp->ctf_nprovtypes++;
|
|
}
|
|
else
|
|
fp->ctf_idmax++;
|
|
|
|
return ctf_index_to_type (fp, idx);
|
|
}
|
|
|
|
/* Note: vbytes is the amount of space needed by the vlen, plus as many as are
|
|
needed by the PREFIXES, plus any further prefixes (e.g. for hidden types).
|
|
It is required to be the amount of space used, as recorded in the per-kind
|
|
info word. vbytes_extra is some extra space that can be allocated to reduce
|
|
realloc calls.
|
|
|
|
TYPEP is a pointer to either the actual type structure with the name in it,
|
|
or to the first prefix requested by PREFIXES, if nonzero. */
|
|
|
|
static ctf_dtdef_t *
|
|
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
|
|
int prefixes, size_t vbytes, size_t vbytes_extra,
|
|
ctf_type_t **typep)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *pfp = fp;
|
|
|
|
if (fp->ctf_parent)
|
|
pfp = fp->ctf_parent;
|
|
|
|
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
|
|
{
|
|
ctf_set_errno (fp, EINVAL);
|
|
return NULL;
|
|
}
|
|
|
|
if (fp->ctf_typemax + 1 >= pfp->ctf_provtypemax)
|
|
{
|
|
ctf_set_errno (fp, ECTF_FULL);
|
|
return NULL;
|
|
}
|
|
|
|
/* Prohibit addition of types in the middle of serialization. */
|
|
|
|
if (fp->ctf_flags & LCTF_NO_TYPE)
|
|
{
|
|
ctf_set_errno (fp, ECTF_NOTSERIALIZED);
|
|
return NULL;
|
|
}
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
{
|
|
ctf_set_errno (fp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
if (fp->ctf_flags & LCTF_CHILD && fp->ctf_parent == NULL)
|
|
{
|
|
ctf_set_errno (fp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
/* Prohibit addition of a root-visible type that is already present
|
|
in the non-dynamic portion. Two exceptions: type and decl tags,
|
|
whose identifier tables are unusual (duplicates are expected). */
|
|
|
|
if (flag == CTF_ADD_ROOT && name != NULL && name[0] != '\0'
|
|
&& kind != CTF_K_TYPE_TAG && kind != CTF_K_DECL_TAG)
|
|
{
|
|
ctf_id_t existing;
|
|
|
|
if (((existing = ctf_dynhash_lookup_type (ctf_name_table (fp, kind),
|
|
name)) > 0)
|
|
&& ctf_static_type (fp, existing))
|
|
{
|
|
ctf_set_errno (fp, ECTF_RDONLY);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Make sure ptrtab always grows to be big enough for all types. */
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
|
|
{
|
|
ctf_set_typed_errno (fp, EAGAIN);
|
|
return NULL;
|
|
}
|
|
|
|
dtd->dtd_buf_size = vbytes + vbytes_extra + sizeof (ctf_type_t);
|
|
dtd->dtd_vlen_size = vbytes;
|
|
|
|
/* The non-root flag is implemented via prefixes. */
|
|
if (flag == CTF_ADD_NONROOT)
|
|
dtd->dtd_buf_size += sizeof (ctf_type_t);
|
|
|
|
if (prefixes)
|
|
dtd->dtd_buf_size += (sizeof (ctf_type_t) * prefixes);
|
|
|
|
if ((dtd->dtd_buf = calloc (1, dtd->dtd_buf_size)) == NULL)
|
|
goto oom;
|
|
dtd->dtd_vlen = ((unsigned char *) dtd->dtd_buf) + dtd->dtd_buf_size
|
|
- vbytes - vbytes_extra;
|
|
dtd->dtd_data = (ctf_type_t *) (dtd->dtd_vlen - sizeof (ctf_type_t));
|
|
|
|
type = ctf_assign_id (fp);
|
|
|
|
/* Populate a conflicting type kind if need be. This has vlen-in-bytes filled
|
|
in if small enough to fit, to help prefix-unaware clients skip the prefix
|
|
easily, but the vlen is otherwise redundant (and not used by libctf). */
|
|
if (flag == CTF_ADD_NONROOT)
|
|
dtd->dtd_buf->ctt_info = CTF_TYPE_INFO (CTF_K_CONFLICTING, 0,
|
|
dtd->dtd_vlen_size < 65536
|
|
? dtd->dtd_vlen_size : 0);
|
|
|
|
dtd->dtd_data->ctt_name = ctf_str_add (fp, name);
|
|
dtd->dtd_type = type;
|
|
|
|
if (dtd->dtd_data->ctt_name == 0 && name != NULL && name[0] != '\0')
|
|
goto oom;
|
|
|
|
if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
/* Return a pointer to the first user-requested prefix, if any. i.e., don't
|
|
return a pointer to the non-root CONFLICTING header. */
|
|
|
|
if (typep)
|
|
*typep = dtd->dtd_buf + (flag == CTF_ADD_NONROOT);
|
|
|
|
fp->ctf_serialize.cs_initialized = 0;
|
|
|
|
return dtd;
|
|
|
|
oom:
|
|
ctf_set_errno (fp, EAGAIN);
|
|
err:
|
|
free (dtd->dtd_buf);
|
|
free (dtd);
|
|
return NULL;
|
|
}
|
|
|
|
/* When encoding integer sizes, we want to convert a byte count in the range
|
|
1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
|
|
is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */
|
|
static size_t
|
|
clp2 (size_t x)
|
|
{
|
|
x--;
|
|
|
|
x |= (x >> 1);
|
|
x |= (x >> 2);
|
|
x |= (x >> 4);
|
|
x |= (x >> 8);
|
|
x |= (x >> 16);
|
|
|
|
return (x + 1);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
uint32_t encoding;
|
|
int vlen = sizeof (uint32_t);
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
|
|
|
if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT
|
|
|| kind == CTF_K_BTF_FLOAT))
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (kind == CTF_K_BTF_FLOAT)
|
|
vlen = 0;
|
|
|
|
if ((dtd = ctf_add_generic (fp, flag, name, kind, 0, vlen, 0, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, 0, 0);
|
|
dtd->dtd_data->ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT) / CHAR_BIT);
|
|
|
|
if (kind != CTF_K_BTF_FLOAT)
|
|
{
|
|
encoding = ep->cte_format;
|
|
if (kind == CTF_K_INTEGER)
|
|
encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
|
|
|
|
memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding));
|
|
}
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *typedict = fp;
|
|
ctf_dict_t *refdict = fp;
|
|
int child = fp->ctf_flags & LCTF_CHILD;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&refdict, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
if (kind != CTF_K_POINTER)
|
|
return type;
|
|
|
|
/* If we are adding a pointer, update the ptrtab, pointing at this type from
|
|
the type it points to. Note that ctf_typemax is at this point one higher
|
|
than we want to check against, because it's just been incremented for the
|
|
addition of this type. The pptrtab is lazily-updated as needed, so is not
|
|
touched here. */
|
|
|
|
typedict = ctf_get_dict (fp, type);
|
|
uint32_t type_idx = ctf_type_to_index (typedict, type);
|
|
uint32_t ref_idx = ctf_type_to_index (refdict, ref);
|
|
|
|
if (ctf_type_ischild (fp, ref) == child
|
|
&& ref_idx < fp->ctf_typemax)
|
|
fp->ctf_ptrtab[ref_idx] = type_idx;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_slice_t slice;
|
|
ctf_id_t resolved_ref = ref;
|
|
ctf_id_t type;
|
|
int kind;
|
|
const ctf_type_t *tp;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ep == NULL)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
|
|
return (ctf_set_typed_errno (fp, ECTF_SLICEOVERFLOW));
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Make sure we ultimately point to an integral type. We also allow slices to
|
|
point to the unimplemented type, for now, because the compiler can emit
|
|
such slices, though they're not very much use. */
|
|
|
|
if ((resolved_ref = ctf_type_resolve_unsliced (fp, ref)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
kind = ctf_type_kind_unsliced (fp, resolved_ref);
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
|
|
(kind != CTF_K_ENUM) && (kind != CTF_K_BTF_FLOAT)
|
|
&& (ref != 0))
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTINTFP));
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE,
|
|
sizeof (ctf_slice_t), &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
memset (&slice, 0, sizeof (ctf_slice_t));
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
/ CHAR_BIT);
|
|
slice.cts_type = (uint32_t) ref;
|
|
slice.cts_bits = ep->cte_bits;
|
|
slice.cts_offset = ep->cte_offset;
|
|
memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t));
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_btf_float (ctf_dict_t *fp, uint32_t flag,
|
|
const char *name, const ctf_encoding_t *ep)
|
|
{
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_BTF_FLOAT));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_array_t cta;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (arp == NULL)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (arp->ctr_contents != 0
|
|
&& ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
tmp = fp;
|
|
if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_array: index type %lx is incomplete"),
|
|
arp->ctr_contents);
|
|
return (ctf_set_typed_errno (fp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY,
|
|
sizeof (ctf_array_t), &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
memset (&cta, 0, sizeof (ctf_array_t));
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
|
|
dtd->dtd_data.ctt_size = 0;
|
|
cta.cta_contents = (uint32_t) arp->ctr_contents;
|
|
cta.cta_index = (uint32_t) arp->ctr_index;
|
|
cta.cta_nelems = arp->ctr_nelems;
|
|
memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t));
|
|
|
|
return type;
|
|
}
|
|
|
|
int
|
|
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
ctf_array_t *vlen;
|
|
|
|
fp = ctf_get_dict (fp, type);
|
|
|
|
/* You can only call ctf_set_array on a type you have added, not a
|
|
type that was read in via ctf_open(). */
|
|
if (type < fp->ctf_stypes)
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL
|
|
|| LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
|
|
|
vlen = (ctf_array_t *) dtd->dtd_vlen;
|
|
vlen->cta_contents = (uint32_t) arp->ctr_contents;
|
|
vlen->cta_index = (uint32_t) arp->ctr_index;
|
|
vlen->cta_nelems = arp->ctr_nelems;
|
|
|
|
return 0;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
|
|
const ctf_funcinfo_t *ctc, const ctf_id_t *argv,
|
|
const char **arg_names)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
uint32_t vlen;
|
|
ctf_param_t *vdat;
|
|
ctf_dict_t *tmp = fp;
|
|
size_t i;
|
|
|
|
if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
|
|
|| (ctc->ctc_argc != 0 && argv == NULL))
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
vlen = ctc->ctc_argc;
|
|
|
|
/* UPTODO: CTF_K_BIG prefix for big functions? */
|
|
if (vlen > 0xffff)
|
|
return (ctf_set_typed_errno (fp, EOVERFLOW));
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
vlen++; /* Add trailing zero to indicate varargs (see below). */
|
|
|
|
if (ctc->ctc_return != 0
|
|
&& ctf_lookup_by_id (&tmp, ctc->ctc_return, NULL) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
for (i = 0; i < ctc->ctc_argc; i++)
|
|
{
|
|
tmp = fp;
|
|
if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i], NULL) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
if (vlen > CTF_MAX_VLEN)
|
|
return (ctf_set_typed_errno (fp, EOVERFLOW));
|
|
|
|
if ((dtd = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION, 0,
|
|
sizeof (ctf_param_t) * vlen, 0, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
vdat = (ctf_param_t *) dtd->dtd_vlen;
|
|
|
|
for (i = 0; i < ctc->ctc_argc; i++)
|
|
{
|
|
vdat[i].cfp_name = ctf_str_add (fp, arg_names[i]);
|
|
vdat[i].cfp_type = (uint32_t) argv[i];
|
|
}
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, 0, vlen);
|
|
dtd->dtd_data->ctt_type = (uint32_t) ctc->ctc_return;
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
{
|
|
vdat[vlen - 1].cfp_type = 0; /* Add trailing zero to indicate varargs. */
|
|
vdat[vlen - 1].cfp_name = 0;
|
|
}
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_function_linkage (ctf_dict_t *fp, uint32_t flag,
|
|
ctf_id_t ref, const char *name, int linkage)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (linkage < 0 || linkage > 2)
|
|
return (ctf_set_typed_errno (fp, ECTF_LINKAGE));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref, NULL) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, ref) != CTF_K_FUNCTION)
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTFUNC));
|
|
|
|
if ((dtd = ctf_add_generic (fp, flag, name, CTF_K_FUNC_LINKAGE, 0,
|
|
0, 0, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_FUNC_LINKAGE, 0, linkage);
|
|
dtd->dtd_data->ctt_type = (uint32_t) ref;
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
static ctf_id_t
|
|
ctf_add_sou_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size, int kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_type_t *prefix;
|
|
ctf_id_t type = 0;
|
|
uint32_t idx;
|
|
size_t initial_vbytes = sizeof (ctf_member_t) * INITIAL_VLEN;
|
|
int root_flag = flag & (~CTF_ADD_STRUCT_BITFIELDS);
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
/* Promote root-visible forwards to structs/unions. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
|
|
|
if (type > 0)
|
|
idx = ctf_type_to_index (fp, type);
|
|
|
|
/* Prohibit promotion if this type was ctf_open()ed. */
|
|
if (type > 0 && idx < fp->ctf_stypes)
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
{
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
|
|
if ((prefix = ctf_add_prefix (fp, dtd, initial_vbytes)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
else if ((dtd = ctf_add_generic (fp, root_flag, name, kind, 1, 0,
|
|
initial_vbytes, &prefix)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
prefix->ctt_info = CTF_TYPE_INFO (CTF_K_BIG, 0, 0);
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, !!(flag & CTF_ADD_STRUCT_BITFIELDS), 0);
|
|
prefix->ctt_size = CTF_SIZE_TO_LSIZE_HI (size);
|
|
dtd->dtd_data->ctt_size = CTF_SIZE_TO_LSIZE_LO (size);
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
return ctf_add_sou_sized (fp, flag, name, size, CTF_K_STRUCT);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_struct_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
size_t size)
|
|
{
|
|
return ctf_add_sou_sized (fp, flag, name, size, CTF_K_UNION);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return (ctf_add_union_sized (fp, flag, name, 0));
|
|
}
|
|
|
|
static ctf_id_t
|
|
ctf_add_enum_internal (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
int kind, int is_signed)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
size_t initial_vbytes;
|
|
ctf_type_t *prefix;
|
|
|
|
if (!ctf_assert (fp, kind == CTF_K_ENUM || kind == CTF_K_ENUM64))
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (kind == CTF_K_ENUM)
|
|
initial_vbytes = sizeof (ctf_enum_t) * INITIAL_VLEN;
|
|
else
|
|
initial_vbytes = sizeof (ctf_enum64_t) * INITIAL_VLEN;
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
/* Promote root-visible forwards to enums. */
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
|
|
|
/* Prohibit promotion if this type was ctf_open()ed. */
|
|
if (type > 0 && type < fp->ctf_stypes)
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
{
|
|
dtd = ctf_dtd_lookup (fp, type);
|
|
|
|
if ((prefix = ctf_add_prefix (fp, dtd, initial_vbytes)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
else if ((dtd = ctf_add_generic (fp, flag, name, kind, 1, 0, initial_vbytes,
|
|
&prefix)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
prefix->ctt_info = CTF_TYPE_INFO (CTF_K_BIG, 0, 0);
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, is_signed, 0);
|
|
|
|
if (kind == CTF_K_ENUM)
|
|
dtd->dtd_data->ctt_size = fp->ctf_dmodel->ctd_int;
|
|
else
|
|
dtd->dtd_data->ctt_size = 8;
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return ctf_add_enum_internal (fp, flag, name, CTF_K_ENUM, 1);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum64 (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
return ctf_add_enum_internal (fp, flag, name, CTF_K_ENUM64, 1);
|
|
}
|
|
|
|
static ctf_id_t
|
|
ctf_add_enum_encoded_internal (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
int kind, const ctf_encoding_t *ep)
|
|
{
|
|
ctf_id_t type = 0;
|
|
int is_signed = ((ep->cte_format & CTF_INT_SIGNED) != 0);
|
|
|
|
/* First, create the enum if need be, using most of the same machinery as
|
|
ctf_add_enum(), to ensure that we do not allow things past that are not
|
|
enums or forwards to them. (This includes other slices: you cannot slice a
|
|
slice, which would be a useless thing to do anyway.) */
|
|
|
|
if (name != NULL)
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
|
|
|
if (type != 0)
|
|
{
|
|
if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
|
|
(ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM) &&
|
|
(ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM64))
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTINTFP));
|
|
}
|
|
else if ((type = ctf_add_enum_internal (fp, flag, name, kind, is_signed))
|
|
== CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* If this is just changing the signedness of the enum, we don't need a
|
|
slice. */
|
|
|
|
if ((ep->cte_format & ~CTF_INT_SIGNED) == 0
|
|
&& ep->cte_bits == 0
|
|
&& ep->cte_offset == 0)
|
|
return type;
|
|
|
|
/* Now attach a suitable slice to it. */
|
|
|
|
return ctf_add_slice (fp, flag, type, ep);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
return ctf_add_enum_encoded_internal (fp, flag, name, CTF_K_ENUM, ep);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_enum64_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
const ctf_encoding_t *ep)
|
|
{
|
|
return ctf_add_enum_encoded_internal (fp, flag, name, CTF_K_ENUM64, ep);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
uint32_t kind)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
if (!ctf_forwardable_kind (kind))
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTSUE));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
/* If the type is already defined or exists as a forward tag, just return
|
|
the ctf_id_t of the existing definition. Since this changes nothing,
|
|
it's safe to do even on the read-only portion of the dict. */
|
|
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
|
|
|
if (type)
|
|
return type;
|
|
|
|
if ((dtd = ctf_add_generic (fp, flag, name, kind, 0, 0, 0, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (kind != CTF_K_ENUM &&
|
|
kind != CTF_K_ENUM64)
|
|
{
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, 0, 0);
|
|
dtd->dtd_data->ctt_type = kind;
|
|
}
|
|
else
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, 0, 0);
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_unknown (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type = 0;
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
/* If a type is already defined with this name, error (if not CTF_K_UNKNOWN)
|
|
or just return it. */
|
|
|
|
if (name != NULL && name[0] != '\0' && flag == CTF_ADD_ROOT
|
|
&& (type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name)))
|
|
{
|
|
if (ctf_type_kind (fp, type) == CTF_K_UNKNOWN)
|
|
return type;
|
|
else
|
|
{
|
|
ctf_err_warn (fp, 1, ECTF_CONFLICT,
|
|
_("ctf_add_unknown: cannot add unknown type "
|
|
"named %s: type of this name already defined"),
|
|
name ? name : _("(unnamed type)"));
|
|
return (ctf_set_typed_errno (fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNKNOWN, 0, &dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNKNOWN, flag, 0);
|
|
dtd->dtd_data.ctt_type = 0;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
|
|
ctf_id_t ref)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
ctf_id_t type;
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0,
|
|
&dtd)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
return type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
|
{
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
|
|
}
|
|
|
|
int
|
|
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
|
|
int64_t value)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
uint32_t kind, vlen, root, en_name;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
if ((enid = ctf_type_resolve_unsliced (fp, enid)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
dtd = ctf_dtd_lookup (fp, enid);
|
|
fp = ctf_get_dict (fp, enid);
|
|
|
|
if (enid < fp->ctf_stypes)
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
|
|
|
kind = LCTF_KIND (fp, dtd->dtd_buf);
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_buf->ctt_info);
|
|
vlen = LCTF_VLEN (fp, dtd->dtd_buf);
|
|
|
|
/* Enumeration constant names are only added, and only checked for duplicates,
|
|
if the enum they are part of is a root-visible type. */
|
|
|
|
if (root == CTF_ADD_ROOT && ctf_dynhash_lookup (fp->ctf_names, name))
|
|
{
|
|
if (fp->ctf_flags & LCTF_STRICT_NO_DUP_ENUMERATORS)
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
|
|
|
if (ctf_track_enumerator (fp, enid, name) < 0)
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
}
|
|
|
|
if ((kind != CTF_K_ENUM) && (kind != CTF_K_ENUM64))
|
|
return (ctf_set_errno (ofp, ECTF_NOTENUM));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (ofp, ECTF_DTFULL));
|
|
|
|
if (kind == CTF_K_ENUM)
|
|
{
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
dtd->dtd_vlen_size += sizeof (ctf_enum_t);
|
|
}
|
|
else
|
|
{
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum64_t) * (vlen + 1)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
dtd->dtd_vlen_size += sizeof (ctf_enum64_t);
|
|
}
|
|
|
|
/* Check for constant duplication within any given enum: only needed for
|
|
non-root-visible types, since the duplicate detection above does the job
|
|
for root-visible types just fine. */
|
|
|
|
if (root == CTF_ADD_NONROOT && (fp->ctf_flags & LCTF_STRICT_NO_DUP_ENUMERATORS))
|
|
{
|
|
size_t i;
|
|
|
|
if (kind == CTF_K_ENUM)
|
|
{
|
|
ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
|
}
|
|
else
|
|
{
|
|
ctf_enum64_t *en = (ctf_enum64_t *) dtd->dtd_vlen;
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
|
|
|
}
|
|
}
|
|
|
|
if (kind == CTF_K_ENUM)
|
|
{
|
|
ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
en[vlen].cte_name = ctf_str_add (fp, name);
|
|
en[vlen].cte_value = value;
|
|
|
|
en_name = en[vlen].cte_name;
|
|
}
|
|
else
|
|
{
|
|
ctf_enum64_t *en = (ctf_enum64_t *) dtd->dtd_vlen;
|
|
|
|
en[vlen].cte_name = ctf_str_add (fp, name);
|
|
en[vlen].cte_val_low = ((uint64_t) value) & 0xffffffff;
|
|
en[vlen].cte_val_high = ((uint64_t) value) >> 32;
|
|
|
|
en_name = en[vlen].cte_name;
|
|
}
|
|
|
|
if (en_name == 0 && name != NULL && name[0] != '\0')
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
/* Put the newly-added enumerator name into the name table if this type is
|
|
root-visible. */
|
|
|
|
if (root == CTF_ADD_ROOT)
|
|
{
|
|
if (ctf_dynhash_insert (fp->ctf_names,
|
|
(char *) ctf_strptr (fp, en_name),
|
|
(void *) (uintptr_t) enid) < 0)
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
}
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_bitfield (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset,
|
|
int bit_width)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_dict_t *tmp = fp;
|
|
ctf_dtdef_t *dtd;
|
|
ctf_type_t *prefix;
|
|
|
|
ssize_t msize, ssize;
|
|
uint32_t kind, kflag;
|
|
size_t vlen;
|
|
size_t i;
|
|
int is_incomplete = 0;
|
|
ctf_member_t *memb;
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (fp->ctf_flags & LCTF_NO_TYPE)
|
|
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && ctf_type_isparent (fp, souid))
|
|
{
|
|
/* Adding a child type to a parent, even via the child, is prohibited.
|
|
Otherwise, climb to the parent and do all work there. */
|
|
|
|
if (ctf_type_ischild (fp, type))
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
|
|
|
fp = fp->ctf_parent;
|
|
}
|
|
|
|
dtd = ctf_dtd_lookup (fp, souid);
|
|
|
|
if (souid < fp->ctf_stypes)
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
|
|
|
if ((ctf_lookup_by_id (&tmp, type, NULL)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (name != NULL && name[0] == '\0')
|
|
name = NULL;
|
|
|
|
if ((prefix = (ctf_type_t *) ctf_find_prefix (fp, dtd->dtd_buf, CTF_K_BIG)) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_CORRUPT));
|
|
|
|
kind = LCTF_KIND (fp, prefix);
|
|
kflag = CTF_INFO_KFLAG (dtd->dtd_data->ctt_info);
|
|
vlen = LCTF_VLEN (fp, prefix);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
|
|
if (!kflag && bit_width != 0)
|
|
return (ctf_set_errno (ofp, ECTF_NOTBITSOU));
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
|
return (ctf_set_errno (ofp, ECTF_DTFULL));
|
|
|
|
/* Figure out the offset of this field: all structures in DTDs
|
|
are CTF_K_BIG, which means their offsets are all encoded as
|
|
distances from the last field's. */
|
|
|
|
if (bit_offset != (unsigned long) -1)
|
|
{
|
|
if (bit_offset < dtd->dtd_last_offset)
|
|
return (ctf_set_errno (ofp, ECTF_DESCENDING));
|
|
|
|
bit_offset -= dtd->dtd_last_offset;
|
|
}
|
|
|
|
memb = (ctf_member_t *) dtd->dtd_vlen;
|
|
|
|
if (name != NULL)
|
|
{
|
|
for (i = 0; i < vlen; i++)
|
|
if (strcmp (ctf_strptr (fp, memb[i].ctm_name), name) == 0)
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
|
}
|
|
|
|
if ((msize = ctf_type_size (fp, type)) < 0 ||
|
|
(ctf_type_align (fp, type)) < 0)
|
|
{
|
|
/* The unimplemented type, and any type that resolves to it, has no size
|
|
and no alignment: it can correspond to any number of compiler-inserted
|
|
types. We allow incomplete types through since they are routinely
|
|
added to the ends of structures, and can even be added elsewhere in
|
|
structures by the deduplicator and by the padding inserter below. They
|
|
are assumed to be zero-size with no alignment: this is often wrong, but
|
|
problems can be avoided in this case by explicitly specifying the size
|
|
of the structure via the _sized functions. The deduplicator always
|
|
does this. */
|
|
|
|
msize = 0;
|
|
if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
|
|
ctf_set_errno (fp, 0);
|
|
else if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
is_incomplete = 1;
|
|
else
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
/* Figure out the right offset for naturally-aligned types, if need be,
|
|
and insert additional unnamed members as needed. */
|
|
|
|
if (kind == CTF_K_UNION || vlen == 0)
|
|
{
|
|
bit_offset = 0;
|
|
ssize = ctf_get_ctt_size (fp, prefix, NULL, NULL);
|
|
ssize = MAX (ssize, msize);
|
|
}
|
|
else /* Subsequent struct member. */
|
|
{
|
|
size_t bound;
|
|
ssize_t off;
|
|
int added_padding = 0;
|
|
|
|
if (bit_offset == (unsigned long) - 1)
|
|
{
|
|
/* Natural alignment. */
|
|
|
|
if (is_incomplete)
|
|
{
|
|
ctf_err_warn (ofp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member: cannot add member %s of "
|
|
"incomplete type %lx to struct %lx without "
|
|
"specifying explicit offset\n"),
|
|
name ? name : _("(unnamed member)"), type, souid);
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
|
}
|
|
|
|
if ((off = ctf_type_align_natural (fp, memb[vlen - 1].ctm_type,
|
|
type, dtd->dtd_last_offset)) < 0)
|
|
{
|
|
if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
{
|
|
const char *lname = ctf_strraw (fp, memb[vlen - 1].ctm_name);
|
|
|
|
ctf_err_warn (ofp, 1, ECTF_INCOMPLETE,
|
|
_("ctf_add_member_offset: cannot add member %s "
|
|
"of type %lx to struct %lx without "
|
|
"specifying explicit offset after member %s"
|
|
"of type %x, which is an incomplete type\n"),
|
|
name ? name : _("(unnamed member)"), type, souid,
|
|
lname ? lname : _("(unnamed member)"),
|
|
memb[vlen -1].ctm_type);
|
|
}
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
}
|
|
|
|
/* Convert the offset to a gap-since-the-last. */
|
|
off -= dtd->dtd_last_offset;
|
|
bit_offset = off;
|
|
}
|
|
|
|
/* Insert as many nameless members as needed. */
|
|
|
|
if (kflag)
|
|
bound = CTF_MAX_BIT_OFFSET;
|
|
else
|
|
bound = CTF_MAX_SIZE;
|
|
|
|
while (bit_offset > bound)
|
|
{
|
|
added_padding = 1;
|
|
|
|
off = bound;
|
|
if (kflag)
|
|
off = CTF_MEMBER_BIT_OFFSET (bound);
|
|
|
|
if (ctf_add_member_bitfield (fp, souid, "", 0, off, 0) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
bit_offset =- off;
|
|
}
|
|
|
|
off = bit_offset;
|
|
if (kflag)
|
|
off = CTF_MEMBER_BIT_OFFSET (off);
|
|
|
|
/* Possibly hunt down the prefix and member list again: they may have been
|
|
moved by the realloc()s involved in field additions. */
|
|
|
|
if (added_padding
|
|
&& (prefix = (ctf_type_t *) ctf_find_prefix (fp, dtd->dtd_buf, CTF_K_BIG)) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_CORRUPT));
|
|
|
|
vlen = LCTF_VLEN (fp, prefix);
|
|
memb = (ctf_member_t *) dtd->dtd_vlen;
|
|
bit_offset = off;
|
|
|
|
ssize = ctf_get_ctt_size (fp, prefix, NULL, NULL);
|
|
ssize = MAX (ssize, ((signed) ((bit_offset + dtd->dtd_last_offset)) / CHAR_BIT) + msize);
|
|
}
|
|
|
|
if (kflag)
|
|
memb[vlen].ctm_offset = CTF_MEMBER_MAKE_BIT_OFFSET (bit_width, bit_offset);
|
|
else
|
|
memb[vlen].ctm_offset = bit_offset;
|
|
|
|
vlen = LCTF_VLEN (fp, prefix);
|
|
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_member_t) * (vlen + 1)) < 0)
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
|
|
|
dtd->dtd_vlen_size += sizeof (ctf_member_t);
|
|
|
|
/* Hunt down the prefix and member list yet again, since they may have been
|
|
reallocated by ctf_grow_vlen. */
|
|
|
|
if ((prefix = (ctf_type_t *) ctf_find_prefix (fp, dtd->dtd_buf, CTF_K_BIG)) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_CORRUPT));
|
|
memb = (ctf_member_t *) dtd->dtd_vlen;
|
|
|
|
memb[vlen].ctm_name = ctf_str_add (fp, name);
|
|
memb[vlen].ctm_type = type;
|
|
if (memb[vlen].ctm_name == 0 && name != NULL && name[0] != '\0')
|
|
return -1; /* errno is set for us. */
|
|
|
|
dtd->dtd_data->ctt_size = CTF_SIZE_TO_LSIZE_LO (ssize);
|
|
prefix->ctt_size = CTF_SIZE_TO_LSIZE_HI (ssize);
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, kflag, CTF_VLEN_TO_VLEN_LO(vlen + 1));
|
|
prefix->ctt_info = CTF_TYPE_INFO (CTF_K_BIG, 0, CTF_VLEN_TO_VLEN_HI(vlen + 1));
|
|
|
|
dtd->dtd_last_offset += bit_offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset,
|
|
const ctf_encoding_t encoding)
|
|
{
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
|
int kind;
|
|
int otype = type;
|
|
|
|
if (dtd == NULL)
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
kind = LCTF_KIND (fp, dtd->dtd_buf);
|
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
/* Create a slice if need be. */
|
|
|
|
if (encoding.cte_offset != 0 ||
|
|
encoding.cte_format != 0 ||
|
|
(encoding.cte_bits != 0 && CTF_INFO_KFLAG (dtd->dtd_data->ctt_info) == 0))
|
|
{
|
|
if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
else
|
|
type = otype;
|
|
|
|
return ctf_add_member_bitfield (fp, souid, name, type, bit_offset, 0);
|
|
}
|
|
|
|
int
|
|
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type, unsigned long bit_offset)
|
|
{
|
|
return ctf_add_member_bitfield (fp, souid, name, type, bit_offset, 0);
|
|
}
|
|
|
|
int
|
|
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
|
ctf_id_t type)
|
|
{
|
|
return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
|
|
}
|
|
|
|
/* Add a DATASEC to hang variables off of. */
|
|
|
|
static ctf_id_t
|
|
ctf_add_datasec (ctf_dict_t *fp, uint32_t flag, const char *datasec)
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
size_t initial_vlen = sizeof (ctf_var_secinfo_t) * INITIAL_VLEN;
|
|
|
|
if ((dtd = ctf_add_generic (fp, flag, datasec, CTF_K_DATASEC,
|
|
0, 0, initial_vlen, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_DATASEC, 0, 0);
|
|
dtd->dtd_data->ctt_size = 0;
|
|
|
|
return dtd->dtd_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_variable (ctf_dict_t *fp, const char *name, int linkage, ctf_id_t ref)
|
|
{
|
|
return ctf_add_section_variable (fp, CTF_ADD_ROOT, NULL, name, linkage, ref,
|
|
0, (unsigned long) -1);
|
|
}
|
|
|
|
/* Add variable, interning it in the specified DATASEC (which must be in the
|
|
same dict, but which may be NULL, meaning "no datasec"). As with structs, an
|
|
offset of -1 means "next natural alignment". A size of zero means "get it
|
|
from the type" and is the common case. */
|
|
ctf_id_t
|
|
ctf_add_section_variable (ctf_dict_t *fp, uint32_t flag, const char *datasec,
|
|
const char *name, int linkage, ctf_id_t type,
|
|
size_t size, size_t offset)
|
|
{
|
|
ctf_dtdef_t *sec_dtd = NULL;
|
|
ctf_dtdef_t *var_dtd = NULL;
|
|
|
|
uint32_t kind, kflag;
|
|
size_t vlen;
|
|
|
|
ctf_linkage_t *l;
|
|
ctf_var_secinfo_t *sec;
|
|
|
|
ctf_dict_t *tmp = fp;
|
|
ctf_id_t datasec_id = 0;
|
|
int is_incomplete = 0;
|
|
ctf_snapshot_id_t err_snap = ctf_snapshot (fp);
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_typed_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (name == NULL || name[0] == '\0')
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
|
|
|
if (linkage < 0 || linkage > 2)
|
|
return (ctf_set_typed_errno (fp, ECTF_LINKAGE));
|
|
|
|
if (flag == CTF_ADD_ROOT && ctf_lookup_by_rawname (fp, CTF_K_VAR, name) != 0)
|
|
return (ctf_set_typed_errno (fp, ECTF_DUPLICATE));
|
|
|
|
/* First, create the variable. Make sure its type exists. */
|
|
|
|
if (ctf_lookup_by_id (&tmp, type, NULL) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Make sure this type is representable: if a variable is nonrepresentable
|
|
there's nothing the end-user can do with it even if they know it's there.
|
|
Allow type 0: this is used for const void variables in BTF input. */
|
|
|
|
if ((ctf_type_resolve_nonrepresentable (fp, type, 1) == CTF_ERR)
|
|
&& (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
|
|
return CTF_ERR;
|
|
|
|
if ((var_dtd = ctf_add_generic (fp, flag, name, CTF_K_VAR, 0,
|
|
sizeof (ctf_linkage_t), 0, NULL)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
l = (ctf_linkage_t *) var_dtd->dtd_vlen;
|
|
var_dtd->dtd_data->ctt_info = CTF_TYPE_INFO (CTF_K_VAR, 0, 0);
|
|
var_dtd->dtd_data->ctt_type = type;
|
|
l->ctl_linkage = linkage;
|
|
|
|
/* Add it to the datasec, if requested, creating the datasec if need be. */
|
|
|
|
if (!datasec)
|
|
return var_dtd->dtd_type;
|
|
|
|
if ((datasec_id = ctf_lookup_by_rawname (fp, CTF_K_DATASEC,
|
|
datasec)) == 0)
|
|
{
|
|
if ((datasec_id = ctf_add_datasec (fp, CTF_ADD_ROOT,
|
|
datasec)) == CTF_ERR)
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
|
|
sec_dtd = ctf_dtd_lookup (fp, datasec_id);
|
|
|
|
kind = LCTF_KIND (fp, sec_dtd->dtd_buf);
|
|
kflag = CTF_INFO_KFLAG (sec_dtd->dtd_data->ctt_info);
|
|
vlen = LCTF_VLEN (fp, sec_dtd->dtd_buf);
|
|
|
|
if (vlen == CTF_MAX_RAW_VLEN)
|
|
{
|
|
ctf_set_typed_errno (fp, ECTF_DTFULL);
|
|
goto err;
|
|
}
|
|
|
|
/* DATASECs do not support CTF_K_BIG (yet). */
|
|
if (vlen == CTF_MAX_RAW_VLEN)
|
|
{
|
|
ctf_set_typed_errno (fp, ECTF_DTFULL);
|
|
goto err;
|
|
}
|
|
|
|
/* Allow for variables of void-like types. */
|
|
if (type == 0)
|
|
is_incomplete = 1;
|
|
else if (ctf_type_align (fp, type) < 0)
|
|
{
|
|
/* See the comment in ctf_add_member_bitfield. We don't need to worry
|
|
about norepresentable types, because we just added this one: we know
|
|
it's representable. We do not know it's complete. */
|
|
|
|
if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
is_incomplete = 1;
|
|
else
|
|
goto err; /* errno is set for us. */
|
|
}
|
|
|
|
/* Here we just add the var info to the end of the datasec, naturally aligning
|
|
the offset as with struct/union membership addition if no offset is
|
|
specified. */
|
|
|
|
sec = (ctf_var_secinfo_t *) sec_dtd->dtd_vlen;
|
|
|
|
if (vlen != 0)
|
|
{
|
|
/* To avoid causing trouble with existing code promiscuously adding
|
|
variables without caring about their types, if natural alignment fails
|
|
due to incomplete types, just set the next offset to something aligned
|
|
mod 8. It might be a waste of space but it'll avoid an error and
|
|
should suffice for a long time to come. */
|
|
|
|
if (offset == (unsigned long) -1 && is_incomplete)
|
|
offset = roundup (offset, 8);
|
|
else if (offset == (unsigned long) -1)
|
|
{
|
|
/* Natural alignment. */
|
|
|
|
ssize_t bit_offset = offset * 8;
|
|
|
|
if ((bit_offset = ctf_type_align_natural (fp, sec[vlen - 1].cvs_type,
|
|
type, sec[vlen -1].cvs_offset)) < 0)
|
|
offset = roundup (offset, 8);
|
|
else
|
|
offset = bit_offset / CHAR_BIT;
|
|
}
|
|
|
|
/* This DTD may need sorting. */
|
|
|
|
if (offset < sec[vlen - 1].cvs_offset)
|
|
sec_dtd->dtd_flags |= ~DTD_F_UNSORTED;
|
|
|
|
} else if (offset == (unsigned long) -1)
|
|
offset = 0;
|
|
|
|
/* Remember the variable -> datasec mapping. */
|
|
|
|
if (ctf_dynhash_insert (fp->ctf_var_datasecs,
|
|
(void *) (ptrdiff_t) var_dtd->dtd_type,
|
|
(void *) (ptrdiff_t) datasec_id) != 0)
|
|
{
|
|
ctf_set_typed_errno (fp, ENOMEM);
|
|
goto err;
|
|
}
|
|
|
|
if (ctf_grow_vlen (fp, sec_dtd, sizeof (ctf_var_secinfo_t) * (vlen + 1)) < 0)
|
|
goto err;
|
|
|
|
sec_dtd->dtd_vlen_size += sizeof (ctf_var_secinfo_t);
|
|
sec = (ctf_var_secinfo_t *) sec_dtd->dtd_vlen;
|
|
|
|
sec[vlen].cvs_type = (uint32_t) var_dtd->dtd_type;
|
|
sec[vlen].cvs_offset = (uint32_t) offset;
|
|
sec[vlen].cvs_size = (uint32_t) size;
|
|
sec_dtd->dtd_data->ctt_info = CTF_TYPE_INFO (kind, kflag, vlen + 1);
|
|
|
|
return var_dtd->dtd_type;
|
|
|
|
err:
|
|
ctf_dynhash_remove (fp->ctf_var_datasecs,
|
|
(void *) (ptrdiff_t) var_dtd->dtd_type);
|
|
ctf_rollback (fp, err_snap);
|
|
return CTF_ERR;
|
|
}
|
|
|
|
/* Add a function or object symbol regardless of whether or not it is already
|
|
present (already existing symbols are silently overwritten).
|
|
|
|
Internal use only. */
|
|
int
|
|
ctf_add_funcobjt_sym_forced (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
|
{
|
|
ctf_dict_t *tmp = fp;
|
|
char *dupname;
|
|
ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;
|
|
|
|
if (fp->ctf_flags & LCTF_NO_STR)
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (fp->ctf_flags & LCTF_NO_TYPE)
|
|
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
|
|
|
|
if (ctf_lookup_by_id (&tmp, id, NULL) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
if ((dupname = strdup (name)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
|
|
{
|
|
free (dupname);
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
|
{
|
|
if (ctf_lookup_by_sym_or_name (fp, 0, name, 0, is_function) != CTF_ERR)
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
return ctf_add_funcobjt_sym_forced (fp, is_function, name, id);
|
|
}
|
|
|
|
int
|
|
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 0, name, id));
|
|
}
|
|
|
|
int
|
|
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
{
|
|
return (ctf_add_funcobjt_sym (fp, 1, name, id));
|
|
}
|
|
|
|
/* Sort function used by ctf_datasec_sort. */
|
|
|
|
static int
|
|
ctf_datasec_sort_ascending (const void *one_, const void *two_)
|
|
{
|
|
ctf_var_secinfo_t *one = (ctf_var_secinfo_t *) one_;
|
|
ctf_var_secinfo_t *two = (ctf_var_secinfo_t *) two_;
|
|
|
|
if (one->cvs_offset < two->cvs_offset)
|
|
return -1;
|
|
else if (one->cvs_offset > two->cvs_offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Sort a datasec into order. Needed before serialization or query
|
|
operations. */
|
|
|
|
void
|
|
ctf_datasec_sort (ctf_dict_t *fp, ctf_dtdef_t *dtd)
|
|
{
|
|
size_t vlen;
|
|
|
|
if (!(dtd->dtd_flags & DTD_F_UNSORTED))
|
|
return;
|
|
|
|
vlen = LCTF_VLEN (fp, dtd->dtd_buf);
|
|
|
|
qsort (dtd->dtd_vlen, vlen, sizeof (ctf_var_secinfo_t),
|
|
ctf_datasec_sort_ascending);
|
|
dtd->dtd_flags &= ~DTD_F_UNSORTED;
|
|
}
|
|
|
|
/* Add an enumeration constant observed in a given enum type as an identifier.
|
|
They appear as names that cite the enum type.
|
|
|
|
Constants that appear in more than one enum, or which are already the names
|
|
of types, appear in ctf_conflicting_enums as well.
|
|
|
|
This is done for all enumeration types at open time, and for newly-added ones
|
|
as well: if the strict-enum flag is turned on, this table must be kept up to
|
|
date with enums added in the interim. */
|
|
|
|
int
|
|
ctf_track_enumerator (ctf_dict_t *fp, ctf_id_t type, const char *cte_name)
|
|
{
|
|
int err;
|
|
|
|
if (ctf_dynhash_lookup_type (fp->ctf_names, cte_name) == 0)
|
|
{
|
|
uint32_t name = ctf_str_add (fp, cte_name);
|
|
|
|
if (name == 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
err = ctf_dynhash_insert_type (fp, fp->ctf_names, type, name);
|
|
}
|
|
else
|
|
{
|
|
err = ctf_dynset_insert (fp->ctf_conflicting_enums, (void *)
|
|
cte_name);
|
|
if (err != 0)
|
|
ctf_set_errno (fp, err * -1);
|
|
}
|
|
if (err != 0)
|
|
return -1; /* errno is set for us. */
|
|
return 0;
|
|
}
|
|
|
|
typedef struct ctf_bundle
|
|
{
|
|
ctf_dict_t *ctb_dict; /* CTF dict handle. */
|
|
ctf_id_t ctb_type; /* CTF type identifier. */
|
|
ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */
|
|
} ctf_bundle_t;
|
|
|
|
static int
|
|
enumcmp (const char *name, int64_t value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
int64_t bvalue;
|
|
|
|
if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to enum %s iteration error"), name);
|
|
return 1;
|
|
}
|
|
if (value != bvalue)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to enum value change: %li versus %li"),
|
|
value, bvalue);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
enumadd (const char *name, int64_t value, void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
|
|
name, value) < 0);
|
|
}
|
|
|
|
static int
|
|
membcmp (ctf_dict_t *src_fp _libctf_unused_, const char *name,
|
|
ctf_id_t type _libctf_unused_, size_t offset, int bit_width,
|
|
void *arg)
|
|
{
|
|
ctf_bundle_t *ctb = arg;
|
|
ctf_membinfo_t ctm;
|
|
|
|
/* Don't check nameless members (e.g. anonymous structs/unions) against each
|
|
other. */
|
|
if (name[0] == 0)
|
|
return 0;
|
|
|
|
if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
|
_("conflict due to struct member %s iteration error"),
|
|
name);
|
|
return 1;
|
|
}
|
|
if (ctm.ctm_offset != offset)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to struct member %s offset change: "
|
|
"%zx versus %zx"),
|
|
name, ctm.ctm_offset, offset);
|
|
return 1;
|
|
}
|
|
if (ctm.ctm_bit_width != bit_width)
|
|
{
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
|
_("conflict due to struct member %s bit-width change: "
|
|
"%i versus %i"),
|
|
name, ctm.ctm_bit_width, bit_width);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Record the correspondence between a source and ctf_add_type()-added
|
|
destination type: both types are translated into parent type IDs if need be,
|
|
so they relate to the actual dictionary they are in. Outside controlled
|
|
circumstances (like linking) it is probably not useful to do more than
|
|
compare these pointers, since there is nothing stopping the user closing the
|
|
source dict whenever they want to.
|
|
|
|
Our OOM handling here is just to not do anything, because this is called deep
|
|
enough in the call stack that doing anything useful is painfully difficult:
|
|
the worst consequence if we do OOM is a bit of type duplication anyway.
|
|
The non-imported checks are just paranoia and should never be able to
|
|
happen, but if they do we don't want a coredump. */
|
|
|
|
static void
|
|
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
ctf_dict_t *dst_fp, ctf_id_t dst_type)
|
|
{
|
|
src_fp = ctf_get_dict (src_fp, src_type);
|
|
dst_fp = ctf_get_dict (dst_fp, dst_type);
|
|
|
|
/* Not imported? No mapping is meaningful. */
|
|
if (src_fp == NULL || dst_fp == NULL)
|
|
return;
|
|
|
|
src_type = ctf_type_to_index (src_fp, src_type);
|
|
dst_type = ctf_type_to_index (dst_fp, dst_type);
|
|
|
|
if (dst_fp->ctf_link_type_mapping == NULL)
|
|
{
|
|
ctf_hash_fun f = ctf_hash_type_key;
|
|
ctf_hash_eq_fun e = ctf_hash_eq_type_key;
|
|
|
|
if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
|
|
NULL)) == NULL)
|
|
return;
|
|
}
|
|
|
|
ctf_link_type_key_t *key;
|
|
key = calloc (1, sizeof (struct ctf_link_type_key));
|
|
if (!key)
|
|
return;
|
|
|
|
key->cltk_fp = src_fp;
|
|
key->cltk_idx = src_type;
|
|
|
|
/* No OOM checking needed, because if this doesn't work the worst we'll do is
|
|
add a few more duplicate types (which will probably run out of memory
|
|
anyway). */
|
|
ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
|
|
(void *) (uintptr_t) dst_type);
|
|
}
|
|
|
|
/* Look up a type mapping: return 0 if none. The DST_FP is modified to point to
|
|
the parent if need be. The ID returned is from the dst_fp's perspective. */
|
|
static ctf_id_t
|
|
ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
|
|
{
|
|
ctf_link_type_key_t key;
|
|
ctf_dict_t *target_fp = *dst_fp;
|
|
ctf_id_t dst_type = 0;
|
|
|
|
src_fp = ctf_get_dict (src_fp, src_type);
|
|
|
|
/* No mapping is possible if the parent is not imported. */
|
|
if (src_fp == NULL)
|
|
return 0;
|
|
|
|
src_type = ctf_type_to_index (src_fp, src_type);
|
|
key.cltk_fp = src_fp;
|
|
key.cltk_idx = src_type;
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
&key);
|
|
|
|
if (dst_type != 0)
|
|
{
|
|
dst_type = ctf_index_to_type (target_fp, dst_type);
|
|
*dst_fp = target_fp;
|
|
return dst_type;
|
|
}
|
|
|
|
if (target_fp->ctf_parent)
|
|
target_fp = target_fp->ctf_parent;
|
|
else
|
|
return 0;
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
&key);
|
|
|
|
if (dst_type)
|
|
dst_type = ctf_index_to_type (target_fp, dst_type);
|
|
|
|
*dst_fp = target_fp;
|
|
return dst_type;
|
|
}
|
|
|
|
/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
|
|
to a dynamic destination dictionary. This routine operates recursively by
|
|
following the source type's links and embedded member types. If the
|
|
destination dict already contains a named type which has the same attributes,
|
|
then we succeed and return this type but no changes occur. */
|
|
static ctf_id_t
|
|
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
ctf_dict_t *proc_tracking_fp)
|
|
{
|
|
ctf_id_t dst_type = CTF_ERR;
|
|
uint32_t dst_kind = CTF_K_UNKNOWN;
|
|
ctf_dict_t *tmp_fp = dst_fp;
|
|
ctf_id_t tmp;
|
|
|
|
const char *name;
|
|
uint32_t kind, forward_kind, flag, bitfields;
|
|
size_t vlen;
|
|
|
|
const ctf_type_t *src_prefix, *src_tp, *dst_prefix;
|
|
ctf_bundle_t src, dst;
|
|
ctf_encoding_t src_en, dst_en;
|
|
ctf_arinfo_t src_ar, dst_ar;
|
|
|
|
ctf_id_t orig_src_type = src_type;
|
|
|
|
if ((src_prefix = ctf_lookup_by_id (&src_fp, src_type, &src_tp)) == NULL)
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if ((ctf_type_resolve_nonrepresentable (src_fp, src_type, 1) == CTF_ERR)
|
|
&& (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_NONREPRESENTABLE));
|
|
|
|
name = ctf_strptr (src_fp, src_tp->ctt_name);
|
|
kind = ctf_type_kind (src_fp, src_type);
|
|
flag = LCTF_INFO_ISROOT (src_fp, src_prefix->ctt_info);
|
|
bitfields = CTF_INFO_KFLAG (src_tp->ctt_info);
|
|
vlen = LCTF_VLEN (src_fp, src_prefix);
|
|
|
|
/* If this is a type we are currently in the middle of adding, hand it
|
|
straight back. (This lets us handle self-referential structures without
|
|
considering forwards and empty structures the same as their completed
|
|
forms.) */
|
|
|
|
tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);
|
|
|
|
if (tmp != 0)
|
|
{
|
|
if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type))
|
|
return tmp;
|
|
|
|
/* If this type has already been added from this dictionary, and is the
|
|
same kind and (if a struct or union) has the same number of members,
|
|
hand it straight back. */
|
|
|
|
if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
|
|
{
|
|
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
|
|
|| kind == CTF_K_ENUM)
|
|
{
|
|
if ((dst_prefix = ctf_lookup_by_id (&tmp_fp, dst_type, NULL)) != NULL)
|
|
if (vlen == LCTF_VLEN (tmp_fp, dst_prefix))
|
|
return tmp;
|
|
}
|
|
else
|
|
return tmp;
|
|
}
|
|
}
|
|
|
|
forward_kind = kind;
|
|
if (kind == CTF_K_FORWARD)
|
|
forward_kind = ctf_type_kind_forwarded (src_fp, src_type);
|
|
|
|
/* If the source type has a name and is a root type (visible at the top-level
|
|
scope), look up the name in the destination dictionary and verify that it is
|
|
of the same kind before we do anything else. */
|
|
|
|
if (flag && name[0] != '\0'
|
|
&& (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
|
|
{
|
|
dst_type = tmp;
|
|
dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
|
|
}
|
|
|
|
/* If an identically named dst_type exists, fail with ECTF_CONFLICT
|
|
unless dst_type is a forward declaration and src_type is a struct,
|
|
union, or enum (i.e. the definition of the previous forward decl).
|
|
|
|
We also allow addition in the opposite order (addition of a forward when a
|
|
struct, union, or enum already exists), which is a NOP and returns the
|
|
already-present struct, union, or enum. */
|
|
|
|
if (dst_type != CTF_ERR && dst_kind != kind)
|
|
{
|
|
if (kind == CTF_K_FORWARD
|
|
&& (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
|
|
|| dst_kind == CTF_K_UNION))
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
if (dst_kind != CTF_K_FORWARD
|
|
|| (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
|
|
&& kind != CTF_K_UNION))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("ctf_add_type: conflict for type %s: "
|
|
"kinds differ, new: %i; old (ID %lx): %i"),
|
|
name, kind, dst_type, dst_kind);
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
|
|
/* We take special action for an integer, float, or slice since it is
|
|
described not only by its name but also its encoding. For integers,
|
|
bit-fields exploit this degeneracy. */
|
|
|
|
if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
|
|
{
|
|
if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
ctf_dict_t *fp = dst_fp;
|
|
|
|
if ((dst_prefix = ctf_lookup_by_id (&fp, dst_type, NULL)) == NULL)
|
|
return CTF_ERR;
|
|
|
|
if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
|
|
return CTF_ERR; /* errno set for us. */
|
|
|
|
if (LCTF_INFO_ISROOT (fp, dst_prefix->ctt_info))
|
|
{
|
|
/* The type that we found in the hash is also root-visible. If
|
|
the two types match then use the existing one; otherwise,
|
|
declare a conflict. Note: slices are not certain to match
|
|
even if there is no conflict: we must check the contained type
|
|
too. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We found a non-root-visible type in the hash. If its encoding
|
|
is the same, we can reuse it, unless it is a slice. */
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
{
|
|
if (kind != CTF_K_SLICE)
|
|
{
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
src.ctb_dict = src_fp;
|
|
src.ctb_type = src_type;
|
|
src.ctb_dtd = NULL;
|
|
|
|
dst.ctb_dict = dst_fp;
|
|
dst.ctb_type = dst_type;
|
|
dst.ctb_dtd = NULL;
|
|
|
|
/* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add
|
|
a new type with the same properties as src_type to dst_fp. If dst_type is
|
|
not CTF_ERR, then we verify that dst_type has the same attributes as
|
|
src_type. We recurse for embedded references. Before we start, we note
|
|
that we are processing this type, to prevent infinite recursion: we do not
|
|
re-process any type that appears in this list. The list is emptied
|
|
wholesale at the end of processing everything in this recursive stack. */
|
|
|
|
if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
|
|
(void *) (uintptr_t) src_type, (void *) 1) < 0)
|
|
return ctf_set_typed_errno (dst_fp, ENOMEM);
|
|
|
|
switch (kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_FLOAT:
|
|
/* If we found a match we will have either returned it or declared a
|
|
conflict. */
|
|
dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
/* We have checked for conflicting encodings: now try to add the
|
|
contained type. */
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
|
|
break;
|
|
|
|
case CTF_K_ARRAY:
|
|
if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
|
|
|
src_ar.ctr_contents =
|
|
ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_ar.ctr_index,
|
|
proc_tracking_fp);
|
|
src_ar.ctr_nelems = src_ar.ctr_nelems;
|
|
|
|
if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (dst_type != CTF_ERR)
|
|
{
|
|
if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: array info "
|
|
"differs, old %lx/%lx/%zx; new: %lx/%lx/%zx"),
|
|
name, dst_type, src_ar.ctr_contents,
|
|
src_ar.ctr_index, src_ar.ctr_nelems,
|
|
dst_ar.ctr_contents, dst_ar.ctr_index,
|
|
dst_ar.ctr_nelems);
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
dst_type = ctf_add_array (dst_fp, flag, &src_ar);
|
|
break;
|
|
|
|
/* UPTODO: FUNC_LINKAGE, DATASEC, VAR, *TAG */
|
|
case CTF_K_FUNCTION:
|
|
{
|
|
ctf_funcinfo_t fi;
|
|
ctf_id_t *argv;
|
|
const char **arg_names;
|
|
size_t i;
|
|
|
|
if (ctf_func_type_info (src_fp, src_type, &fi) < 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
fi.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_tp->ctt_type,
|
|
proc_tracking_fp);
|
|
|
|
if (fi.ctc_return == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((argv = calloc (fi.ctc_argc, sizeof (ctf_id_t *))) == NULL)
|
|
{
|
|
ctf_set_errno (src_fp, errno);
|
|
return CTF_ERR;
|
|
}
|
|
|
|
if (ctf_func_type_args (src_fp, src_type, fi.ctc_argc, argv) < 0)
|
|
{
|
|
free (argv);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
for (i = 0; i < fi.ctc_argc; i++)
|
|
{
|
|
argv[i] = ctf_add_type_internal (dst_fp, src_fp,
|
|
argv[i],
|
|
proc_tracking_fp);
|
|
if (argv[i] == CTF_ERR)
|
|
{
|
|
free (argv);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
}
|
|
|
|
if ((arg_names = calloc (fi.ctc_argc, sizeof (const char **))) == NULL)
|
|
{
|
|
free (argv);
|
|
free (arg_names);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
if (ctf_func_type_arg_names (src_fp, src_type, fi.ctc_argc,
|
|
arg_names) < 0)
|
|
{
|
|
free (argv);
|
|
free (arg_names);
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
dst_type = ctf_add_function (dst_fp, flag, &fi, argv, arg_names);
|
|
free (argv);
|
|
free (arg_names);
|
|
break;
|
|
}
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ssize_t offset;
|
|
const char *membname;
|
|
ctf_id_t src_membtype;
|
|
int bit_width;
|
|
|
|
/* Technically to match a struct or union we need to check both ways
|
|
(src members vs. dst, dst members vs. src) but we make this cheaper
|
|
by only checking src vs. dst and comparing the total size of the
|
|
structure (which we must do anyway) which covers the possibility of
|
|
dst members not in src. This optimization can be defeated for
|
|
unions, but is so pathological as to render it irrelevant for our
|
|
purposes. */
|
|
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_type_size (src_fp, src_type) !=
|
|
ctf_type_size (dst_fp, dst_type))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: union "
|
|
"size differs, old %li, new %li"), name,
|
|
dst_type, (long) ctf_type_size (src_fp, src_type),
|
|
(long) ctf_type_size (dst_fp, dst_type));
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for type %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
dst_type = ctf_add_struct_sized (dst_fp, flag
|
|
| (bitfields ? CTF_ADD_STRUCT_BITFIELDS : 0),
|
|
name, ctf_type_size (src_fp, src_type));
|
|
if (dst_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* Pre-emptively add this struct to the type mapping so that
|
|
structures that refer to themselves work. */
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
while ((offset = ctf_member_next (src_fp, src_type, &i, &membname,
|
|
&src_membtype, &bit_width, 0)) >= 0)
|
|
{
|
|
ctf_dict_t *dst = dst_fp;
|
|
ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst);
|
|
|
|
if (dst_membtype == 0)
|
|
{
|
|
dst_membtype = ctf_add_type_internal (dst_fp, src_fp,
|
|
src_membtype,
|
|
proc_tracking_fp);
|
|
if (dst_membtype == CTF_ERR)
|
|
{
|
|
if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
|
|
{
|
|
ctf_next_destroy (i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ctf_add_member_bitfield (dst_fp, dst_type, membname,
|
|
dst_membtype, offset, bit_width) < 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
break;
|
|
}
|
|
}
|
|
if (ctf_errno (src_fp) != ECTF_NEXT_END)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
break;
|
|
}
|
|
|
|
case CTF_K_ENUM:
|
|
case CTF_K_ENUM64:
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
&& dst_kind != CTF_K_FORWARD)
|
|
{
|
|
if (ctf_enum_unsigned (src_fp, src_type)
|
|
!= ctf_enum_unsigned (dst_fp, dst_type))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for enum %s against ID %lx: member "
|
|
"signedness differs"), name, dst_type);
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
|
|
|| ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
|
|
{
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
_("conflict for enum %s against ID %lx: members "
|
|
"differ, see above"), name, dst_type);
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_snapshot_id_t snap = ctf_snapshot (dst_fp);
|
|
|
|
if (src_type == CTF_K_ENUM)
|
|
dst_type = ctf_add_enum (dst_fp, flag, name);
|
|
else
|
|
dst_type = ctf_add_enum64 (dst_fp, flag, name);
|
|
if ((dst.ctb_type = dst_type) == CTF_ERR
|
|
|| ctf_enum_iter (src_fp, src_type, enumadd, &dst))
|
|
{
|
|
ctf_rollback (dst_fp, snap);
|
|
return CTF_ERR; /* errno is set for us */
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CTF_K_FORWARD:
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
proc_tracking_fp);
|
|
|
|
if (src_type == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
/* If dst_type is not CTF_ERR at this point, we should check if
|
|
ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
|
|
ECTF_CONFLICT. However, this causes problems with bitness typedefs
|
|
that vary based on things like if 32-bit then pid_t is int otherwise
|
|
long. We therefore omit this check and assume that if the identically
|
|
named typedef already exists in dst_fp, it is correct or
|
|
equivalent. */
|
|
|
|
if (dst_type == CTF_ERR)
|
|
dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);
|
|
|
|
break;
|
|
|
|
default:
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CORRUPT));
|
|
}
|
|
|
|
if (dst_type != CTF_ERR)
|
|
ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
|
|
return dst_type;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
|
|
{
|
|
ctf_id_t id;
|
|
|
|
if ((src_fp->ctf_flags & LCTF_NO_STR) || (dst_fp->ctf_flags & LCTF_NO_STR)
|
|
|| ((src_fp->ctf_flags & LCTF_CHILD) && (src_fp->ctf_parent == NULL))
|
|
|| ((dst_fp->ctf_flags & LCTF_CHILD) && (dst_fp->ctf_parent == NULL)))
|
|
return (ctf_set_errno (dst_fp, ECTF_NOPARENT));
|
|
|
|
if (!src_fp->ctf_add_processing)
|
|
src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
|
|
ctf_hash_eq_integer,
|
|
NULL, NULL);
|
|
|
|
/* We store the hash on the source, because it contains only source type IDs:
|
|
but callers will invariably expect errors to appear on the dest. */
|
|
if (!src_fp->ctf_add_processing)
|
|
return (ctf_set_typed_errno (dst_fp, ENOMEM));
|
|
|
|
id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
|
|
ctf_dynhash_empty (src_fp->ctf_add_processing);
|
|
|
|
return id;
|
|
}
|