mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-12-05 15:15:42 +00:00
Before GCC PR114186, all looked good in the land of multidimensional arrays: you wrote int a[5][10]; and ctf_type_aname() et al would print it as int [5][10] Unfortunately this was two bugs in one. GCC was emitting the array as if it were int a[10][5], i.e. as this: a -> [10] -> [5] -> int rather than a -> [5] -> [10] -> int as it should be. libctf was hiding this by printing them in the wrong order, concealing the bug from anyone using objdump --ctf or anything but actual type graph traversal. Once this was fixed for GCC, the bug was visible in libctf: multidimensional arrays were printed backwards! (But this is just a print-time bug: the underlying bug, that something traversing the type graph would see the array in backwards order, was fixed by the fix to GCC.) Fix this libctf bug, printing the arrays the right way round. In a possibly futile attempt to retain some vestige of backwards compatibility, introduce a new bug-compat flag CTF_F_ARRNELEMS, which, if on, indicates that PR114186 is fixed and GCC is emitting array elements the right way round. (Unfortunately, the fix went in without this flag, so some GCCs will still emit CTF that will cause libctf to print them wrong, even with this fix -- but it's no wronger than it was before, and new GCC and new binutils, as well as GCC older than any fix for PR114186 and new binutils, will print things properly. Someone traversing the type graph will see things right after the GCC fix, wrong before it, and there isn't really any reliable way to tell which you have, though if CTF_F_ARRNELEMS is set, you definitely have a fixed GCC. The test checks for this, but it's not something we expect actual users to ever do -- CTF dict flags are an internal implementation detail with no user-visible API for a reason.) [nca: log message, test compat with older compilers] include/ * ctf.h (CTF_F_ARRNELEMS): New bug-compat flag. (CTF_F_MAX): Adjust. libctf/ PR libctf/32161 * ctf-decl.c (ctf_decl_push): Prepend if this is an array and the bug-compat flag is set. * ctf-dump.c (ctf_dump_header): Dump the new bug-compat flag. * testsuite/libctf-lookup/multidim-array*: New test.
206 lines
5.3 KiB
C
206 lines
5.3 KiB
C
/* C declarator syntax glue.
|
|
Copyright (C) 2019-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* CTF Declaration Stack
|
|
|
|
In order to implement ctf_type_name(), we must convert a type graph back
|
|
into a C type declaration. Unfortunately, a type graph represents a storage
|
|
class ordering of the type whereas a type declaration must obey the C rules
|
|
for operator precedence, and the two orderings are frequently in conflict.
|
|
For example, consider these CTF type graphs and their C declarations:
|
|
|
|
CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER : int (*)()
|
|
CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER : int (*)[]
|
|
|
|
In each case, parentheses are used to raise operator * to higher lexical
|
|
precedence, so the string form of the C declaration cannot be constructed by
|
|
walking the type graph links and forming the string from left to right.
|
|
|
|
The functions in this file build a set of stacks from the type graph nodes
|
|
corresponding to the C operator precedence levels in the appropriate order.
|
|
The code in ctf_type_name() can then iterate over the levels and nodes in
|
|
lexical precedence order and construct the final C declaration string. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
|
|
void
|
|
ctf_decl_init (ctf_decl_t *cd)
|
|
{
|
|
int i;
|
|
|
|
memset (cd, 0, sizeof (ctf_decl_t));
|
|
|
|
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
|
|
cd->cd_order[i] = CTF_PREC_BASE - 1;
|
|
|
|
cd->cd_qualp = CTF_PREC_BASE;
|
|
cd->cd_ordp = CTF_PREC_BASE;
|
|
}
|
|
|
|
void
|
|
ctf_decl_fini (ctf_decl_t *cd)
|
|
{
|
|
ctf_decl_node_t *cdp, *ndp;
|
|
int i;
|
|
|
|
for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
|
|
{
|
|
for (cdp = ctf_list_next (&cd->cd_nodes[i]); cdp != NULL; cdp = ndp)
|
|
{
|
|
ndp = ctf_list_next (cdp);
|
|
free (cdp);
|
|
}
|
|
}
|
|
free (cd->cd_buf);
|
|
}
|
|
|
|
void
|
|
ctf_decl_push (ctf_decl_t *cd, ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_decl_node_t *cdp;
|
|
ctf_decl_prec_t prec;
|
|
uint32_t kind, n = 1;
|
|
int is_qual = 0;
|
|
|
|
const ctf_type_t *tp;
|
|
ctf_arinfo_t ar;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
{
|
|
cd->cd_err = fp->ctf_errno;
|
|
return;
|
|
}
|
|
|
|
switch (kind = LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_ARRAY:
|
|
(void) ctf_array_info (fp, type, &ar);
|
|
ctf_decl_push (cd, fp, ar.ctr_contents);
|
|
n = ar.ctr_nelems;
|
|
prec = CTF_PREC_ARRAY;
|
|
break;
|
|
|
|
case CTF_K_TYPEDEF:
|
|
if (ctf_strptr (fp, tp->ctt_name)[0] == '\0')
|
|
{
|
|
ctf_decl_push (cd, fp, tp->ctt_type);
|
|
return;
|
|
}
|
|
prec = CTF_PREC_BASE;
|
|
break;
|
|
|
|
case CTF_K_FUNCTION:
|
|
ctf_decl_push (cd, fp, tp->ctt_type);
|
|
prec = CTF_PREC_FUNCTION;
|
|
break;
|
|
|
|
case CTF_K_POINTER:
|
|
ctf_decl_push (cd, fp, tp->ctt_type);
|
|
prec = CTF_PREC_POINTER;
|
|
break;
|
|
|
|
case CTF_K_SLICE:
|
|
/* Slices themselves have no print representation and should not appear in
|
|
the decl stack. */
|
|
ctf_decl_push (cd, fp, ctf_type_reference (fp, type));
|
|
return;
|
|
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
ctf_decl_push (cd, fp, tp->ctt_type);
|
|
prec = cd->cd_qualp;
|
|
is_qual++;
|
|
break;
|
|
|
|
default:
|
|
prec = CTF_PREC_BASE;
|
|
}
|
|
|
|
if ((cdp = malloc (sizeof (ctf_decl_node_t))) == NULL)
|
|
{
|
|
cd->cd_err = EAGAIN;
|
|
return;
|
|
}
|
|
|
|
cdp->cd_type = type;
|
|
cdp->cd_kind = kind;
|
|
cdp->cd_n = n;
|
|
|
|
if (ctf_list_next (&cd->cd_nodes[prec]) == NULL)
|
|
cd->cd_order[prec] = cd->cd_ordp++;
|
|
|
|
/* Reset cd_qualp to the highest precedence level that we've seen so
|
|
far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER). */
|
|
|
|
if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
|
|
cd->cd_qualp = prec;
|
|
|
|
/* By convention qualifiers of base types precede the type specifier (e.g.
|
|
const int vs. int const) even though the two forms are equivalent.
|
|
As of gcc-14.2.0, arrays must also be prepended in order to dump with the
|
|
dimensions properly ordered. */
|
|
|
|
if ((is_qual && prec == CTF_PREC_BASE) || ((kind == CTF_K_ARRAY) &&
|
|
(fp->ctf_openflags & (CTF_F_ARRNELEMS))))
|
|
ctf_list_prepend (&cd->cd_nodes[prec], cdp);
|
|
else
|
|
ctf_list_append (&cd->cd_nodes[prec], cdp);
|
|
}
|
|
|
|
_libctf_printflike_ (2, 3)
|
|
void ctf_decl_sprintf (ctf_decl_t *cd, const char *format, ...)
|
|
{
|
|
va_list ap;
|
|
char *str;
|
|
int n;
|
|
|
|
if (cd->cd_enomem)
|
|
return;
|
|
|
|
va_start (ap, format);
|
|
n = vasprintf (&str, format, ap);
|
|
va_end (ap);
|
|
|
|
if (n > 0)
|
|
{
|
|
char *newbuf;
|
|
if ((newbuf = ctf_str_append (cd->cd_buf, str)) != NULL)
|
|
cd->cd_buf = newbuf;
|
|
}
|
|
|
|
/* Sticky error condition. */
|
|
if (n < 0 || cd->cd_buf == NULL)
|
|
{
|
|
free (cd->cd_buf);
|
|
cd->cd_buf = NULL;
|
|
cd->cd_enomem = 1;
|
|
}
|
|
|
|
free (str);
|
|
}
|
|
|
|
char *ctf_decl_buf (ctf_decl_t *cd)
|
|
{
|
|
char *buf = cd->cd_buf;
|
|
cd->cd_buf = NULL;
|
|
return buf;
|
|
}
|