Files
binutils-gdb/ld
Nick Alcock 203bfa2f6b include, libctf, ld: extend variable section to contain functions too
The CTF variable section is an optional (usually-not-present) section in
the CTF dict which contains name -> type mappings corresponding to data
symbols that are present in the linker input but not in the output
symbol table: the idea is that programs that use their own symbol-
resolution mechanisms can use this section to look up the types of
symbols they have found using their own mechanism.

Because these removed symbols (mostly static variables, functions, etc)
all have names that are unlikely to appear in the ELF symtab and because
very few programs have their own symbol-resolution mechanisms, a special
linker flag (--ctf-variables) is needed to emit this section.

Historically, we emitted only removed data symbols into the variable
section.  This seemed to make sense at the time, but in hindsight it
really doesn't: functions are symbols too, and a C program can look them
up just like any other type.  So extend the variable section so that it
contains all static function symbols too (if it is emitted at all), with
types of kind CTF_K_FUNCTION.

This is a little fiddly.  We relied on compiler assistance for data
symbols: the compiler simply emits all data symbols twice, once into the
symtypetab as an indexed symbol and once into the variable section.

Rather than wait for a suitably adjusted compiler that does the same for
function symbols, we can pluck unreported function symbols out of the
symtab and add them to the variable section ourselves.  While we're at
it, we do the same with data symbols: this is redundant right now
because the compiler does it, but it costs very little time and lets the
compiler drop this kludge and save a little space in .o files.

include/
	* ctf.h: Mention the new things we can see in the variable
	section.

ld/
	* testsuite/ld-ctf/data-func-conflicted-vars.d: New test.

libctf/
	* ctf-link.c (ctf_link_deduplicating_variables): Duplicate
	symbols into the variable section too.
	* ctf-serialize.c (symtypetab_delete_nonstatic_vars): Rename
	to...
	(symtypetab_delete_nonstatics): ... this.  Check the funchash
	when pruning redundant variables.
	(ctf_symtypetab_sect_sizes): Adjust accordingly.
	* NEWS: Describe this change.
2022-03-23 13:48:32 +00:00
..
2022-01-01 12:49:07 -05:00
2021-01-01 10:31:02 +10:30
2021-03-31 10:49:23 +10:30
2022-02-18 11:42:09 -08:00
2022-02-13 14:00:56 +10:30

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

		README for LD

This is the GNU linker.  It is distributed with other "binary
utilities" which should be in ../binutils.  See ../binutils/README for
more general notes, including where to send bug reports.

There are many features of the linker:

* The linker uses a Binary File Descriptor library (../bfd)
  that it uses to read and write object files.  This helps
  insulate the linker itself from the format of object files.

* The linker supports a number of different object file
  formats.  It can even handle multiple formats at once:
  Read two input formats and write a third.

* The linker can be configured for cross-linking.

* The linker supports a control language.

* There is a user manual (ld.texi), as well as the
  beginnings of an internals manual (ldint.texi).

Installation
============

See ../binutils/README.

If you want to make a cross-linker, you may want to specify
a different search path of -lfoo libraries than the default.
You can do this by setting the LIB_PATH variable in ./Makefile
or using the --with-lib-path configure switch.

To build just the linker, make the target all-ld from the top level
directory (one directory above this one).

Porting to a new target
=======================

See the ldint.texi manual.

Reporting bugs etc
===========================

See ../binutils/README.

Known problems
==============

The Solaris linker normally exports all dynamic symbols from an
executable.  The GNU linker does not do this by default.  This is
because the GNU linker tries to present the same interface for all
similar targets (in this case, all native ELF targets).  This does not
matter for normal programs, but it can make a difference for programs
which try to dlopen an executable, such as PERL or Tcl.  You can make
the GNU linker export all dynamic symbols with the -E or
--export-dynamic command line option.

HP/UX 9.01 has a shell bug that causes the linker scripts to be
generated incorrectly.  The symptom of this appears to be "fatal error
- scanner input buffer overflow" error messages.  There are various
workarounds to this:
  * Build and install bash, and build with "make SHELL=bash".
  * Update to a version of HP/UX with a working shell (e.g., 9.05).
  * Replace "(. ${srcdir}/scripttempl/${SCRIPT_NAME}.sc)" in
    genscripts.sh with "sh ${srcdir}..." (no parens) and make sure the
    emulparams script used exports any shell variables it sets.

Copyright (C) 2012-2022 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.