mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-12-26 01:07:52 +00:00
This patch changes progspace objfile_list insertion so that separate debug objfiles are placed into the list after the parent objfile, instead of before. Additionally qf_require_partial_symbols now returns a safe_range. These changes are intended to prepare gdb for on-demand debuginfo downloading and the downloading of .gdb_index sections. With on-demand downloading enabled, gdb might need to delete a .gdb_index quick_symbol_functions from a parent objfile while looping the objfile's list of quick_symbol_functions because the separate debug objfile has just been downloaded. The use of a safe_range prevents this removal from causing iterator invalidation. gdb might also download a debuginfo file during symtab expansion. In this case an objfile will be added to the current progspace's objfiles_list during iteration over the list (for example, in iterate_over_symtabs). We want these loops to also iterate over newly downloaded objfiles. So objfiles need to be inserted into objfiles_list after their parent since it is during the search of the parent objfile for some symbol or filename that the separate debug objfile might be downloaded. To facilitate the safe deletion of objfiles, this patch also adds basic_safe_reverse_range and basic_safe_reverse_iterator. This allows objfiles to be removed from the objfiles_list in a loop without iterator invalidation. If a forward safe iterator were to be used, the deletion of an objfile could invalidate the safe iterator's reference to the next objfile in the objfiles_list. This can happen when the deletion of an objfile causes the deletion of a separate debug objfile that happens to the be next element in the objfiles_list. The standard reverse iterator is not suitable for safe objfile deletion. In order to safely delete the first objfile in the objfiles_list, the standard reverse iterator's underlying begin iterator would have to be decremented, resulting in undefined behavior. A small change was also made to a testcase in py-objfile.exp to account for the new placement of separate debug objfiles in objfiles_list.
469 lines
12 KiB
C
469 lines
12 KiB
C
/* Program and address space management, for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 2009-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "gdbcore.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "gdbthread.h"
|
||
#include "inferior.h"
|
||
#include <algorithm>
|
||
#include "cli/cli-style.h"
|
||
#include "observable.h"
|
||
|
||
/* The last program space number assigned. */
|
||
static int last_program_space_num = 0;
|
||
|
||
/* The head of the program spaces list. */
|
||
std::vector<struct program_space *> program_spaces;
|
||
|
||
/* Pointer to the current program space. */
|
||
struct program_space *current_program_space;
|
||
|
||
/* The last address space number assigned. */
|
||
static int highest_address_space_num;
|
||
|
||
|
||
|
||
/* Create a new address space object, and add it to the list. */
|
||
|
||
address_space::address_space ()
|
||
: m_num (++highest_address_space_num)
|
||
{
|
||
}
|
||
|
||
/* Maybe create a new address space object, and add it to the list, or
|
||
return a pointer to an existing address space, in case inferiors
|
||
share an address space on this target system. */
|
||
|
||
address_space_ref_ptr
|
||
maybe_new_address_space ()
|
||
{
|
||
int shared_aspace
|
||
= gdbarch_has_shared_address_space (current_inferior ()->arch ());
|
||
|
||
if (shared_aspace)
|
||
{
|
||
/* Just return the first in the list. */
|
||
return program_spaces[0]->aspace;
|
||
}
|
||
|
||
return new_address_space ();
|
||
}
|
||
|
||
/* Start counting over from scratch. */
|
||
|
||
static void
|
||
init_address_spaces (void)
|
||
{
|
||
highest_address_space_num = 0;
|
||
}
|
||
|
||
|
||
|
||
/* Remove a program space from the program spaces list. */
|
||
|
||
static void
|
||
remove_program_space (program_space *pspace)
|
||
{
|
||
gdb_assert (pspace != NULL);
|
||
|
||
auto iter = std::find (program_spaces.begin (), program_spaces.end (),
|
||
pspace);
|
||
gdb_assert (iter != program_spaces.end ());
|
||
program_spaces.erase (iter);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
program_space::program_space (address_space_ref_ptr aspace_)
|
||
: num (++last_program_space_num),
|
||
aspace (std::move (aspace_))
|
||
{
|
||
program_spaces.push_back (this);
|
||
gdb::observers::new_program_space.notify (this);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
program_space::~program_space ()
|
||
{
|
||
gdb_assert (this != current_program_space);
|
||
|
||
gdb::observers::free_program_space.notify (this);
|
||
remove_program_space (this);
|
||
|
||
scoped_restore_current_program_space restore_pspace;
|
||
|
||
set_current_program_space (this);
|
||
|
||
breakpoint_program_space_exit (this);
|
||
no_shared_libraries (NULL, 0);
|
||
free_all_objfiles ();
|
||
/* Defer breakpoint re-set because we don't want to create new
|
||
locations for this pspace which we're tearing down. */
|
||
clear_symtab_users (SYMFILE_DEFER_BP_RESET);
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::free_all_objfiles ()
|
||
{
|
||
/* Any objfile reference would become stale. */
|
||
for (const solib &so : current_program_space->solibs ())
|
||
gdb_assert (so.objfile == NULL);
|
||
|
||
while (!objfiles_list.empty ())
|
||
objfiles_list.front ()->unlink ();
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::add_objfile (std::unique_ptr<objfile> &&objfile,
|
||
struct objfile *after)
|
||
{
|
||
if (after == nullptr)
|
||
objfiles_list.push_back (std::move (objfile));
|
||
else
|
||
{
|
||
auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
|
||
[=] (const std::unique_ptr<::objfile> &objf)
|
||
{
|
||
return objf.get () == after;
|
||
});
|
||
gdb_assert (iter != objfiles_list.end ());
|
||
objfiles_list.insert (++iter, std::move (objfile));
|
||
}
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::remove_objfile (struct objfile *objfile)
|
||
{
|
||
/* Removing an objfile from the objfile list invalidates any frame
|
||
that was built using frame info found in the objfile. Reinit the
|
||
frame cache to get rid of any frame that might otherwise
|
||
reference stale info. */
|
||
reinit_frame_cache ();
|
||
|
||
auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
|
||
[=] (const std::unique_ptr<::objfile> &objf)
|
||
{
|
||
return objf.get () == objfile;
|
||
});
|
||
gdb_assert (iter != objfiles_list.end ());
|
||
objfiles_list.erase (iter);
|
||
|
||
if (objfile == symfile_object_file)
|
||
symfile_object_file = NULL;
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::unlink_objfiles_if
|
||
(gdb::function_view<bool (const objfile *objfile)> predicate)
|
||
{
|
||
for (auto &it : objfiles_safe ())
|
||
if (predicate (it.get ()))
|
||
it->unlink ();
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
struct objfile *
|
||
program_space::objfile_for_address (CORE_ADDR address)
|
||
{
|
||
for (auto iter : objfiles ())
|
||
{
|
||
/* Don't check separate debug objfiles. */
|
||
if (iter->separate_debug_objfile_backlink != nullptr)
|
||
continue;
|
||
if (is_addr_in_objfile (address, iter))
|
||
return iter;
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::exec_close ()
|
||
{
|
||
if (ebfd != nullptr)
|
||
{
|
||
/* Removing target sections may close the exec_ops target.
|
||
Clear ebfd before doing so to prevent recursion. */
|
||
bfd *saved_ebfd = ebfd.get ();
|
||
ebfd.reset (nullptr);
|
||
ebfd_mtime = 0;
|
||
|
||
remove_target_sections (saved_ebfd);
|
||
|
||
exec_filename.reset (nullptr);
|
||
}
|
||
}
|
||
|
||
/* Copies program space SRC to DEST. Copies the main executable file,
|
||
and the main symbol file. Returns DEST. */
|
||
|
||
struct program_space *
|
||
clone_program_space (struct program_space *dest, struct program_space *src)
|
||
{
|
||
scoped_restore_current_program_space restore_pspace;
|
||
|
||
set_current_program_space (dest);
|
||
|
||
if (src->exec_filename != NULL)
|
||
exec_file_attach (src->exec_filename.get (), 0);
|
||
|
||
if (src->symfile_object_file != NULL)
|
||
symbol_file_add_main (objfile_name (src->symfile_object_file),
|
||
SYMFILE_DEFER_BP_RESET);
|
||
|
||
return dest;
|
||
}
|
||
|
||
/* Sets PSPACE as the current program space. It is the caller's
|
||
responsibility to make sure that the currently selected
|
||
inferior/thread matches the selected program space. */
|
||
|
||
void
|
||
set_current_program_space (struct program_space *pspace)
|
||
{
|
||
if (current_program_space == pspace)
|
||
return;
|
||
|
||
gdb_assert (pspace != NULL);
|
||
|
||
current_program_space = pspace;
|
||
|
||
/* Different symbols change our view of the frame chain. */
|
||
reinit_frame_cache ();
|
||
}
|
||
|
||
/* Returns true iff there's no inferior bound to PSPACE. */
|
||
|
||
bool
|
||
program_space::empty ()
|
||
{
|
||
return find_inferior_for_program_space (this) == nullptr;
|
||
}
|
||
|
||
/* Prints the list of program spaces and their details on UIOUT. If
|
||
REQUESTED is not -1, it's the ID of the pspace that should be
|
||
printed. Otherwise, all spaces are printed. */
|
||
|
||
static void
|
||
print_program_space (struct ui_out *uiout, int requested)
|
||
{
|
||
int count = 0;
|
||
|
||
/* Start with a minimum width of 17 for the executable name column. */
|
||
size_t longest_exec_name = 17;
|
||
|
||
/* Compute number of pspaces we will print. */
|
||
for (struct program_space *pspace : program_spaces)
|
||
{
|
||
if (requested != -1 && pspace->num != requested)
|
||
continue;
|
||
|
||
if (pspace->exec_filename != nullptr)
|
||
longest_exec_name = std::max (strlen (pspace->exec_filename.get ()),
|
||
longest_exec_name);
|
||
|
||
++count;
|
||
}
|
||
|
||
/* There should always be at least one. */
|
||
gdb_assert (count > 0);
|
||
|
||
ui_out_emit_table table_emitter (uiout, 4, count, "pspaces");
|
||
uiout->table_header (1, ui_left, "current", "");
|
||
uiout->table_header (4, ui_left, "id", "Id");
|
||
uiout->table_header (longest_exec_name, ui_left, "exec", "Executable");
|
||
uiout->table_header (17, ui_left, "core", "Core File");
|
||
uiout->table_body ();
|
||
|
||
for (struct program_space *pspace : program_spaces)
|
||
{
|
||
int printed_header;
|
||
|
||
if (requested != -1 && requested != pspace->num)
|
||
continue;
|
||
|
||
ui_out_emit_tuple tuple_emitter (uiout, NULL);
|
||
|
||
if (pspace == current_program_space)
|
||
uiout->field_string ("current", "*");
|
||
else
|
||
uiout->field_skip ("current");
|
||
|
||
uiout->field_signed ("id", pspace->num);
|
||
|
||
if (pspace->exec_filename != nullptr)
|
||
uiout->field_string ("exec", pspace->exec_filename.get (),
|
||
file_name_style.style ());
|
||
else
|
||
uiout->field_skip ("exec");
|
||
|
||
if (pspace->cbfd != nullptr)
|
||
uiout->field_string ("core", bfd_get_filename (pspace->cbfd.get ()),
|
||
file_name_style.style ());
|
||
else
|
||
uiout->field_skip ("core");
|
||
|
||
/* Print extra info that doesn't really fit in tabular form.
|
||
Currently, we print the list of inferiors bound to a pspace.
|
||
There can be more than one inferior bound to the same pspace,
|
||
e.g., both parent/child inferiors in a vfork, or, on targets
|
||
that share pspaces between inferiors. */
|
||
printed_header = 0;
|
||
|
||
/* We're going to switch inferiors. */
|
||
scoped_restore_current_thread restore_thread;
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
if (inf->pspace == pspace)
|
||
{
|
||
/* Switch to inferior in order to call target methods. */
|
||
switch_to_inferior_no_thread (inf);
|
||
|
||
if (!printed_header)
|
||
{
|
||
printed_header = 1;
|
||
gdb_printf ("\n\tBound inferiors: ID %d (%s)",
|
||
inf->num,
|
||
target_pid_to_str (ptid_t (inf->pid)).c_str ());
|
||
}
|
||
else
|
||
gdb_printf (", ID %d (%s)",
|
||
inf->num,
|
||
target_pid_to_str (ptid_t (inf->pid)).c_str ());
|
||
}
|
||
|
||
uiout->text ("\n");
|
||
}
|
||
}
|
||
|
||
/* Boolean test for an already-known program space id. */
|
||
|
||
static int
|
||
valid_program_space_id (int num)
|
||
{
|
||
for (struct program_space *pspace : program_spaces)
|
||
if (pspace->num == num)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If ARGS is NULL or empty, print information about all program
|
||
spaces. Otherwise, ARGS is a text representation of a LONG
|
||
indicating which the program space to print information about. */
|
||
|
||
static void
|
||
maintenance_info_program_spaces_command (const char *args, int from_tty)
|
||
{
|
||
int requested = -1;
|
||
|
||
if (args && *args)
|
||
{
|
||
requested = parse_and_eval_long (args);
|
||
if (!valid_program_space_id (requested))
|
||
error (_("program space ID %d not known."), requested);
|
||
}
|
||
|
||
print_program_space (current_uiout, requested);
|
||
}
|
||
|
||
/* Update all program spaces matching to address spaces. The user may
|
||
have created several program spaces, and loaded executables into
|
||
them before connecting to the target interface that will create the
|
||
inferiors. All that happens before GDB has a chance to know if the
|
||
inferiors will share an address space or not. Call this after
|
||
having connected to the target interface and having fetched the
|
||
target description, to fixup the program/address spaces mappings.
|
||
|
||
It is assumed that there are no bound inferiors yet, otherwise,
|
||
they'd be left with stale referenced to released aspaces. */
|
||
|
||
void
|
||
update_address_spaces (void)
|
||
{
|
||
int shared_aspace
|
||
= gdbarch_has_shared_address_space (current_inferior ()->arch ());
|
||
|
||
init_address_spaces ();
|
||
|
||
if (shared_aspace)
|
||
{
|
||
address_space_ref_ptr aspace = new_address_space ();
|
||
|
||
for (struct program_space *pspace : program_spaces)
|
||
pspace->aspace = aspace;
|
||
}
|
||
else
|
||
for (struct program_space *pspace : program_spaces)
|
||
pspace->aspace = new_address_space ();
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
if (gdbarch_has_global_solist (current_inferior ()->arch ()))
|
||
inf->aspace = maybe_new_address_space ();
|
||
else
|
||
inf->aspace = inf->pspace->aspace;
|
||
}
|
||
|
||
|
||
|
||
/* See progspace.h. */
|
||
|
||
void
|
||
program_space::clear_solib_cache ()
|
||
{
|
||
added_solibs.clear ();
|
||
deleted_solibs.clear ();
|
||
}
|
||
|
||
|
||
|
||
void
|
||
initialize_progspace (void)
|
||
{
|
||
add_cmd ("program-spaces", class_maintenance,
|
||
maintenance_info_program_spaces_command,
|
||
_("Info about currently known program spaces."),
|
||
&maintenanceinfolist);
|
||
|
||
/* There's always one program space. Note that this function isn't
|
||
an automatic _initialize_foo function, since other
|
||
_initialize_foo routines may need to install their per-pspace
|
||
data keys. We can only allocate a progspace when all those
|
||
modules have done that. Do this before
|
||
initialize_current_architecture, because that accesses the ebfd
|
||
of current_program_space. */
|
||
current_program_space = new program_space (new_address_space ());
|
||
}
|