mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-11-16 12:34:43 +00:00
Convert solib_ops into an abstract base class (with abstract methods,
some of them with default implementations) and convert all the existing
solib_ops instances to solib_ops derived classes / implementations.
Prior to this patch, solib_ops is a structure holding function pointers,
of which there are only a handful of global instances (in the
`solib-*.c` files). When passing an `solib_ops *` around, it's a
pointer to one of these instances. After this patch, there are no more
global solib_ops instances. Instances are created as needed and stored
in struct program_space. These instances could eventually be made to
contain the program space-specific data, which is currently kept in
per-program space registries (I have some pending patches for that).
Prior to this patch, `gdbarch_so_ops` is a gdbarch method that returns a
pointer to the appropriate solib_ops implementation for the gdbarch.
This is replaced with the `gdbarch_make_solib_ops` method, which returns
a new instance of the appropriate solib_ops implementation for this
gdbarch. This requires introducing some factory functions for the
various solib_ops implementation, to be used as `gdbarch_make_solib_ops`
callbacks. For instance:
solib_ops_up
make_linux_ilp32_svr4_solib_ops ()
{
return std::make_unique<linux_ilp32_svr4_solib_ops> ();
}
The previous code is full of cases of tdep files copying some base
solib_ops implementation, and overriding one or more function pointer
(see ppc_linux_init_abi, for instance). I tried to convert all of this
is a class hierarchy. I like that it's now possible to get a good
static view of all the existing solib_ops variants. The hierarchy looks
like this:
solib_ops
├── aix_solib_ops
├── darwin_solib_ops
├── dsbt_solib_ops
├── frv_solib_ops
├── rocm_solib_ops
├── svr4_solib_ops
│ ├── ilp32_svr4_solib_ops
│ ├── lp64_svr4_solib_ops
│ ├── linux_ilp32_svr4_solib_ops
│ │ ├── mips_linux_ilp32_svr4_solib_ops
│ │ └── ppc_linux_ilp32_svr4_solib_ops
│ ├── linux_lp64_svr4_solib_ops
│ │ └── mips_linux_lp64_svr4_solib_ops
│ ├── mips_nbsd_ilp32_svr4_solib_ops
│ ├── mips_nbsd_lp64_svr4_solib_ops
│ ├── mips_fbsd_ilp32_svr4_solib_ops
│ └── mips_fbsd_lp64_svr4_solib_ops
└── target_solib_ops
└── windows_solib_ops
The solib-svr4 code has per-arch specialization to provide a
link_map_offsets, containing the offsets of the interesting fields in
`struct link_map` on that particular architecture. Prior to this patch,
arches would set a callback returning the appropriate link_map_offsets
by calling `set_solib_svr4_fetch_link_map_offsets`, which also happened
to set the gdbarch's so_ops to `&svr_so_ops`. I converted this to an
abstract virtual method of `struct svr4_solib_ops`, meaning that all
classes deriving from svr4_solib_ops must provide a method returning the
appropriate link_map_offsets for the architecture. I renamed
`set_solib_svr4_fetch_link_map_offsets` to `set_solib_svr4_ops`. This
function is still necessary because it also calls
set_gdbarch_iterate_over_objfiles_in_search_order, but if it was not for
that, we could get rid of it.
There is an instance of CRTP in mips-linux-tdep.c, because both
mips_linux_ilp32_svr4_solib_ops and mips_linux_lp64_svr4_solib_ops need
to derive from different SVR4 base classes (linux_ilp32_svr4_solib_ops
and linux_lp64_svr4_solib_ops), but they both want to override the
in_dynsym_resolve_code method with the same implementation.
The solib_ops::supports_namespaces method is new: the support for
namespaces was previously predicated by the presence or absence of a
find_solib_ns method. It now needs to be explicit.
There is a new progspace::release_solib_ops method, which is only needed
for rocm_solib_ops. For the moment, rocm_solib_ops replaces and wraps
the existing svr4_solib_ops instance, in order to combine the results of
the two. The plan is to have a subsequent patch to allow program spaces to have
multiple solib_ops, removing the need for release_solib_ops.
Speaking of rocm_solib_ops: it previously overrode only a few methods by
copying svr4_solib_ops and overwriting some function pointers. Now, it
needs to implement all the methods that svr4_solib_ops implements, in
order to forward the call. Otherwise, the default solib_ops method
would be called, hiding the svr4_solib_ops implementation. Again, this
can be removed once we have support for multiple solib_ops in a
program_space.
There is also a small change in how rocm_solib_ops is activated. Prior
to this patch, it's done at the end of rocm_update_solib_list. Since it
overrides the function pointer in the static svr4_solib_ops, and then
overwrites the host gdbarch, so_ops field, it's something that happens
only once. After the patch though, we need to set rocm_solib_ops in all
the program spaces that appear. We do this in
rocm_solib_target_inferior_created and in the new
rocm_solib_target_inferior_execd. After this, I will explore doing a
change where rocm_solib_ops is only set when we detect the ROCm runtime
is loaded.
Change-Id: I5896b5bcbf8bdb024d67980380feba1ffefaa4c9
Approved-By: Pedro Alves <pedro@palves.net>
122 lines
3.8 KiB
C
122 lines
3.8 KiB
C
/* Architecture-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
|
|
Copyright (C) 2004-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GDB_FRV_TDEP_H
|
|
#define GDB_FRV_TDEP_H
|
|
|
|
/* Enumerate the possible ABIs for FR-V. */
|
|
enum frv_abi
|
|
{
|
|
FRV_ABI_EABI,
|
|
FRV_ABI_FDPIC
|
|
};
|
|
|
|
/* Register numbers. The order in which these appear define the
|
|
remote protocol, so take care in changing them. */
|
|
enum {
|
|
/* Register numbers 0 -- 63 are always reserved for general-purpose
|
|
registers. The chip at hand may have less. */
|
|
first_gpr_regnum = 0,
|
|
sp_regnum = 1,
|
|
fp_regnum = 2,
|
|
struct_return_regnum = 3,
|
|
last_gpr_regnum = 63,
|
|
|
|
/* Register numbers 64 -- 127 are always reserved for floating-point
|
|
registers. The chip at hand may have less. */
|
|
first_fpr_regnum = 64,
|
|
last_fpr_regnum = 127,
|
|
|
|
/* The PC register. */
|
|
pc_regnum = 128,
|
|
|
|
/* Register numbers 129 on up are always reserved for special-purpose
|
|
registers. */
|
|
first_spr_regnum = 129,
|
|
psr_regnum = 129,
|
|
ccr_regnum = 130,
|
|
cccr_regnum = 131,
|
|
fdpic_loadmap_exec_regnum = 132,
|
|
fdpic_loadmap_interp_regnum = 133,
|
|
tbr_regnum = 135,
|
|
brr_regnum = 136,
|
|
dbar0_regnum = 137,
|
|
dbar1_regnum = 138,
|
|
dbar2_regnum = 139,
|
|
dbar3_regnum = 140,
|
|
scr0_regnum = 141,
|
|
scr1_regnum = 142,
|
|
scr2_regnum = 143,
|
|
scr3_regnum = 144,
|
|
lr_regnum = 145,
|
|
lcr_regnum = 146,
|
|
iacc0h_regnum = 147,
|
|
iacc0l_regnum = 148,
|
|
fsr0_regnum = 149,
|
|
acc0_regnum = 150,
|
|
acc7_regnum = 157,
|
|
accg0123_regnum = 158,
|
|
accg4567_regnum = 159,
|
|
msr0_regnum = 160,
|
|
msr1_regnum = 161,
|
|
gner0_regnum = 162,
|
|
gner1_regnum = 163,
|
|
fner0_regnum = 164,
|
|
fner1_regnum = 165,
|
|
last_spr_regnum = 165,
|
|
|
|
/* The total number of registers we know exist. */
|
|
frv_num_regs = last_spr_regnum + 1,
|
|
|
|
/* Pseudo registers */
|
|
first_pseudo_regnum = frv_num_regs,
|
|
|
|
/* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
|
|
iacc0_regnum = first_pseudo_regnum + 0,
|
|
accg0_regnum = first_pseudo_regnum + 1,
|
|
accg7_regnum = accg0_regnum + 7,
|
|
|
|
last_pseudo_regnum = accg7_regnum,
|
|
frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
|
|
};
|
|
|
|
/* Return the FR-V ABI associated with GDBARCH. */
|
|
enum frv_abi frv_abi (struct gdbarch *gdbarch);
|
|
|
|
/* Fetch the interpreter and executable loadmap addresses (for shared
|
|
library support) for the FDPIC ABI. Return 0 if successful, -1 if
|
|
not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
|
|
int frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch,
|
|
CORE_ADDR *interp_addr, CORE_ADDR *exec_addr);
|
|
|
|
/* Given a function entry point, find and return the GOT address for the
|
|
containing load module. */
|
|
CORE_ADDR frv_fdpic_find_global_pointer (CORE_ADDR addr);
|
|
|
|
/* Given a function entry point, find and return the canonical descriptor
|
|
for that function, if one exists. If no canonical descriptor could
|
|
be found, return 0. */
|
|
CORE_ADDR frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point);
|
|
|
|
|
|
/* Given an objfile, return the address of its link map. This value is
|
|
needed for TLS support. */
|
|
CORE_ADDR frv_fetch_objfile_link_map (struct objfile *objfile);
|
|
|
|
#endif /* GDB_FRV_TDEP_H */
|