UST support in gdbserver is substantially outdated. Simon says:
...[having HAVE_UST defined] never happens nowadays because it used
a version of lttng-ust that has been deprecated for a loooong time
(the 0.x series). So everything in HAVE_UST just bitrots. It might
be possible to update all this code to use lttng-ust 2.x (1.x never
existed), but I don't think it's going to happen unless somebody
specifically asks for it. I would suggest removing support for UST
from gdbserver. ...If we ever want to resurrect the support for UST
and port to 2.x, we can get the code from the git history.
This patch removes the support, mostly mechanically by deleting code
guarded by `#ifdef HAVE_UST`. After these removals, `struct
static_tracepoint_ctx` becomes unused. So, remove it, too.
The following patches remove more code.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Colors can be specified as "none" for terminal's default color, as a name of
one of the eight standard colors of ISO/IEC 6429 "black", "red", "green", etc.,
as an RGB hexadecimal tripplet #RRGGBB for 24-bit TrueColor, or as an
integer from 0 to 255. Integers 0 to 7 are the synonyms for the standard
colors. Integers 8-15 are used for the so-called bright colors from the
aixterm extended 16-color palette. Integers 16-255 are the indexes into xterm
extended 256-color palette (usually 6x6x6 cube plus gray ramp). In
general, 256-color palette is terminal dependent and sometimes can be
changed with OSC 4 sequences, e.g. "\033]4;1;rgb:00/FF/00\033\\".
It is the responsibility of the user to verify that the terminal supports
the specified colors.
PATCH v5 changes: documentation fixed.
PATCH v6 changes: documentation fixed.
PATCH v7 changes: rebase onto master and fixes after review.
PATCH v8 changes: fixes after review.
This renames two maint commands, removing a hyphen from
"check-symtabs" and "check-psymtabs"; that is, moving them under the
existing "maint check" prefix.
Regression tested on x86-64 Fedora 40.
Reviewed-By: Tom de Vries <tdevries@suse.de>
Approved-By: Andrew Burgess <aburgess@redhat.com>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This commit adds support for a `gstack' command which Fedora has
been carrying for many years. gstack is a natural counterpart to
the gcore command. Whereas gcore dumps a core file, gstack prints
stack traces of a running process.
There are many improvements over Fedora's version of this script.
The dependency on procfs is gone; gstack will run anywhere gdb
runs. The only runtime dependencies are bash and awk.
The script includes suggestions from gdb/32325 to include
versioning and help. [If this approach to gdb/32325 is acceptable,
I could propagate the solution to gcore/gdb-add-index.]
I've rewritten the documentation, integrating it into the User Manual.
The manpage is now output using this one source.
Example run (on x86_64 Fedora 40)
$ gstack --help
Usage: gstack [-h|--help] [-v|--version] PID
Print a stack trace of a running program
-h, --help Print this message then exit.
-v, --version Print version information then exit.
$ gstack -v
GNU gstack (GDB) 16.0.50.20241119-git
$ gstack 12345678
Process 12345678 not found.
$ gstack $(pidof emacs)
Thread 6 (Thread 0x7fd5ec1c06c0 (LWP 2491423) "pool-spawner"):
#0 0x00007fd6015ca3dd in syscall () at /lib64/libc.so.6
#1 0x00007fd60b31eccd in g_cond_wait () at /lib64/libglib-2.0.so.0
#2 0x00007fd60b28a61b in g_async_queue_pop_intern_unlocked () at /lib64/libglib-2.0.so.0
#3 0x00007fd60b2f1a03 in g_thread_pool_spawn_thread () at /lib64/libglib-2.0.so.0
#4 0x00007fd60b2f0813 in g_thread_proxy () at /lib64/libglib-2.0.so.0
#5 0x00007fd6015486d7 in start_thread () at /lib64/libc.so.6
#6 0x00007fd6015cc60c in clone3 () at /lib64/libc.so.6
#7 0x0000000000000000 in ??? ()
Thread 5 (Thread 0x7fd5eb9bf6c0 (LWP 2491424) "gmain"):
#0 0x00007fd6015be87d in poll () at /lib64/libc.so.6
#1 0x0000000000000001 in ??? ()
#2 0xffffffff00000001 in ??? ()
#3 0x0000000000000001 in ??? ()
#4 0x000000002104cfd0 in ??? ()
#5 0x00007fd5eb9be320 in ??? ()
#6 0x00007fd60b321c34 in g_main_context_iterate_unlocked.isra () at /lib64/libglib-2.0.so.0
Thread 4 (Thread 0x7fd5eb1be6c0 (LWP 2491425) "gdbus"):
#0 0x00007fd6015be87d in poll () at /lib64/libc.so.6
#1 0x0000000020f9b558 in ??? ()
#2 0xffffffff00000003 in ??? ()
#3 0x0000000000000003 in ??? ()
#4 0x00007fd5d8000b90 in ??? ()
#5 0x00007fd5eb1bd320 in ??? ()
#6 0x00007fd60b321c34 in g_main_context_iterate_unlocked.isra () at /lib64/libglib-2.0.so.0
Thread 3 (Thread 0x7fd5ea9bd6c0 (LWP 2491426) "emacs"):
#0 0x00007fd6015ca3dd in syscall () at /lib64/libc.so.6
#1 0x00007fd60b31eccd in g_cond_wait () at /lib64/libglib-2.0.so.0
#2 0x00007fd60b28a61b in g_async_queue_pop_intern_unlocked () at /lib64/libglib-2.0.so.0
#3 0x00007fd60b28a67c in g_async_queue_pop () at /lib64/libglib-2.0.so.0
#4 0x00007fd603f4d0d9 in fc_thread_func () at /lib64/libpangoft2-1.0.so.0
#5 0x00007fd60b2f0813 in g_thread_proxy () at /lib64/libglib-2.0.so.0
#6 0x00007fd6015486d7 in start_thread () at /lib64/libc.so.6
#7 0x00007fd6015cc60c in clone3 () at /lib64/libc.so.6
#8 0x0000000000000000 in ??? ()
Thread 2 (Thread 0x7fd5e9e6d6c0 (LWP 2491427) "dconf worker"):
#0 0x00007fd6015be87d in poll () at /lib64/libc.so.6
#1 0x0000000000000001 in ??? ()
#2 0xffffffff00000001 in ??? ()
#3 0x0000000000000001 in ??? ()
#4 0x00007fd5cc000b90 in ??? ()
#5 0x00007fd5e9e6c320 in ??? ()
#6 0x00007fd60b321c34 in g_main_context_iterate_unlocked.isra () at /lib64/libglib-2.0.so.0
Thread 1 (Thread 0x7fd5fcc45280 (LWP 2491417) "emacs"):
#0 0x00007fd6015c9197 in pselect () at /lib64/libc.so.6
#1 0x0000000000000000 in ??? ()
Since this is essentially a complete rewrite of the original
script and documentation, I've chosen to only keep a 2024 copyright date.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
Introduce an RSP packet, 'x', for reading from the remote server
memory in binary format. The binary write packet, 'X' already exists.
The 'x' packet is essentially the same as 'm', except that the
returned data is in binary format. For transferring relatively large
data from the memory of the remote process, the 'x' packet can reduce the
transfer costs.
For example, without this patch, fetching ~100MB of data from a remote
target takes
(gdb) dump binary memory temp.o 0x00007f3ba4c576c0 0x00007f3bab709400
2024-03-13 16:17:42.626 - command started
2024-03-13 16:18:24.151 - command finished
Command execution time: 32.136785 (cpu), 41.525515 (wall)
(gdb)
whereas with this patch, we obtain
(gdb) dump binary memory temp.o 0x00007fec39fce6c0 0x00007fec40a80400
2024-03-13 16:20:48.609 - command started
2024-03-13 16:21:16.873 - command finished
Command execution time: 20.447970 (cpu), 28.264202 (wall)
(gdb)
We see improvements not only when reading bulk data as above, but also
when making a large number of small memory access requests.
For example, without this patch:
(gdb) pipe x/100000xw $pc | wc -l
2024-03-13 16:04:57.112 - command started
25000
2024-03-13 16:05:10.798 - command finished
Command execution time: 9.952364 (cpu), 13.686581 (wall)
With this patch:
(gdb) pipe x/100000xw $pc | wc -l
2024-03-13 16:06:48.160 - command started
25000
2024-03-13 16:06:57.750 - command finished
Command execution time: 6.541425 (cpu), 9.589839 (wall)
(gdb)
Another example, where we create a core file of a GDB process.
(gdb) gcore /tmp/core.1
...
Command execution time: 85.496967 (cpu), 133.224373 (wall)
vs.
(gdb) gcore /tmp/core.1
...
Command execution time: 48.328885 (cpu), 115.032289 (wall)
Regression-tested on X86-64 using the unix (default) and
native-extended-gdbserver board files.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
This patch reuses the "title" style for titles -- in particular the
header line of a list display.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Reviewed-By: Keith Seitz <keiths@redhat.com>
Approved-By: Andrew Burgess <aburgess@redhat.com>
This adds a new "command" style that is used when styling the name of
a gdb command.
Note that not every instance of a command name that is output by gdb
is changed here. There is currently no way to style error() strings,
and there is no way to mark up command help strings.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=31747
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Reviewed-By: Keith Seitz <keiths@redhat.com>
Approved-By: Andrew Burgess <aburgess@redhat.com>
While testing DAP, we found a situation where a compiler-generated
variable caused the "variables" request to fail -- the variable in
question being an apparent 67-megabyte string.
It seems to me that artificial variables like this aren't interesting
to DAP users, and the gdb CLI omits these as well.
This patch changes DAP to omit these variables, adding a new
gdb.Symbol.is_artificial attribute to make this possible.
PR dap/32090 points out that gdb's DAP "launch" sequencing is
incorrect. The current approach (which is itself a 2nd
implementation...) was based on a misreading of the spec. The spec
has since been clarified here:
https://github.com/microsoft/debug-adapter-protocol/issues/497
The clarification here is that a client is free to send the "launch"
(or "attach") request at any point after the "initialized" event has
been sent by gdb. However, the "launch" does not cause any action to
be taken -- and does not send a response -- until after
"configurationDone" has been seen.
This patch implements this by arranging for the launch and attach
commands to return a DeferredRequest object.
All the tests needed updates. I've also added a new test that checks
that the deferred "launch" request can be cancelled. (Note that the
cancellation is lazy -- it also waits until configurationDone is seen.
This could be fixed, but I was not sure whether it is important to do
so.)
Finally, the "launch" command has a somewhat funny sequencing now.
Simply sending the command and waiting for a response yielded strange
results if the inferior did not stop -- in this case, the repsonse was
never sent. So now, the command is split into two parts, with some
setup being done synchronously (for better error propagation) and the
actual "run" being done async.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=32090
Reviewed-by: Kévin Le Gouguec <legouguec@adacore.com>
Intel has EOL'ed the Nios II architecture, and it's time to remove support
from all toolchain components before it gets any more bit-rotten from
lack of maintenance or regular testing.
At present, process record/replay and reverse debugging has been
implemented on LoongArch. Update the NEWS and doc to record this
new change.
Signed-off-by: Hui Li <lihui@loongson.cn>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Eli mentioned [1] that given that we use US English spelling in our
documentation, we should use "behavior" instead of "behaviour".
In wikipedia-common-misspellings.txt there's a rule:
...
behavour->behavior, behaviour
...
which leaves this as a choice.
Add an overriding rule to hardcode the choice to common-misspellings.txt:
...
behavour->behavior
...
and add a rule to rewrite behaviour into behavior:
...
behaviour->behavior
...
and re-run spellcheck.sh on gdb*.
Tested on x86_64-linux.
[1] https://sourceware.org/pipermail/gdb-patches/2024-November/213371.html
The 80-column-help-string self-test can fail if gdb's install
directory is too long, because the help for "jit-reader-load" includes
JIT_READER_DIR.
This help text is actually somewhat misleading, though.
JIT_READER_DIR is not actually used directly -- instead the relocated
variant is used.
This patch adds a new "show jit-reader-directory" command and changes
the help text to refer to this instead. I considered adding a "set"
command as well, but since absolute paths are acceptable here, and
since this is a very niche command anyway, I figured there was no need
to bother.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=32357
Reviewed-By: Kévin Le Gouguec <legouguec@adacore.com>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Andrew Burgess <aburgess@redhat.com>
The Intel (R) linear address masking (LAM) feature modifies the checking
applied to 64-bit linear addresses. With this so-called "modified
canonicality check" the processor masks the metadata bits in a pointer
before using it as a linear address. LAM supports two different modes that
differ regarding which pointer bits are masked and can be used for
metadata: LAM 48 resulting in a LAM width of 15 and LAM 57 resulting in a
LAM width of 6.
This patch adjusts watchpoint addresses based on the currently enabled
LAM mode using the untag mask provided in the /proc/<pid>/status file.
As LAM can be enabled at runtime or as the configuration may change
when entering an enclave, GDB checks enablement state each time a watchpoint
is updated.
In contrast to the patch implemented for ARM's Top Byte Ignore "Clear
non-significant bits of address on memory access", it is not necessary to
adjust addresses before they are passed to the target layer cache, as
for LAM tagged pointers are supported by the system call to read memory.
Additionally, LAM applies only to addresses used for data accesses.
Thus, it is sufficient to mask addresses used for watchpoints.
The following examples are based on a LAM57 enabled program.
Before this patch tagged pointers were not supported for watchpoints:
~~~
(gdb) print pi_tagged
$2 = (int *) 0x10007ffffffffe004
(gdb) watch *pi_tagged
Hardware watchpoint 2: *pi_tagged
(gdb) c
Continuing.
Couldn't write debug register: Invalid argument.
~~~~
Once LAM 48 or LAM 57 is enabled for the current program, GDB can now
specify watchpoints for tagged addresses with LAM width 15 or 6,
respectively.
Approved-By: Felix Willgerodt <felix.willgerodt@intel.com>
As with the previous two commits, this commit fixes a location where
we called PyObject_IsTrue without including an error check, this time
in bppy_init.
The 'qualified' argument is supposed to be a bool, the docs say:
The optional QUALIFIED argument is a boolean that allows
interpreting the function passed in 'spec' as a fully-qualified
name. It is equivalent to 'break''s '-qualified' flag (*note
Linespec Locations:: and *note Explicit Locations::).
It's not totally clear that the only valid values are True or False,
but I'm choosing to interpret the docs that way, and so I've added a
PyBool_Type check during argument parsing. Now, if a non-bool is
passed the user will get a TypeError during argument parsing. I've
added a test to cover this case.
This is a potentially breaking change to the Python API, but hopefully
this will not impact too many people. I've added a NEWS entry to
highlight this change.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
Like the previous commit, I discovered that in micmdpy_set_installed
we were calling PyObject_IsTrue, but not checking for a possible error
value being returned.
The micmdpy_set_installed function implements the
gdb.MICommand.installed attribute, and the documentation indicates that
this attribute should only be assigned a bool:
This attribute is read-write, setting this attribute to 'False'
will uninstall the command, removing it from the set of available
commands. Setting this attribute to 'True' will install the
command for use.
So I propose that instead of using PyObject_IsTrue we use
PyBool_Check, and if the new value fails this check we raise an
error. We can then compare the new value to Py_True directly instead
of calling PyObject_IsTrue.
This is a potentially breaking change to the Python API, but hopefully
this will not impact too many people, and the fix is pretty
easy (switch to using a bool). I've added a NEWS entry to draw
attention to this change.
Approved-By: Tom Tromey <tom@tromey.com>
Building on the previous two commits, I was auditing our uses of
PyObject_IsTrue looking for places where we were missing an error
check.
The gdb.Architecture.integer_type() function takes a 'signed' argument
which should be a 'bool', and the docs do say:
If SIGNED is not specified, it defaults to 'True'. If SIGNED is
'False', the returned type will be unsigned.
Currently we use PyObject_IsTrue, but we are missing an error check.
To fix this I've tightened the code to enforce the bool requirement at
the point that the arguments are parsed. With that done I can remove
the call to PyObject_IsTrue and instead compare to Py_True directly,
the object in question will always be a PyBool_Type.
However, we were testing that passing a non-bool argument for 'signed'
is treated as Py_False, this was added with this commit:
commit 90fe61ced1
Date: Mon Nov 29 13:53:06 2021 +0000
gdb/python: don't use the 'p' format for parsing args
which is when the PyObject_IsTrue call was added. Given that the docs
do seem pretty clear that only True or False are suitable argument
values, my proposal is that we just remove these tests and instead
test that any non-bool argument value for 'signed' gives a TypeError.
This is a breaking change to the Python API, however, my hope is that
this is such a edge case that it will not cause too many problem.
I've added a NEWS entry to highlight this change though.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
When debugging readline issues I'd like an easy way to know (for sure)
what version of readline GDB is using. This could also be useful when
writing readline tests, knowing the precise readline version will
allow us to know if we expect a test to pass or not.
Add the readline library version to the output of the 'show
configuration' command. Also include a suffix indicating if we are
using the system readline, or the statically linked in readline.
The information about static readline vs shared readline can be
figured out from the configure command output, but having it repeated
in the readline version line makes it super easy to grok within tests,
and it's super cheap, so I don't see this as a problem.
A customer noted that there is no way to prevent the "current language
does not match this frame" warning. This patch adds a new setting to
allow this warning to be suppressed.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Andrew Burgess <aburgess@redhat.com>
Implement extension_language_ops::find_objfile_from_buildid within
GDB's Python API. Doing this allows users to write Python extensions
that can help locate missing objfiles when GDB opens a core file. A
handler might perform some project- or site-specific actions to find a
missing objfile. Or might provide some project- or site-specific
advice to the user on how they can obtain the missing objfile.
The implementation is very similar to the approach taken in:
commit 8f6c452b5a
Date: Sun Oct 15 22:48:42 2023 +0100
gdb: implement missing debug handler hook for Python
The following new commands are added as commands implemented in
Python, this is similar to how the Python missing debug and unwinder
commands are implemented:
info missing-objfile-handlers
enable missing-objfile-handler LOCUS HANDLER
disable missing-objfile-handler LOCUS HANDLER
To make use of this extension hook a user will create missing objfile
handler objects, and registers these handlers with GDB. When GDB
opens a core file and encounters a missing objfile each handler is
called in turn until one is able to help. Here is a minimal handler
that does nothing useful:
import gdb
import gdb.missing_objfile
class MyFirstHandler(gdb.missing_objfile.MissingObjfileHandler):
def __init__(self):
super().__init__("my_first_handler")
def __call__(self, pspace, build_id, filename):
# This handler does nothing useful.
return None
gdb.missing_objfile.register_handler(None, MyFirstHandler())
Returning None from the __call__ method tells GDB that this handler
was unable to find the missing objfile, and GDB should ask any other
registered handlers.
Possible return values from a handler:
- None: This means the handler couldn't help. GDB will call other
registered handlers to see if they can help instead.
- False: The handler has done all it can, but the objfile couldn't
be found. GDB will not call any other handlers, and will
continue without the objfile.
- True: The handler has installed the objfile into a location where
GDB would normally expect to find it. GDB should repeat its
normal lookup process and the objfile should now be found.
- A string: The handler can return a filename, which is the missing
objfile. GDB will load this file.
Handlers can be registered globally, or per program space. GDB checks
the handlers for the current program space first, and then all of the
global handles. The first handler that returns a value that is not
None, has "handled" the missing objfile, at which point GDB continues.
The implementation of this feature is mostly straight forward. I have
reworked some of the missing debug file related code so that it can be
shared with this feature. E.g. gdb/python/lib/gdb/missing_files.py is
mostly content moved from gdb/python/lib/gdb/missing_debug.py, but
updated to be more generic. Now gdb/python/lib/gdb/missing_debug.py
and the new file gdb/python/lib/gdb/missing_objfile.py both call into
the missing_files.py file.
For gdb/python/lib/gdb/command/missing_files.py this is even more
extreme, gdb/python/lib/gdb/command/missing_debug.py is completely
gone now and gdb/python/lib/gdb/command/missing_files.py provides all
of the new commands in a generic way.
I have made one change to the existing Python API, I renamed the
attribute Progspace.missing_debug_handlers to
Progspace.missing_file_handlers. I don't see this as too
problematic. This attribute was only used to implement the missing
debug feature and was never documented beyond the fact that it
existed. There was no reason for users to be touching this attribute.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This patch started as an attempt to allow the 'Size attribute to be
applied to types, and not just objects.
However, that turns out to be difficult due to the Ada semantcs of
'Size. In particular, Ada requires 'Size to denote the size of the
representation of the value, so for example Boolean'Size must be 1.
Implementing this properly requires information not readily available
to gdb... and while we could synthesize this information in many
cases, it also seemed to me that this wasn't strictly very useful when
debugging.
So instead, this patch adds support for the 'Object_Size attribute,
which is somewhat closer to 'sizeof'.
Note also that while 'Object_Size is defined for some dynamic types, I
chose not to implement this here, as again this information is not
readily available -- and I think it's preferable to error than to
print something that might be incorrect.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This patch adds separate styling for line numbers. That is, whenever
gdb prints a source line number, it uses this style.
v2 includes a change to ensure that %ps works in query.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Reviewed-by: Keith Seitz <keiths@redhat.com>
GDB deprecated the commands "show/set mpx bound" in GDB 15.1, as Intel
listed Intel(R) Memory Protection Extensions (MPX) as removed in 2019.
MPX is also deprecated in gcc (since v9.1), the linux kernel (since v5.6)
and glibc (since v2.35). Let's now remove MPX support in GDB completely.
This includes the removal of:
- MPX functionality including register support
- deprecated mpx commands
- i386 and amd64 implementation of the hooks report_signal_info and
get_siginfo_type
- tests
- and pretty printer.
We keep MPX register numbers to not break compatibility with old gdbservers.
Approved-By: Felix Willgerodt <felix.willgerodt@intel.com>
One thing GDB always does when the inferior stops is finding out where
it's stopped at, by way of querying the value of the program counter
register.
To save a packet round trip, the remote target can send the PC
value (often alongside other frequently consulted registers such as the
stack pointer) in the stop reply packet as an "expedited register".
Test that this is actually done for the targets where gdbserver is
supposed to.
Extend the "maintenance print remote-registers" command output with an
"Expedited" column which says "yes" if the register was seen by GDB in
the last stop reply packet it received, and is left blank otherwise.
Tested for regressions on aarch64-linux-gnu native-extended-remote.
The testcase was tested on aarch64-linux-gnu, i686-linux-gnu and
x86_64-linux-gnu native-remote and native-extended-remote targets.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Tom Tromey <tom@tromey.com>
Event tracing allows GDB to show information about interesting asynchronous
events when tracing with Intel PT. Subsequent patches will add support for
displaying each type of event.
Enabling event-tracing unconditionally would result in rather noisy output, as
breakpoints themselves result in interrupt events. Which is why this patch adds
a set/show command to allow the user to enable/disable event-tracing before
starting a recording. The event-tracing setting has no effect on an already
active recording. The default setting is off. As event tracing will use the
auxiliary infrastructure added by ptwrite, the user can still disable printing
events, even when event-tracing was enabled, by using the /a switch for the
record instruction-history/function-call-history commands.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Markus Metzger <markus.t.metzger@intel.com>
I noticed that the list of general NEWS items seemed to have gotten
mixed up a bit in the NEWS file. This commit just moves things around
so that the general items all appear at the start of the 'Changes
since GDB 15' section. I've not changed any of the actual content.
This commit updates GDB so that thread or inferior specific
breakpoints are only inserted into the program space in which the
specific thread or inferior is running.
In terms of implementation, getting this basically working is easy
enough, now that a breakpoint's thread or inferior field is setup
prior to GDB looking for locations, we can easily use this information
to find a suitable program_space and pass this to as a filter when
creating the sals.
Or we could if breakpoint_ops::create_sals_from_location_spec allowed
us to pass in a filter program_space.
So, this commit extends breakpoint_ops::create_sals_from_location_spec
to take a program_space argument, and uses this to filter the set of
returned sals. This accounts for about half the change in this patch.
The second set of changes starts from breakpoint_set_thread and
breakpoint_set_inferior, this is called when the thread or inferior
for a breakpoint changes, e.g. from the Python API.
Previously this call would never result in the locations of a
breakpoint changing, after all, locations were inserted in every
program space, and we just use the thread or inferior variable to
decide when we should stop. Now though, changing a breakpoint's
thread or inferior can mean we need to figure out a new set of
breakpoint locations.
To support this I've added a new breakpoint_re_set_one function, which
is like breakpoint_re_set, but takes a single breakpoint, and just
updates the locations for that one breakpoint. We only need to call
this function if the program_space in which a breakpoint's thread (or
inferior) is running actually changes. If the program_space does
change then we call the new breakpoint_re_set_one function passing in
the program_space which should be used to filter the new locations (or
nullptr to indicate we should set locations in all program spaces).
This filter program_space needs to propagate down to all the re_set
methods, this accounts for the remaining half of the changes in this
patch.
There were a couple of existing tests that created thread or inferior
specific breakpoints and then checked the 'info breakpoints' output,
these needed updating. These were:
gdb.mi/user-selected-context-sync.exp
gdb.multi/bp-thread-specific.exp
gdb.multi/multi-target-continue.exp
gdb.multi/multi-target-ping-pong-next.exp
gdb.multi/tids.exp
gdb.mi/new-ui-bp-deleted.exp
gdb.multi/inferior-specific-bp.exp
gdb.multi/pending-bp-del-inferior.exp
I've also added some additional tests to:
gdb.multi/pending-bp.exp
I've updated the documentation and added a NEWS entry.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
The initial motivation for this commit was to allow thread or inferior
specific breakpoints to only be inserted within the appropriate
inferior's program-space. The benefit of this is that inferiors for
which the breakpoint does not apply will no longer need to stop, and
then resume, for such breakpoints. This commit does not make this
change, but is a refactor to allow this to happen in a later commit.
The problem we currently have is that when a thread-specific (or
inferior-specific) breakpoint is created, the thread (or inferior)
number is only parsed by calling find_condition_and_thread_for_sals.
This function is only called for non-pending breakpoints, and requires
that we know the locations at which the breakpoint will be placed (for
expression checking in case the breakpoint is also conditional).
A consequence of this is that by the time we figure out the breakpoint
is thread-specific we have already looked up locations in all program
spaces. This feels wasteful -- if we knew the thread-id earlier then
we could reduce the work GDB does by only looking up locations within
the program space for which the breakpoint applies.
Another consequence of how find_condition_and_thread_for_sals is
called is that pending breakpoints don't currently know they are
thread-specific, nor even that they are conditional! Additionally, by
delaying parsing the thread-id, pending breakpoints can be created for
non-existent threads, this is different to how non-pending
breakpoints are handled, so I can do this:
$ gdb -q ./gdb/testsuite/outputs/gdb.multi/pending-bp/pending-bp
Reading symbols from ./gdb/testsuite/outputs/gdb.multi/pending-bp/pending-bp...
(gdb) break foo thread 99
Function "foo" not defined.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (foo thread 99) pending.
(gdb) r
Starting program: /tmp/gdb/testsuite/outputs/gdb.multi/pending-bp/pending-bp
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Error in re-setting breakpoint 1: Unknown thread 99.
[Inferior 1 (process 3329749) exited normally]
(gdb)
GDB only checked the validity of 'thread 99' at the point the 'foo'
location became non-pending. In contrast, if I try this:
$ gdb -q ./gdb/testsuite/outputs/gdb.multi/pending-bp/pending-bp
Reading symbols from ./gdb/testsuite/outputs/gdb.multi/pending-bp/pending-bp...
(gdb) break main thread 99
Unknown thread 99.
(gdb)
GDB immediately checks if 'thread 99' exists. I think inconsistencies
like this are confusing, and should be fixed if possible.
In this commit the create_breakpoint function is updated so that the
extra_string, which contains the thread, inferior, task, and/or
condition information, is parsed immediately, even for pending
breakpoints.
Obviously, the condition still can't be validated until the breakpoint
becomes non-pending, but the thread, inferior, and task information
can be pulled from the extra-string, and can be validated early on,
even for pending breakpoints. The -force-condition flag is also
parsed as part of this early parsing change.
There are a couple of benefits to doing this:
1. Printing of breakpoints is more consistent now. Consider creating
a conditional breakpoint before this commit:
(gdb) set breakpoint pending on
(gdb) break pendingfunc if (0)
Function "pendingfunc" not defined.
Breakpoint 1 (pendingfunc if (0)) pending.
(gdb) break main if (0)
Breakpoint 2 at 0x401198: file /tmp/hello.c, line 18.
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y <PENDING> pendingfunc if (0)
2 breakpoint keep y 0x0000000000401198 in main at /tmp/hello.c:18
stop only if (0)
(gdb)
And after this commit:
(gdb) set breakpoint pending on
(gdb) break pendingfunc if (0)
Function "pendingfunc" not defined.
Breakpoint 1 (pendingfunc) pending.
(gdb) break main if (0)
Breakpoint 2 at 0x401198: file /home/andrew/tmp/hello.c, line 18.
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y <PENDING> pendingfunc
stop only if (0)
2 breakpoint keep y 0x0000000000401198 in main at /home/andrew/tmp/hello.c:18
stop only if (0)
(gdb)
Notice that the display of the condition is now the same for the
pending and non-pending breakpoints.
The same is true for the thread, inferior, or task information in
thread, inferior, or task specific breakpoints; this information is
displayed on its own line rather than being part of the 'What'
field.
2. We can check that the thread exists as soon as the pending
breakpoint is created. Currently there is a weird difference
between pending and non-pending breakpoints when creating a
thread-specific breakpoint.
A pending thread-specific breakpoint only checks its thread when it
becomes non-pending, at which point the thread the breakpoint was
intended for might have exited. Here's the behaviour before this
commit:
(gdb) set breakpoint pending on
(gdb) break foo thread 2
Function "foo" not defined.
Breakpoint 2 (foo thread 2) pending.
(gdb) c
Continuing.
[Thread 0x7ffff7c56700 (LWP 2948835) exited]
Error in re-setting breakpoint 2: Unknown thread 2.
[Inferior 1 (process 2948832) exited normally]
(gdb)
Notice the 'Error in re-setting breakpoint 2: Unknown thread 2.'
line, this was triggered when GDB tried to make the breakpoint
non-pending, and GDB discovers that the thread no longer exists.
Compare that to the behaviour after this commit:
(gdb) set breakpoint pending on
(gdb) break foo thread 2
Function "foo" not defined.
Breakpoint 2 (foo) pending.
(gdb) c
Continuing.
[Thread 0x7ffff7c56700 (LWP 2949243) exited]
Thread-specific breakpoint 2 deleted - thread 2 no longer in the thread list.
[Inferior 1 (process 2949240) exited normally]
(gdb)
Now the behaviour for pending breakpoints is identical to
non-pending breakpoints, the thread specific breakpoint is removed
as soon as the thread the breakpoint is associated with exits.
There is an additional change; when the pending breakpoint is
created prior to this patch we see this line:
Breakpoint 2 (foo thread 2) pending.
While after this patch we get this line:
Breakpoint 2 (foo) pending.
Notice that 'thread 2' has disappeared. This might look like a
regression, but I don't think it is. That we said 'thread 2'
before was just a consequence of the lazy parsing of the breakpoint
specification, while with this patch GDB understands, and has
parsed away the 'thread 2' bit of the spec. If folk think the old
information was useful then this would be trivial to add back in
code_breakpoint::say_where.
As a result of this commit the breakpoints 'extra_string' field is now
only used by bp_dprintf type breakpoints to hold the printf format and
arguments. This string should always be empty for other breakpoint
types. This allows some cleanup in print_breakpoint_location.
In code_breakpoint::code_breakpoint I've changed an error case into an
assert. This is because the error is now handled earlier in
create_breakpoint. As a result we know that by this point, the
extra_string will always be nullptr for anything other than a
bp_dprintf style breakpoint.
The find_condition_and_thread_for_sals function is now no longer
needed, this was previously doing the delayed splitting of the extra
string into thread, task, and condition, but this is now all done in
create_breakpoint, so find_condition_and_thread_for_sals can be
deleted, and the code that calls this in
code_breakpoint::location_spec_to_sals can be removed. With this
update this code would only ever be reached for bp_dprintf style
breakpoints, and in these cases the extra_string should not contain
anything other than format and args.
The most interesting changes are all in create_breakpoint and in the
new file break-cond-parse.c. We have a new block of code early on in
create_breakpoint that is responsible for splitting the extra_string
into its component parts by calling create_breakpoint_parse_arg_string
a function in the new break-cond-parse.c file. This means that some
of the later code can be simplified a little.
The new break-cond-parse.c file implements the splitting up the
extra_string and finding all the parts, as well as some self-tests for
the new function.
Finally, now we know all the breakpoint details, these can be stored
within the breakpoint object if we end up creating a deferred
breakpoint. Additionally, if we are creating a deferred bp_dprintf we
can parse the extra_string to build the printf command.
The implementation here aims to maintain backwards compatibility as
much as possible, this means that:
1. We support abbreviations of 'thread', 'task', and 'inferior' in
some places on the breakpoint line. The handling of abbreviations
has (before this patch) been a little weird, so this works:
(gdb) break *main th 1
And creates a breakpoint at '*main' for thread 1 only, while this
does not work:
(gdb) break main th 1
In this case GDB will try to find the symbol 'main th 1'. This
weirdness exists before and after this patch.
2. The handling of '-force-condition' is odd, if this flag appears
immediately after a condition then it will be treated as part of the
condition, e.g.:
(gdb) break main if 0 -force-condition
No symbol "force" in current context.
But we are fine with these alternatives:
(gdb) break main if 0 thread 1 -force-condition
(gdb) break main -force-condition if 0
Again, this is just a quirk of how the breakpoint line used to be
parsed, but I've maintained this for backward compatibility. During
review it was suggested that -force-condition should become an
actual breakpoint flag (i.e. only valid after the 'break' command
but before the function name), and I don't think that would be a
terrible idea, however, that's not currently a trivial change, and I
think should be done as a separate piece of work. For now, this
patch just maintains the current behaviour.
The implementation works by first splitting the breakpoint condition
string (everything after the location specification) into a list of
tokens, each token has a type and a value. (e.g. we have a THREAD
token where the value is the thread-id string). The list of tokens is
validated, and in some cases, tokens are merged. Then the values are
extracted from the remaining token list.
Consider this breakpoint command:
(gdb) break main thread 1 if argc == 2
The condition string passed to create_breakpoint_parse_arg_string is
going to be 'thread 1 if argc == 2', which is then split into the
tokens:
{ THREAD: "1" } { CONDITION: "argc == 2" }
The thread-id (1) and the condition string 'argc == 2' are extracted
from these tokens and returns back to create_breakpoint.
Now consider this breakpoint command:
(gdb) break some_function if ( some_var == thread )
Here the user wants a breakpoint if 'some_var' is equal to the
variable 'thread'. However, when this is initially parsed we will
find these tokens:
{ CONDITION: "( some_var == " } { THREAD: ")" }
This is a consequence of how we have to try and figure out the
contents of the 'if' condition without actually parsing the
expression; parsing the expression requires that we know the location
in order to lookup the variables by name, and this can't be done for
pending breakpoints (their location isn't known yet), and one of the
points of this work is that we extract things like thread-id for
pending breakpoints.
And so, it is in this case that token merging takes place. We check
if the value of a token appearing immediately after the CONDITION
token looks valid. In this case, does ')' look like a valid
thread-id. Clearly, in this case ')' does not, and so me merge the
THREAD token into the condition token, giving:
{ CONDITION: "( some_var == thread )" }
Which is what we want.
I'm sure that we might still be able to come up with some edge cases
where the parser makes the wrong choice. I think long term the best
way to work around these would be to move the thread, inferior, task,
and -force-condition flags to be "real" command options for the break
command. I am looking into doing this, but can't guarantee if/when
that work would be completed, so this patch should be reviewed assume
that the work will never arrive (though I hope it will).
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This commit changes the 'target ...' commands that accept a filename
to take a quoted or escaped filename rather than a literal filename.
What this means in practice is that if you are specifying a filename
that contains no white space or quote characters, then nothing should
change, e.g.:
target exec /path/to/some/file
works both before and after this commit.
However, if a user wishes to specify a file containing white space
then either the entire filename needs to be quoted, or the special
white space needs to be escaped. Before this patch a user could
write:
target exec /path/to a file/containing spaces
But after this commit the user would have to choose one of:
target exec "/path/to a file/containing spaces"
or
target exec /path/to\ a\ file/containing\ spaces
Obviously this is a potentially breaking change. The benefit of
making this change is consistency. Commands that take multiple
arguments (one of which is a filename) or in the future, commands that
take filename options, will always need to use quoted/escaped
filenames, so converting all unquoted filename commands to use quoting
or escaping makes the UI more consistent.
Additionally (though this is probably not a common problem), GDB
strips trailing white space from commands that the user enters. As
such it is not possible to reference any file that ends in white space
unless the quoting / escaping style is used. Though I suspect very
few users run into this problem!
The downside obviously is that this is a UI breaking change.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This commit changes how GDB processes command arguments for the
following commands:
compile file
maint print c-tdesc
save gdb-index
After this commit these commands will now expect their single filename
argument to be (optionally) quoted if it contains any special
characters (e.g. whit space or quotes).
If the filename does not contain any special characters then nothing
changes. As an example:
(gdb) save gdb-index /path/to/some/directory/
will work before and after this patch. However, if the directory
name contains a white space then before this patch a user would write:
(gdb) save gdb-index /path/to some/directory/
But this will now fail as GDB will consider this as two arguments,
'/path/to' and 'some/directory/'. To pass this single directory name
a user must now do one of these:
(gdb) save gdb-index "/path/to some/directory/"
(gdb) save gdb-index '/path/to some/directory/'
(gdb) save gdb-index /path/to\ some/directory/
This brings these commands into line with commands like 'file' and
'symbol-file', which have supported quoted filenames for a while.
The motivation for this change is to make handling of filename
arguments consistent throughout GDB. We can't move to all commands
taking non-quoted filenames as the non-quoted style only allows for a
single argument. Additionally, the non-quoted style doesn't allow for
filenames that end in white space (though this is probably pretty
rare). So, if we want to have consistency the only choice is to move
towards supporting quote filenames.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
The 'remove-symbol-file' command doesn't currently offer command
completion. This commit addresses this.
The 'remove-symbol-file' uses gdb_argv to split its command arguments,
this means that the filename the command expects can be quoted.
However, the 'remove-symbol-file' command is a little weird in that it
also has a '-a' option, if this option is passed then the command
expects not a filename, but an address.
Currently the remove_symbol_file_command function splits the command
args using gdb_argv, checks for a '-a' flag by looking at the first
argument value, and then expects the filename or address to occupy a
single entry in the gdb_argv array.
The first thing I do is handle the '-a' flag using GDB's option
system. I model this option as a flag_option_def (a boolean option).
I've dropped the use of gdb_argv and instead use the new(ish) function
extract_single_filename_arg, which was added a couple of commits back,
to parse the filename argument (when '-a' is not given).
If '-a' is given the the remove-symbol-file command expects an address
rather than a filename. As we previously split the arguments using
gdb_argv this meant the address needed to appear as a single
argument. So a user could write:
(gdb) remove-symbol-file 0x1234
Or they could write:
(gdb) remove-symbol-file some_function
Both of these would work fine. But a user could not write:
(gdb) remove-symbol-file some_function + 0x1000
As only the 'some_function' part would be processed. Now the user
could do this:
(gdb) remove-symbol-file "some_function + 0x1000"
By enclosing the address expression in quotes this would be handled as
a single argument. However, this is a little weird, that's not how
commands like 'print' or 'x' work. Also this functionality was
neither documented, or tested.
And so, in this commit, by removing the use of gdb_argv I bring the
'remove-symbol-file' command inline with GDB's other commands that
take an expression, the quotes are no longer needed.
Usually in a completer we call 'complete_options', but don't actually
capture the option values. But for remove-symbol-file I do. This
allows me to spot when the '-a' option has been given, I can then
complete the rest of the command line as either a filename or an
expression.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
In commit:
commit 3055e3d2f1
Date: Tue May 21 15:58:02 2024 +0100
gdb: add GDB side target_ops::fileio_stat implementation
I managed to place a NEWS entry in the wrong place. I put the entry
in 'Changes in GDB 15' rather than 'Changes since GDB 15'. This
commit moves the entry to the correct place.
While reviewing a patch I wanted to understand which blocks existed at
a given address.
The 'maint print symbols' command does provide some of this
information, but that command displays all blocks within a given
symtab. If I want to know which blocks are at a given address I have
to figure that out for myself based on the output of 'maint print
symbols' ... and I'm too lazy for that!
So this command lists just those blocks at a given address, along with
information about the blocks type. This new command doesn't list the
symbols within each block, for that my expectation is that you'd cross
reference the output with that of 'maint print symbols'.
The new command format is:
maintenance info blocks
maintenance info blocks ADDRESS
This lists the blocks at ADDRESS, or at the current $pc if ADDRESS is
not given. Blocks are listed starting at the global block, then the
static block, and then the progressively narrower scoped blocks.
For each block we list the internal block pointer (which allows easy
cross referencing with 'maint print symbols'), the inferior address
range, along with other useful information.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Simon Marchi <simon.marchi@efficios.com>
While reviewing a patch I wanted to view GDB's inline frame state. I
don't believe there's currently a maintenance command to view this
information, so in this commit I've added one.
The new command is:
maintenance info inline-frames
maintenance info inline-frames ADDRESS
The command lists the inline frames that start at ADDRESS, or at the
current $pc if no ADDRESS is given. The command also displays the
"outer" function in which the inline functions are present.
An example of the command output:
(gdb) maintenance info inline-frames
Cached inline state information for thread 1.
program counter = 0x401137
skipped frames = 1
bar
> foo
main
(gdb)
This tells us that function 'main' called 'foo' which called 'bar'.
The functions 'foo' and 'bar' are both inline and both start at the
address 0x401137. Currently GDB considers the inferior to be stopped
in frame 'foo' (note the '>' marker), this means that there is 1
skipped frame (function 'bar').
The function 'main' is the outer function. The outer function might
not start at 0x401137, it is simply the function that contains the
inline functions.
If the user does a 'step' then GDB will not actually move the inferior
forward, but will instead simply tell the user that the inferior
entered 'bar'. The output of 'maint info inline-frames' will change
like this:
(gdb) step
bar () at inline.c:6
6 ++global_counter;
(gdb) maintenance info inline-frames
Cached inline state information for thread 1.
program counter = 0x401137
skipped frames = 0
> bar
foo
main
(gdb)
Now GDB is in function 'bar' and there are no skipped frames.
I have renamed skipped_symbols to function symbols within the
inline_state class. We are now going to carry the "outer"
function (the function that contains all the inlined functions) within
this list (as the last entry), so the old name didn't really make
sense. As a consequence of this rename I've updated some comments.
I've changed stopped_by_user_bp_inline_frame to take a symbol rather
than a block. Previously we just used the block to access the
associated function symbol. After this commit we can just pass in the
function symbol directly, so lets do that.
New function gather_inline_frames contains some of the logic pulled
from skip_inline_frames. This new function builds the list of all
symbols of inlined functions that start at a given $pc value and also
the "outer" function that contains all of the inlined functions.
In skip_inline_frames I've split the loop logic into two. The loop to
build the function symbol list has moved to gather_inline_frames. The
loop to figure out how many of the inlined functions we are skipping
remains in skip_inline_frames and uses the result of calling
gather_inline_frames.
In inline_skipped_symbol there are some minor updates to the comment,
and I've tweaked one of the asserts now that the function symbols list
also contains the "outer" function (a <= becomes <).
The maintenance_info_inline_frames function is now and implements the
new maintenance command.
And _initialize_inline_frame is updated to register the new command.
I've added a basic test for the new command. Please excuse the file
name for the new test, in the next commit I'll be adding additional
tests and at that point the file name will make sense.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Simon Marchi <simon.marchi@efficios.com>
In a record session, when we move backward, GDB switches from normal
execution to simulation. Moving forward again, the emulation continues
until the end of the reverse history. When the end is reached, the
execution stops, and a warning message is shown. This message has been
modified to indicate that the forward emulation has reached the end, but
the execution can continue as normal, and the recording will also continue.
Before this patch, the warning message shown in that case was the same as
in the reverse case. This meant that when the end of history was reached in
either backward or forward emulation, the same message was displayed:
"No more reverse-execution history."
This message has changed for these two cases. Backward emulation:
"Reached end of recorded history; stopping.
Backward execution from here not possible."
Forward emulation:
"Reached end of recorded history; stopping.
Following forward execution will be added to history."
The reason for this change is that the initial message was deceiving, for
the forward case, making the user believe that forward debugging could not
continue.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=31224
Reviewed-By: Markus T. Metzger <markus.t.metzger@intel.com> (btrace)
Approved-By: Guinevere Larsen <blarsen@redhat.com>
Call the ptwrite filter function whenever a ptwrite event is decoded.
The returned string is written to the aux_data string table and a
corresponding auxiliary instruction is appended to the function segment.
Approved-By: Markus Metzger <markus.t.metzger@intel.com>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This function allows to clear the trace data from python, forcing to
re-decode the trace for successive commands.
This will be used in future ptwrite patches, to trigger re-decoding when
the ptwrite filter changes.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Markus Metzger <markus.t.metzger@intel.com>
This commit moves aarch64_linux_memtag_matches_p,
aarch64_linux_set_memtags, aarch64_linux_get_memtag, and
aarch64_linux_memtag_to_string hooks (plus the aarch64_mte_get_atag
function used by them), along with the setting of the memtag granule
size, from aarch64-linux-tdep.c to aarch64-tdep.c, making MTE available
on baremetal targets. Since the aarch64-linux-tdep.c layer inherits
these hooks from aarch64-tdep.c, there is no effective change for
aarch64-linux targets.
Helpers used both by aarch64-tdep.c and by aarch64-linux-tdep.c were
moved from arch/aarch64-mte-linux.{c,h} to new arch/aarch64-mte.{c,h}
files.
Signed-off-by: Gustavo Romero <gustavo.romero@linaro.org>
Tested-By: Luis Machado <luis.machado@arm.com>
Approved-By: Luis Machado <luis.machado@arm.com>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
This commit adds the GDB side of target_ops::fileio_stat. There's an
implementation for inf_child_target, which just calls 'lstat', and
there's an implementation for remote_target, which sends a new
vFile:stat packet.
The new packet is documented.
There's still no users of target_fileio_stat as I have not yet added
support for vFile::stat to gdbserver. If these packets are currently
sent to gdbserver then they will be reported as not supported and the
ENOSYS error code will be returned.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
In commit 1a7d840a21 ("[gdb/tdep] Fix ARM_LINUX_JB_PC_EABI"), in absense of
osabi settings for newlib and uclibc for arm, I chose a best-effort approach
using ifdefs.
Post-commit review [1] pointed out that this may be causing more problems than
it's worth.
Fix this by removing the ifdefs and simply defining ARM_LINUX_JB_PC_EABI to 1.
Rebuild on x86_64-linux with --enable-targets=all.
Fixes: 1a7d840a21 ("[gdb/tdep] Fix ARM_LINUX_JB_PC_EABI")
[1] https://sourceware.org/pipermail/gdb-patches/2024-June/209779.html
A co-worker requested that the DAP code emit a scope for global
variables. It's not really practical to do this for all globals, but
it seemed reasonable to do this for globals coming from the frame's
compilation unit. For Ada in particular, this is convenient as it
exposes package-scoped variables.
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Currently, when a user tries to list the current location, there are 2
different error messages that can happen, either:
(gdb) list .
No symbol table is loaded. Use the "file" command.
or
(gdb) list .
No debug information available to print source lines.
The difference here is if gdb can find any symtabs at all or not, which
is not something too important for end-users - and isn't informative at
all. This commit changes it so that the error always says that there
isn't debug information available, with these two variants:
(gdb) list .
Insufficient debug info for showing source lines at current PC (0x55555555511d).
or
(gdb) list .
Insufficient debug info for showing source lines at default location.
The difference now is if the inferior has started already, which is
controlled by the user and may be useful.
Unfortunately, it isn't as easy to differentiate if the symtab found for
other list parameters is correct, so other invocations, such as "list +"
still retain their original error message.
Co-Authored-By: Simon Marchi <simark@simark.ca>
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Andrew Burgess <aburgess@redhat.com>
I spotted that the two functions:
record_full_open_1
record_full_core_open_1
both took two arguments, neither of which are used.
I stumbled onto this while reviewing how filename_completer is used.
The 'record full restore' command uses filename_completer and invokes
the cmd_record_full_restore function.
The cmd_record_full_restore function calls core_file_command and then
record_full_open, which then calls one of the above functions.
As 'record full restore' takes a filename, this is passed to
cmd_record_full_restore, which forwards the filename to both
core_file_command and record_full_open. However, record_full_open
never actually uses the filename that is passed in.
The record_full_open function is also used for 'target record-full'.
I propose that record_full_open should no longer expect to see any
user supplied arguments passed in (it doesn't use any). In fact, I've
added a check that if we do get any user supplied arguments we'll
throw an error.
Now that we know record_full_open isn't being passed any user
arguments we can stop passing the arguments to record_full_open_1 and
record_full_core_open_1, this will make no user visible difference as
these arguments were not used.
It is possible that a user was previously doing:
(gdb) target record-full blah blah blah
And this previously would work fine, the 'blah blah blah' was
ignored. Now this will give an error. Other than this case there
should be no user visible changes after this commit.
Approved-By: Tom Tromey <tom@tromey.com>