* arc-tdep.c: #include "gdbcmd.h".

(codestream_seek): Pass CORE_ADDR.
	(arc_cpu_type, tmp_arc_cpu_type, arc_cpu_type_table): New globals.
	(debug_pipeline_p): Likewise.
	(X_...): Instruction field access macros.
	(BUILD_INSN): Define.
	(codestream_tell): Allow for stream elements > 1 byte.
	(codestream_fill): Likewise.
	(setup_prologue_scan): New function.
	(arc_get_frame_setup): Call it.  Update to current spec
	regarding prologues.  Use BUILD_INSN.
	(skip_prologue): New argument `frameless_p'.  Use BUILD_INSN.
	(arc_frame_saved_pc): New function.
	(frame_find_saved_regs): Use BUILD_INSN.
	(get_insn_type, single_step): New functions.
	(one_stepped): New global.
	(arc_set_cpu_type_command, arc_show_cpu_type_command): New functions.
	(arc_set_cpu_type): New function.
	(_initialize_arc_tdep): Define new `set' commands `cpu',
	`displaypipeline', and `debugpipeline'.
	* remote-arc.c (break_insn): Add bi-endian support.
	(arc_insert_breakpoint): Likewise.
	(arc_remove_breakpoint): Likewise.
	(switch_command): Delete.
	* arc/tm-arc.h (TARGET_BYTE_ORDER): Delete.
	(TARGET_BYTE_ORDER_SELECTABLE): Define.
	(DEFAULT_ARC_CPU_TYPE): Define.
	(SKIP_PROLOGUE_FRAMELESS_P): Define.
	(BREAKPOINT): Delete.
	(BIG_BREAKPOINT, LITTLE_BREAKPOINT): Define.
	(DECR_PC_AFTER_BREAK): Change to 8.
	(NO_SINGLE_STEP): Define.
	(ARC_PC_TO_REAL_ADDRESS): Define.
	(SAVED_PC_AFTER_CALL): Use it.
	(NUM_REGS, REGISTER_BYTES): Fix.
	(FRAME_SAVED_PC): Call arc_frame_saved_pc.
	(FRAME_LOCALS_ADDRESS): Fix.
This commit is contained in:
David Edelsohn
1995-04-12 15:47:39 +00:00
parent 32513ed10d
commit f0d795faf6
3 changed files with 565 additions and 205 deletions

View File

@@ -24,9 +24,62 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "target.h"
#include "floatformat.h"
#include "symtab.h"
#include "gdbcmd.h"
/* Current CPU, set with the "set cpu" command. */
char *arc_cpu_type;
char *tmp_arc_cpu_type;
/* Table of cpu names. */
struct {
char *name;
int value;
} arc_cpu_type_table[] = {
{ "base", bfd_mach_arc_base },
{ "host", bfd_mach_arc_host },
{ "graphics", bfd_mach_arc_graphics },
{ "audio", bfd_mach_arc_audio },
{ NULL, 0 }
};
/* Used by simulator. */
int display_pipeline_p;
int cpu_timer;
/* This one must have the same type as used in the emulator.
It's currently an enum so this should be ok for now. */
int debug_pipeline_p;
#define ARC_CALL_SAVED_REG(r) ((r) >= 16 && (r) < 24)
#define OPMASK 0xf8000000
/* Instruction field accessor macros. */
#define X_OP(i) (((i) >> 27) & 0x1f)
#define X_A(i) (((i) >> 21) & 0x3f)
#define X_B(i) (((i) >> 15) & 0x3f)
#define X_C(i) (((i) >> 9) & 0x3f)
#define X_D(i) ((((i) & 0x1ff) ^ 0x100) - 0x100)
#define X_L(i) (((((i) >> 5) & 0x3ffffc) ^ 0x200000) - 0x200000)
#define X_N(i) (((i) >> 5) & 3)
#define X_Q(i) ((i) & 0x1f)
/* Return non-zero if X is a short immediate data indicator. */
#define SHIMM_P(x) ((x) == 61 || (x) == 63)
/* Return non-zero if X is a "long" (32 bit) immediate data indicator. */
#define LIMM_P(x) ((x) == 62)
/* Build a simple instruction. */
#define BUILD_INSN(op, a, b, c, d) \
((((op) & 31) << 27) \
| (((a) & 63) << 21) \
| (((b) & 63) << 15) \
| (((c) & 63) << 9) \
| ((d) & 511))
/* Codestream stuff. */
static void codestream_read PARAMS ((unsigned int *, int));
static void codestream_seek PARAMS ((int));
static void codestream_seek PARAMS ((CORE_ADDR));
static unsigned int codestream_fill PARAMS ((int));
#define CODESTREAM_BUFSIZ 16
@@ -36,22 +89,28 @@ static unsigned int codestream_buf[CODESTREAM_BUFSIZ];
static int codestream_off;
static int codestream_cnt;
#define codestream_tell() (codestream_addr + codestream_off)
#define codestream_peek() (codestream_cnt == 0 ? \
codestream_fill(1): codestream_buf[codestream_off])
#define codestream_get() (codestream_cnt-- == 0 ? \
codestream_fill(0) : codestream_buf[codestream_off++])
#define OPMASK 0xf8000000
#define codestream_tell() \
(codestream_addr + codestream_off * sizeof (codestream_buf[0]))
#define codestream_peek() \
(codestream_cnt == 0 \
? codestream_fill (1) \
: codestream_buf[codestream_off])
#define codestream_get() \
(codestream_cnt-- == 0 \
? codestream_fill (0) \
: codestream_buf[codestream_off++])
static unsigned int
codestream_fill (peek_flag)
int peek_flag;
{
codestream_addr = codestream_next_addr;
codestream_next_addr += CODESTREAM_BUFSIZ;
codestream_next_addr += CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]);
codestream_off = 0;
codestream_cnt = CODESTREAM_BUFSIZ;
read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
/* FIXME: need to handle byte order differences. */
read_memory (codestream_addr, (char *) codestream_buf,
CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]));
if (peek_flag)
return (codestream_peek());
@@ -61,7 +120,7 @@ codestream_fill (peek_flag)
static void
codestream_seek (place)
int place;
CORE_ADDR place;
{
codestream_next_addr = place / CODESTREAM_BUFSIZ;
codestream_next_addr *= CODESTREAM_BUFSIZ;
@@ -82,145 +141,171 @@ codestream_read (buf, count)
for (i = 0; i < count; i++)
*p++ = codestream_get ();
}
/* Set up prologue scanning and return the first insn,
not including the "sub sp,sp,32" of a stdarg function. */
/*
* find & return amound a local space allocated, and advance codestream to
* first register push (if any)
* if entry sequence doesn't make sense, return -1, and leave
* codestream pointer random
*/
static long
arc_get_frame_setup (pc)
int pc;
static unsigned int
setup_prologue_scan (pc)
CORE_ADDR pc;
{
unsigned int insn, n;
unsigned int insn;
codestream_seek (pc);
insn = codestream_get ();
if (insn & OPMASK == 0x10000000) /* st fp,[sp] */
{
insn = codestream_get ();
if (insn & OPMASK != 0x10000000) /* st blink,[sp,4] */
{
if (insn & OPMASK != 0x60000000) /* for leaf, no st blink */
return -1;
}
else if (codestream_get () & OPMASK != 0x60000000) /* mov fp,sp */
return (-1);
/* The authority for what appears here is the home-grown ABI. */
/* check for stack adjustment sub sp,nnn,sp */
insn = codestream_peek ();
if (insn & OPMASK == 0x50000000)
{
n = (insn & 0x000001ff );
codestream_get ();
/* First insn may be "sub sp,sp,32" if stdarg fn. */
if (insn == BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 32))
insn = codestream_get ();
/* this sequence is used to get the address of the return
* buffer for a function that returns a structure
*/
insn = codestream_peek ();
if (insn & OPMASK == 0x60000000)
codestream_get ();
return n;
}
else
{
return (0);
}
}
return (-1);
}
/* return pc of first real instruction */
CORE_ADDR
skip_prologue (pc)
int pc;
{
unsigned int insn;
int i;
CORE_ADDR pos;
if (arc_get_frame_setup (pc) < 0)
return (pc);
/* skip over register saves */
for (i = 0; i < 10; i++)
{
insn = codestream_peek ();
if (insn & OPMASK != 0x10000000) /* break if not st inst */
break;
codestream_get ();
}
codestream_seek (pos);
return (codestream_tell ());
}
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
int
frame_num_args (fi)
struct frame_info *fi;
{
#if 1
return -1;
#else
/* This loses because not only might the compiler not be popping the
args right after the function call, it might be popping args from both
this call and a previous one, and we would say there are more args
than there really are. Is it true for ARC */
int retpc;
unsigned char op;
struct frame_info *pfi;
int frameless;
FRAMELESS_FUNCTION_INVOCATION (fi, frameless);
if (frameless)
/* In the absence of a frame pointer, GDB doesn't get correct values
for nameless arguments. Return -1, so it doesn't print any
nameless arguments. */
return -1;
pfi = get_prev_frame_info (fi);
if (pfi == 0)
{
/* Note: this can happen if we are looking at the frame for
main, because FRAME_CHAIN_VALID won't let us go into
start. If we have debugging symbols, that's not really
a big deal; it just means it will only show as many arguments
to main as are declared. */
return -1;
}
else
{
retpc = pfi->pc;
op = read_memory_integer (retpc, 1);
if (op == 0x59)
/* pop %ecx */
return 1;
}
else
{
return 0;
}
}
#endif
return insn;
}
/*
* parse the first few instructions of the function to see
* Find & return amount a local space allocated, and advance codestream to
* first register push (if any).
* If entry sequence doesn't make sense, return -1, and leave
* codestream pointer random.
*/
static long
arc_get_frame_setup (pc)
CORE_ADDR pc;
{
unsigned int insn;
/* Size of frame or -1 if unrecognizable prologue. */
int n = -1;
insn = setup_prologue_scan (pc);
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
== BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
{
insn = codestream_get ();
/* Frame may not be necessary, even though blink is saved.
At least this is something we recognize. */
n = 0;
}
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st fp,[sp] */
== BUILD_INSN (2, 0, SP_REGNUM, FP_REGNUM, 0))
{
insn = codestream_get ();
if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
!= BUILD_INSN (12, FP_REGNUM, SP_REGNUM, SP_REGNUM, 0))
return -1;
/* Check for stack adjustment sub sp,sp,nnn. */
insn = codestream_peek ();
if ((insn & BUILD_INSN (-1, -1, -1, 0, 0))
== BUILD_INSN (10, SP_REGNUM, SP_REGNUM, 0, 0))
{
if (LIMM_P (X_C (insn)))
n = codestream_get ();
else if (SHIMM_P (X_C (insn)))
n = X_D (insn);
else
return -1;
if (n < 0)
return -1;
codestream_get ();
/* This sequence is used to get the address of the return
buffer for a function that returns a structure. */
insn = codestream_peek ();
if (insn & OPMASK == 0x60000000)
codestream_get ();
}
/* Frameless fn. */
else
{
n = 0;
}
}
return n;
}
/* Given a pc value, skip it forward past the function prologue by
disassembling instructions that appear to be a prologue.
If FRAMELESS_P is set, we are only testing to see if the function
is frameless. If it is a frameless function, return PC unchanged.
This allows a quicker answer. */
CORE_ADDR
skip_prologue (pc, frameless_p)
CORE_ADDR pc;
int frameless_p;
{
unsigned int insn;
int i, frame_size;
if ((frame_size = arc_get_frame_setup (pc)) < 0)
return (pc);
if (frameless_p)
return frame_size == 0 ? pc : codestream_tell ();
/* Skip over register saves. */
for (i = 0; i < 8; i++)
{
insn = codestream_peek ();
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
break; /* not st insn */
if (! ARC_CALL_SAVED_REG (X_C (insn)))
break;
codestream_get ();
}
return codestream_tell ();
}
/* Return the return address for a frame.
This is used to implement FRAME_SAVED_PC.
This is taken from frameless_look_for_prologue. */
CORE_ADDR
arc_frame_saved_pc (frame)
struct frame_info *frame;
{
CORE_ADDR func_start;
unsigned int insn;
func_start = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
if (func_start == 0)
{
/* Best guess. */
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
}
/* If the first insn is "st blink,[sp,4]" we can get blink from there.
Otherwise this is a leaf function and we can use blink. Note that
this still allows for the case where a leaf function saves/clobbers/
restores blink. */
insn = setup_prologue_scan (func_start);
if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
!= BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
return ARC_PC_TO_REAL_ADDRESS (read_register (BLINK_REGNUM));
else
return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
}
/*
* Parse the first few instructions of the function to see
* what registers were stored.
*
* The startup sequence can be at the start of the function.
* 'st fp,[sp], st blink,[sp+4], mov fp,sp'
* 'st blink,[sp+4], st fp,[sp], mov fp,sp'
*
* Local space is allocated just below by sub sp,nnn,sp
* Next, the registers used by this function are stored.
* Local space is allocated just below by sub sp,sp,nnn.
* Next, the registers used by this function are stored (as offsets from sp).
*/
void
@@ -233,15 +318,13 @@ frame_find_saved_regs (fip, fsrp)
CORE_ADDR dummy_bottom;
CORE_ADDR adr;
int i, regnum, offset;
memset (fsrp, 0, sizeof *fsrp);
/* if frame is the end of a dummy, compute where the
* beginning would be
*/
/* If frame is the end of a dummy, compute where the beginning would be. */
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
/* check if the PC is in the stack, in a dummy frame */
/* Check if the PC is in the stack, in a dummy frame. */
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
{
/* all regs were saved by push_call_dummy () */
@@ -253,23 +336,25 @@ frame_find_saved_regs (fip, fsrp)
}
return;
}
locals = arc_get_frame_setup (get_pc_function_start (fip->pc));
if (locals >= 0)
{
/* Set `adr' to the value of `sp'. */
adr = fip->frame - locals;
for (i = 0; i < 10; i++)
for (i = 0; i < 8; i++)
{
insn = codestream_get ();
if (insn & 0xffff8000 != 0x100d8000)
if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
!= BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
break;
regnum = (insn & 0x00007c00) >> 9;
offset = (insn << 23) >> 23;
regnum = X_C (insn);
offset = X_D (insn);
fsrp->regs[regnum] = adr + offset;
}
}
fsrp->regs[PC_REGNUM] = fip->frame + 4;
fsrp->regs[FP_REGNUM] = fip->frame;
}
@@ -322,7 +407,141 @@ pop_frame ()
write_register (SP_REGNUM, fp + 8);
flush_cached_frames ();
}
/* Simulate single-step. */
typedef enum
{
NORMAL4, /* a normal 4 byte insn */
NORMAL8, /* a normal 8 byte insn */
BRANCH4, /* a 4 byte branch insn, including ones without delay slots */
BRANCH8, /* an 8 byte branch insn, including ones with delay slots */
} insn_type;
/* Return the type of INSN and store in TARGET the destination address of a
branch if this is one. */
/* ??? Need to verify all cases are properly handled. */
static insn_type
get_insn_type (insn, pc, target)
unsigned long insn;
CORE_ADDR pc, *target;
{
unsigned long limm;
switch (insn >> 27)
{
case 0 : case 1 : case 2 : /* load/store insns */
if (LIMM_P (X_A (insn))
|| LIMM_P (X_B (insn))
|| LIMM_P (X_C (insn)))
return NORMAL8;
return NORMAL4;
case 4 : case 5 : case 6 : /* branch insns */
*target = pc + 4 + X_L (insn);
/* ??? It isn't clear that this is always the right answer.
The problem occurs when the next insn is an 8 byte insn. If the
branch is conditional there's no worry as there shouldn't be an 8
byte insn following. The programmer may be cheating if s/he knows
the branch will never be taken, but we don't deal with that.
Note that the programmer is also allowed to play games by putting
an insn with long immediate data in the delay slot and then duplicate
the long immediate data at the branch target. Ugh! */
if (X_N (insn) == 0)
return BRANCH4;
return BRANCH8;
case 7 : /* jump insns */
if (LIMM_P (X_B (insn)))
{
limm = read_memory_integer (pc + 4, 4);
*target = ARC_PC_TO_REAL_ADDRESS (limm);
return BRANCH8;
}
if (SHIMM_P (X_B (insn)))
*target = ARC_PC_TO_REAL_ADDRESS (X_D (insn));
else
*target = ARC_PC_TO_REAL_ADDRESS (read_register (X_B (insn)));
if (X_Q (insn) == 0 && X_N (insn) == 0)
return BRANCH4;
return BRANCH8;
default : /* arithmetic insns, etc. */
if (LIMM_P (X_A (insn))
|| LIMM_P (X_B (insn))
|| LIMM_P (X_C (insn)))
return NORMAL8;
return NORMAL4;
}
}
/* Non-zero if we just simulated a single-step. This is needed because we
cannot remove the breakpoints in the inferior process until after the
`wait' in `wait_for_inferior'. */
int one_stepped;
/* single_step() is called just before we want to resume the inferior, if we
want to single-step it but there is no hardware or kernel single-step
support. We find all the possible targets of the coming instruction and
breakpoint them.
single_step is also called just after the inferior stops. If we had
set up a simulated single-step, we undo our damage. */
void
single_step (ignore)
int ignore; /* sig, but we don't need it */
{
static CORE_ADDR next_pc, target;
static int brktrg_p;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[2];
if (!one_stepped)
{
insn_type type;
CORE_ADDR pc;
unsigned long insn;
pc = read_register (PC_REGNUM);
insn = read_memory_integer (pc, 4);
type = get_insn_type (insn, pc, &target);
/* Always set a breakpoint for the insn after the branch. */
next_pc = pc + ((type == NORMAL8 || type == BRANCH8) ? 8 : 4);
target_insert_breakpoint (next_pc, break_mem[0]);
brktrg_p = 0;
if ((type == BRANCH4 || type == BRANCH8)
/* Watch out for branches to the following location.
We just stored a breakpoint there and another call to
target_insert_breakpoint will think the real insn is the
breakpoint we just stored there. */
&& target != next_pc)
{
brktrg_p = 1;
target_insert_breakpoint (target, break_mem[1]);
}
/* We are ready to let it go. */
one_stepped = 1;
}
else
{
/* Remove breakpoints. */
target_remove_breakpoint (next_pc, break_mem[0]);
if (brktrg_p)
target_remove_breakpoint (target, break_mem[1]);
/* Fix the pc. */
stop_pc -= DECR_PC_AFTER_BREAK;
write_pc (stop_pc);
one_stepped = 0;
}
}
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. Slurp the args out of the stack.
We expect the first arg to be a pointer to the jmp_buf structure from which
@@ -354,9 +573,113 @@ get_longjmp_target(pc)
return 1;
}
#endif /* GET_LONGJMP_TARGET */
/* Command to set cpu type. */
void
arc_set_cpu_type_command (args, from_tty)
char *args;
int from_tty;
{
int i;
if (tmp_arc_cpu_type == NULL || *tmp_arc_cpu_type == '\0')
{
printf_unfiltered ("The known ARC cpu types are as follows:\n");
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
printf_unfiltered ("%s\n", arc_cpu_type_table[i].name);
/* Restore the value. */
tmp_arc_cpu_type = strsave (arc_cpu_type);
return;
}
if (!arc_set_cpu_type (tmp_arc_cpu_type))
{
error ("Unknown cpu type `%s'.", tmp_arc_cpu_type);
/* Restore its value. */
tmp_arc_cpu_type = strsave (arc_cpu_type);
}
}
static void
arc_show_cpu_type_command (args, from_tty)
char *args;
int from_tty;
{
}
/* Modify the actual cpu type.
Result is a boolean indicating success. */
int
arc_set_cpu_type (str)
char *str;
{
int i, j;
if (str == NULL)
return 0;
for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
{
if (strcasecmp (str, arc_cpu_type_table[i].name) == 0)
{
arc_cpu_type = str;
tm_print_insn = arc_get_disassembler (arc_cpu_type_table[i].value,
TARGET_BYTE_ORDER == BIG_ENDIAN);
return 1;
}
}
return 0;
}
void
_initialize_arc_tdep ()
{
tm_print_insn = arc_get_disassembler (bfd_mach_arc_host);
struct cmd_list_element *c;
c = add_set_cmd ("cpu", class_support, var_string_noescape,
(char *) &tmp_arc_cpu_type,
"Set the type of ARC cpu in use.\n\
This command has two purposes. In a multi-cpu system it lets one\n\
change the cpu being debugged. It also gives one access to\n\
cpu-type-specific registers and recognize cpu-type-specific instructions.\
",
&setlist);
c->function.cfunc = arc_set_cpu_type_command;
c = add_show_from_set (c, &showlist);
c->function.cfunc = arc_show_cpu_type_command;
/* We have to use strsave here because the `set' command frees it before
setting a new value. */
tmp_arc_cpu_type = strsave (DEFAULT_ARC_CPU_TYPE);
arc_set_cpu_type (tmp_arc_cpu_type);
c = add_set_cmd ("displaypipeline", class_support, var_zinteger,
(char *) &display_pipeline_p,
"Set pipeline display (simulator only).\n\
When enabled, the state of the pipeline after each cycle is displayed.",
&setlist);
c = add_show_from_set (c, &showlist);
c = add_set_cmd ("debugpipeline", class_support, var_zinteger,
(char *) &debug_pipeline_p,
"Set pipeline debug display (simulator only).\n\
When enabled, debugging information about the pipeline is displayed.",
&setlist);
c = add_show_from_set (c, &showlist);
c = add_set_cmd ("cputimer", class_support, var_zinteger,
(char *) &cpu_timer,
"Set maximum cycle count (simulator only).\n\
Control will return to gdb if the timer expires.\n\
A negative value disables the timer.",
&setlist);
c = add_show_from_set (c, &showlist);
/* FIXME: must be done after for now. */
tm_print_insn = arc_get_disassembler (bfd_mach_arc_base, 1 /*FIXME*/);
}