gdbsupport: bump unordered_dense to 4.8.0

We don't need anything in this release, but I think it doesn't hurt to
just stay up to date.  The new version has a new include file, stl.h.
To keep things clean and separated, move the imported files to a new
sub-directory.  This requires a small change in
gdb/check-include-guards.py, to be able to ignore the whole new
directory.

Change-Id: Ic8c5d0dd5ea8b6691c99975d6ca78f637175ef42
Approved-By: Tom Tromey <tom@tromey.com>
This commit is contained in:
Simon Marchi
2025-10-27 15:25:51 -04:00
parent 9f9eeeb6da
commit ddaee713f5
5 changed files with 330 additions and 243 deletions

View File

@@ -0,0 +1,83 @@
///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////
// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
// Version 4.8.0
// https://github.com/martinus/unordered_dense
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2022-2024 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef ANKERL_STL_H
#define ANKERL_STL_H
#include <array> // for array
#include <cstdint> // for uint64_t, uint32_t, std::uint8_t, UINT64_C
#include <cstring> // for size_t, memcpy, memset
#include <functional> // for equal_to, hash
#include <initializer_list> // for initializer_list
#include <iterator> // for pair, distance
#include <limits> // for numeric_limits
#include <memory> // for allocator, allocator_traits, shared_ptr
#include <optional> // for optional
#include <stdexcept> // for out_of_range
#include <string> // for basic_string
#include <string_view> // for basic_string_view, hash
#include <tuple> // for forward_as_tuple
#include <type_traits> // for enable_if_t, declval, conditional_t, ena...
#include <utility> // for forward, exchange, pair, as_const, piece...
#include <vector> // for vector
// <memory_resource> includes <mutex>, which fails to compile if
// targeting GCC >= 13 with the (rewritten) win32 thread model, and
// targeting Windows earlier than Vista (0x600). GCC predefines
// _REENTRANT when using the 'posix' model, and doesn't when using the
// 'win32' model.
#if defined __MINGW64__ && defined __GNUC__ && __GNUC__ >= 13 && !defined _REENTRANT
// _WIN32_WINNT is guaranteed to be defined here because of the
// <cstdint> inclusion above.
# ifndef _WIN32_WINNT
# error "_WIN32_WINNT not defined"
# endif
# if _WIN32_WINNT < 0x600
# define ANKERL_MEMORY_RESOURCE_IS_BAD() 1 // NOLINT(cppcoreguidelines-macro-usage)
# endif
#endif
#ifndef ANKERL_MEMORY_RESOURCE_IS_BAD
# define ANKERL_MEMORY_RESOURCE_IS_BAD() 0 // NOLINT(cppcoreguidelines-macro-usage)
#endif
#if defined(__has_include) && !defined(ANKERL_UNORDERED_DENSE_DISABLE_PMR)
# if __has_include(<memory_resource>) && !ANKERL_MEMORY_RESOURCE_IS_BAD()
# define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage)
# include <memory_resource> // for polymorphic_allocator
# elif __has_include(<experimental/memory_resource>)
# define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage)
# include <experimental/memory_resource> // for polymorphic_allocator
# endif
#endif
#if defined(_MSC_VER) && defined(_M_X64)
# include <intrin.h>
# pragma intrinsic(_umul128)
#endif
#endif

View File

@@ -1,7 +1,7 @@
///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////
// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
// Version 4.6.0
// Version 4.8.0
// https://github.com/martinus/unordered_dense
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
@@ -31,7 +31,7 @@
// see https://semver.org/spec/v2.0.0.html
#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 4 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes
#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 6 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality
#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 8 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality
#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes
// API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/
@@ -81,66 +81,17 @@
# define ANKERL_UNORDERED_DENSE_DISABLE_UBSAN_UNSIGNED_INTEGER_CHECK
#endif
// defined in unordered_dense.cpp
#if !defined(ANKERL_UNORDERED_DENSE_EXPORT)
# define ANKERL_UNORDERED_DENSE_EXPORT
#endif
#if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L
# error ankerl::unordered_dense requires C++17 or higher
#else
# include <array> // for array
# include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C
# include <cstring> // for size_t, memcpy, memset
# include <functional> // for equal_to, hash
# include <initializer_list> // for initializer_list
# include <iterator> // for pair, distance
# include <limits> // for numeric_limits
# include <memory> // for allocator, allocator_traits, shared_ptr
# include <optional> // for optional
# include <stdexcept> // for out_of_range
# include <string> // for basic_string
# include <string_view> // for basic_string_view, hash
# include <tuple> // for forward_as_tuple
# include <type_traits> // for enable_if_t, declval, conditional_t, ena...
# include <utility> // for forward, exchange, pair, as_const, piece...
# include <vector> // for vector
# if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() == 0
# include <cstdlib> // for abort
# if !defined(ANKERL_UNORDERED_DENSE_STD_MODULE)
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
# define ANKERL_UNORDERED_DENSE_STD_MODULE 0
# endif
// <memory_resource> includes <mutex>, which fails to compile if
// targeting GCC >= 13 with the (rewritten) win32 thread model, and
// targeting Windows earlier than Vista (0x600). GCC predefines
// _REENTRANT when using the 'posix' model, and doesn't when using the
// 'win32' model.
# if defined __MINGW64__ && defined __GNUC__ && __GNUC__ >= 13 && !defined _REENTRANT
// _WIN32_WINNT is guaranteed to be defined here because of the
// <cstdint> inclusion above.
# ifndef _WIN32_WINNT
# error "_WIN32_WINNT not defined"
# endif
# if _WIN32_WINNT < 0x600
# define ANKERL_MEMORY_RESOURCE_IS_BAD() 1 // NOLINT(cppcoreguidelines-macro-usage)
# endif
# endif
# ifndef ANKERL_MEMORY_RESOURCE_IS_BAD
# define ANKERL_MEMORY_RESOURCE_IS_BAD() 0 // NOLINT(cppcoreguidelines-macro-usage)
# endif
# if defined(__has_include) && !defined(ANKERL_UNORDERED_DENSE_DISABLE_PMR)
# if __has_include(<memory_resource>) && !ANKERL_MEMORY_RESOURCE_IS_BAD()
# define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage)
# include <memory_resource> // for polymorphic_allocator
# elif __has_include(<experimental/memory_resource>)
# define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage)
# include <experimental/memory_resource> // for polymorphic_allocator
# endif
# endif
# if defined(_MSC_VER) && defined(_M_X64)
# include <intrin.h>
# pragma intrinsic(_umul128)
# if !ANKERL_UNORDERED_DENSE_STD_MODULE
# include "stl.h"
# endif
# if __has_cpp_attribute(likely) && __has_cpp_attribute(unlikely) && ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L
@@ -204,29 +155,29 @@ namespace detail {
// hardcodes seed and the secret, reformats the code, and clang-tidy fixes.
namespace detail::wyhash {
inline void mum(uint64_t* a, uint64_t* b) {
inline void mum(std::uint64_t* a, std::uint64_t* b) {
# if defined(__SIZEOF_INT128__)
__uint128_t r = *a;
r *= *b;
*a = static_cast<uint64_t>(r);
*b = static_cast<uint64_t>(r >> 64U);
*a = static_cast<std::uint64_t>(r);
*b = static_cast<std::uint64_t>(r >> 64U);
# elif defined(_MSC_VER) && defined(_M_X64)
*a = _umul128(*a, *b, b);
# else
uint64_t ha = *a >> 32U;
uint64_t hb = *b >> 32U;
uint64_t la = static_cast<uint32_t>(*a);
uint64_t lb = static_cast<uint32_t>(*b);
uint64_t hi{};
uint64_t lo{};
uint64_t rh = ha * hb;
uint64_t rm0 = ha * lb;
uint64_t rm1 = hb * la;
uint64_t rl = la * lb;
uint64_t t = rl + (rm0 << 32U);
auto c = static_cast<uint64_t>(t < rl);
std::uint64_t ha = *a >> 32U;
std::uint64_t hb = *b >> 32U;
std::uint64_t la = static_cast<std::uint32_t>(*a);
std::uint64_t lb = static_cast<std::uint32_t>(*b);
std::uint64_t hi{};
std::uint64_t lo{};
std::uint64_t rh = ha * hb;
std::uint64_t rm0 = ha * lb;
std::uint64_t rm1 = hb * la;
std::uint64_t rl = la * lb;
std::uint64_t t = rl + (rm0 << 32U);
auto c = static_cast<std::uint64_t>(t < rl);
lo = t + (rm1 << 32U);
c += static_cast<uint64_t>(lo < t);
c += static_cast<std::uint64_t>(lo < t);
hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c;
*a = lo;
*b = hi;
@@ -234,39 +185,39 @@ inline void mum(uint64_t* a, uint64_t* b) {
}
// multiply and xor mix function, aka MUM
[[nodiscard]] inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
[[nodiscard]] inline auto mix(std::uint64_t a, std::uint64_t b) -> std::uint64_t {
mum(&a, &b);
return a ^ b;
}
// read functions. WARNING: we don't care about endianness, so results are different on big endian!
[[nodiscard]] inline auto r8(const uint8_t* p) -> uint64_t {
uint64_t v{};
[[nodiscard]] inline auto r8(const std::uint8_t* p) -> std::uint64_t {
std::uint64_t v{};
std::memcpy(&v, p, 8U);
return v;
}
[[nodiscard]] inline auto r4(const uint8_t* p) -> uint64_t {
uint32_t v{};
[[nodiscard]] inline auto r4(const std::uint8_t* p) -> std::uint64_t {
std::uint32_t v{};
std::memcpy(&v, p, 4);
return v;
}
// reads 1, 2, or 3 bytes
[[nodiscard]] inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
[[nodiscard]] inline auto r3(const std::uint8_t* p, std::size_t k) -> std::uint64_t {
return (static_cast<std::uint64_t>(p[0]) << 16U) | (static_cast<std::uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
}
[[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, size_t len) -> uint64_t {
[[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, std::size_t len) -> std::uint64_t {
static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f),
UINT64_C(0xe7037ed1a0b428db),
UINT64_C(0x8ebc6af09c88c6e3),
UINT64_C(0x589965cc75374cc3)};
auto const* p = static_cast<uint8_t const*>(key);
uint64_t seed = secret[0];
uint64_t a{};
uint64_t b{};
std::uint64_t seed = secret[0];
std::uint64_t a{};
std::uint64_t b{};
if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16))
ANKERL_UNORDERED_DENSE_LIKELY_ATTR {
if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4))
@@ -285,11 +236,11 @@ inline void mum(uint64_t* a, uint64_t* b) {
}
}
else {
size_t i = len;
std::size_t i = len;
if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48))
ANKERL_UNORDERED_DENSE_UNLIKELY_ATTR {
uint64_t see1 = seed;
uint64_t see2 = seed;
std::uint64_t see1 = seed;
std::uint64_t see2 = seed;
do {
seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1);
@@ -312,16 +263,16 @@ inline void mum(uint64_t* a, uint64_t* b) {
return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed));
}
[[nodiscard]] inline auto hash(uint64_t x) -> uint64_t {
[[nodiscard]] inline auto hash(std::uint64_t x) -> std::uint64_t {
return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15));
}
} // namespace detail::wyhash
ANKERL_UNORDERED_DENSE_EXPORT template <typename T, typename Enable = void>
template <typename T, typename Enable = void>
struct hash {
auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
-> uint64_t {
-> std::uint64_t {
return std::hash<T>{}(obj);
}
};
@@ -330,7 +281,7 @@ template <typename T>
struct hash<T, typename std::hash<T>::is_avalanching> {
using is_avalanching = void;
auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
-> uint64_t {
-> std::uint64_t {
return std::hash<T>{}(obj);
}
};
@@ -338,7 +289,7 @@ struct hash<T, typename std::hash<T>::is_avalanching> {
template <typename CharT>
struct hash<std::basic_string<CharT>> {
using is_avalanching = void;
auto operator()(std::basic_string<CharT> const& str) const noexcept -> uint64_t {
auto operator()(std::basic_string<CharT> const& str) const noexcept -> std::uint64_t {
return detail::wyhash::hash(str.data(), sizeof(CharT) * str.size());
}
};
@@ -346,7 +297,7 @@ struct hash<std::basic_string<CharT>> {
template <typename CharT>
struct hash<std::basic_string_view<CharT>> {
using is_avalanching = void;
auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> uint64_t {
auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> std::uint64_t {
return detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size());
}
};
@@ -354,34 +305,34 @@ struct hash<std::basic_string_view<CharT>> {
template <class T>
struct hash<T*> {
using is_avalanching = void;
auto operator()(T* ptr) const noexcept -> uint64_t {
auto operator()(T* ptr) const noexcept -> std::uint64_t {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr));
return detail::wyhash::hash(reinterpret_cast<std::uintptr_t>(ptr));
}
};
template <class T>
struct hash<std::unique_ptr<T>> {
using is_avalanching = void;
auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> uint64_t {
auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> std::uint64_t {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get()));
return detail::wyhash::hash(reinterpret_cast<std::uintptr_t>(ptr.get()));
}
};
template <class T>
struct hash<std::shared_ptr<T>> {
using is_avalanching = void;
auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> uint64_t {
auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> std::uint64_t {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast)
return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get()));
return detail::wyhash::hash(reinterpret_cast<std::uintptr_t>(ptr.get()));
}
};
template <typename Enum>
struct hash<Enum, typename std::enable_if_t<std::is_enum_v<Enum>>> {
using is_avalanching = void;
auto operator()(Enum e) const noexcept -> uint64_t {
auto operator()(Enum e) const noexcept -> std::uint64_t {
using underlying = std::underlying_type_t<Enum>;
return detail::wyhash::hash(static_cast<underlying>(e));
}
@@ -392,25 +343,26 @@ struct tuple_hash_helper {
// Converts the value into 64bit. If it is an integral type, just cast it. Mixing is doing the rest.
// If it isn't an integral we need to hash it.
template <typename Arg>
[[nodiscard]] constexpr static auto to64(Arg const& arg) -> uint64_t {
[[nodiscard]] constexpr static auto to64(Arg const& arg) -> std::uint64_t {
if constexpr (std::is_integral_v<Arg> || std::is_enum_v<Arg>) {
return static_cast<uint64_t>(arg);
return static_cast<std::uint64_t>(arg);
} else {
return hash<Arg>{}(arg);
}
}
[[nodiscard]] ANKERL_UNORDERED_DENSE_DISABLE_UBSAN_UNSIGNED_INTEGER_CHECK static auto mix64(uint64_t state, uint64_t v)
-> uint64_t {
return detail::wyhash::mix(state + v, uint64_t{0x9ddfea08eb382d69});
[[nodiscard]] ANKERL_UNORDERED_DENSE_DISABLE_UBSAN_UNSIGNED_INTEGER_CHECK static auto mix64(std::uint64_t state,
std::uint64_t v)
-> std::uint64_t {
return detail::wyhash::mix(state + v, std::uint64_t{0x9ddfea08eb382d69});
}
// Creates a buffer that holds all the data from each element of the tuple. If possible we memcpy the data directly. If
// not, we hash the object and use this for the array. Size of the array is known at compile time, and memcpy is optimized
// away, so filling the buffer is highly efficient. Finally, call wyhash with this buffer.
template <typename T, std::size_t... Idx>
[[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...> /*unused*/) noexcept -> uint64_t {
auto h = uint64_t{};
[[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...> /*unused*/) noexcept -> std::uint64_t {
auto h = std::uint64_t{};
((h = mix64(h, to64(std::get<Idx>(t)))), ...);
return h;
}
@@ -419,7 +371,7 @@ struct tuple_hash_helper {
template <typename... Args>
struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> {
using is_avalanching = void;
auto operator()(std::tuple<Args...> const& t) const noexcept -> uint64_t {
auto operator()(std::tuple<Args...> const& t) const noexcept -> std::uint64_t {
return tuple_hash_helper<Args...>::calc_hash(t, std::index_sequence_for<Args...>{});
}
};
@@ -427,19 +379,19 @@ struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> {
template <typename A, typename B>
struct hash<std::pair<A, B>> : tuple_hash_helper<A, B> {
using is_avalanching = void;
auto operator()(std::pair<A, B> const& t) const noexcept -> uint64_t {
auto operator()(std::pair<A, B> const& t) const noexcept -> std::uint64_t {
return tuple_hash_helper<A, B>::calc_hash(t, std::index_sequence_for<A, B>{});
}
};
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
# define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \
template <> \
struct hash<T> { \
using is_avalanching = void; \
auto operator()(T const& obj) const noexcept -> uint64_t { \
return detail::wyhash::hash(static_cast<uint64_t>(obj)); \
} \
# define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \
template <> \
struct hash<T> { \
using is_avalanching = void; \
auto operator()(T const& obj) const noexcept -> std::uint64_t { \
return detail::wyhash::hash(static_cast<std::uint64_t>(obj)); \
} \
}
# if defined(__GNUC__) && !defined(__clang__)
@@ -475,19 +427,19 @@ ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long);
namespace bucket_type {
struct standard {
static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint
static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint
static constexpr std::uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint
static constexpr std::uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint
uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
uint32_t m_value_idx; // index into the m_values vector.
std::uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
std::uint32_t m_value_idx; // index into the m_values vector.
};
ANKERL_UNORDERED_DENSE_PACK(struct big {
static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint
static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint
static constexpr std::uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint
static constexpr std::uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint
uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
size_t m_value_idx; // index into the m_values vector.
std::uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
std::size_t m_value_idx; // index into the m_values vector.
});
} // namespace bucket_type
@@ -525,7 +477,7 @@ template <typename T>
using detect_iterator = typename T::iterator;
template <typename T>
using detect_reserve = decltype(std::declval<T&>().reserve(size_t{}));
using detect_reserve = decltype(std::declval<T&>().reserve(std::size_t{}));
// enable_if helpers
@@ -559,7 +511,7 @@ struct base_table_type_set {};
// It allocates blocks of equal size and puts them into the m_blocks vector. That means it can grow simply by adding a new
// block to the back of m_blocks, and doesn't double its size like an std::vector. The disadvantage is that memory is not
// linear and thus there is one more indirection necessary for indexing.
template <typename T, typename Allocator = std::allocator<T>, size_t MaxSegmentSizeBytes = 4096>
template <typename T, typename Allocator = std::allocator<T>, std::size_t MaxSegmentSizeBytes = 4096>
class segmented_vector {
template <bool IsConst>
class iter_t;
@@ -579,11 +531,11 @@ public:
private:
using vec_alloc = typename std::allocator_traits<Allocator>::template rebind_alloc<pointer>;
std::vector<pointer, vec_alloc> m_blocks{};
size_t m_size{};
std::size_t m_size{};
// Calculates the maximum number for x in (s << x) <= max_val
static constexpr auto num_bits_closest(size_t max_val, size_t s) -> size_t {
auto f = size_t{0};
static constexpr auto num_bits_closest(std::size_t max_val, std::size_t s) -> std::size_t {
auto f = std::size_t{0};
while (s << (f + 1) <= max_val) {
++f;
}
@@ -602,7 +554,7 @@ private:
class iter_t {
using ptr_t = std::conditional_t<IsConst, segmented_vector::const_pointer const*, segmented_vector::pointer*>;
ptr_t m_data{};
size_t m_idx{};
std::size_t m_idx{};
template <bool B>
friend class iter_t;
@@ -622,7 +574,7 @@ private:
: m_data(other.m_data)
, m_idx(other.m_idx) {}
constexpr iter_t(ptr_t data, size_t idx) noexcept
constexpr iter_t(ptr_t data, std::size_t idx) noexcept
: m_data(data)
, m_idx(idx) {}
@@ -656,7 +608,7 @@ private:
}
[[nodiscard]] constexpr auto operator+(difference_type diff) const noexcept -> iter_t {
return {m_data, static_cast<size_t>(static_cast<difference_type>(m_idx) + diff)};
return {m_data, static_cast<std::size_t>(static_cast<difference_type>(m_idx) + diff)};
}
constexpr auto operator+=(difference_type diff) noexcept -> iter_t& {
@@ -747,7 +699,7 @@ private:
}
}
[[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(size_t capacity) {
[[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(std::size_t capacity) {
return (capacity + num_elements_in_block - 1U) / num_elements_in_block;
}
@@ -812,20 +764,20 @@ public:
dealloc();
}
[[nodiscard]] constexpr auto size() const -> size_t {
[[nodiscard]] constexpr auto size() const -> std::size_t {
return m_size;
}
[[nodiscard]] constexpr auto capacity() const -> size_t {
[[nodiscard]] constexpr auto capacity() const -> std::size_t {
return m_blocks.size() * num_elements_in_block;
}
// Indexing is highly performance critical
[[nodiscard]] constexpr auto operator[](size_t i) const noexcept -> T const& {
[[nodiscard]] constexpr auto operator[](std::size_t i) const noexcept -> T const& {
return m_blocks[i >> num_bits][i & mask];
}
[[nodiscard]] constexpr auto operator[](size_t i) noexcept -> T& {
[[nodiscard]] constexpr auto operator[](std::size_t i) noexcept -> T& {
return m_blocks[i >> num_bits][i & mask];
}
@@ -865,7 +817,7 @@ public:
return 0 == m_size;
}
void reserve(size_t new_capacity) {
void reserve(std::size_t new_capacity) {
m_blocks.reserve(calc_num_blocks_for_capacity(new_capacity));
while (new_capacity > capacity()) {
increase_capacity();
@@ -913,7 +865,7 @@ public:
void clear() {
if constexpr (!std::is_trivially_destructible_v<T>) {
for (size_t i = 0, s = size(); i < s; ++i) {
for (std::size_t i = 0, s = size(); i < s; ++i) {
operator[](i).~T();
}
}
@@ -962,7 +914,7 @@ private:
default_bucket_container_type,
BucketContainer>;
static constexpr uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets
static constexpr std::uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets
static constexpr float default_max_load_factor = 0.8F;
public:
@@ -990,11 +942,11 @@ private:
value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes.
bucket_container_type m_buckets{};
size_t m_max_bucket_capacity = 0;
std::size_t m_max_bucket_capacity = 0;
float m_max_load_factor = default_max_load_factor;
Hash m_hash{};
KeyEqual m_equal{};
uint8_t m_shifts = initial_shifts;
std::uint8_t m_shifts = initial_shifts;
[[nodiscard]] auto next(value_idx_type bucket_idx) const -> value_idx_type {
if (ANKERL_UNORDERED_DENSE_UNLIKELY(bucket_idx + 1U == bucket_count()))
@@ -1006,15 +958,15 @@ private:
}
// Helper to access bucket through pointer types
[[nodiscard]] static constexpr auto at(bucket_container_type& bucket, size_t offset) -> Bucket& {
[[nodiscard]] static constexpr auto at(bucket_container_type& bucket, std::size_t offset) -> Bucket& {
return bucket[offset];
}
[[nodiscard]] static constexpr auto at(const bucket_container_type& bucket, size_t offset) -> const Bucket& {
[[nodiscard]] static constexpr auto at(const bucket_container_type& bucket, std::size_t offset) -> const Bucket& {
return bucket[offset];
}
// use the dist_inc and dist_dec functions so that uint16_t types work without warning
// use the dist_inc and dist_dec functions so that std::uint16_t types work without warning
[[nodiscard]] static constexpr auto dist_inc(dist_and_fingerprint_type x) -> dist_and_fingerprint_type {
return static_cast<dist_and_fingerprint_type>(x + Bucket::dist_inc);
}
@@ -1025,10 +977,10 @@ private:
// The goal of mixed_hash is to always produce a high quality 64bit hash.
template <typename K>
[[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t {
[[nodiscard]] constexpr auto mixed_hash(K const& key) const -> std::uint64_t {
if constexpr (is_detected_v<detect_avalanching, Hash>) {
// we know that the hash is good because is_avalanching.
if constexpr (sizeof(decltype(m_hash(key))) < sizeof(uint64_t)) {
if constexpr (sizeof(decltype(m_hash(key))) < sizeof(std::uint64_t)) {
// 32bit hash and is_avalanching => multiply with a constant to avalanche bits upwards
return m_hash(key) * UINT64_C(0x9ddfea08eb382d69);
} else {
@@ -1041,11 +993,11 @@ private:
}
}
[[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> dist_and_fingerprint_type {
[[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(std::uint64_t hash) const -> dist_and_fingerprint_type {
return Bucket::dist_inc | (static_cast<dist_and_fingerprint_type>(hash) & Bucket::fingerprint_mask);
}
[[nodiscard]] constexpr auto bucket_idx_from_hash(uint64_t hash) const -> value_idx_type {
[[nodiscard]] constexpr auto bucket_idx_from_hash(std::uint64_t hash) const -> value_idx_type {
return static_cast<value_idx_type>(hash >> m_shifts);
}
@@ -1079,13 +1031,24 @@ private:
at(m_buckets, place) = bucket;
}
[[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t {
return (std::min)(max_bucket_count(), size_t{1} << (64U - shifts));
void erase_and_shift_down(value_idx_type bucket_idx) {
// shift down until either empty or an element with correct spot is found
auto next_bucket_idx = next(bucket_idx);
while (at(m_buckets, next_bucket_idx).m_dist_and_fingerprint >= Bucket::dist_inc * 2) {
auto& next_bucket = at(m_buckets, next_bucket_idx);
at(m_buckets, bucket_idx) = {dist_dec(next_bucket.m_dist_and_fingerprint), next_bucket.m_value_idx};
bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx));
}
at(m_buckets, bucket_idx) = {};
}
[[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t {
[[nodiscard]] static constexpr auto calc_num_buckets(std::uint8_t shifts) -> std::size_t {
return (std::min)(max_bucket_count(), std::size_t{1} << (64U - shifts));
}
[[nodiscard]] constexpr auto calc_shifts_for_size(std::size_t s) const -> std::uint8_t {
auto shifts = initial_shifts;
while (shifts > 0 && static_cast<size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) {
while (shifts > 0 && static_cast<std::size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) {
--shifts;
}
return shifts;
@@ -1130,7 +1093,7 @@ private:
if constexpr (has_reserve<bucket_container_type>) {
m_buckets.reserve(num_buckets);
}
for (size_t i = m_buckets.size(); i < num_buckets; ++i) {
for (std::size_t i = m_buckets.size(); i < num_buckets; ++i) {
m_buckets.emplace_back();
}
} else {
@@ -1183,15 +1146,7 @@ private:
template <typename Op>
void do_erase(value_idx_type bucket_idx, Op handle_erased_value) {
auto const value_idx_to_remove = at(m_buckets, bucket_idx).m_value_idx;
// shift down until either empty or an element with correct spot is found
auto next_bucket_idx = next(bucket_idx);
while (at(m_buckets, next_bucket_idx).m_dist_and_fingerprint >= Bucket::dist_inc * 2) {
at(m_buckets, bucket_idx) = {dist_dec(at(m_buckets, next_bucket_idx).m_dist_and_fingerprint),
at(m_buckets, next_bucket_idx).m_value_idx};
bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx));
}
at(m_buckets, bucket_idx) = {};
erase_and_shift_down(bucket_idx);
handle_erased_value(std::move(m_values[value_idx_to_remove]));
// update m_values
@@ -1201,9 +1156,7 @@ private:
val = std::move(m_values.back());
// update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx
auto mh = mixed_hash(get_key(val));
bucket_idx = bucket_idx_from_hash(mh);
bucket_idx = bucket_idx_from_hash(mixed_hash(get_key(val)));
auto const values_idx_back = static_cast<value_idx_type>(m_values.size() - 1);
while (values_idx_back != at(m_buckets, bucket_idx).m_value_idx) {
bucket_idx = next(bucket_idx);
@@ -1214,7 +1167,7 @@ private:
}
template <typename K, typename Op>
auto do_erase_key(K&& key, Op handle_erased_value) -> size_t { // NOLINT(cppcoreguidelines-missing-std-forward)
auto do_erase_key(K&& key, Op handle_erased_value) -> std::size_t { // NOLINT(cppcoreguidelines-missing-std-forward)
if (empty()) {
return 0;
}
@@ -1348,7 +1301,7 @@ private:
}
public:
explicit table(size_t bucket_count,
explicit table(std::size_t bucket_count,
Hash const& hash = Hash(),
KeyEqual const& equal = KeyEqual(),
allocator_type const& alloc_or_container = allocator_type())
@@ -1367,10 +1320,10 @@ public:
table()
: table(0) {}
table(size_t bucket_count, allocator_type const& alloc)
table(std::size_t bucket_count, allocator_type const& alloc)
: table(bucket_count, Hash(), KeyEqual(), alloc) {}
table(size_t bucket_count, Hash const& hash, allocator_type const& alloc)
table(std::size_t bucket_count, Hash const& hash, allocator_type const& alloc)
: table(bucket_count, hash, KeyEqual(), alloc) {}
explicit table(allocator_type const& alloc)
@@ -1415,7 +1368,7 @@ public:
}
table(std::initializer_list<value_type> ilist,
size_t bucket_count = 0,
std::size_t bucket_count = 0,
Hash const& hash = Hash(),
KeyEqual const& equal = KeyEqual(),
allocator_type const& alloc = allocator_type())
@@ -1522,15 +1475,15 @@ public:
return m_values.empty();
}
[[nodiscard]] auto size() const noexcept -> size_t {
[[nodiscard]] auto size() const noexcept -> std::size_t {
return m_values.size();
}
[[nodiscard]] static constexpr auto max_size() noexcept -> size_t {
if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<size_t>::max)()) {
return size_t{1} << (sizeof(value_idx_type) * 8 - 1);
[[nodiscard]] static constexpr auto max_size() noexcept -> std::size_t {
if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<std::size_t>::max)()) {
return std::size_t{1} << (sizeof(value_idx_type) * 8 - 1);
} else {
return size_t{1} << (sizeof(value_idx_type) * 8);
return std::size_t{1} << (sizeof(value_idx_type) * 8);
}
}
@@ -1787,6 +1740,59 @@ public:
return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...).first;
}
// Replaces the key at the given iterator with new_key. This does not change any other data in the underlying table, so
// all iterators and references remain valid. However, this operation can fail if new_key already exists in the table.
// In that case, returns {iterator to the already existing new_key, false} and no change is made.
//
// In the case of a set, this effectively removes the old key and inserts the new key at the same spot, which is more
// efficient than removing the old key and inserting the new key because it avoids repositioning the last element.
template <typename K>
auto replace_key(iterator it, K&& new_key) -> std::pair<iterator, bool> {
auto const new_key_hash = mixed_hash(new_key);
// first, check if new_key already exists and return if so
auto dist_and_fingerprint = dist_and_fingerprint_from_hash(new_key_hash);
auto bucket_idx = bucket_idx_from_hash(new_key_hash);
while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) {
auto const& bucket = at(m_buckets, bucket_idx);
if (dist_and_fingerprint == bucket.m_dist_and_fingerprint &&
m_equal(new_key, get_key(m_values[bucket.m_value_idx]))) {
return {begin() + static_cast<difference_type>(bucket.m_value_idx), false};
}
dist_and_fingerprint = dist_inc(dist_and_fingerprint);
bucket_idx = next(bucket_idx);
}
// const_cast is needed because iterator for the set is always const, so adding another get_key overload is not
// feasible.
auto& target_key = const_cast<key_type&>(get_key(*it));
auto const old_key_bucket_idx = bucket_idx_from_hash(mixed_hash(target_key));
// Replace the key before doing any bucket changes. If it throws, no harm done, we are still in a valid state as we
// have not modified any buckets yet.
target_key = std::forward<K>(new_key);
auto const value_idx = static_cast<value_idx_type>(it - begin());
// Find the bucket containing our value_idx. It's guaranteed we find it, so no other stopping condition needed.
bucket_idx = old_key_bucket_idx;
while (value_idx != at(m_buckets, bucket_idx).m_value_idx) {
bucket_idx = next(bucket_idx);
}
erase_and_shift_down(bucket_idx);
// place the new bucket
dist_and_fingerprint = dist_and_fingerprint_from_hash(new_key_hash);
bucket_idx = bucket_idx_from_hash(new_key_hash);
while (dist_and_fingerprint < at(m_buckets, bucket_idx).m_dist_and_fingerprint) {
dist_and_fingerprint = dist_inc(dist_and_fingerprint);
bucket_idx = next(bucket_idx);
}
place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx);
return {it, true};
}
auto erase(iterator it) -> iterator {
auto hash = mixed_hash(get_key(*it));
auto bucket_idx = bucket_idx_from_hash(hash);
@@ -1851,7 +1857,7 @@ public:
return begin() + idx_first;
}
auto erase(Key const& key) -> size_t {
auto erase(Key const& key) -> std::size_t {
return do_erase_key(key, [](value_type const& /*unused*/) {
});
}
@@ -1865,7 +1871,7 @@ public:
}
template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true>
auto erase(K&& key) -> size_t {
auto erase(K&& key) -> std::size_t {
return do_erase_key(std::forward<K>(key), [](value_type const& /*unused*/) {
});
}
@@ -1934,12 +1940,12 @@ public:
return try_emplace(std::forward<K>(key)).first->second;
}
auto count(Key const& key) const -> size_t {
auto count(Key const& key) const -> std::size_t {
return find(key) == end() ? 0 : 1;
}
template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true>
auto count(K const& key) const -> size_t {
auto count(K const& key) const -> std::size_t {
return find(key) == end() ? 0 : 1;
}
@@ -1994,11 +2000,11 @@ public:
// bucket interface ///////////////////////////////////////////////////////
auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
auto bucket_count() const noexcept -> std::size_t { // NOLINT(modernize-use-nodiscard)
return m_buckets.size();
}
static constexpr auto max_bucket_count() noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
static constexpr auto max_bucket_count() noexcept -> std::size_t { // NOLINT(modernize-use-nodiscard)
return max_size();
}
@@ -2019,7 +2025,7 @@ public:
}
}
void rehash(size_t count) {
void rehash(std::size_t count) {
count = (std::min)(count, max_size());
auto shifts = calc_shifts_for_size((std::max)(count, size()));
if (shifts != m_shifts) {
@@ -2031,7 +2037,7 @@ public:
}
}
void reserve(size_t capa) {
void reserve(std::size_t capa) {
capa = (std::min)(capa, max_size());
if constexpr (has_reserve<value_container_type>) {
// std::deque doesn't have reserve(). Make sure we only call when available
@@ -2094,49 +2100,49 @@ public:
} // namespace detail
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, false>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<std::pair<Key, T>>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
using segmented_map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, true>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<Key>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<Key>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, false>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<Key>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class AllocatorOrContainer = std::allocator<Key>,
class Bucket = bucket_type::standard,
class BucketContainer = detail::default_container_t>
using segmented_set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, true>;
# if defined(ANKERL_UNORDERED_DENSE_PMR)
namespace pmr {
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
using map = detail::table<Key,
T,
Hash,
@@ -2146,11 +2152,11 @@ using map = detail::table<Key,
detail::default_container_t,
false>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
template <class Key,
class T,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
using segmented_map = detail::table<Key,
T,
Hash,
@@ -2160,10 +2166,7 @@ using segmented_map = detail::table<Key,
detail::default_container_t,
true>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard>
using set = detail::table<Key,
void,
Hash,
@@ -2173,10 +2176,7 @@ using set = detail::table<Key,
detail::default_container_t,
false>;
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class Hash = hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Bucket = bucket_type::standard>
template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Bucket = bucket_type::standard>
using segmented_set = detail::table<Key,
void,
Hash,
@@ -2202,20 +2202,20 @@ using segmented_set = detail::table<Key,
namespace std { // NOLINT(cert-dcl58-cpp)
ANKERL_UNORDERED_DENSE_EXPORT template <class Key,
class T,
class Hash,
class KeyEqual,
class AllocatorOrContainer,
class Bucket,
class Pred,
class BucketContainer,
bool IsSegmented>
template <class Key,
class T,
class Hash,
class KeyEqual,
class AllocatorOrContainer,
class Bucket,
class Pred,
class BucketContainer,
bool IsSegmented>
// NOLINTNEXTLINE(cert-dcl58-cpp)
auto erase_if(
ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, IsSegmented>&
map,
Pred pred) -> size_t {
Pred pred) -> std::size_t {
using map_t = ankerl::unordered_dense::detail::
table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, BucketContainer, IsSegmented>;

View File

@@ -18,7 +18,7 @@
#ifndef GDBSUPPORT_UNORDERED_MAP_H
#define GDBSUPPORT_UNORDERED_MAP_H
#include "unordered_dense.h"
#include "unordered_dense/unordered_dense.h"
namespace gdb
{

View File

@@ -18,7 +18,7 @@
#ifndef GDBSUPPORT_UNORDERED_SET_H
#define GDBSUPPORT_UNORDERED_SET_H
#include "unordered_dense.h"
#include "unordered_dense/unordered_dense.h"
namespace gdb
{