import gdb-1999-07-07 post reformat

This commit is contained in:
Jason Molenda
1999-07-07 20:19:36 +00:00
parent 3a4b77d8be
commit c5aa993b1f
643 changed files with 69889 additions and 65773 deletions

View File

@@ -1,21 +1,22 @@
/* Machine independent variables that describe the core file under GDB.
Copyright 1986, 1987, 1989, 1990, 1992, 1995 Free Software Foundation, Inc.
This file is part of GDB.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Interface routines for core, executable, etc. */
@@ -51,7 +52,7 @@ extern void memory_error PARAMS ((int status, CORE_ADDR memaddr));
extern void read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
extern void read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr,
int len, asection *bfd_section));
int len, asection * bfd_section));
/* Read an integer from debugged memory, given address and number of
bytes. */
@@ -64,7 +65,7 @@ extern LONGEST read_memory_integer PARAMS ((CORE_ADDR memaddr, int len));
extern ULONGEST read_memory_unsigned_integer PARAMS ((CORE_ADDR memaddr, int len));
/* Read a null-terminated string from the debuggee's memory, given address,
* a buffer into which to place the string, and the maximum available space */
* a buffer into which to place the string, and the maximum available space */
extern void read_memory_string PARAMS ((CORE_ADDR, char *, int));
/* This takes a char *, not void *. This is probably right, because
@@ -77,7 +78,7 @@ extern void write_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
extern void generic_search PARAMS ((int len, char *data, char *mask,
CORE_ADDR startaddr, int increment,
CORE_ADDR lorange, CORE_ADDR hirange,
CORE_ADDR *addr_found, char *data_found));
CORE_ADDR * addr_found, char *data_found));
/* Hook for `exec_file_command' command to call. */
@@ -129,41 +130,42 @@ extern void set_gnutarget PARAMS ((char *));
/* Structure to keep track of core register reading functions for
various core file types. */
struct core_fns {
struct core_fns
{
/* BFD flavour that we handle. Note that bfd_target_unknown_flavour matches
anything, and if there is no better match, this function will be called
as the default. */
/* BFD flavour that we handle. Note that bfd_target_unknown_flavour matches
anything, and if there is no better match, this function will be called
as the default. */
enum bfd_flavour core_flavour;
enum bfd_flavour core_flavour;
/* Extract the register values out of the core file and store them where
`read_register' will find them.
/* Extract the register values out of the core file and store them where
`read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into
memory.
CORE_REG_SECT points to the register values themselves, read into
memory.
CORE_REG_SIZE is the size of that area.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float on
machines where they are discontiguous).
WHICH says which set of registers we are handling (0 = int, 2 = float on
machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to locate the
registers in a large upage-plus-stack ".reg" section. Original upage
address X is at location core_reg_sect+x+reg_addr. */
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to locate the
registers in a large upage-plus-stack ".reg" section. Original upage
address X is at location core_reg_sect+x+reg_addr. */
void (*core_read_registers) PARAMS ((char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr));
void (*core_read_registers) PARAMS ((char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr));
/* Finds the next struct core_fns. They are allocated and initialized
in whatever module implements the functions pointed to; an
initializer calls add_core_fns to add them to the global chain. */
/* Finds the next struct core_fns. They are allocated and initialized
in whatever module implements the functions pointed to; an
initializer calls add_core_fns to add them to the global chain. */
struct core_fns *next;
struct core_fns *next;
};
};
extern void add_core_fns PARAMS ((struct core_fns *cf));
extern void add_core_fns PARAMS ((struct core_fns * cf));
#endif /* !defined (GDBCORE_H) */
#endif /* !defined (GDBCORE_H) */